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Abstract—Providing Internet service above the clouds is of
ever-increasing interest and in this context aeronautical ad-hoc
networking (AANET) constitutes a promising solution. However,
the optimization of packet routing in large ad hoc networks is
quite challenging. In this paper, we develop a discrete ε multi-
objective genetic algorithm (ε-DMOGA) for jointly optimizing
the end-to-end latency, the end-to-end spectral efficiency (SE),
and the path expiration time (PET) that specifies how long
the routing path can be relied on without re-optimizing the
path. More specifically, a distance-based adaptive coding and
modulation (ACM) scheme specifically designed for aeronau-
tical communications is exploited for quantifying each link’s
achievable SE. Furthermore, the queueing delay at each node is
also incorporated into the multiple-objective optimization metric.
Our ε-DMOGA assisted multiple-objective routing optimization
is validated by real historical flight data collected over the
Australian airspace on two selected representative dates.

Index Terms—Aircraft mobility model, aeronautical ad-hoc
network, adaptive coding and modulation, routing, multiple-
objective optimization.

I. INTRODUCTION

Internet access has become almost ubiquitously supported
by the global terrestrial mobile networks relying on the fourth-
generation (4G) and fifth-generation (5G) wireless systems.
Hence, having Internet access has become virtually indispens-
able. The provision of Internet-above-the-clouds [1] is also of
ever-increasing interest to both the civil aviation airlines and
to the passengers.

In-flight WiFi relying on satellites and cellular systems
has been available on the some flights of global airlines,
such as British Airways, American Airlines, United Airlines,
Emirates and Delta Airlines, just to name a few. However,
aeronautical communications directly relying on satellites
and/or cellular systems suffer from high cost, limited coverage,
limited capacity, and/or high end-to-end latency. Furthermore,
the cellular systems that can support ground-to-air (G2A)
communications are limited to a line-of-sight range and require
specially designed ground stations (GSs), which necessitate
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the roll-out of an extensive ground infrastructure to cover
a wide area. Intuitively, it is quite a challenge to provide
ubiquitous coverage for every flight at a low cost by directly
relying on satellites and/or cellular systems. As an alternative
architecture, aeronautical ad-hoc networks (AANETs) [2]–
[4] are capable of extending the coverage, whilst reducing
the communication cost by hopping messages from plane
to plane. Each aircraft as a network node is capable of
sending, receiving and relaying messages until the messages
are delivered to or fetched from a GS, so as to enable Internet
access.

Hence, routing, which finds an ‘optimal’ path consisting of
a sequence of relay nodes, is one of the most important chal-
lenges to be solved in support of this Internet-above-the-clouds
application. Routing protocols have been intensively investi-
gated in mobile ad-hoc networks (MANETs) [5] and vehicular
ad-hoc networks (VANETs) [6] as well as in the flying ad-
hoc networks (FANETs) [7]. However, as our analysis in [1]
has revealed, AANETs have their unique features in terms of
flying speed, altitude, propagation characteristics and network
coverage as well as node mobility, which are different from
those of MANETs, VANETs and FANETs. Therefore, the
routing protocols specially developed for MANETs, VANETs
and FANETs cannot be directly applied to AANETs, although
their philosophies may be appropriately adopted. Hence, we
will focus our attention on routing protocols specially designed
for aeronautical networks.

Sakhaee and Jamalipour [8] showed that the probability of
finding at least two but potentially up to dozens of aircraft
capable of establishing an AANET above-the-cloud is close
to 100%. It was inferred by investigating a snapshot of flight
data over the United States (US). They also proposed a quality
of service (QoS) based so-called multipath Doppler routing
protocol by jointly considering both the QoS and the relative
velocity of nodes in order to find stable routing paths. Luo
et al [9] proposed a reliable multipath transport protocol for
AANETs by exploiting the path diversity provided by hetero-
geneous aeronautical networks. By exploiting the geographical
information, Iordanakis et al [10] proposed a routing protocol
for aeronautical mobile ad hoc networks, which may be viewed
as an evolved version of the classical ad-hoc on demand
distance vector based routing (AODV) originally developed
for MANETs. Furthermore, geographical information was
intensively exploited in designing the routing protocols of
[11]–[15], [19]–[24] for AANETs by considering that the
locations of civil passenger aircraft are always available with
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the aid of the on-board radar and the automatic dependent
surveillance-broadcast (ADS-B) system [28], [29]. Explicitly,
the authors of [11]–[13] developed a routing protocol termed
as AeroRP, which is a highly adaptive location-aware routing
algorithm exploiting the broadcast nature of the wireless
medium along with the physical node location and trajectory
knowledge for improving the data delivery in Mach-speed
mobile scenarios. However, AeroRP ignores the delay imposed
by relaying and it is prone to network congestion. Medina
et al. [14] proposed a geographic load sharing strategy for
fully exploiting the total air-to-ground capacity available at any
given instant in time. In their work, the network congestion
was avoided by a congestion-aware handover strategy capable
of efficient load balancing among Internet Gateways. Gu
et al. [15] proposed a delay-aware routing scheme using a
joint metric relying on both the relative velocity and the
expected queueing delay of nodes for selecting the next node.
Wang et al. [30] also designed a delay-aware routing protocol
for aeronautical networks, which explored the effect of dual
connectivity on delay-aware resource control in heterogeneous
aeronautical networks. Du et al. [16] aimed for minimizing
the end-to-end transmission delay by jointly exploiting the
direct transmissions, relayed transmissions and opportunistic
transmissions. By contrast, we have also minimized the end-
to-end delay of AANETs by exploiting a weighted digraph
and the shortest-path algorithm in [17] and by invoking deep
reinforcement learning in [18], respectively.

Both Wang et al. [19] as well as Mahmoud and Larrieu
[20] exploited the geographical information provided by the
ADS-B system. Specifically, Wang et al. [19] eliminated need
for the traditional routing beaconing and improved the next
hop selection, whilst Mahmoud and Larrieu [20] concentrated
on improving the information security of routing protocols.
The security issues routing were further considered by Swidan
et al. [21] and Pang et al. [23]. Specifically, Swidan et
al. [21] proposed a secure geographical routing protocol by
using the GS as a trusted third party for authentication and
key transport. However, their solution required an additional
transceiver at each aircraft having a communication range
of 150 km and wide downlink bandwidth for point-to-point
communication with the GS. By contrast, Pang et al. [23]
advocated an identity-based public key cryptosystem, which
relies on the authentication of neighbor nodes and establishes
a shared secret during the neighbor discovery phase, followed
by the encryption of the data during the data forwarding phase.
Luo and Wang [24] proposed a multiple QoS parameters-
based routing protocol in order to improve the overall net-
work performance for communication between aircraft and the
ground. Explicitly, they jointly optimized the maximum path
life-time period, maximum residual path load capacity, and
minimum path latency from all the available paths between
an aircraft node and the Internet gateways with the aid of
carefully selected weighting factors for the path life-time
period, residual path load capacity and path latency.

Since the overall network performance depends on multiple
factors, it is unfair to optimize the overall network performance
by relying on a single factor, such as the error probability, la-
tency or capacity. As argued in [1], in contrast to conventional

single-objective optimization, multi-objective optimization is
capable of finding all the global Pareto optimal solutions by
potentially allowing the system to be reconfigured in any of
it most desired optimal operating mode. In [25], [26], we
developed a twin-component near-Pareto routing scheme by
invoking the classic non-dominated Sorting Genetic Algorithm
II (NSGA-II), which is capable of finding a set of trade-
off solutions in terms of the total delay and the through-
put. Furthermore, in [27], we extended our single objective
optimization efforts of [18] to multi-objective packet routing
optimization in AANETs in the north-Atlantic region. In the
existing AANET literature, there is a paucity of contributions
on applying multiple-objective routing optimization by jointly
considering the end-to-end throughput, end-to-end latency and
the corresponding path expiration time (PET). However, the
nodes in AANETs are airplanes, which typically fly at a speed
of 880 to 926 km/h [1], hence a path may break quite soon.
Hence, the PET also becomes a much more critical metric
in AANETs compare to MANETs, VANETs and FANETs.
Furthermore, most of the existing routing protocols were
investigated mainly based on randomly generated flight data,
which cannot reveal the network performance of real-world
AANETs constituted by the real flights in the air. Against
this background, we propose a multiple-objective routing
optimization scheme for the AANET, and we evaluate its
overall network performance using large-scale real historical
flight data over the Australian airspace. Explicitly, our main
contributions are summarized as follows.

1) We propose multi-objective routing optimization for
jointly optimizing the end-to-end spectral efficiency (SE),
the end-to-end latency and the PET. More specifically,
the latency is addressed as one of the objectives by
constraining the maximum number of affordable hops,
whilst the congestion is addressed by imposing a certain
queueing delay at each node. Furthermore, the distance-
based adaptive coding and modulation (ACM) of [31],
[32], which was specifically designed for aeronautical
communications is adopted for quantifying the each link’s
SE so as to determine the final end-to-end SE. Natu-
rally, the lowest link-throughput limits the entire path’s
throughput.

2) At the time of writing, there is no discrete ε-MOGA
version in the open literature and there is no appli-
cation example of ε-MOGA in the context of routing
problems. Based on the philosophy of ε multi-objective
genetic algorithm (ε-MOGA) [33], which operates on a
continuous parameter space for finding the Pareto-front
of optimal solutions, we develop a discrete version of ε-
MOGA by considering the specific features of the routing
paths consisting of discrete aircraft IDs, which we refer
to as the discrete ε multi-objective genetic algorithm
(ε-DMOGA). Explicitly, in order to accommodate the
unique feature of routing problem in AANETs, we have
adapted the existing ε-MOGA to create a discrete ε-
MOGA by considering the discrete search space of rout-
ing problems in AANETs relying on discrete aircraft IDs.
This adaptation is not straightforward at all, because it in-
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Fig. 1. Illustration for the sources of packet delay in routing

volves new operations conceiving the encoding/decoding
of chromosomes, as well as new crossover and mutation
operations with respect to the specific nature of discrete
variables that constitute a routing path emerging from a
source aircraft node to a destination ground station. We
use this ε-DMOGA for efficiently solving the proposed
multi-objective routing optimization problem.

3) The overall network performance of our multiple-
objective routing optimization quantified in terms of the
end-to-end latency, the end-to-end SE and the PET, are
investigated based on large-scale real historical flight data
recorded over the Australian airspace. More specifically,
real historical flight data of two representative dates of
the top-five airlines in Australia’s domestic flights are
exploited for our investigations.

The remainder of this paper is organized as follows. The
network architecture is presented in Section II, which includes
the mobility model and the multiple-objective functions to be
investigated. In Section III, we develop a discrete version of
ε-MOGA, termed as ε-DMOGA, by exploiting the discrete
nature of the routing paths specified by the aircraft IDs, which
provides an effective tool to solve our proposed multi-objective
routing optimization. Our simulation results based on real
historical flight data recorded over the Australian airspace are
presented in Section IV, while our conclusions are offered in
Section V.

II. NETWORK ARCHITECTURE

The avionic network considered takes into account the
peculiarities of aeronautical communications and exploits them
for optimizing our multiple objectives. Satellites are also
included into the AANET considered, which are used as the
last resort for an aircraft outside all the neighbouring aircrafts’
communications range. In contrast to MANETs and VANETs,
the nodes of an AANET are distributed in a 3D space, and

they move at extremely high speed over long distances. The
geographic information of each aircraft is available for routing
optimization and network design, which can be obtained
with the assistance of the global positioning system (GPS)
and airborne radar carried by each aircraft [35]. Moreover,
ADS-B systems have been widely deployed on commercial
passenger aircraft, which can also provide an information
vector including the aircraft ID, position, ground speed and
heading directions [24].

A. Mobility model

In our network optimization, we consider all the aircraft
during the 24 hours of both the busiest and the quietest
day in a year. Based on the historical flight observation on
Flightradar241, the busiest day was June 29th in 2018, whilst
the quietest day was December 25th in 2018. The movement
of a node that represents an aircraft was recorded as real
historical flight data, which typically includes the flight phases
of holding, takeoff/landing, taxiing, and parking that always
performs at an airport or near an airport, as well as the longest
en-route phase. Contrast to the traditional nodes in MANETs
and VANETs as well as even the nodes in FANETs, the nodes
in AANETs move at a relatively high speed during the en-
route phase, typically at velocities of 800 to 1000 km/h.

As our evaluation is based on real historical flight data over
the Australian airspace, the nodes tend to be sparser compared
to Europe and North-America. The nodes typically fly between
coastal cities, such as Sydney, Melbourne, Perth and Gold
Coast. The eastern coastal airspace is much busier than the
northern, western and southern coastal airspace, since most
people reside in eastern coastal cities, and most international
flights depart from/arrive at eastern coastal cities. The central

1Flightradar24 is a global flight tracking service that provides real-time
information of aircraft around the world, which is accessible on https://www.
flightradar24.com
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Australian airspace quite sparse, since only few people live in
the central area of Australia.

B. Objective functions

In the Australian aeronautical network, there are NG GSs
at five Australian airports. An aircraft can access the Internet
by relying on an optimal routing path to a GS. Hence the
flights do not have to rely on costly satellites as a relay node
to access the Internet.

We will consider the achievable end-to-end latency and end-
to-end throughput as well as the stability of the routing path.
Explicitly, the end-to-end latency is the sum of the signal prop-
agation delays, signal processing delays and queuing delays.
The end-to-end throughput is determined by the specific link
having the minimum throughput. Again, the stability of the
routing path is quantified in terms of the PET, which is in
turn determined by the link having the minimum expiration
time given a specific ACM mode.

1) The end-to-end latency: Let us now quantify the propa-
gation, signal processing and queuing delays. Although there
may be a ground-reflection component in the received signal
of aeronautical communications, it is dominated by the Line
of Sight (LoS) path for air-to-air (A2A) communications in
AANETs [31]. Hence, the ground-reflected component may
be neglected in A2A transmission and the propagation delay
can be modelled by that of the LoS path limited by the speed
of light. Explicitly, let the distance between node rn and
node rn+1 be denoted by drn,rn+1 . The propagation delay
Dp(rn → rn+1), as illustrated in Fig. 1, between node rn
and node rn+1 is given by

Dp(rn → rn+1) =
drn,rn+1

c
, (1)

where c is the speed of light, rn→rn+1 is the link spanning
from node rn to node rn+1 in the routing path r = {rn →
rn+1→ · · · → rN+n−1}, which consists of N−1 hops from
the source node rn to the destination node rn+N−1, with N
being the number of nodes in the routing path r.

As shown in Fig. 1, the signal processing delay is the time
that a relay node takes to process a packet before it can
forward it to its output queue, which includes the decoding
and forwarding operations, destination lookup, packet-header
updates, etc. Intuitively, when node rn is the source node,
obviously there is no decoding and forwarding operations,
destination lookup, packet-header updates, hence Ds(rn →
rn+1) = 0 in this case. However, when node rn is not a
source node, but a relay node, it has to carry out the decoding
and forwarding operations, destination lookup, packet-header
updates. Then a constant signal processing delay will be
imposed. Depending on the digital signal processing capability
of the hardware and the detailed operations needed, the signal
processing latency ranges from 0.5 to ten milliseconds with
some complex designs having as much as 30 milliseconds
[36]. In our investigations, we set it to 5 ms as a compromise

consideration. Without loss of generality, we formulate signal
processing delay at node rn as

Ds(rn → rn+1) =

{
0ms, if node rn is the source node,
5ms, if node rn is not a source node.

(2)

The queueing delay is the time that a packet waits in a
relay node after arriving at the node’s queue until it can be
processed plus the waiting time before the processed packet
can be transmitted to the output link, as illustrated in Fig. 1.
The input queueing delay is proportional to the number of
packets that have already been waiting in the queue at a given
time, while the output transmission delay is upper bounded by
the time needed for transmitting a packet. Extensive research
has been dedicated to queue theory, queue scheduling and/or
minimizing the queuing delay at a node in networks [37]–[39].
We can reasonably model the input queueing delay at node rn
as follows

Dq1 = OrnDq0 , (3)

where the indicator Orn ∈ {0, 1, · · · , NB}, which indicates
how many packets are at the front of the queue, and NB is
the maximum number of packets that the node can have in
its queue, while Dq0 is a fixed processing delay related to
transmitting a whole packet through the node’s output link.
The total buffering delay, denoted as Dq2 , is clearly upper
bounded by Dq0 , i.e., we have Dq2≤Dq0 . The total queueing
delay of forwarding a packet from rn to rn+1, which is the
sum of the input queueing delay Dq1 and the output buffering
delay Dq2 , can be expressed as

Dq(rn → rn+1) = Dq1 +Dq2 ≈ (Orn + 1)Dq0 . (4)

Note that a packet can only be routed through a node if the
node’s queue is not full, i.e. the number of packets waiting in
the node’s queue is less than NB . This imposes a constraint on
the routing decisions. Again, the delay imposed on a packet
during its passage from node rn to node rn+1 is the sum of the
signal propagation delay, signal processing delay and queuing
delay, which is given by

D(rn → rn+1) =Dp(rn → rn+1) +Ds(rn → rn+1)

+Dq(rn → rn+1). (5)

Therefore, the end-to-end latency of the routing path r is given
by

D(r) =

N−1∑
n=1

D(rn → rn+1). (6)

2) The end-to-end throughput: The end-to-end throughput
is determined by the link in the routing path r, which has
the minimum link throughput. Let C(rn → rn+1) denote the
link throughput between node rn and node rn+1. Then the
end-to-end throughput is given by

C(r) = min
1≤n≤N−1

C(rn → rn+1). (7)

The achievable link throughput C(rn → rn+1) is affected
by the channel conditions and other factors, such as the co-
channel inference. The link throughput is a function of instan-
taneous ignal-to-interference-plus-noise ratio (SINR), where



5

the instantaneous SINR may be estimated using pilot signals
in traditional terrestrial mobile communications. However,
the problem in aeronautical communication applications is
that the high speed of aircraft may result in uncorrelated
small-scale fading and consequently in unreliable estimates
of the instantaneous SNR or SINR, further aggravated by
frequently switching among the ACM modes. Using erroneous
instantaneous SNR or SINR estimates for frequently switching
ACM modes may cause frequent unsuccessful transmissions,
because the SINR estimates quickly become obsolete. More-
over, the instantaneous SINR does fluctuate around its average,
but it has a limited range in the typical LoS scenarios.
Hence, in the routing problem in AANETs, the best available
distance-based ACM [31], [32] is invoked for quantifying the
link throughput of the air-to-air aeronautical communications.
Hence, the achievable link throughput C(rn → rn+1) is
a function of the communication distance between node rn
and node rn+1, which is also affected by the co-channel
interference imposed by the neighbour aircraft. Furthermore,
given a set of K ACM modes, there are K + 1 distance
thresholds {dk}Kk=0. The data-transmitting aircraft selects an
ACM mode to transmit/relay the data according to

if dk ≤ d < dk−1 choose k-th ACM mode, (8)

where d0 =Dmax =DA2A > d1 > · · ·> dK−1 > dK =Dmin.
Clearly, if the distance d is outside the range of [Dmin, Dmax],
there will be no adequate communication link. More specifi-
cally, Dmin is the minimum flight-safety separation that must
be obeyed according to the aviation safety regulation, whilst
Dmax is the maximum communication range of two aircraft,
which is given by the radio distance to horizon of A2A
communication [1].

3) The path expiration time: The PET is determined by the
most vulnerable link of the routing path r that has the shortest
link expiration time (LET). Let TLET(rn → rn+1) be the LET
of the link between node rn and node rn+1 for offering ACM
mode-i. Then the PET of r is given by

TPET(r) = min
1≤n≤N−1

TLET(rn → rn+1). (9)

Since the ACM is adopted, we have to modify the formulation
of calculating the LET given in [8], [24]. Specifically, given the
speeds vrn and vrn+1

, the heading directions θrn and θrn+1

as well as the coordinates (xrn , yrn) and (xrn+1 , yrn+1) for
node rn and node rn+1, respectively, assume that the distance
between rn and rn+1 satisfies dk ≤ drn,rn+1

< dk−1, where
dk−1 is the distance threshold or maximum distance that may
be bridged over by the ACM mode k, as defined in Eq. (8).
Then the LET of TLET(rn → rn+1) is calculated according to:

TLET(rn→rn+1)=
(ab+ef)+

√
(a2+e2)d2k−1−(af−be)2

a2+e2
, (10)

where a, b, e and f are given by [8], [24]

a = vrn cos θrn − vrn+1
cos θrn+1

, (11)
b = xrn − xrn+1

, (12)
e = vrn sin θrn − vrn+1

sin θrn+1
, (13)

f = yrn − yrn+1
. (14)

Intuitively, when aircraft rn and aircraft rn+1 have the same
speed and heading direction, the LET between them is theoret-
ically infinity. However, the associated LET is always upper-
bounded by their flight time in practice. When aircraft rn and
aircraft rn+1 have the exact opposite heading direction, they
will have the minimum LET.

C. Multi-objective routing optimization

The specific multi-objective optimization is advocated here
aims for maximizing the end-to-end achievable throughput,
for minimizing the end-to-end latency and for maximizing the
PET, which is formulated as J1(r) = max C(r),

J2(r) = min D(r),
J3(r) = max TPET(r),

(15)

s.t.
{
D(r) ≤ 250ms,
N − 1 ≤ 5.

(16)

The round-trip latency of geostationary satellite links is about
250 ms [14], which is imposed by the propagation delay up
and down from the satellite. Hence intuitively, the end-to-end
latency should be less than 250 ms, which results in the first
constraint D(r) ≤ 250ms. Naturally, when low earth-obit
(LEO) satellites are considered at say 600 Km altitude, their
round-trip delay is as low as 4 ms. The second constraint
of N − 1 ≤ 5 is based on a practical consideration of the
Australian scenario. Explicitly, the aircraft tend to fly over
the land of Australia, where the GSs are at airports on the
ground. Hence, an aircraft is typically capable of accessing
the Internet with a small number of hops. Furthermore, the
second constraint of N − 1 ≤ 5 is also used for limiting the
number of nodes involved, which is helpful for controlling the
AANET size. Since a routing path having more hops is more
vulnerable to cyber attacks, limiting the number of nodes in
a routing path also helps to secure information transmission.
Clearly, for geographic areas, such as the AANET over the
Atlantic Ocean, we will have to set a higher value for the
maximum number of hops.

III. DISCRETE ε-MOGA BASED PARETO-OPTIMIZATION
OF AANET ROUTING PROBLEM

No closed-form solution can be derived for the multi-
objective optimization problem (15) under the constraint (16).
There are diverse methods of solving multi-objective opti-
mization problems, such as the Lexicographic method [40],
weighted sum method [41], elitist non-dominated sorting ge-
netic algorithm (NSGA-II) [42], Strength Pareto Evolution-
ary Algorithm (SPEA) [43], SPEA-II [44], Pareto Enveloped
based Selection Algorithm (PESA) [45] and PESA-II [46] as
well as numerous other variations with their pros and cons.
For example, the Lexicographic method is sensitive to the
iteration order of objectives, while the weighted method is
sensitive to the weightings and both of them suffer from high
computational burden. The NSGA-II does not perform very
well for more objectives, while the SPEA and SPEA2 are also
exhibit high computational complexity, and the PESA as well
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as PESA2 are sensitive to the size of hyperbox. By contrast, as
a member of the elitist multi-objective evolutionary algorithm
family based on the concept of ε-dominance, ε-MOGA has the
compelling characteristics of efficient parallel computing along
with the efficient control of the elitist archive, where problem
solutions are stored. Hence, ε-MOGA outperforms the above-
mentioned multi-objective optimization algorithms in terms
of its convergence, diversity of solutions and computational
efficiency. Hence, we apply the ε-DMOGA for determining the
optimal Pareto-front at a moderate computational burden. Our
ε-DMOGA is developed from the ε-MOGA [33], [34], which
is an elitist multi-objective evolutionary algorithm based on
the concept of ε-dominance [47], by taking into consideration
the discrete nature of the routing path constituted by discrete
aircraft IDs.

A. ε-DMOGA

In the Pareto optimal set for the multi-objective optimization
problem (15), no single solution should dominate others.
Explicitly, a solution routing path r1 by definition dominates
another routing path r2 in the routing path space, if and only
if all the objectives of r1 are no worse than the objectives of
r2 and at least one objective of r1 is better than that of r2,
which is formulated as

∀i=1, 2, 3,Ji(r1)�Ji(r2) and ∃k=1, 2, 3,Jk(r1)≺Jk(r2).
(17)

The operator � represents that the lefthand objective is no
worse than the righthand one. For example, J1(r1) � J1(r2)
is equal to C(r1) ≥ C(r2), whilst J2(r1) � J2(r2) is equal
to D(r1) ≤ D(r2). Similarly, ≺ represents that the lefthand
objective is better than the righthand one. Then, the Pareto-
front solution set R can be formulated as

R = {r ∈ R|@r̃ ∈ R : r̃ � r} , (18)

where @ represents ‘does not exist’. Hence, for r ∈ R, @r̃ ∈
R : r̃ � r means that there is no single r̃, which dominates
r if it does not belong to R.

Again, without loss of generality, we discuss the AANET
over the Australian airspace. For other AANETs, similar
discussions can be applied subject to minor modifications.
Intuitively, the end-to-end throughput is a more dominant
criterion for the Internet-above-the-clouds than the end-to-
end latency and the PET. Thus, our ε-DMOGA based multi-
objective routing optimization may start from a direct con-
nection to any of the NG GSs by finding the Pareto-front
of optimal solutions with respect to throughput, latency and
PET. Since NG is small, we can easily find a ‘Pareto-optimal’
GS that dominates other GSs by enumerating the multiple
objectives to each GS. This is effectively the single-hop
solution. Then, the ε-DMOGA based multi-objective routing
optimization can proceed to find all the Pareto-front solutions
within an affordable number of hops, say N − 1 = 2, 3, 4, 5
with respect to the multi-component objective function (15).

The ε-DMOGA based multi-objective routing optimiza-
tion is characterized by its initialization, individual mutation,
crossover and selection operations used throughout exploring

Jmin
1

Jmin
2

Jmax
2

Jmax
1

-Pareto solutions

ǫ2

ǫ1
ǫ

r∗

Fig. 2. The illustration of ε-dominance and the ε-Pareto-front solution.

the search space in a generation-based progression, until the
termination criterion is met. We now detail this ε-DMOGA.

1) Initialization. At the first generation of g = 1, where g
denotes the generation index, the ε-DMOGA commences
its search by randomly generating an initial population of
Ps N -element routing path vectors, denoted as P (g). Ex-
plicitly, permutation encoding is invoked for generating a
chromosome representing a routing path, which consists
of a string of aircraft IDs from source aircraft to the
destination ground station. For each individual of P (g),
the first element is the source node r1, and its second
element is randomly selected from the node space

A\ {r1} = {r ∈ A,∼ (r ∈ {r1})} , (19)

where A is the node space consisting of the aircraft in air,
and A\{r1} represents the node space with r1 removed.
In general, the n-th element of an individual, where 2 ≤
n ≤ N − 1, is randomly selected from the node space

A\ {r1, r2, · · · , rn−1}
= {r ∈ A,∼ (r ∈ {r1, r2, · · · , rn−1})}. (20)

The last node in a routing path, i.e. the N -th node, is a
GS, randomly selected from the GS node space B, which
consists of the NG GSs at airports. The archive A(g) that
contains the elite population is initialized as the null set
at the first generation g = 1.
The ε-DMOGA scheme solves the multi-objective routing
optimization by evolving the main population P (g) of Ps

N -element routing path vectors from one generation to
the next.

2) Archive. By calculating and comparing the multi-
objective functions for the individuals of P (g), the ε-
Pareto-front solution set R̃ is selected. Explicitly, the in-
dividuals in the ε-Pareto-front solution set R̃ ε-dominate
all the other individuals that are not selected into R̃. The
concept of ε-dominance is illustrated in Fig. 22, where
the shade areas are ε-dominated by r∗ and the other blue
points on the ε-Pareto-front are ε-Pareto-front solutions.

2In Fig. 2, we only plot two dimensions in order to have a clear illustration.
For our three objective dimensions as formulated in (15), the light blue areas
will be cubic.
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Furthermore, εi, i = 1, 2, 3, is the width of a box, which
is defined as

εi =
Jmax
i − Jmin

i

Nbox,i
, (21)

where Nbox,i is the number of partitions in the dimension
of the i-th objective, which preserves the diversity of ε-
dominance solution in the i-th objective dimension. The
Pareto-front limits Jmin

i and Jmax
i for i = 1, 2, 3 are

calculated as follows

Jmax
i =max

r∈R̃
Ji (r) , i = 1, 2, 3, (22)

Jmin
i =min

r∈R̃
Ji (r) , i = 1, 2, 3. (23)

The individuals in R̃ that are not ε-dominated by the
individuals in the elite population archive A(g) are stored
into A(g). Hence the size of the archive A(g) may vary at
different generations. Furthermore, R̃ is an intermediate
Pareto-front set at the current generation that converges
towards the Pareto optimal set R as the population
evolves over generations.

3) Variant. A new variant is generated by the amalgamation
of the ‘crossover’ and ‘mutation’ operations, which are
typically two separate operations in single-objective GA
optimization. However, we use the terminology ‘variant’
for the operations of crossover and mutation in our ε-
DMOGA, since both operations are controlled by the
probability of crossover/mutation pc/m. Explicitly, two
individuals, r(P ) and r(A), are randomly selected from
the main population P (g) and the elite population A(g),
respectively. Then, a randomly generated value α ∈ [0, 1]
decides which operation should be applied to r(g,P ) and
r(g,A).
1 Crossover. If α > pc/m, r(g,P ) ={

r
(g,P )
1 , r

(g,P )
2 , · · · , r(g,P )

N

}
and r(g,A) ={

r
(g,A)
1 , r

(g,A)
2 , · · · , r(g,A)

N

}
will cross over part

of their elements. There exist numerous crossover
mechanisms, and we opt for employing the single-
point crossover due to its simplicity. Explicitly, a
point on both r(g,P ) and r(g,A) is picked randomly,
which is designated as the crossover point. Then
the elements to the right of the crossover point
are swapped between r(P ) and r(A), which results
in two new offspring, each carrying some genetic
information from both parents. Given the crossover
point n ≥ 2, the two new offspring can be expressed
asr̂

(g,G)
1 =

{
r
(g,P )
1 , r

(g,P )
2 ,· · · ,r(g,P )

n , r
(g,A)
n+1 · · · ,r

(g,A)
N

}
,

r̂
(g,G)
2 =

{
r
(g,A)
1 , r

(g,A)
2 ,· · · ,r(g,A)

n , r
(g,P )
n+1 · · · ,r

(g,P )
N

}
,

(24)

where the superscript G indicates that both r̂
(g,G)
1

and r̂
(g,G)
2 are stored into an auxiliary population

G(g). Note that the same aircraft ID should be
avoided both in r̂

(g,G)
1 and r̂

(g,G)
2 by applying so-

phisticated operations, such as for example, checking

S1

S2

S3

S4

S3

Jmin
1 Jmax

1

Jmin
2

Jmax
2

Jmin
3

Jmax
3

Fig. 3. The objective space can be divided into the four areas, namely, S1:
Jmin
i ≤ Ji ≤ Jmax

i , ∀i = 1, 2, 3; S2: Ji > Jmax
i , ∀i = 1, 2, 3; S4:

Ji < Jmin
i , ∀i = 1, 2, 3; and S3: the rest of the objective space.

and mutating to a new non-same aircraft ID if a
r
(g,A)
n+j is same as a r(g,P )

j .
2 Mutation. If α ≤ pc/m, r(g,P ) ={

r
(g,P )
1 , r

(g,P )
2 , · · · , r(g,P )

N

}
and r(g,A) ={

r
(g,A)
1 , r

(g,A)
2 , · · · , r(g,A)

N

}
will mutate some of

their elements. Intuitively, the mutation may occur
in a single element or in multiple elements. We opt
for the latter. Explicitly, an integer Nm is randomly
generated in the range of [1, N − 1]. Then an
Nm-length vector l = {l1, l2, · · · , lNm} is generated
and each of its elements li, i = 1, 2, · · · , Nm,
is selected from the integer set of {2, 3, · · · , N}
without repetition. Specifically, Nm determines the
number of mutated elements with li, 1 ≤ i ≤ Nm,
specifying the positions of these elements. The
pair of new offspring generated by mutation are
expressed as Eq. (25), where r̂

(g,P )
li

and r̂
(g,A)
li

,
i = 1, 2, · · · , Nm, are the new genes generated by
mutation from parent r(g,P ) and r(g,A), respectively.
These mutated elements are randomly drawn from
the aircraft node set. However, the mutated elements
must not be duplicated with other elements within
the same individual to avoid loops in the routing
path. Therefore, if a mutated element is the same as
another element in the same individual, it must be
mutated again until it becomes different. Similarly,
both r̂

(g,G)
1 and r̂

(g,G)
2 are stored into the auxiliary

population G(g).
The crossover or mutation operations are operated NO/2
times, which results in total of NO new offspring in the
auxiliary population G(g).

4) Selection. The selection operation of multiple-objective
optimization is much more complex than that of single-
objective optimization. Explicitly, the ε-DMOGA calcu-
lates the multiple objective functions of the individuals in
the auxiliary population G(g) and decides, which specific
individual will be selected into the elite population A(g)

on the basis of its location in the objective space, as
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illustrated in Fig. 3. More specifically, there are four
scenarios depending on the particular location of the
individual in the objective space.

1 Located in S1. If an individual r̂
(g,G)
i , i ∈

{1, 2, · · · , NO} is located in the objective function
space area S1 and it is not ε-dominated by any
individual of A(g), it will be stored into the elite
population A(g), and the individuals in A(g) that are
ε-dominated by r̂

(g,G)
i will be removed from the elite

population.
2 Located in S2. If an individual r̂

(g,G)
i , i ∈

{1, 2, · · · , NO} is located in the objective function
space area S2, it will not be stored into the elite
population A(g), since it is ε-dominated by all the
individuals in A(g).

3 Located in S3. If an individual r̂
(g,G)
i , i ∈

{1, 2, · · · , NO} is located in the objective function
space area S3, the ε-DMOGA calculates and com-
pares the objective functions of the individuals in
P̃ (g) = A(g) ∪ r̂

(g,G)
i . Then, the ε-Pareto-front set

R̃(P̃) is selected and the elite population A(g) is
updated as R̃(P̃). Additionally, both the Pareto-front
limits Jmin

i and Jmax
i as well as the box width εi

are updated for all the three dimensions i = 1, 2, 3
according to (23), (22) and (21).

4 Located in S4. If an individual r̂
(g,G)
i , i ∈

{1, 2, · · · , NO} is located in the objective func-
tion space area S4, all the individuals in the elite
population A(g) are deleted, since all of them are
ε-dominated by r̂

(g,G)
1 , and r̂

(g,G)
1 is stored into

A(g). The limit of each objective function Jmin
i ,

i = 1, 2, 3, is updated as Ji
(
r̂
(g,G)
1

)
, i = 1, 2, 3.

5) Update. Update the main population P (g) by comparing
its individuals and the individuals selected from the aux-
iliary population G(g). Explicitly, an individual r̂

(g,G)
i ,

i = 1, 2, · · · , NG, is compared to an individual r
(g,P )
j

that is randomly selected from P (g): if r̂(g,G)
i dominates

r
(g,P )
j as defined by (17), r(g,P )

j is replaced by r̂
(g,G)
i

in the main population P (g). The updating operations
are continued until all the individuals in the auxiliary
population G(g) are compared to an individual selected
from the main population P (g).

6) Termination. The ultimate stopping criterion would be
that the Pareto-front solutions of the multiple-objective
routing optimization problem have been found. However,
we cannot offer any proof of evidence that the Pareto-
optimal routing paths have indeed been found.
In order to have limited and predicable computational
complexity, we opt for halting the optimization procedure
when the pre-defined maximum affordable number of

generations gmax has been exhausted, namely, g = gmax,
and the individuals from A(gmax) comprise the near-
Pareto solutions. Otherwise, we set g = g + 1 and go
to 2) Archive.

As a population-based nature-inspired multiple-objective
optimization algorithm, the computational complexity of ε-
DMOGA is bounded by the number of generations and the
population size, with some additional complexities imposed
by the crossover and mutation as well as selection operations.
Hence, the computational complexity can be roughly quanti-
fied by the number of cost function (CF) evaluations, which
is given by (Ps +NO)gmax CF-evaluation.

B. Convergence of ε-DMOGA

As a nature-inspired multiple-objective optimization algo-
rithm, there is randomness in the search procedures of ε-
DMOGA, hence it is quite challenge to definitely say whether
a Pareto-optimal solution has been achieved. Nevertheless, ε-
DMOGA tries to ensure that the elite population archive A(g)

converge toward an ε-Pareto set R̃(P̃) in a smart distributed
manner along the Pareto front. The convergence of ε-DMOGA
can be studied in a similar manner to [48] by the probability
of convergence, which is defined as

lim
g→∞

Pr
(
d
(
A(g),R

)
→ 0

)
= 1, (26)

where d
(
A(g),R

)
is a distance function between the g-th

generation’s elite population archive and the Pareto optimal
R. Additionally, the convergence of ε-DMOGA may be also
studied in a manner similar to Theorem 1: Almost sure
convergence in [48]. Hence motivated readers are referred to
[48] for a detailed study of convergence in multiple-objective
evolutionary algorithms.

IV. SIMULATION RESULTS

In this section, we investigate the achievable network per-
formance of our proposed ε-DMOGA based multi-objective
routing optimization scheme.

A. Simulated AANET

The mobility characteristics of the nodes are critical for
designing and analysing AANETs. In [49], we developed a
semi-stochastic aircraft mobility model, which is capable of
generating an arbitrary number of flights. However, “it would
be ideal to use actual node position”, as stated by Kingsbury
[50]. from Massachusetts Institute of Technology. Hence, in
contrast to relying on a mobility model, which generates
artificial flights and their trajectories for approximating aircraft
movement, we simulate a realistic AANET in the Australian
airspace based on a large-scale real historical flight data on
both the busiest and quietest day of 2018. Specifically, June

 r̂
(g,G)
1 =

{
r
(g,P )
1 , · · · , r̂(g,P )

l1
, · · · , r̂(g,P )

l2
, · · · , r̂(g,P )

lNm
, · · · , r(g,P )

N

}
,

r̂
(g,G)
2 =

{
r
(g,A)
1 , · · · , r̂(g,A)

l1
, · · · , r̂(g,A)

l2
, · · · , r̂(g,A)

lNm
, · · · , r(g,A)

N

}
,

(25)
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TABLE I
DISTANCE-BASED ADAPTIVE CODING AND MODULATION SCHEME FOR AERONAUTICAL COMMUNICATIONS.

Mode k Mode color Modulation Code rate Spectral efficiency (bps/Hz) Switching threshold dk (km)

0 None None None < 0.459 > 740.8

1 Black BPSK 0.488 0.459 500

2 Magenta QPSK 0.533 1.000 350

3 Green QPSK 0.706 1.322 200

4 Yellow 8-QAM 0.642 1.809 110

5 Blue 8-QAM 0.780 2.194 40

6 Cyan 16-QAM 0.731 2.747 25

7 Red 16-QAM 0.853 3.197 5.56

29, 2018, which represents the busiest day, and December 25,
2018, which represents the quietest day. The busiest/quietest
day is determined by the number of flights in air on the day,
which indicates the traffic in airspace. We assume that there are
NG = 5 GSs, namely these at Perth airport (PER), Melbourne
airport (MEL), Sydney airport (SYD), Brisbane airport (BNE),
and Darwin International airport (DRW). The selection of
these five representative airports has jointly considered the
geographical distribution and flight handling capacity. The
flights considered for our investigation are real historical
flights of the top-5 domestic airlines scheduled on June 29,
2018 and December 25, 2018. The top-5 domestic airlines in
Australia were Quantas, Jetstar, Tigerair, Virgin Australia and
Rex (Regional Express) in 2018.

The AANET employs the time division duplexing (TDD)
protocol, which has already been standardized by existing
aeronautical communication systems, such as the Automatic
Dependent Surveillance-Broadcast (ADS-B) [51], L-band dig-
ital aeronautical communications system (L-DACS) [52] and
the aeronautical mobile airport communication system (Aero-
MACS) [53]. Following the physical layer design in [31], or-
thogonal frequency-division multiplexing (OFDM) is adopted
as the transmission technique of broadband aeronautical com-
munications. Each aircraft has 32 transmit antennas and 4
receiver antennas. The network is allocated Btotal = 6MHz
bandwidth at the carrier frequency of 5 GHz. This bandwidth
is divided into 512 subcarriers. The number of cyclic prefix
(CP) samples is Ncp = 32. The transmit power per antenna is
Pt = 1Watt. Furthermore, the distance-based ACM scheme
of [31], [32] designed for aeronautical communications is
employed for quantifying the link quality between a pair of
communicating aircraft, in which the transmit aircraft activates
a specific ACM mode based on its distance from the receiver
aircraft. Explicitly, our distance-based ACM scheme using
K = 8 modes is given in Table I, where an ACM mode
is represented by a color. If the distance of two aircraft is
longer than 740.8 km, there exists no adequate communication
link between these two aircraft, which is marked as ‘None’ in
Table I. The default parameters of the AANET used in our
simulations are summarised in Table II.

B. A specific example of the flight TT589

First, we investigate the achievable multiple objectives of
the network layer performance via the specific example of the
flight TT589 on June 29, 2018, which may be extrapolated to
other flights and other dates. As shown in Fig. 4(a), there is no
available direct link to any GS at the five airports considered.
However, if we increase the number of the affordable relay
nodes and tolerate a higher delay, there are available routing
paths to the GS at Brisbane airport. As shown in Fig. 4(b) and
Fig. 4(c), there are two Pareto-optimal 2-hop routing paths
to the GS deployed at Brisbane airport relying on the relay
nodes JQ935 and QF2366, respectively. Both routing paths
have a spectrum efficiency (SE) of 0.459 bps/Hz according
to the SE of the ‘black’ link of Table I. The multi-objective
functions of these two solutions are compared in the left half
of Table III. It is clear that the two routing paths shown
in Fig. 4(b) and Fig. 4(c) do not dominate each other, and
hence both are Pareto-optimal routing paths, provided that the
affordable number of relay nodes is one.

If the affordable number of relay nodes is two, we can
find routing paths having a higher SE. As shown in Fig. 4(d)
and Fig. 4(e), there are two Pareto-optimal routing paths
to the GS at Brisbane airport via three hops, namely, the
routing path TT589→QF2407→QF974→BNE and the routing
path TT589→QF2407→QF935→BNE, respectively. Both the
routing paths have a SE of 1.000 bps/Hz according to the SE
of the ‘magenta’ link, which determines the end-to-end SE.
As confirmed in the right half of Table III, these two 3-hop
routing paths are also Pareto-optimal, as they do not dominate
each other.

C. Overall multi-objective network-layer performance

We now investigate the overall network-layer performance,
including how many flights in the air over a period of 24
hours can access the Internet through our ε-DMOGA based
multi-objective routing as well as the average end-to-end SE,
the average end-to-end latency and the routing paths’ average
PET, on June 29, 2018 and December 25, 2018, respectively.

1) The number of flights that can access the Internet:
Clearly, the number of flights in air changes over the 24 hours
of the day, as shown in Fig. 5(a) and Fig. 5(b) for June 29,
2018 and December 25, 2018, respectively. The peak number
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1 hop routing with SE =  0.000 bps/Hz and delay = 100000.00000361 s, 

 path expiration time = 0.00000 s

SYD

MEL

PER

DRW

BNE

TT589

(a) No 1 hop to a GS
2 hops routing with SE =  0.459 bps/Hz and Delay = 0.01500361 s, 

 path expiration time = 1902.86767 s

SYD

MEL

PER

DRW

BNE

TT589

JQ935

(b) 2 hops to a GS – Solution-1

2 hops routing with SE =  0.459 bps/Hz and Delay = 0.01500365 s, 

 path expiration time = 2586.56434 s

SYD

MEL

PER

DRW

BNE

TT589

QF2366

(c) 2 hops to a GS – Solution-2

3 hops routing with SE =  1.000 bps/Hz and Delay = 0.03000395 s, 

 path expiration time = 1900.42115 s

SYD

MEL

PER

DRW

BNE

TT589

QF2407

QF974

(d) 3 hops to a GS – Solution-1

3 hops routing with SE =  1.000 bps/Hz and Delay = 0.03000379 s, 

 path expiration time = 1132.96596 s

SYD

MEL

PER

DRW

BNE

TT589

QF2407

JQ935

(e) 3 hops to a GS –5 Solution-2
Fig. 4. A specific example of the flight-TT589’s routing path to a GS, all of which are Pareto-optimal compared to any of other routing paths.
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TABLE II
PARAMETERS USED IN SIMULATING AANET

AANET environment

Airspace Australian airspace

Airlines considered
Top-5 domestic airlines of
Quantas, Jetstar, Tigerair,
Virgin Australia and Rex

Location of GSs PER, MEL, SYD, BNE, and DRW

Representative dates investigated December 25th, 2018
June 29th, 2018

Time period observed 00:00 ∼ 24:00
Total number of flights on December 25th, 2018 802
Total number of flights on June 29th, 2018 1007
Latitude Determined by each aircraft
Longitude Determined by each aircraft
Altitude Determined by each aircraft

Communication parameters

Carrier frequency 5 GHz
Bandwidth Btotal 6 MHz
Number of CPs Ncp 32
Number of subcarrier Ncc 512
Rice factor KRice 5 dB
ACM As detailed in Table I
Maximum A2A communication distance 740.8 km
Maximum A2G communication distance 370.4 km

TABLE III
COMPARING THE MULTI-OBJECTIVES OF THE PARETO-OPTIMAL ROUTING PATHS FOR FLIGHT TT589 ON JUNE 29, 2018.

2-hop solution 1 2-hop solution 2 3-hop solution 1 3-hop solution 2

J1 SE (bps/Hz) 0.459 0.459 1.000 1.000
J2 delay (s) 0.01500361 0.01500365 0.03000395 0.03000379
J3 PET (s) 1902.86767 2586.56434 1900.42115 1132.96596
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Fig. 5. The number of flights in air over 24 hours capable of accessing the Internet using the ε-DMOGA multi-objective routing optimization.
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TABLE IV
COMPARING END-TO-END SPECTRUM EFFICIENCY OF ONE-HOP PARETO-OPTIMAL ROUTING SOLUTIONS AND PARETO-OPTIMAL ROUTING SOLUTIONS

WITH UP TO TWO HOPS AT UTC TIME 18:00 ON JUNE 29, 2018.

Individual flights’ SE (bps/Hz) Average SE (bps/Hz)

8 flights with 1 hop 1.8090 1.3220 2.1940 2.1940 1.8090 1.0000 1.0000 1.3220 1.58125

10 flights with up 1.8090 1.3220 2.1940 2.1940 2.1940 1.3220 1.3220 1.3220 1.52282
to 2 hops 0.7295 0.8197
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Fig. 6. The average end-to-end spectral efficiency achieved by the ε-DMOGA based multi-objective routing optimization.

of flights in air occurs at UTC time 06:00, namely 127 flights,
whilst the lowest number of the flights in air occurs at UTC
time 17:00, namely 16 flights. We start by investigating the
number of flights that can access a GS at any one of the five
airports considered. Explicitly, in Fig. 5, we investigate how
many flights can access a GS relying on 1 hop, 2 hops, 3 hops
and 4 hops, respectively, using our ε-DMOGA based multi-
objective routing optimization scheme. Additionally, we also
provides the numbers of flights that can access a GS with up
to 2 hops, up to 3 hops and up to 4 hops, respectively, obtained
by the ε-DMOGA based multi-objective routing optimization.

As shown by the solid lines of Fig. 5(a) and Fig. 5(b), most
of the flights in air can access a GS relying on 1 hop, i.e. via
a direct link. Furthermore, by analyzing the results obtained
using the ε-DMOGA scheme, it can be found that there is a
significant number of flights which can achieve higher end-
to-end SE than the single-hop paths by relying on 2 hops.
By contrast, seldom flights can achieve higher end-to-end SE
relying on 3 hops and 4 hops than those relying on 2 hops.
Although it is not explicitly shown by the figures, we found
that almost all flights can access a GS with up to 2 hops.
Hence, increasing the affordable number of hops to 3 and 4
contributes little to the total number of flights that can access
a GS, regardless of the hour of the day.

2) Average end-to-end SE: Since the routes of the same
number of hops for different flights have different end-to-end

SEs, Fig. 6(a) and Fig. 6(b) portray the achievable average
end-to-end SE over 24 hours on June 29, 2018 and December
25, 2018, respectively. As shown in Fig. 6(a) and Fig. 6(b), the
routing paths relying on up to 2, 3 and 4 hops are capable of
achieving somewhat higher average end-to-end SE than those
relying on 1 hop most times of the day except for UTC times
17:00, 18:00, 19:00 and 20:00 on June 29 as well as UTC
time at 15:00 on December 25, mainly in the scenarios of
having low flight times. But naturally, this SE improvement
is achieved at the cost of a higher delay. To elaborate a little
further, it is unexpected to encounter a lower SE for 2 hops
than for 1 hop, because a single hop tends to be longer, which
results in a lower SE. The issue here is that there are more
Pareto-optimal routing paths of up to 2 hops than the number
of Pareto-optimal 1-hop routes. We illustrate this point using
the example at UTC time 18:00 on June 29, 2018. There are
8 flights having direct links to a GS, while there are 10 flights
having routing paths to a GS relying on up to 2 hops – some
relying on direct link and some relying on 2 hops to access
a GS. Table IV compares the individual flights’ SEs of these
two groups as well as their average SEs. Although the average
SE of the second group is lower than that of the first group,
observe that eight of the ten Pareto-optimal routing paths with
up to 2 hops have the same or higher SEs than those of the
eight 1-hop routing paths.

Extrapolating from the results of the busiest day and the
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Fig. 7. The average end-to-end latency achieved by the ε-DMOGA based multi-objective routing optimization.

quietest day depicted in Fig. 6(a) and Fig. 6(b), we may draw
the conclusion that the AANET over the Australian airspace
can achieve an average SE of about 1.2 bps/Hz for low-flight-
times during the period of UTC 12:00-20:00, while its average
SE increases to around 1.7 bps/Hz for high-flight-times.

3) Average end-to-end latency: The average end-to-end
latency imposed by the Pareto-optimal routing paths over 24
hours on June 29, 2018 and December 25, 2018 are depicted
in Fig. 7(a) and Fig. 7(b), respectively. As expected, the direct
links have the lowest latency, since they only have single-hop
propagation delay upon accessing a GS. As seen in Fig. 7(a)
and Fig. 7(b), the average end-to-end latency relying on up to
2 hops is significantly higher than that relying on direct links.
This is because the end-to-end latency of a 2-hop routing path
also includes the signal processing delay and queuing delay,
which are significantly higher than the propagation delay.
Furthermore, the average end-to-end latency relying on up
to 3 hops and up to 4 hops is higher than that relying on
up to 2 hops. But the difference between the average end-
to-end latency relying on up to 3 hops and up to 4 hops is
small, because the number of routing paths relying on 4 hops
is relatively small, as shown in Fig. 5(a) and Fig. 5(b).

As observed from Fig. 7(a) and Fig. 7(b), the variation of
the average end-to-end latency over 24 hours of a day is small.
Furthermore, by extrapolating from the results of Fig. 7(a) and
Fig. 7(b), we may conclude that the average end-to-end latency
may be as low as 0.01 s in the AANET over the Australian
airspace, provided that a link is available.

4) Average path expiration time: The average PETs over
24 hours on June 29, 2018 and December 25, 2018 are
portrayed in Fig. 8(a) and Fig. 8(b), respectively. Intuitively,
the routing path may become vulnerable to potential breakage
upon increasing the number of hops. Our investigations based
on real historical flight data both on June 29, 2018 and on
December 25, 2018 confirm this intuition. Explicitly, as shown
in Fig. 8(a) and Fig. 8(b), the routing paths relying on a direct

link to a GS have considerably longer average PET than those
relying on 2 , 3 and 4 hops, except around UTC time 14:00
on June 29, 2018. Furthermore, the routing paths relying on
2 hops have longer average PET with a high probability than
those relying on 3 and 4 hops, but the difference between the
average PETs relying on 3 and 4 hops are hardly noticeable,
since the number of routing paths relying on 4 hops is very
low.

It can be seen that the average PET varies over the 24
hours of a day. On average, we may extrapolate that the PET
is around 800 s i.e. over minutes in the AANET over the
Australian airspace.

5) Summary: Based on the results obtained using real
historical flight data on two representative dates in 2018,
namely on the busiest day of June 29 and on the quietest
day of December 25, we may extrapolate the achievable
network layer performance for the AANET over the Australian
airspace using our ε-DMOGA based multi-objective routing
optimization. The overall network performance is summarized
in Table V at a glance.

V. CONCLUSIONS

In order to provide Internet service above the clouds, an
ε-DMOGA based multiple-objective routing optimization has
been developed by taking into account the unique features of
routing problem in AANETs. Explicitly, the end-to-end SE,
the end-to-end latency and the PET have been jointly opti-
mized by the proposed ε-DMOGA for determining the Pareto-
optimal routing paths. The achievable end-to-end SE, end-to-
end latency and PET performance using our ε-DMOGA based
multiple-objective routing optimization have been investigated
based on the top-5 Australia domestic airlines’ real historical
flight data on two representative dates in 2018, namely the
busiest day of June 29 and the quietest day of December 25,
in term of the number of flights in air. Our simulation results
have quantified the networking capability of the AANET over
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Fig. 8. The average path expiration time achieved by the ε-DMOGA based multi-objective routing optimization.

TABLE V
THE ACHIEVABLE NETWORK PERFORMANCE OF THE AANET OVER AUSTRALIA AIRSPACE

Average spectrum efficiency Average end-to-end latency Average path expiration time

1.2 bps/Hz at low-flight times
1.7 bps/Hz at high-flight times

0.01 s 800 s ≈ 13.3 min

the Australian airspace. Furthermore, our investigations have
also offered useful design considerations for the AANETs in
other parts of the worlds.
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