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Abstract
Surface reconstruction is an important part in automotive styling design. Existing recon-
struction methods mainly rely on the proficiency of digital modelers who manually modify
the surface shape to approximate the scanned data. Apart from manual modifications, the
reconstructed surfaces cannot well reflect the design intent of designers since the feature
curves of clay models have not been preserved accurately. In this paper, we propose a partial
differential equation (PDE) based surface reconstruction method to analytically generate
optimal surfaces with Cn continuity under the constraint of the feature curves. The proposed
method accurately preserves automotive feature curves and achieves automatic reconstruc-
tion of Class-A surfaces without time-consuming manual work. The effectiveness of the
proposed method is demonstrated by a number of experiments that reconstruct main parts
of automotive exteriors.

Keywords Partial differential equation · Surface reconstruction · Styling design ·
Feature curve · Cn continuity

1 Introduction

Surface reconstruction is a fundamental problem in reverse engineering, computer aided design
(CAD) and computer graphics. In the field of automotive styling design, the final stage is to scan
a clay model of cars and reconstruct parametric surfaces of every part of the clay model,
and then trim and stitch them to obtain a complete surface model [23]. The frequently-used
parametric surfaces include Bézier, B-splines and NURBS surfaces because they can be
modified by controlling a set of parameters such as control points and knot vectors.

In practice, there are two requirements in the automotive surface reconstruction: 1) high
degree of similarity and 2) pleasing aesthetics [38].

To meet the first requirement, various optimization methods are involved in the sur-
face fitting process where iterative steps were addressed to produce better results and fully

� Yu Xia
yxia@bournemouth.ac.uk

1 Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu,
Sichuan, 611756, People’s Republic of China

2 National Centre for Computer Animation, Bournemouth University, Bournemouth, BH12 5BB, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-13297-x&domain=pdf
http://orcid.org/0000-0001-8139-0554
mailto: yxia@bournemouth.ac.uk


Multimedia Tools and Applications

approximate input data, as discussed in [27]. However, these methods of parametric surface
reconstruction have several drawbacks such as long computing time and excessive control
points [19, 20, 30, 32], which make them have limited applications in CAD system for real-
time design. Digital modelers still need to create surfaces carefully by trial and error and
spend much time repeatedly evaluating the quality of reconstructed surfaces. Therefore, the
surface quality mainly relies on the proficiency of digital modelers.

The aesthetics, in the second requirement, have a key influence on a car’s desirability
[34]. It is mainly reflected by the automotive feature curves and the smoothness of external
surfaces. The feature curve plays a particularly important role in styling design because
it determines the main shape of the automobile body and produces aesthetically pleasing
forms [37]. Not only designers draw feature curves with a few strokes to indicate the main
shape of a car at the sketching stage, but also clay modelers use tapes to mark the feature
curves on automotive clay models, which helps them to communicate ideas with designers
and improve modeling quality, as shown in Fig. 1. No matter what stage it is at in the
styling design process, feature curves are the major contributor to the understanding of the
automotive form [50].

At the reverse engineering stage, to generate the desired shapes as well as accord with the
design intent of clay modelers, the boundary of reconstructed surfaces needs to strictly meet
the feature curves [38, 39]. However, as mentioned above, digital modelers usually generate
parametric surfaces by trial and error without the constraint of feature curves. For achieving
smoothness, digital modelers struggle with aligning control points of two adjacent surfaces
for generating high order continuities. However, a higher continuity level, such as Class-A
surfaces, which are defined as freeform surfaces with high efficiency and quality and have
G2 even G3 continuity, needs more control points to be aligned manually.

In contrast, a PDE-based surface reconstruction method can perfectly meet the two
requirements in automotive styling design due to the four advantages below: First, a PDE
surface only has several control parameters (normally ≤ 4) such as a1, a2, and a3 as shown
in (1) below which can flexibly change the surface shape without changing boundary con-
tinuities and greatly reduce the computing time in optimization process. Second, a PDE
surface is boundary-based, and it is capable to preserve the automotive feature curves in the
surface reconstruction process. Third, since a PDE surface exactly satisfies boundary con-
ditions, adjacent PDE surfaces naturally maintain position, tangent, or higher continuities
and no manual operations are required to stitch different PDE surfaces together. Moreover, a
PDE surface can achieve parametric continuity (C continuity) which is more stringent than
geometric continuity (G continuity). Finally, PDE methods are physics-based [8], and have
a potential to create more realistic surface shapes with natural aesthetics as shown in Fig. 2.

Fig. 1 The feature curves in the styling design. The images taken from [24, 31] show automotive clay models
with black tapes, which represent feature curves
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In this paper, we propose a PDE-based surface reconstruction method to generate optimal
surfaces with Cn continuity under the constraint of the feature curves for automotive styling
design. We address this issue by first parameterizing the automotive feature curves to con-
struct the boundary constraints of PDE surfaces, and then using a vector-valued fourth order
PDE to analytically generate Cn continuous surfaces from two opposite feature curves. By
optimizing the three control parameters in PDE (1) in Section 3, the reconstructed surfaces
achieve high precision in fitting the input data. Our contributions can be summarized as follows:

– A new surface reconstruction method based on an analytical vector-valued fourth order
PDE combined with the Hausdorff distance and genetic algorithm (GA) optimization
is proposed to generate optimal surface shapes in automotive styling design.

– Automotive feature curves are applied to constrain PDE surfaces and their geomet-
ric information is preserved to represent the designer’s intention in the reconstruction
process.

– The Cn continuity between adjacent surfaces is automatically guaranteed to generate
high-quality surfaces with a natural curvature flow.

– The reconstructed surface first exactly satisfies the feature curves and the error between
the surface and scanned data points is minimized through optimizing the values of three
control parameters.

The remaining parts of this paper are organized as follows. The related work on sur-
face reconstruction, PDE-based modeling methods and optimization and feature-based
CAD/CAM is briefly reviewed in Section 2. Our method of PDE-based surface reconstruc-
tion is described in Section 3. The examples and experimental results are given in Section 4.
The comparison with the existing methods is made in Section 5, and finally the conclusion
is drawn in Section 6.

2 Related work

The work presented in this paper is related to surface reconstruction, PDE, styling design,
Cn continuity, feature-based design, Hausdorff distance and GA optimization. In this
section, we briefly review the existing work on surface reconstruction techniques from 3D
data points, PDE-based modeling, optimization and feature-based CAD/CAM.

Fig. 2 Surface models generated by PDE methods. The left picture taken from [17] shows four simple PDE
surfaces, and the right picture taken from [45] shows a PDE solid model
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2.1 Surface reconstruction from 3D data points

Surface reconstruction from 3D data points has been investigated intensively. Parametric
surfaces [33], such as Bézier, B-splines and NURBS surfaces, are widely applied in CAD
systems. Gálvez et al. [19] proposed a particle swarm optimization method to reconstruct
a Bézier surface from a set of 3D data. With the similar scheme, they further proposed an
evolutionary-based NURBS surface reconstruction method [18] and a GA-based B-spline
surface reconstruction method [20] from clouds of 3D data points. Ma and Kruth [30]
presented a parameterization method of randomly distributed points for performing least
squares fitting of B-spline curves and surfaces. He and Qin [22] reconstructed a triangu-
lar B-spline surface with the user-specified n degree from a set of scanned 3D points. Park
et al. [32] proposed a NURBS surface fitting technique from scattered and unorganized
range data using hierarchical graph representation. These parametric surfaces, however, are
free-from and their boundary curves cannot fully represent feature curves in the automotive
styling design.

Since the feature information, such as boundaries and sharp features, plays an impor-
tant role in high-quality surface reconstruction, feature-preserving surface reconstruction
techniques are developed in recent years. Digne et al. [15] proposed a surface reconstruc-
tion and simplification method based on the decimation of a simplicial complex guided
by an error metric, which preserves sharp features and boundaries. Dey et al. [14] devel-
oped a feature-preserving surface reconstruction algorithm from a set of discrete points by
first reconstructing the features where singularities occur and then reconstructing surface
patches containing these feature curves. Weber et al. [43] addressed the problem of sharp
feature preserving surface reconstruction from point cloud data using the classic moving
least squares method. These methods, however, can only generate non-parametric surfaces.
In this work, we focus on the parametric surfaces reconstruction from feature curves rather
than the detection of feature curves from data points.

The CAD-generated surfaces [11], such as loft and sweep surfaces, are popularly used
in surface reconstruction. Lin et al. [28] proposed a surface lofting method for the reverse
engineering of complex shapes from the measurement data. Ueng et al. [40] developed
a sweep-surface reconstruction method from 3D measured data by using nonlinear least-
squares minimization. Since the sweep surface shape depends on the profile curve and path
curve, the sweeping method is similar to the practical claying process which is applied to
automotive styling design [23]. Tsuchie [38] proposed a sweep-based method for recon-
structing an underlying surface from scanned data of styling design objects with less torsion
on the line of curvature. With the same scheme, the intersecting underlying surfaces with C0

continuity were further developed by applying a sweep-based method [39]. In automotive
styling design, the feature curves are used as profile curves to reconstruct sweep or loft sur-
faces, which preserve feature curves and guarantee aesthetics. These methods, however, are
essentially control point-based which involve excessive control points and long computing
time in the reconstruction process, and low order of continuity between adjacent surfaces.

2.2 PDE-basedmodeling

PDE-based modeling is to define and create surfaces by the solution to a PDE sub-
jected to exact satisfaction of boundary conditions, and automatically achieve parametric
continuities on shared boundaries between adjacent PDE surfaces. Bloor and Wilson [7]
introduced PDE in geometric modeling about three decades ago. They developed a vector-
valued fourth order PDE with one control parameter to create surface shapes such as a
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propeller blade and a phone handset. Since then, this PDE form has been applied to a
number of geometric modeling problems such as interactive surfaces design [41], surface
manipulation [16], aircraft design [2] and human face design [36]. To diversify PDE sur-
face shapes, Zhang and You [48] proposed a fourth order PDE with three shape control
parameters for surface generation, which was applied in 3D vase model design, and they
further developed a sixth-order PDE with four shape control parameters, which provides
more degrees of freedom to manipulate surface shapes [49]. These PDE methods, however,
normally generate a surface from two closed boundary curves and do not apply to our problem in
which only open feature curves are available.

The solution of PDEs can be roughly classified into numerical and analytical solutions.
Numerical methods are the most effective in solving PDEs. Popular numerical methods are
the finite element method [9] and finite difference method [17, 42]. However, numerical
solutions require expensive computing cost and are less ideal in real-time modeling appli-
cations. Conversely, analytical solutions are the most accurate and efficient, and exactly
satisfy both PDEs and boundary conditions [5, 29, 48]. Since it is very difficult to obtain
accurate analytical solutions of PDEs, which are only applicable to address some simple
surface modeling problems, various approximate analytical solutions have been developed
such as the collocation method [6], Fourier series method [7] and pseudo-spectral method
[4]. These solutions can only deal with specific boundary conditions and none of them have
a unified framework to achieve different order of continuities.

2.3 Optimization and feature-based CAD/CAM

In this work, we use the Hausdorff distance as an objective function, which needs to be
minimized during the optimization process. Hausdorff distance is to measure the similar-
ity between two arbitrary point sets, which has been widely used in surface reconstruction.
Bartoň et al. [3] developed a computation algorithm for the Hausdorff distance between
two polygonal meshes based on computing the lower envelope of curves. Kim et al. [26]
presented an interactive-speed algorithm to calculate the Hausdorff distance between two
NURBS surface models in close proximity. Zhang et al. [47] developed an efficient frame-
work with two complementary algorithms, i. e., non-overlap Hausdorff distance and overlap
Hausdorff distance, to calculate the exact Hausdorff distance for 3D point sets. Chen
et al. [12] proposed a search algorithm called local start search to compute the exact Haus-
dorff distance for arbitrary point sets by using the spatial locality feature of point sets.
Although existing studies develop different and efficient algorithms for the Hausdorff dis-
tance, this paper mainly focuses on reconstructing the PDE surface rather than developing
new algorithms for the Hausdorff distance. How to improve the Hausdorff distance is not
the key issue in this paper. Therefore, we directly adopt the classic and simple Hausdorff
distance algorithm from [1].

Another related work is feature-based CAD/CAM. Feature-based CAD/CAM is to use
features of geometric modeling such as functional features, assembly features, mating
features and physical features to design products in CAD/CAM systems [35]. To share
feature-based CAD models among heterogeneous CAD systems, Zhang et al. [46] proposed
an asymmetric strategy to enrich the theory of feature-based interoperability, particularly
when addressing a singular feature or singular sketch. Wu et al. [44] presented a service-
oriented feature-based data exchange architecture for cloud-based design and manufacture
and collaborative product development. The aim of feature-based CAD/CAM is to develop
feature-based models which can be easily exchanged and edited in different CAD/CAM
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systems. In contrast, the purpose of our method is to preserve the main geometric features,
i. e., feature curves, in different stages of styling design.

In summary, existing surface reconstruction methods have several limitations in auto-
motive styling design, such as non-preservation of feature curves, long computing time,
excessive control points and poor continuity between adjacent surfaces. Existing PDE meth-
ods have the potential to solve these problems but are not applicable to open boundary
curves and arbitrary order of continuities. To tackle this problem, we will develop a unified
framework of PDE-based modeling to achieve Cn continuity surface reconstruction with
high efficiency and accuracy in automotive styling design.

3 The proposedmethod

In this section, we propose a unified PDE mathematical model for surface modeling and
obtain the first analytical Cn continuous PDE surfaces with the constraint of two feature
curves. In what follows, we first define the unified mathematical model of the PDE surface,
which consists of a vector-valued fourth-order homogeneous PDE and the related boundary
conditions in Section 3.1. Then, we investigate the general analytical solution of the unified
PDE mathematical model in Section 3.2 and the Cn continuous conditions in Section 3.3.

3.1 Unified PDEmathematical model

The PDE mathematical model usually choose an elliptic PDE to solve the surface generation
problem because the elliptic PDE is regarded as an averaging process throughout the entire
surface [10]. Due to the different order and the number of control parameters in PDE, the
PDE mathematical model has several forms. In this paper, our target is to generate PDE
surfaces with Cn continuity. However, a higher order of continuity usually depends on a
higher order PDE which is difficult to be solved. Since the continuity requirement of a
Class-A surface can be G3 continuity and a fourth-order PDE is sufficient in achieving
not only G3 continuity but also Cn (n > 3) continuity as discussed below, the proposed
unified mathematical model uses a vector-valued fourth-order PDE combined with three
shape control parameters, which offers enough degrees of freedom to satisfy arbitrary order
of continuity. The vector-valued fourth-order PDE is defined as

(a1
∂4

∂u4
+ a2

∂4

∂u2∂v2
+ a3

∂4

∂v4
)S(u, v) = 0 (1)

where S(u, v) = [x(u, v), y(u, v), z(u, v)]T is a vector-valued position function, which rep-
resents the generated parametric surface, a1, a2 and a3 are three shape control parameters,
and u and v are the parametric variables defined by u ∈ [0, 1] and v ∈ [0, 1].

As shown in Fig. 3, the PDE surface S is bounded by two feature curves C1(v) and C2(v)

and controlled by the related boundary tangents T1(v) and T2(v) given in (2). We define
the boundary tangent Ti (v) as a lerp function between two unit vectors TAi and TBi , which
are tangents at the endpoints A and B of the feature curve Ci (v).

Ti (v) = TAi(1 − v) + TBi, (i = 1, 2) (2)

Usually, for generating free-from surfaces, the vectors TAi and TBi are user-defined. In this
work, the surface shape near the boundary needs to be limited for a good reconstruction
accuracy. Therefore, we define that TAi and TBi are along the unconstrained boundaries of
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Fig. 3 The PDE surface S. Red curves, yellow arrows and green arrows represent feature curve Ci (v),
boundary tangent Ti (v) and unit vectors TAi and TBi respectively where i = 1, 2

scanned data as shown in Fig. 3. These constraints at the boundaries lead to the following
boundary conditions

u = 0, S = C1(v), ∂S
∂u

= T1(v), v ∈ [0, 1]
u = 1, S = C2(v), ∂S

∂u
= T2(v), v ∈ [0, 1] (3)

The boundary conditions in (3) can be decomposed into a linearly independent combination
of some basic functions, such as exponential functions, trigonometric functions, power func-
tions, logarithmic functions and the constant 1 [49]. We can rewrite boundary conditions in
(3) as follows

u = 0, S =
J∑

j=0
b1j fj (v), ∂S

∂u
=

J∑

j=0
b2j fj (v), v ∈ [0, 1]

u = 1, S =
J∑

j=0
b3j fj (v), ∂S

∂u
=

J∑

j=0
b4j fj (v), v ∈ [0, 1]

(4)

where fj (v) are the linearly independent basic functions, and b1j , b2j , b3j and b4j are
known constants. J represents the number of the basic functions.

3.2 Solution

Normally, it is extremely difficult to obtain the analytical solution of (1) subject to boundary
conditions in (4). To effectively solve this PDE mathematical model, we develop a comple-
mentary solution with a composite form to represent the PDE surface S, which has the form
of

S(u, v) =
J∑

j=0

M∑

m=0

rjmumfj (v) (5)

where rjm are the unknown constants to be determined, and M is the number of the terms
of the power series.
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The complementary solution combines the basic functions of variable v and the power
functions of variable u. Substituting the complementary solution in (5) into the boundary
constraints in (4) and solving for the unknown constants rjm, the complementary solution
is changed into

S(u, v) =
J∑

j=0

{b1j + b2j u + [−3b1j − 2b2j + 3b3j − b4j +
M∑

m=4

(m − 3)rjm]u2

+[2b1j + b2j − 2b3j + b4j −
M∑

m=4

(m − 2)rjm]u3 +
M∑

m=4

rjmum}fj (v) (6)

By substituting (6) into (1), the PDE mathematical model can be effectively solved. When
M = 3, all the unknown constants rjm are obtained by (6). When M ≥ 4, the total number
of the remaining unknown constants is (J + 1) × (M − 3), the least squares are used to
minimize the error of the PDE (1), and the rest unknown constants are solved by

J∑

j=0

M∑

m=4

E(u, v)
∂E(u, v)

∂rjm

= 0 (7)

where

E(u, v) = (a1
∂4

∂u4
+ a2

∂4

∂u2∂v2
+ a3

∂4

∂v4
)S(u, v) (8)

3.3 Cn continuity

Since feature curves are regarded as the limit in the case of smooth surfaces [39], two
adjacent surfaces sharing the same feature curve only have position continuity which is
shown in Fig. 6c. As discussed above, the Cn continuity such as C3 continuity needs to be
satisfied when the feature curves of two adjacent surfaces are connected at same points. In
order to meet the Cn continuity requirement, the adjacent PDE surfaces S and S̄ meeting at
their common boundary curve ÃB as shown in Fig. 4, should satisfy the following (9) and
(10).

Fig. 4 Two adjacent PDE surfaces
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At the joint vertices A and B, the PDE surfaces S and S̄ should satisfy up to Cn continuity
with respect to the parametric variable v which gives

J∑

j=0

bij

∂kfj (v = 1)

∂vk
=

J̄∑

j=0

b̄ij

∂kf̄j (v = 0)

∂vk
(k = 0, 1, 2, ..., n) (9)

where bij and b̄ij (i = 1, 2, 3, 4) are the constants in the boundary conditions of the PDE
surfaces S and S̄, respectively, and k is the order of partial derivatives, which represents the
order of continuities.

Except the joint vertices A and B, the PDE surfaces S and S̄ on the boundary curve
ÃB should also satisfy up to Cn continuity. These up to Cn continuities with respect to the
parametric variable v at the boundary curve ÃB are found to be

J∑

j=0

rjm

∂kfj (v = 1)

∂vk
=

J̄∑

j=0

r̄jm

∂kf̄j (v = 0)

∂vk
(m = 4, 5, ...,M) (10)

3.4 Optimization

Given a set of data points P = {pi}Ip

i=0, the reconstructed surface S = {si}Is

i=0 is usually
compared to P according to some error measure methods, such as the point-wise Euclidean
distance. However, for a set of scanned data, the distribution of point positions is irregular,
and it is also difficult to make the number of the points in S exactly the same as P, i. e.,
Is = Ip, even though Ip is known. In constrast, the Hausdorff distance provides a measure
of dissimilarity between two arbitrary point sets without building the one-to-one correspon-
dence between them [1]. We apply the classic Hausdorff distance as the objective function
H , which needs to be minimized during the optimization process. It is defined by

min
a1,a2,a3

H = max
s∈S

(min
p∈P ‖s − p‖) (11)

where a1, a2 and a3 are shape control parameters in the PDE (1).
The surface reconstruction procedure contains the following steps:

1. Input. A set of scanned data points P = {pi}Ip

i=0 representing part of the automotive
body and two opposite feature curves Ci (v) defined by scanning the tapes’ positions,
or section curve from scanned data or discretized CAD curve, etc.

2. Setup of boundary conditions. The feature curves Ci (v) are regarded as the boundary
curves, and the boundary tangents Ti (v) are obtained by (2). By decomposing Ci (v)

and Ti (v) into linearly independent combinations of basic functions fj (v), we can get
the boundary conditions (4) of the PDE (1). Note that for achieving up to Cn continuity
between two adjacent surfaces S and S̄, the known constants bij and b̄ij and unknown
constants rjm and r̄jm need satisfy (9) and (10), respectively.

3. Surface generation. After initializing the three shape control parameters a1, a2 and a3
in (1), the unknown constants rjm can be obtained by substituting (6) into (1) to obtain
(7) and solving (7), and then the PDE surface S is generated using (5).

4. Optimization. We change the surface shape to find the optimal surface through mini-
mizing the objective function H in (11) with respect to the three design variables, i. e.,
the shape control parameters a1, a2 and a3.



Multimedia Tools and Applications

5. Surface conversion. Since the optimized PDE surface cannot be directly used in CAD
systems for downstream engineering and manufacturing operations, we convert the
PDE surface into NURBS format by applying the optimal NURBS conversion method
presented in [42].

4 Experiments

In our experiment, we apply power functions as the linearly independent basic functions to
construct the boundary conditions, i. e., fj (v) = vj , and set the number of the basic func-
tions J = 4 and the terms of the power series M = 4. To solve the nonlinear optimization
problem, we use the classic GA [21] because it is a good solution to find a global minimum
for highly nonlinear problems. We define that the range of input design variables a1, a2 and
a3 is [−10, 10], and the convergence criterion is that the change in H is less than the spec-
ified tolerance 10−6. We implemented the proposed method using MATLAB and run the
results on a desktop computer with Intel/Xeon E5-1650 v3 (3.5 GHz) CPU.

For evaluating the quality of reconstructed surfaces with our method, we take the three
visual surface analysis tools listed below, which are applied in the following figures.

– Color map of error: For evaluating the similarity between our results and input data,
we measure surface error with respect to the bounding box diagonal which is evaluated
with the Metro tool [13]. We use green and blue colors to represent the maximum and
minimum errors, respectively.

– Zebra map: It is used to visualize curvature on surfaces and understand the shape and
quality of surfaces especially for checking the C0, C1, and C2 continuities at the join
of two adjacent surfaces.

– Curvature combs: Since C2 and C3 continuities have a similar zebra map, the curvature
comb can help us evaluate high order continuities because it displays the curvature value
at a given point. A detailed algorithm of the curvature comb is provided in Appendix.

Fig. 5 Reconstructed surface and surface analysis for Example 1. (a) Input mesh of a car hood. (b) The part
used for reconstruction from (a) with two feature curves (red curve). (c) Reconstructed surface. (d) Color
map of error. (e) The zebra map of (b). (f) The zebra map of (c)
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4.1 Reconstruction of single surfaces

We conducted the single surface reconstruction experiments using two examples of input
meshes, each of which represents a part of the hood of two automotive exteriors, respec-
tively, and their feature curves are specified upfront by power functions. Figures 5 and 6
show the two resulting surfaces for Examples 1 and 2. For each example, we show the eval-
uation of the reconstruction accuracy by error analysis with a color map and zebra maps,
which indicates the difference between the resulting surface and input mesh data.

Compared with the input data in Fig. 5b, the maximum error, mean error and root mean
square error (RMSE) of the reconstructed surface in Fig. 5c are 1.25×10−2, 1.94×10−3 and
2.59 × 10−3, respectively. The maximum error, mean error and RMSE of the reconstructed
surface in Fig. 6c are 2.90 × 10−3, 6.44 × 10−4 and 8.44 × 10−4, respectively. From these
errors and Figs. 5 and 6, we observe: 1) The reconstructed surface, especially at the position
of feature curves, has high quality and accuracy. 2) The zebra maps of the reconstructed
surface and input mesh data are almost identical. Therefore, our method not only matches
the requirement of feature curves’ preservation but also leads to reconstructed surfaces with
a good curvature flow.

4.2 Reconstruction of adjacent surfaces with Cn continuity

In order to demonstrate the effectiveness of our method in achieving Cn continuity between
two adjacent surfaces in styling design, we give two mesh examples (Examples 3 and 4)
from two automotive exteriors as shown in Figs. 7a and 8a. Each example consists of two
adjacent parts, i. e, two roof meshes in Example 3 as shown in Fig. 7a and a roof mesh and
a rear window mesh in Example 4 as shown in Fig. 8a. We name the part in light grey with
the yellow feature curves Part 1 and the part in dark grey with the red feature curves Part
2. In this experiment, we show the results with different orders of the continuity from C0

to C3 in Figs. 7b–e and 8b–e. Different from single surface reconstruction, we employ the
curvature combs on each part to evaluate the continuity between two adjacent reconstructed
surfaces besides the color map and zebra map. The values of three control parameters (CP)
a1, a2 and a3 in the PDE (1), computing time (CT), the maximum error (MaxE), mean error

Fig. 6 Reconstructed surface and surface analysis for Example 2. (a) Input mesh of a car hood. (b) The part
used for reconstruction from (a) with three feature curves (red curve). (c) Reconstructed surface. (d) Color
map of error. (e) The zebra map of (b). (f) The zebra map of (c)
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Fig. 7 Reconstructed surfaces with C0, C1, C2 and C3 continuities and their surface analysis for Example 3.
(a) Input mesh data, two parts for reconstruction and original zebra map. (b) Reconstructed C0 surfaces with
curvature combs, color map of error (the error range: 0 − 7.59 × 10−3) and zebra map. (c) Reconstructed
C1 surfaces with curvature combs, color map of error (the error range: 0 − 7.56 × 10−3) and zebra map.
(d) Reconstructed C2 surfaces with curvature combs, color map of error (the error range: 0 − 1.02 × 10−2)
and zebra map. (e) Reconstructed C3 surfaces with curvature combs, color map of error (the error range:
0 − 1.35 × 10−3) and zebra map. (The detail of curvature combs is shown in the red circle in the first row,
and the blue and green colors in the second row represent the minimum and maximum errors respectively)

(MeanE) and RMSE of reconstructed C0, C1, C2 and C3 surfaces of Examples 3 and 4 are
summarized in Table 1.

In Table 1, the range of the computing time is from 20 to 29 seconds, and the order of
magnitude of the maximum error is from 10−3 to 10−2 and the order of magnitude of the
mean error and RMSE are both 10−3. These results indicate that our method can reconstruct
surfaces with high precision in fitting the input data in a short time. From Figs. 7 and
8, we observe: 1) In Figs. 7b and 8b, the curvature combs of the two surfaces are at an
angle without connection, and the zebra stripes do not line up due to C0 continuity. 2) In
Figs. 7c and 8c, the curvature combs of the two surfaces are aligned but the curvature values

Fig. 8 Reconstructed surfaces with C0, C1, C2 and C3 continuities and their surface analysis for Example 4.
(a) Input mesh data, two parts for reconstruction and original zebra map. (b) Reconstructed C0 surfaces with
curvature combs, color map of error (the error range: 0 − 2.15 × 10−2) and zebra map. (c) Reconstructed
C1 surfaces with curvature combs, color map of error (the error range: 0 − 2.32 × 10−2) and zebra map.
(d) Reconstructed C2 surfaces with curvature combs, color map of error (the error range: 0 − 1.91 × 10−2)
and zebra map. (e) Reconstructed C3 surfaces with curvature combs, color map of error (the error range:
0 − 3.21 × 10−2) and zebra map. (The detail of curvature combs is shown in the red circle in the first row,
and the blue and green colors in the second row represent the minimum and maximum errors respectively)
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Table 1 Statistical data of C0, C1, C2 and C3 surfaces of Examples 3 and 4

Data Type Part CP CT(s) MaxE MeanE RMSE

a1 a2 a3

Example 3 C0 1 5.87 0.31 -0.44 21 7.59× 2.69× 3.34×
2 -3.19 -7.92 9.76 22 10−3 10−3 10−3

C1 1 3.55 9.13 -5.52 25 7.56× 2.35× 2.82×
2 0.48 9.74 -2.11 23 10−3 10−3 10−3

C2 1 4.40 -3.60 -6.85 25 1.02× 2.56× 3.33×
2 0.60 3.50 1.08 26 10−2 10−3 10−3

C3 1 1.75 0.08 -2.72 23 1.35× 3.90× 5.35×
2 0.09 6.63 9.92 21 10−2 10−3 10−3

Example 4 C0 1 1.52 2.62 6.19 20 2.15× 1.69× 3.08×
2 -0.20 9.24 -2.92 25 10−2 10−3 10−3

C1 1 6.75 0.83 -8.70 29 2.32× 4.39× 7.39×
2 -1.75 2.01 -9.25 27 10−2 10−3 10−3

C2 1 0.72 -7.74 -0.26 25 1.91× 3.93× 5.91×
2 -0.21 -8.91 -1.56 23 10−2 10−3 10−3

C3 1 4.44 5.50 1.08 24 3.21× 4.08× 8.04×
2 0.41 -1.90 5.92 21 10−2 10−3 10−3

are different at the join, and the zebra stripes line up but they turn sharply caused by C1

continuity. 3) In Figs. 7d and 8d, the curvature combs of the two surfaces are aligned and
the curvature values are the same at the join, and the zebra stripes line up and flow smoothly
created by C2 continuity. 4) In Figs. 7e and 8e, although the zebra stripes have no obvious
difference compared with Figs. 7d and 8d at the join, the outline of curvature combs has
tangential continuity at the join due to C3 continuity. These observations indicate that our
method can achieve Cn continuity at the join of two adjacent reconstructed surfaces.

5 Comparison with existingmethods

The experiments made in Section 4 demonstrate that our method works well in reconstruct-
ing surfaces with Cn continuity and strictly preserves feature curves for automotive styling
design. In order to demonstrate the advantages of our method, we make several comparisons
with the existing methods in this section.

Since traditional sweeping and lofting methods generate surfaces from profile curves,
which can be regarded as feature curves, we first compare our method with sweeping and
lofting methods. Figure 9 shows loft (b), sweep (c) and PDE (d) surfaces reconstructed from
input mesh data (a) with feature curves. The values of the maximum error, mean error and
RMSE are listed in Table 2.

In Fig. 9, the lofting method can preserve feature curves but cause big error in the middle
of the reconstructed surface because there are no design variables to guarantee the surface
quality. Although sweeping method can produce less error in the middle of the reconstructed
surface, it can only preserve one feature curve and needs the extra help of a backbone curve.
In contrast, our method can preserve two feature curves as well as guarantee the surface
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Fig. 9 Reconstructed loft, sweep and PDE surfaces with error analysis. (a) Input mesh data. (b) The loft
surface with two feature curves (red curve) and color map of error (the error range: 0 − 2.42 × 10−2). (c)
The sweep surface with one feature curve (red curve) and a backbone curve (purple curve), and color map of
error (the error range: 0 − 2.74 × 10−2). (d) The PDE surface with two feature curves (red curve) and color
map of error (the error range: 0 − 8.21 × 10−3). (The blue and green colors in the second row represent the
minimum and maximum errors, respectively)

quality by using the shape control parameters in PDE. Moreover, from the data in Table 2,
the reconstruction error of our method is small especially the maximum error which is one
order of magnitude smaller than other methods. These results manifest that our method
generates surfaces with higher accuracy than lofting and sweeping methods.

In addition, we compare our method with some state-of-the-art methods in surface recon-
struction including two parametric methods, i. e., the NURBS fitting [33] and closed form
PDE [51], and the non-parametric method, i. e., the screened poisson surface reconstruction
[25]. We use Examples 1 and 2 as input mesh data and generate the reconstructed sur-
faces, zebra maps and color maps of errors by using the above different methods as shown
in Fig. 10. We have the following observations from the comparison results. All recon-
structed surfaces of different methods have small errors compared with the input mesh data.
Although the reconstructed surfaces using our method have the largest errors, our method
has two superiorities compared with other methods. First, since our method exactly satisfies
the feature curves, the shapes of reconstructed surfaces are the same as the input meshes and
there is no need to trim the surfaces. In contrast, all of the other methods need to trim their
reconstructed surfaces to make them match the shape of the input meshes as shown by the
trim regions encircled by the red lines. Second, the zebra maps of the reconstructed surfaces
by using our method are most similar to the input meshes compared with other methods,
which indicates our method can restore curvature information of original data as much as
possible and generate a good curvature flow.

Table 2 Statistical data of loft, sweep and PDE surfaces

Method Maximum error Mean error RMSE

Lofting 2.42 × 10−2 1.36 × 10−2 1.59 × 10−2

Sweeping 2.74 × 10−2 5.46 × 10−3 7.54 × 10−3

Our method 8.21 × 10−3 1.99 × 10−3 2.53 × 10−3
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Fig. 10 Comparison of the proposed method with other surface reconstruction methods. The first, second
and third rows represent the surface meshes, zebra maps and color maps of errors, respectively. The red lines
indicate the trim regions. (a) Input mesh data. (b) Our method. (c) NURBS fitting. (d) Screened poisson
surface reconstruction. (e) Closed form PDE

We also compare our method with the improved sweep-based method presented in [39]
in automotive styling design. Since both methods use the data of external surfaces from
real automobiles and focus on the reconstruction work of automotive hoods and roofs, the
differences between both methods can be better demonstrated by comparing the statisti-
cal data of the reconstruction results from both methods, which are shown in Table 3. We
apply the order of magnitude of maximum errors with respect to the bounding box diag-
onal for a fair comparison. From the results in Table 3, we observe that our method has
obvious advantages such as a much smaller number of design variables, shorter computing
time and higher order of surface continuity. Moreover, the reconstructed surfaces by using
the improved sweep-based method need to be trimmed and remove redundant parts before
stitching them together, whereas the surfaces generated by our method can directly applied
in the next styling stage.

All above experiments have demonstrated the effectiveness of our method. Our method
is the first one which can reconstruct parametric surfaces with Cn continuity as well as pre-
serve feature curves. Furthermore, the shape of reconstructed surface is dependent on the
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Table 3 Comparison of the proposed method with improved sweep-based method

Improved sweep-based method Our method

Number of design variables 30 control points 3 control parameters

Maximum error ≥ 10−3 10−3 − 10−2

Computing time (s) 29 − 315 20 − 29

Surface continuity C0 Cn

Need a trim? Yes No

three control parameters in PDE, which greatly reduces the number of design variables in the
optimization process and shortens the calculation time. However, there are still some limi-
tations. Since the reconstructed surface is constrained by only two opposite feature curves,
the maximum error in a surface usually exist at or near unconstrained boundaries as shown
in the error maps in Figs. 7 and 8. Moreover, since we primarily focus on developing a new
PDE method for surface reconstruction in this paper, we only applied the existing classical
GA method with default settings to minimize the objective function H in (11), which may
increase the computing time. Therefore, we need to improve the GA method or consider
another optimization method to minimize H within a shorter time.

6 Conclusion

We have presented a surface reconstruction method based on a vector-valued fourth order
PDE in styling design. The proposed method automatically generates optimal Cn continu-
ous surfaces from scanned data with the constraint of two feature curves after optimizing
three control parameters in the PDE. We have demonstrated the validity of our work by
doing experiments on several examples of mesh data from automotive exteriors. Compared
with existing surface reconstruction methods, our method is flexible to achieve arbitrary
order of continuity, and has small reconstruction errors and pleasing aesthetics. In our
following work, we wish to improve the optimization method and further decrease the com-
puting time. We also plan to deal with more complicated situations such as a surface defined
by four feature curves.

Appendix: The curvature comb

A curvature comb consists of normal vectors with curvature value on the surface along u or
v direction. We first define the unit tangent vector t(u, v), unit normal vector n(u, v) and
curvature value κ(u, v) along v direction on the PDE surface S(u, v) in (5) as:

t(u, v) =
∂S(u,v)

∂v∥
∥
∥

∂S(u,v)
∂v

∥
∥
∥
, n(u, v) =

∂t(u,v)
∂v∥

∥
∥

∂t(u,v)
∂v

∥
∥
∥
, κ(u, v) =

∥
∥
∥

∂t(u,v)
∂v

∥
∥
∥

∥
∥
∥

∂S(u,v)
∂v

∥
∥
∥

(12)

Then, the curvature comb along v direction can be defined as:

c(u, v) = S(u, v) − ωκ(u, v)n(u, v) (13)

where ω is the scaling factor which can control the size of the comb.
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