1	Climatic and	geographic variation	as a driver of ph	enotypic diverger	nce in reproducti	ive characters and
1	Chimatic and	ZCOZI apine variation	$a_{3}a_{4}a_{1}a_{1}a_{1}a_{1}a_{1}a_{1}a_{1}a_{1$		ice miteproduce	ive characters and
		a a i				

- body sizes of invasive Gambusia holbrooki
- Irmak Kurtul^{1*}, Ali Serhan Tarkan^{2, 3}, Hasan Musa Sarı¹, J. Robert Britton⁴
- ¹Ege University, Faculty of Fisheries, Bornova, 35100, İzmir, Turkey.
- ²Muğla Sıtkı Koçman University, Faculty of Fisheries, 48000, Muğla, Turkey.
- ³Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University
- of Łódź, Łódź, Poland.
- ⁴Department of Life and Environmental Sciences, Bournemouth University, Poole, Dorset, UK.
- *Corresponding Author e-mail: irmak.kurtul@gmail.com
- Irmak Kurtul ORCID: 0000-0002-3566-9172
- Ali Serhan Tarkan ORCID: 0000-0001-8628-0514
- Hasan Musa Sarı ORCID: 0000-0003-1000-514X
- J. Robert Britton ORCID: 0000-0003-1853-3086

- 28 Abstract
- 29

30 Understanding the invasion success of alien species includes developing knowledge on how the biological traits 31 of their populations respond to spatial differences in environmental conditions. For invasive fishes, while the 32 influence of latitudinal and climatic gradients on their biological traits over large spatial scales are well 33 established, there is less certainty in how these vary over smaller scales. Here, we tested the influence of a 34 climatic and geographic gradient on the reproductive traits and body sizes of the invasive mosquito fish 35 Gambusia holbrooki across five climatic regions in Turkey. The results revealed that the environmental 36 conditions across eight sites provided two gradients: a latitudinal gradient (where northern sites were cooler with 37 less rainfall) and a coastal-inland gradient (where changes were apparent from coastal areas and into inland 38 areas). These gradients had marked effects on the traits of both sexes, in sites in coastal and southern areas, male 39 had significantly larger gonopodia and females had higher egg numbers than in inland and warmer areas, and 40 with both sexes having body sizes that were smaller. The spatial differences in the male traits were suggested as 41 being driven by differences in selection pressures at the sites that related to differences in their population 42 abundances. The results revealed that environmental conditions across a relatively small spatial scale had some 43 strong influences on the expression of specific biological traits of these mosquito fish populations, but with 44 further work needed to test how these influences affect their invasion success.

45

46 Key-words: Gonopodium, fecundity, ecological variations, climatic gradients, Turkey.

47 Introduction

48

Environmental factors strongly influence fish physiology (Jun et al. 2012; Zhang et al. 2016), with climatic regimes often creating divergent selective regimes that directly affect phenotypic traits (Royer et al. 2009). Understanding the ecological factors that drive phenotypic diversification along climatic gradients is thus important for understanding the eco-evolutionary responses of populations to their environments (Ouyang et al. 2018). Climatic gradients are usually approximated by differences in temperatures, with local thermal regimes generally having strong effects on the expression of fish life history traits, including those associated with reproduction (Pankhurst and Munday 2011).

56

57 Species of the Gambusia genus, which are distributed naturally in North America (Lloyd and Tomasov 1985; 58 Lloyd 1987), are collectively known as mosquito fish and have been introduced around the world for biocontrol 59 purposes, especially for malaria (Moyle 2002). Introductions of species such as Gambusia holbrooki (Girard 60 1859) and Gambusia affinis (Baird and Girard 1853) have resulted in invasive pest populations in many 61 countries, where their invasion success has been facilitated by their high ecological plasticity in the use of 62 different freshwater habitats (Feder et al. 1984). Populations of Gambusia spp. generally comprise of small 63 bodied individuals (< 50 mm), where males tend to be the smaller sex (Doadrio 2002). Their mode of 64 reproduction, where males inseminate ovoviviparous females using their gonopodium (a modification of the anal 65 fin), has resulted in the genus being suitable for investigating inter- and intra-specific diversification in fish 66 sexual phenotypes (Nelson 2006; Ouyang et al. 2018).

67

68 Studies on Gambusia spp. reproductive characteristics have investigated how biological and environmental 69 selection pressures interact to influence the expression of their reproductive traits (Head et al. 2015; Riesch et al. 70 2018). In males, sexual selection pressures are likely to be for large male body sizes (as larger males can 71 dominate access to females) and for males with larger gonopodia (as these males are more likely to inseminate 72 females than smaller males with a shorter gonopodium) (Bisazza and Marin 1991; Kahn et al. 2010; Head et al. 73 2015). However, as smaller males are also adept at sneaking copulations with females (Pilastro et al. 1997), there 74 is the possibility of contrasting sexual-selection pressures on male traits that are also influenced by the influence 75 of the environmental characteristics acting on the population (Haynes and Cashner 1995; Kahn et al. 2010). For 76 example, relatively benign environmental conditions can promote population stability (e.g. lower mortality rates, relatively high abundances), with these conditions usually encountered in coastal areas of lower altitude that are generally favoured by *Gambusia* spp. populations, with the converse in inland habitats at higher altitude (Pyke 2005; Ouyang et al. 2018). Consequently, we posit that selection pressures, driven by female mate choice, will result in males having elongated gonopodia in coastal, lower latitude populations compared with inland populations at higher altitudes (Kahn et al. 2010; Ouyang et al. 2018).

82

83 For Gambusia spp. females in relatively stable populations in low lying coastal areas, the relatively high levels 84 of intra-specific competition are likely to favour the production of fewer, larger progeny, but whose body sizes 85 are relatively bigger and that have strong competitive abilities (Reznick et al. 2002; Bashey 2008; Ouvang et al. 86 2018). Consequently, we posit that female *Gambusia* in populations that are inland and at higher altitude will be 87 more fecund than those in coastal populations. For both sexes, we suggest that body sizes will be smaller in 88 coastal and lower latitude (warmer) regions due to higher rates of intra-specific competition in these more 89 abundant populations (Daniels and Felley 1992), and with larger body sizes also more apparent in cooler 90 environments due to Bergmann's Rule (Blanchet et al. 2010). However, the manner in which environmental 91 conditions could affect mosquito fish trait expression could differ between the sexes, as Ouyang et al. (2018) 92 revealed that male trait divergence in G. affinis was most apparent along a latitudinal gradient, but in females, 93 the divergence was along a coastal-inland (continental) gradient. These variations could be even more prominent 94 in Turkey, being a country that is a peninsula, surrounded by the sea and coastal areas to North, West and South 95 (Smith and Darwall, 2006). Within the country, there are 11 recognised freshwater ecoregions (Abell et al. 2008) 96 that incorporate three major habitat types: xeric and endorheic basins, with large and small lakes and small 97 streams (Central Anatolia and Lake Van - saline and soda lakes); temperate floodplain rivers and wetlands 98 (Upper Dicle (Tigris) and Firat (Euphrates) and Kura - Southern Caspian Drainages); and temperate coastal 99 rivers (Trakya (Thrace), Western Anatolia, Southern Anatolia, Northern Anatolia, Western Transcaucasia and 100 Asi (Orontes) (Tarkan et al. 2015).

101

102 The aim here was thus to test intra-specific differences in the reproductive characteristics of invasive *G*. 103 *holbrooki* across a climatic and geographic gradient. Using body size as a focal biological characteristic, male 104 gonopodium lengths and female fecundity as focal reproductive characteristics, and invasive populations within 105 five climatic regions of Turkey as the study area, we test whether males in populations in warmer, coastal 106 regions would have relatively large gonopodia, females would be less fecund, and both sexes would be smaller

- 107 in body size when compared with cooler, inland regions. It has been more than 100 years since G. holbrooki was
- 108 introduced to Turkey (Walton et al. 2012) and so it is considered that this is of sufficient time for the interaction
- 109 of the biological and environmental selection pressures to have acted on these traits.
- 110

111 Materials and Methods

- 112
- 113 Sampling sites and data collection

114 A total of 8 sampling locations were used that were located across five different geographical and pollical that 115 covered all the ecoregions present in Turkey (Aegean, Mediterranean, Black Sea, Marmara, and South-eastern 116 Anatolia regions). These covered five degrees of latitude (36 to 41 °N) and nine degrees of longitude (26 to 37 117 °E) (Table 1, Fig. 1). The location of Turkey is between the subtropical zone and temperate zone, and the country 118 has a variety of mountain landforms and has a relatively long coastline, which results in a wide range of climate 119 types. According to the Köppen-Geiger climate classification, the main climate categories are B (arid, 120 evaporation is greater than precipitation and there is a water deficit), C (warm temperate, winters are mild and 121 humid) and D (snow, winters are cold and humid) (Kottek et al. 2006). The sites were selected to provide 122 sufficient latitudinal, coastal-inland and climatic gradients for testing the predictions (Fig. 1; Table 1).

123

124 A total of 125 males and 80 females were collected from across all of the sites using a combination of seine and 125 hand netting during 2016 and 2017 (Fig. 1). Although Gambusia spp. can reproduce year-round when 126 environmental conditions are especially favorable, their breeding season in the northern hemisphere is during 127 spring and summer (Pyke, 2008). Therefore, the sampling period covered these seasons (except for one sampling 128 in autumn), ensuring high fish activity that facilitated their collection (Table 2). Following their capture, all 129 individuals were euthanized (anaesthetic overdose; phenoxyethanol) and then fixed in ethanol (96%). Once in 130 the laboratory, the fish were measured using digital callipers (standard length (SL), ± 0.01 mm) and sexed. For 131 males, the gonopodium length (GL) was then measured (± 0.05 mm; n = 125) and for females (n = 80), the 132 developmental stages of embryos were evaluated for each development stage (Haynes 1995). In subsequent 133 fecundity (F) calculations, fertilized eggs classified as Stage 3 (blastodisc embryo) and all subsequent stages 134 were considered, with the number of embryos for each female used as the fecundity estimate. To test the 135 influence of climate and geographical parameters on the fish reproductive characteristics, climatic data were 136 retrieved from Turkish State Meteorological Service's official statistics data (1927 to 2018), where the site137 specific climatic information retrieved were mean annual temperatures and annual precipitation (Table 1).

138 Altitude and distance to the sea were obtained from Google Earth (http://earth.google.com/).

139

140 Data analyses

141 The initial analytical step was to use principal component analysis (PCA) to condense the various climatic data 142 (as precipitation and temperature, where the latter was used as a surrogate of latitude and longitude; 143 Cucherousset et al. 2009) and geographic data (distance to the sea and altitude) into two climate-related principal 144 components (PCs; see Results). The scores on these two PCs were then used as covariates in subsequent analyses 145 that tested for phenotypic divergence along these climatic and geographical gradients. Then, the relationships 146 between GL and male SL, and fecundity and female SL, were tested using regression analyses, before 147 differences in SL between sexes and amongst the sampling locations were tested using permutational univariate 148 analysis of variance (PERANOVA). For assessing the extent of divergence (i.e. in SL, GL and fecundity) along 149 climatic gradients, permutational multivariate analysis of variance (PERMANOVA) was used, where SL was 150 specifically used as an interaction term to ensure that its allometric effect is accounted for in the test. All 151 permutational analyses were conducted using PERMANOVA+ v1.0.1 for PRIMER version 6.1.11 (PRIMER-E 152 Ltd, Plymouth, UK) (Anderson et al. 2008). This used a Euclidean distance measure following normalization of 153 the data, with a two-way design employed where PC1 and PC2 were both used as fixed factors. These were used 154 to obtain a distance matrix, which was subjected to 9999 permutations of the raw data and tested for 155 significance. Sampling locations were produced using the ESRI (2011).

156

- 157 **Results**
- 158

Across all samples, male SLs were 16.59 to 26.16 mm (mean 21.49 ± 0.19 mm) and female SLs were 21.6 to 45.5 mm (mean 31.21 ± 0.43 mm) (Table 2). The mean lengths of both male and female *G. holbrooki* did not differ significantly between the locations (PERANOVA: $F^{\#} = 0.82$ and 2.32, respectively; both P > 0.05). Gonopodium lengths varied between 5.38 and 9.09 mm (mean 7.18 \pm 0.06), while female fecundity (as the number of eggs) was 8 to 83 (mean 29.3 \pm 1.5). Gonopodium length significantly increased as male body length increased (F = 184.63, P < 0.0001, $r^2 = 0.60$), with female fecundity also increasing significantly with body length (F = 14.09, P < 0.001, $r^2 = 0.15$). 166 The PCA of the climatic and geographical parameters resulted in two PCs that explained 88.4% of their variation 167 (Table 3). PC1 described the gradient from northern towards southern sites (latitudinal variation), whereby 168 northern sites showed lower mean annual temperatures and lower annual precipitation rates. PC2 described 169 gradual longitudinal changes from coastal towards inland sites (longitudinal variation; Table 3).

170

171 The climatic (PC1) and geographic (PC2) gradients had significant effects on all of the examined variables (PERMANOVA: male SL: $F^{\#} = 19.01$, $P^{\#} = 0.0001$; female SL: $F^{\#} = 32.38$, $P^{\#} = 0.0001$; GL: $F^{\#} = 10.08$, $P^{\#} = 0.0001$; F = 0.0001; GL: $F^{\#} = 10.08$, $P^{\#} = 0.0001$; F = 0.0001; F = 0.00001; F = 0.0001; F = 0.00001; F = 0.000001; F = 0.00001; F = 0.00001; F = 0.000000; F = 0.000000; F = 0.00000; F = 0.0000; 172 173 0.0001; Fecundity: $F^{\#} = 10.46$, $P^{\#} = 0.0001$), with no significant PC1 x PC2 interactions in all analyses. These 174 analyses revealed that the effects of PC1 and PC2 on body lengths of both sexes were for smaller SLs in 175 southern (warmer) versus northern (cooler) populations, and a decrease in length as distance from the coast 176 increased (Figs. 2 and 3). PC1 and PC2 also had strong effects on female fecundity, with fish in more coastal 177 waters and southern populations having higher egg numbers than those in inland populations and northern 178 populations (Figs. 2 and 3). This was also the case for gonopodium lengths where, with the effect of SL 179 accounted for, males from the inland and southern populations generally had shorter gonopodia (Fig. 3).

180

181 Discussion

182

The results revealed the importance of environmental conditions in determining aspects of the reproductive traits of *G. holbrooki* across the study sites. The environmental conditions across the sites provided two gradients: a latitudinal gradient, where the northern sites were cooler with less rainfall, and a coastal-inland gradient, where changes were apparent from coastal areas and into inland areas. We tested whether males in coastal and southern areas had relatively large gonopodia (which the results were consistent with), females were less fecund (which the results were not consistent with), and both sexes had smaller body sizes (which the results were consistent with).

190

The influence of abiotic gradients influencing the reproductive traits of *Gambusia* spp. are increasingly apparent with, for example, Ouyang et al. (2018) revealing that in *G. affinis*, there was a general pattern of climatic gradients driving some phenotypic variation in naturally selected traits, but with some sexually selected traits also showing some variation, such as males in more southern populations having wider gonopodia. They argued that the influence of climate was acting not just directly via only temperature regimes, but also indirectly by

196 acting on population dynamics, where the effects of differences in inter-specific competition, resulting from 197 variation in extrinsic overwinter mortality rates, altered the selective landscape along climatic gradients (Ouyang 198 et al. 2018). Indeed, the influence of environmental variables on Gambusia spp. traits is often suggested as being 199 mediated though their effects on population abundances. For example, stable environmental conditions enable 200 Gambusia spp. to develop high population abundances as conditions, such as higher winter temperatures, result 201 in lower extrinsic mortality rates (Pyke 2005). In our study, these conditions appeared to be provided in sites in 202 more southern latitudes and that were closer to the coast, and they were driving selection pressures that produced 203 males with elongated gonopodia (Kahn et al. 2010; Ouyang et al. 2018). However, our sampling methods, 204 involving a combination of hand and seine nets, coupled with site characteristics that inhibited the capture of 205 juvenile G. holbrooki, meant that our sample collection was primarily qualitative. While these factors prevented 206 the robust estimation of population abundance at each site (including relative measures such as catch per unit 207 effort), observations did suggest that there were substantially higher abundances in the southern and coastal 208 populations compared with elsewhere (I. Kurtul pers. obs.).

209

210 Across a range of studies on Gambusia spp. reproductive traits, it is apparent that a range of factors can act on 211 gonopodium size. For example, in G. affinis and Gambusia hubbsi, males within predator-free populations had 212 relatively large gonopodia compared with males in predator presence (Langerhans et al. 2005). Directional 213 selection has been apparent in G. holbrooki males towards smaller body sizes, larger residual gonopodium length 214 and higher heterozygosity, resulting in individuals with this suite of traits having relatively high reproductive 215 success (Head et al. 2017). In live-bearing fishes, male gonopodium length also shows an equality versus 216 efficiency trade-off between attracting females and avoiding predation (Langerhans et al. 2005). Therefore, 217 despite our demonstration that gonopodium length was influenced by climatic and geographic parameters, and 218 with this independent of differences in body size (as its effects on gonopodium length was controlled for as an 219 interaction in the PERMANOVA test), our lack of additional information on the biological components of the 220 sites (e.g. predator presence, extent of intra-specific male competition) means we cannot further decouple the 221 extent to which the environmental variables were acting directly versus indirectly on the G. holbrooki traits.

222

The reproductive features of *Gambusia* spp. enable their populations to rapidly increase in abundance in optimal habitats, and thus they have to the ability to develop invasive populations relatively quickly in these habitats (Pyke 2005, 2008). For example, relatively high salinity can be an important factor influencing the population 226 dynamics of Cyprinodontiform species, particularly in larval and juvenile stages (Bohlen 1999, Oliva-Paterna et 227 al. 2009). For G. holbrooki, their ability to adapt to lotic systems with high and differing salinity levels was an 228 important aspect of their invasion in some Spanish streams, where population abundances, hepatic condition and 229 female somatic condition were reported as higher for a population in hyper-saline conditions versus more meso-230 saline conditions, although short-term increases in salinity did decrease abundance (Ruiz-Navarro et al. 2011). 231 However, lower salinity levels were also reported to induce higher reproductive effort of males and larger 232 females, and resulted in higher survival and recruitment rates, suggesting some complexity in the interaction of 233 salinity with Gambusia spp. population dynamics (Ruiz-Navarro et al. 2013). Nevertheless, the expression of 234 larger male gonopodia and smaller body sizes of both sexes in our coastal areas might again be related to higher 235 population abundances that were enabled by the likelihood that the abiotic characteristics of these waters 236 included relatively high salinity levels versus the populations further inland.

237

238 While investment in most of male somatic growth ceases after reaching maturity (i.e. with the full development 239 of gonopodium, but see Hughes 1986), female individuals continue to grow (Vargas and Sostoa 1996; Trendall 240 1983). With females being ovoviviparous, Gambusia spp. have pregnancies of 2 to 3 weeks and can, 241 theoretically, produce offspring every 3 to 4 weeks (Turner 1941). Furthermore, older and larger females might 242 give birth more than once during a breeding season (Pyke 2005). The number of offspring produced within a 243 single pregnancy can also be highly variable, ranging between 5 and 100 (Brown-Peterson and Peterson 1990). 244 One of the most important assumptions for understanding life history strategies is that each individual uses a 245 limited amount of energy and has to allocate that energy between activities such as somatic growth and 246 reproduction (Nikolskii 1963). Life-history theory suggests that females can produce more offspring at higher 247 latitudes, but with a trade-off that these females might have to invest more into their reproductive effort (Reznick 248 et al. 2002), suggesting higher fecundity in females with increased latitude. This was not, however, evident in 249 our results, where despite having smaller body sizes in more southern populations, the fecundity of these females 250 was relatively high, although the reasons for this were not clear. Also, it should be noted that a low sample size, 251 as was the case for fecundity in one of our sampling sites (Lake Kazan, n = 3) can result in patterns that are not 252 representative of the actual population mean for the analyzed trait(s).

253

It was thus apparent that there was some strong divergence in the expression of our tested mosquitofish reproductive traits, with smaller body sizes being selected for in both species in the sites located in coastal and 256 southern areas, a finding detected in other recent studies where populations in more seasonal and colder areas 257 were larger in body size, invested more in reproduction and produced smaller offspring (Riesch et al. 2018). In 258 these harsher environments, the reproductive metrics of mosquitofish, such as multiple paternity within broods, 259 have also increased, with it posited that these higher rates of multiple paternity increase their invasive potential 260 at the northern edges of their distribution (Gao et al. 2019). Importantly, a common garden experiment by Santi 261 et al. (2020) indicated that male body size and offspring fat content were the only phenotypic traits that were 262 heritable between generations, suggesting that high trait plasticity is important for facilitating range expansions 263 across large spatial areas, especially where there are considerable differences in the selection pressures. 264 Although it is currently unclear as to the extent to which these spatial differences in the trait expression of 265 Gambusia spp. influence their invasion success, studies on the distribution of G holbrooki in Turkey have 266 revealed their distribution has been restricted to southern and western areas, with most populations being inland 267 (Yoğurtçuoğlu and Ekmekçi 2018), although this pattern is probably biased by most studies being completed in 268 western regions (e.g. Ekmekçi et al. 2013; Kurtul and Sarı 2020). Low winter temperatures in central and eastern 269 Anatolia might also be restricting the species' eastward invasion through increasing overwintering mortality 270 rates (Ouyang et al. 2018), although trait plasticity (such as larger males and producing more but smaller 271 offspring) might be able to overcome this constraint (Riesch et al. 2018).

272

In summary, our results indicated that environmental and climatic gradients strongly influence the expression of reproductive traits and body sizes of *G. holbrooki*. As we were unable to decouple the direct versus indirect effects of the environmental gradients then we suggest that future studies should focus on testing how these effects act on these invasive populations, including the extent to which the effects are related to differences in their population abundances.

278

279 Acknowledgements

We are grateful to Republic of Turkey Ministry of Agriculture and Forestry for the legal permission. We would like to express our appreciation to the Ege University Scientific Research Project Commission, which supported this study (BAP-Project No:2015/SÜF/016). Although the materials of this study were obtained based on the PhD project of first author, presented results were not given in the thesis. We would like to thank to TÜBİTAK BİDEB, which supported the first author with the scholarship during the study. Finally, we thank Dr Burcu MESTAV for helping statistical analyses and Dr Sadi AKSU for creating the map.

2	0	6
7	0	υ

287 **Conflicts of interest**

- 288 The authors have no conflicts of interest to declare that are relevant to the content of this article.
- 289
- 290 References
- Abell R, Theime ML, Revenga C, Bryer M, Kottelat M et al (2008) Freshwater Ecoregions of the world: a new
- 292 map of biogeographic units for freshwater biodiversity conservation. BioScience 58:403–414.
 293 https://doi.org/10.1641/B580507
- Anderson M, Gorley R, Clarke K (2008) PERMANOVA for PRIMER: guide to software and statistical methods.
 Plymouth, UK.
- Bashey F (2008) Competition as a selective mechanism for larger offspring size in guppies. Oikos 117:104–113.
- 297 <u>https://doi.org/10.1111/j.2007.0030-1299.16094.x</u>
- Bisazza A, Marin G (1991) Male size and female mate choice in the eastern mosquitofish (Gambusia holbrooki,
- 299 Poeciliidae). Copeia 3:730–735. <u>https://doi.org/10.2307/1446400</u>
- 300 Blanchet S, Grenouillet G, Beauchard O, Tedesco PA, Leprieur F, Dürr HH, Busson F, Oberdorff T, Brosse S
- 301 (2010) Non-native species disrupt the worldwide patterns of freshwater fish body size: implications for

302 Bergmann's rule. Ecol Lett 13(4):421-431. <u>https://doi.org/10.1111/j.1461-0248.2009.01432.x</u>

- 303 Bohlen J (1999) Influence of salinity on early development in the spined loach. J Fish Biol 55:189-198.
- 304 <u>https://doi.org/10.1111/j.1095-8649.1999.tb00668.x</u>
- 305 Brown-Peterson N, Peterson M (1990) Comparative life history of female mosquitofish, Gambusia affinis, in
- 306 tidal freshwater and oligohaline habitats. Environ Biol Fishes 27:33-41. <u>https://doi.org/10.1007/BF00004902</u>
- 307 Cucherousset J, Copp GH, Fox MG, Sterud E, van Kleef HH, Verreycken H, Za'horska' E (2009) Life-history
- 308 traits and potential invasiveness of introduced pumpkinseed Lepomis gibbosus populations in
- 309 northwesternEurope. Biol Invasions 11:2171–2180. https://doi.org/10.1007/S10530-009-9493-5
- 310 Daniels GL, Felley JD (1992) Life-history and foods of Gambusia affinis in two waterways of southwestern
- 311 Louisiana. Southw Nat 37:157–165. <u>https://doi.org/10.2307/3671664</u>
- 312 Doadrio I (2002) Atlas y libro rojo de los peces continentales de España, Ministerio de Medio Ambiente,
 313 Madrid.
- 314 Ekmekçi G, Kırankaya ŞG, Gençoğlu L, Yoğurtçuoğlu B (2013) Present status of invasive fishes in inland
- 315 waters of Turkey and assessment of the effects of invasion. Aquat Sci Eng 28:105-140.

- 316 ESRI (2011) ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.
- 317 Feder JL, Smith MH, Chesser RK, Godt MJW, Asbury K (1984) Biochemical genetics of mosquitofish II.
- 318 Demographic differentiation of populations in a thermally altered reservoir. Copeia 1:108-119.
 319 https://doi.org/10.2307/1445041
- 320 Gao J, Santi F, Zhou L, Wang X, Riesch R, Plath M (2019) Geographical and temporal variation of multiple
- 321 paternity in invasive mosquitofish (Gambusia holbrooki, Gambusia affinis). Mol Ecol 28:5315-5329.
- 322 <u>https://doi.org/10.1111/mec.15294</u>
- 323 Haynes J, Cashner R (1995) Life history and population dynamics of the western mosquitofish: a comparison of
- 324 natural and introduced populations. J Fish Biol 46:1026–1041. <u>https://doi.org/10.1111/j.1095-</u>
 325 8649.1995.tb01407.x
- Head ML, Kahn AT, Henshaw JM, Keogh JS, Jennions MD (2017) Sexual selection on male body size, genital
- 327 length and heterozygosity: Consistency across habitats and social settings. J Anim Ecol 86:1458-1468.
- 328 <u>https://doi.org/10.1111/1365-2656.12742</u>
- Head ML, Vega-Trejo R, Jacomb F, Jennions MD (2015) Predictors of male insemination success in the mosquitofish (*Gambusia holbrooki*). Ecol Evol 5:4999–5006. https://doi.org/10.1002/ece3.1775
- Hughes A (1986) Growth of Adult Mosquitofish Gambusia affinis in the Laboratory. Copeia 1986: 534-536.
- 332 <u>https://doi.org/10.2307/1445016</u>
- Jun Q, Pao X, Haizhen W, Ruiwei L, Hui W (2012) Combined effect of temperature, salinity and density on the
- 334 growth and feed utilization of Nile tilapia juveniles (Oreochromis niloticus). Aquac Res 43:1344–1356.
- 335 <u>https://doi.org/10.1111/j.1365-2109.2011.02938.x</u>
- 336 Kahn AT, Mautz B, Jennions MD (2010) Females prefer to associate with males with longer intromittent organs
- 337 in mosquitofish. Biol Lett 6:55–58. <u>https://doi.org/10.1098/rsbl.2009.0637</u>
- 338 Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of KöppenGeiger Climate Classification
- 339 updated. Meteorol Z 15:259-263. <u>http://dx.doi.org/10.1127/0941-2948/2006/0130</u>
- 340 Kurtul I, Sarı HM (2020) Length-weight relationships of invasive mosquitofish (Gambusia holbrooki Girard,
- 341 1859) in 23 river basins of Turkey. Turk J Zool 44:324-334. <u>https://doi.org/10.3906/zoo-2002-37</u>
- 342 Langerhans RB, Layman CA, DeWitt TJ (2005) Male genital size reflects a tradeoff between attracting mates
- 343 and avoiding predators in two live-bearing fish species. Proceedings of the National Academy of Sciences of the
- 344 United States of America 102(21):7618–7623. https://doi.org/10.1073/pnas.0500935102

- Lloyd L (1987) An alternative to insect control by "mosquitofish" Gambusia affinis. In: TD St. George, B.H.
- 346 Kay and J. Blok, editors. Proceedings 4th Symposium on Arbovirus Research, Australia: Q.I.M.R. Brisbane,
- 347 156-163.
- 348 Lloyd LN, Tomasow JF (1985) Taxonomic status of the mosquitofish Gambusia affinis (Poeciliidae), in
- 349 Australia. Aust J Mar Freshw Res 36:447-451. <u>https://doi.org/10.1071/MF9850447</u>
- 350 Moyle PB (2002) Inland fishes of California. Berkley, CA., University of California Press, 502.
- 351 Nelson JS (2006) Fishes of the World. New York, NY: John Wiley & Sons, Inc. 601.
- 352 Nikolskii GV (1963) Ecology of Fishes. Academic Press, London.
- 353 Oliva-Paterna FJ, Ruiz-Navarro A, Torralva M, Fernández-Delgado C (2009) Biology of the endangered
- 354 cyprinodontid Aphanius iberus in a saline wetland (SE Iberian Peninsula). Ital J Zool 76:316-329.
- 355 https://doi.org/10.1080/11250000802488159
- 356 Ouyang X, Gao J, Xie M, Liu B, Zhou L, Chen B, Jourdan J, Riesch R, Plath M (2018) Natural and sexual
- 357 selection drive multivariate phenotypic divergence along climatic gradients in an invasive fish. Sci Rep 8:11164.
- 358 https://doi.org/10.1038/s41598-018-29254-4
- 359 Pankhurst NW, Munday PL (2011) Effects of climate change on fish reproduction and early life history stages.
- 360 Mar Freshwater Res 62:1015–1026. <u>https://doi.org/10.1071/MF10269</u>
- 361 Pilastro A, Giacomello E, Bisazza A (1997) Sexual selection for small size in male mosquitofish (Gambusia
- 362 *holbrooki*). Proc R Soc B 264:1125–1129. <u>https://doi.org/10.1098/rspb.1997.0155</u>
- 363 Pyke G (2005) A review of the biology of *Gambusia affinis* and *G. holbrooki*. Rev Fish Biol Fish 15:339–365.
- 364 <u>https://doi.org/10.1007/s11160-006-6394-x</u>
- 365 Pyke G (2008) Plague minnow or mosquito fish? A review of the biology and impacts of introduced Gambusia
- 366 species. Annu Rev Ecol Evol Syst 39:171–191. <u>https://doi.org/10.1146/annurev.ecolsys.39.110707.173451</u>
- 367 Reznick D, Bryant MJ, Bashey F (2002) r- and k-selection revisited: the role of population regulation in life-
- 368 history evolution. Ecol 83:1509–1520. <u>https://doi.org/10.2307/3071970</u>
- 369 Riesch R, Martin RA, Diamond SE, Jourdan J, Plath M, Langerhans RB (2018) Thermal regime drives a
- 370 latitudinal gradient in morphology and life history in a livebearing fish. Biol J Linn Soc Lond 125:126–141.
- 371 https://doi.org/10.1093/biolinnean/bly095
- 372 Royer DL, Meyerson LA, Robertson KM, Adams JM (2009) Phenotypic plasticity of leaf shape along a
- 373 temperature gradient in Acer rubrum. PloS One 4(10):e7653. https://doi.org/10.1371/journal.pone.0007653

- 374 Ruiz-Navarro A, Moreno-Valcárcel R, Torralva M, Oliva-Paterna FJ (2011) Life-history traits of the invasive
- 375 fish *Gambusia holbrooki* in saline streams (SE Iberian Peninsula): Does salinity limit its invasive success? Aquat
- 376 Biol 13:149–161. <u>https://doi.org/10.3354/ab00360</u>
- 377 Ruiz-Navarro, A, Verdiell-Cubedo, D, Torralva M, Oliva-Paterna, FJ (2013) Dilution stress facilitates
- 378 colonization of invasive mosquitofish in a saline Mediterranean stream: population biology response. Aquatic
- 379 Conserv: Mar Freshw Ecosyst 23:77–87. <u>https://doi.org/10.1002/aqc.2280</u>
- 380 Santi F, Riesch R, Baier J, Grote M, Hornung S, Jüngling H, Plath M, Jourdan J (2020) A century later: adaptive
- 381 plasticity and rapid evolution contribute to geographic variation in invasive mosquitofish Sci Total Environ
- 382 726:137908. <u>https://doi.org/10.1016/j.scitotenv.2020.137908</u>
- 383 Smith KG, Darwall WRT (eds) (2006) The status and distribution of freshwater fish endemic to the
- 384 Mediterranean Basin. IUCN, Gland, Switzerland and Cambridge, UK.
- Tarkan AS, Marr SM, Ekmekçi FG (2015) Non-native and translocated freshwater fish species in Turkey.
 FISHMED 2015.003:1-28.
- 387 Trendall JT (1983) Life History Variation among Experimental Populations of the Mosquitofish, *Gambusia* 388 affinis. Copeia 4:953-963. <u>https://doi.org/10.2307/1445096</u>
- 389 Turner CL (1941) Morphogenesis of the gonopodium in *Gambusia affinis*. J Morphol 69:161–185.
 390 https://doi.org/10.1002/jmor.1050690107
- 391 Vargas MJ, de Sostoa A (1996) Life history of *Gambusia holbrooki* (Pisces, Poeciliidae) in the Ebro delta (NE
- 392 Iberian peninsula). Hydrobiologia 341(3):215–224. <u>https://doi.org/10.1007/BF00014686</u>
- 393 Walton WE, Henke JA, Why AM (2012) A Handbook of Global Freshwater Invasive Species. In: Robert A.
- 394 Francis, editor. *Gambusia affinis* (Baird & Girard) and *Gambusia holbrooki* Girard (mosquitofish). Chapter: 22.
- 395 New York: Earthscan. S. 261-272.
- 396 Yoğurtçuoğlu B, Ekmekçi FG (2018) An update on the distribution of globally invasive Gambusia holbrooki in
- 397 Turkish freshwaters. Joint Esenias and Dias Scientific Conferencea and 8th Esenias Workshop, Bucharest,
- 398 Romania, 25-29 September 2018, p 98.
- Zhang G, Zhang H, Li L, Yin S, Wang X, Zang X, Hu Y, Ding Y, Wang Y, Jia Y (2016) The effects of water
- 400 temperature and stocking density on survival, feeding and growth of the juveniles of the hybrid yellow catfish
- 401 from Pelteobagrus fulvidraco (\bigcirc) × Pelteobagrus vachelli (\circlearrowright). Aquac Res 47(9):2844–2850.
- 402 https://doi.org/10.1111/are.12734
- 403

404 Table 2. Number of specimens, minimum, maximum, and mean standard length, and fecundity with standard error of *Gambusia holbrooki* sampled from different regions

405 across Turkey between April of 2016 and November of 2017.

406

Location	n _{male}	M-M SL _{male} (cm)	MSL _{male} ±(SE)	n female	M-M SL _{female} (cm)	MSLfemale±(SE)	M-M Fecundity	MF±(SE)	BE /n _{female}	Date of sampling
Lake Akgöl	11	16.59-19.88	18.34±0.294	12	26.50-34.75	29.43±0.603	20-62	34.42±3.18	1	23.05.2016
Lake Azap	11	18.32-22.90	19.81±0.563	13	29.62-35.49	32.67±0.561	25-83	45.92±4.01	1	25.05.2016
Lake Kazan	9	19.13-25.51	22.19±0.702	3	26.12-29.99	28.42±1.177	15-17	15.67±0.67	0.5	05.04.2016
Karpuz River	10	20.77-25.95	23.00±0.517	21	26.44-34.61	30.48±0.495	12-41	22.67±1.31	0.6	14.05.2016
Miliç River	19	17.00-21.33	19.06±0.278	13	22.88-28.72	26.50±0.573	12-42	20.77±2.34	0.0	04.08.2017
Güllapoğlu Reservoir	15	19.54-23.46	21.65±0.291	NP	NP	NP	NP	NP	NP	01.11.2017
Narlı River	18	20.29-26.16	23.02±0.401	8	35.66-40.39	37.94±0.655	8-46	24.5±5.38	0.4	08.06.2016
Sünbaş River	32	18.13-24.69	21.90±0.284	10	31.80-36.73	34.54±0.505	18-57	34.6±3.12	0.5	18.05.2016

407 M-M: Minimum-Maximum, MSL: Mean standard length, MF: Mean fecundity, BE: blastodisc embryo (fertilized eggs classified as Stage 3), SE: Standard error, NP: No

408 pregnancy, n: number of specimens.

Table 1. Mean annual temperature (Ta), Annual precipitation (Ap), Altitude (Al) and Distance to the Sea (DS) of analysed locations in Turkey.

No	Location	City and Region	Тѧ⁰С	Ap	Al	DS	Latitude	Longitude
				(mmhg)	(h)	(km)		
1	Narlı River	Uşak (Aegean)	12.5	547.3	550	156.00	38°19′16″	29°06′15″
2	Lake Akgöl	Muğla (Aegean)	15.0	1195.6	1	0.02	36°41′50″	29°02′08″
3	Lake Azap	Aydın (Aegean)	17.7	647.0	3	19.55	37°35′19″	27°26'25"
4	Lake Kazan	İzmir (Aegean)	17.9	695.4	3	2.40	37°59′12″	27°16′30″
5	Karpuz River	Antalya (Mediterranean)	18.8	1058.3	1	0.50	36°43′01″	31°33′09″
6	Sünbaş River	Adana (Mediterranean)	19.1	647.5	38	51.00	37°23′51″	35°55′11″
7	Miliç River	Samsun (Black Sea)	14.4	1038.4	4	0.50	41°11′06″	37°01′47″
8	Güllapoğlu R.	Edirne (Marmara)	13.8	608.1	41	105	41°38′19″	26°37′11″

R: Reservoir.

Table 3. Results of a correlation matrix-based principal component analysis (PCA). Input variables were climatic (temperature and precipitation) and geographic (distance to the sea and altitude) variables. Axis loadings $\geq |0.5|$ are highlighted in bold.

	Principal components		
	1	2	
Eigen-value	0.879	2.66	
Variance explained	22.0	66.5	
Mean annual temperature	-0.708	0.433	
Annual precipitation	0.701	0.439	
Altitude	0.062	-0.546	
Distance to the sea	-0.057	-0.568	

Figure captions

Fig. 1. Inset: location of Turkey in relation to world regions; main: locations of sampling sites across Turkey (as site, where site details are available in Table 1).

Fig. 2. Relationships between the main effect of climatic variables (mean annual temperature and annual precipitation) on body size (standard length (SL); a: male, b: female), male gonopodium length (c) (GL, mm) and female fecundity (d). Dashed lines denote the significant relationship between the variables according to linear regression, where a: $R^2 = 0.13$; F = 18.31, P < 0.01; b: $R^2 = 0.12$, F = 13.62, P < 0.01; c: $R^2 = 0.02$, F = 2.11, P > 0.05; d: $R^2 = 0.06$, F = 0.02, P > 0.05.

Fig. 3. Relationships between the main effect of geographic variables (altitude, distance to the sea) on body size (standard length (SL); a: male, b: female), male gonopodium length (c) (GL, mm) and female fecundity (d). Dashed lines denote the significant relationship between the variables according to linear regression, where a: $R^2 = 0.15$, F = 21.50, P < 0.01; b: $R^2 = 0.13$, F = 15.76, P < 0.01; c: $R^2 = 0.19$, F = 27.72, P < 0.01; d: $R^2 = 0.05$, F = 0.28, P > 0.05.