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Abstract: In this paper, an optimized cluster head (CH) selection method based on genetic 

algorithm (NCOGA) is proposed which uses the adaptive crossover and binary tournament 

selection methods to prolong the lifetime of a heterogeneous wireless sensor network (WSN). The 

novelty of the proposed algorithms is the integration of multiple parameters for the CH selection 

in a heterogeneous WSN. NCOGA formulates fitness parameters by integrating multiple 

parameters like the residual energy, initial energy, distance to the sink, number of neighbors 

surrounded by a node, load balancing factor, and communicating mode decider (CMD). The 

parameters for load balancing and CMD are utilized to discover out the best candidate to be 

selected as a relay CH and for deciding the mode of communication (single or multi-hop) of CH. 

Further, these parameters are useful in avoiding hot-spot problem in the network. The working of 

the NCOGA starts based on the criteria “consider only those nodes which have energy higher than 

the pre-defined threshold energy”. This criterion of nodes selection makes the NCOGA more 

efficient and quickly convergent. Extensive computer simulations are conducted to determine the 

effectiveness of the NCOGA. Simulation results reveal that the proposed NCOGA outperforms 

the state-of-the-art optimization algorithms based on GA in terms of several performance metrics, 

specifically, stability period, residual energy, network lifetime, and throughput. 
 

Keywords: GA-based CH selection; Clustering; Load balancing; Communicating mode decider; 

Wireless sensor networks. 
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NNORM Represent the network Normal Node 
NADVN Represent the network Advance Node 
NSUP Represent the network Super Node 
N Total number of nodes 
Ʊ Represent the super node energy fraction 
Θ Represent the advance node energy fraction 
ɷ As compared to a normal node, advanced nodes have a higher energy fraction 
ɸ As compared to normal nodes, super nodes have a higher energy fraction 
EO Represent the node initial energy 
ET Represent the network total energy 
FPS Represent the Fitness Parameters 
ER(i)   Represent the ith node residual energy  
E(i) Represent the ith node initial energy  
Vi Represent the ith population vector 
𝐶𝐶𝐻𝐻𝑃𝑃 The suggested probability of cluster heads 
D(N(i)-S) Represent the ith node Euclidean distance from the sink 
D(AVG(N(i)-S)) Represent the average distance from ith node to sink 
NCL Cluster size (number of nodes) 
D((N(i)-N(j))) Represent the distance from ith node to jth node 
RCH Represent the Relay Cluster Head 
D((CH(i)-CH(j))) Distance between the CHs and D(N(i)-S) 
NC Number of clusters in the network 
L.B. Load Balancing 
𝜑𝜑, δ, γ, α, σ, β Represent the Weight coefficients 
Pm Mutation rate 
Pc Crossover rate 
irank Non-domination rank 
𝑖𝑖𝑐𝑐𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  Crowding distance 
C(V) Represent the current sensed value 
S(V) Represent the sensed value 
H(T) Represent the Hard Threshold 
S(T) Represent the Soft Threshold 
Etx (z, d) The energy used to transmit z-bit data over distance d 
Eelc The energy used to activate the transmitter and receiver circuitry 
Eefs Represent the free space energy model 
Eamp Represent the energy used for multipath energy model 
do Represent the Threshold Distance 
Erx The energy used to receive z-bit data 
Eda Represent the energy used in the data aggregation of 1-bit data 
Edx Consumption of energy during data aggregation 

1. Introduction 

     Wireless sensor network (WSN) is a self-organized network that comprises of spatially 

distributed wireless sensor nodes that sense the target area and transmit the sensed information to 
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the sink [1]. Due to technological advancements made in the Micro-Electro-Mechanical-System 

(MEMS), it has become possible to develop various low-cost sensor nodes with embedded 

processing, automated sensing, and non-rechargeable batteries. These sensor nodes are extensively 

used in the different sectors of applications namely military operations, agriculture, disaster 

management, health care, habitat monitoring, and industrial purposes [2]. When sensor nodes are 

deployed in the harsh environment, it becomes quixotic to replace the batteries of sensor nodes, 

which puts a constraint on the network running of WSN [3] [4]. Consequently, it is of prime 

importance to conserve the battery resource of sensor nodes by building up the energy efficient 

communication among nodes such that the network running could be elongated to the maximum 

possible period.  

The classical routing protocols with homogeneous network are unable to save the nodes’ 

energy. For the homogeneous network, all the nodes have similar capacity, computing, and 

coverage resources, and they have proven to be inefficient. It is observed, however, that the energy 

of the nodes declines with the incremental progression of data transmission. On the contrary, for 

heterogeneous network the nodes are divided into various genres based on their original energy 

stock. The designed algorithm works in a way that the algorithm designed for different categories 

of sensor nodes works according to the energy profile of these nodes. Depending on the energy 

expenditure of the nodes they turn from one genre to another. The truth is, however, that the 

guidelines for all node genres remain the same during the operation of the network. When a node 

labeled as an advance node reaches the energy level of super nodes as well as super node reaches 

the energy level of a normal node, it would also have the same requirements for CH selection as 

super nodes. The main function of the high-energy nodes is to act as a repository for the other 

nodes on the network. Expected battery resources are the most generally used because of the 

important position they perform in energy heterogeneity [10]. 

One of the major objectives of the researchers exploring WSN is the minimization of energy 

consumption of the sensor nodes [5]. With this perspective, a plethora of research has been carried 

out by proposing different energy efficient routing strategies that aim to conserve the energy of 

the sensor nodes so that period of network run can be enhanced [6]. One of the essential attempts 

in the energy conservation has been the concept of ‘clustering’ in WSN. In clustering mechanism, 

the nodes are grouped together to form a cluster and one node in the cluster is appointed as ‘Cluster 

Head (CH)’ and rest of the nodes are named as ‘cluster members’ [7]. The CH gathers information 
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from the cluster members, removes the correlated data (i.e., process is termed as aggregation), and 

forwards the useful information to the sink in a single hop or via multi-hop transmission. If the 

multi-hop communication is involved for the data transmission among the different CHs, the 

intermediate CHs get burdened heavily due to the relaying of data to the sink. Eventually, these 

intermediate CHs and most likely the CHs closest to the sink will fully drained off their energies. 

As a result, the data transmission from the victim cluster (a cluster suffering from hotspot) is halted 

which affects the network reliability and its performance heavily. This problem is termed as the 

hot-spot problem. A high magnitude of research work has been reported so far that attempts to 

alleviate the hot-spot problem [8] [9].  

It is a noteworthy fact that selection of CH is a non-Deterministic polynomial (NP)-hard 

optimization problem due to the selection of ‘q’ number of optimal CHs among ‘t’ i.e., total 

number of sensor nodes in the network generates �𝑞𝑞𝑡𝑡� possibilities. Different computational 

optimization techniques have been applied to acquire the optimal solution of such NP problems 

[10]. Many optimization techniques have been proposed to achieve enhanced network 

performance by optimizing different attributes namely routing, CH selection, sink placement, etc. 

[11] [12] [13]. Genetic Algorithm is an effective approach for solving NP-hard problems as it has 

the characteristics of ease of implementation, solution with better quality, ability to retain the best 

solution (i.e., also termed as elitism), and low convergence time [14]. The CH selection is done by 

optimizing the different attributes of nodes taken in the initialization. The genes are represented in 

the sequence of bit stream of 1’s and 0’s, where ‘1’ represents the selected CH and ‘0’ is used for 

the cluster member nodes. It is the fitness function that decides for a chromosome representing a 

node whether it will be selected as CH or not. The fitness function is integrated by considering 

different parameters and the chromosome with values closest to the optimal values is selected as 

CH, i.e., selecting the optimized node as a CH and afterwards it performs clustering operations. In 

this paper, a multi-objective algorithm is used that tends to optimize the different parameters.  It 

is believed that multi-objective optimization (MOO) algorithms optimize the conflicting goals in 

WSNs simultaneously. Most of these algorithms optimized the consumption of energy while 

considering other conflicting goals together. Weights are assigned to the input parameters, which 

transformed the multi-dimensional optimization problem to single dimension. 
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Motivated from aforementioned discussion, we suggest a new method that deliberates the 

NCOGA to select CH in a WSN so as the efficient network performance can be acquired. The 

main contributions are highlighted as follows: 

a) We propose a novel CH selection optimized based on GA (NCOGA) for the heterogeneous 

WSN.  NCOGA is complied with fitness function, which considers six parameters, namely, 

residual energy, initial energy, distance to the sink, a node having neighbors’ nodes, load 

balancing factor and communicating mode decider (CMD). It is to be noted that it is the first 

ever attempt with these parameters for the CH selection in heterogeneous WSN.  

b) The parameters of load balancing and CMD help in discovering out the best candidate to be 

selected as relay CH and deciding for the mode of communication of CH i.e., whether it is 

single or multi hop, respectively. With the inclusion of these parameters, hot-spot problem is 

avoided in the network.  

c) The proposed improved GA considers only those nodes for the initialization process which 

have energy more than the pre-defined threshold energy. This criterion renders the early 

convergence to the proposed optimization strategy. Unlike many state-of-art protocols, the 

proposed NCOGA considers the elitism process that keeps a record of the best solutions i.e., 

already selected CH so that the frequent selection of a node as CH could be avoided.  

d) The performance comparison of the proposed technique is made with the state-of-art optimized 

routing techniques based on GA i.e., GASONeC [49], BMHGA [60], GAOC [18], GATERP 

[53] and it is found that the proposed algorithm has comprehensively performed better than 

other protocols. 

The rest outline of this paper is given as follows: Section 2 summarizes the related work; 

Section 3 comprehensively discusses the proposed algorithm; Section 4 shades light on the 

computer simulation, results, and analysis; the conclusion and future scope is reported in Section 

5.  

2. Related work  

This section presents a comprehensive discussion of related work on different CH selection 

methods. This section is comprised as follows: (a) a short review of clustering method is given in 

subsection 2.1; (b) literature related to metaheuristic algorithm-based CH selection are presented 

in subsection 2.2; and (c) Genetic algorithm inspired cluster head selection is shown in subsection 

2.3.  
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2.1 Clustering algorithm for WSNs 

LEACH [17] initiated a distributive clustering algorithm that randomly selects CH and  

enhances the network performance. It is a simple routing topology in wireless sensor network. The 

clustering ameliorates the performing of the network from the prior algorithms and quite a few 

variations to LEACH were introduced. Verma et al. [18] proposed genetic algorithm-based 

optimized clustering (GAOC) method for CH selection in heterogeneous wireless networks. 

GAOC was implemented for the network having single and multiple data sink using optimized 

and non-optimized methods. Tyagi et al. [19] discussed the systematic advancements of the 

clustering algorithms. A systematic review on the clustering algorithms for heterogeneous WSN 

was presented in [20].  

There are several concepts on heterogeneous routing and two or three levels of heterogeneous 

energy node. For example, stable election protocol (SEP) which operated on two levels of 

heterogeneous energy nodes (advance and intermediate) [21]. Despite the high probability on CH 

selection within the nodes, several considerable parameters (i.e., distance, density of nodes, etc.) 

were ignored. Later, distributed energy-efficient clustering (DEEC) [22] and DDEEC [23] were 

introduced where CH was employed by the residual energy of the network. But penalization of 

high energy nodes was ignored in [21] and [23]. On the other hand, after heterogeneous nodes of 

level two there were abundance of algorithm which were proposed on the level three heterogeneous 

energy nodes. For instance, EEHC [24] explained the process of CH selection for level three 

heterogeneous energy nodes. Furthermore, the performance quality of the network could not be 

upgraded optimally as penalization of nodes was not inevitable. To mitigate this concern,  

EDDEEC [25] was introduced for CH selection. For the betterment of heterogeneity levels, 

BEENISH [26] was proposed to select energy efficient CH and this protocol enhances the stability 

period of the network.  

Akbar et al. [27] suggested improved balanced energy-efficient network-integrated super 

heterogeneous (IBEENISH), which strengthened BEENISH [26] by avoiding penalization at four-

level energy heterogeneous nodes. Paola et al. [28] suggested P-SEP protocol which was designed 

for single-hop communication and this protocol selected CH at random rather than assigning some 

preference to the high energy nodes, with the same goal of improving the network lifespan and 

stability period. However, stable energy efficient clustering protocol (SEECP) [30] and distance-

based residual energy-efficient stable election protocol (DRESEP) [29] designed for dual-hop 
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communication and suffered from hot-spot problem due to the burdening of relaying nodes. Here, 

DRESEP [29] selected CH based on residual energy and distance while SEECP [30] adopted the 

topology of fixed number of CHs were present in the network. However, the dual hop 

communication involved in the inter-cluster communication was inefficient.  

2.2 Metaheuristic algorithm for cluster head selection in WSNs 

It is noted that the advanced technologies have not left much space for improving network 

efficiency, however the CH selection is observed to be NP-Hard, with optimum network 

performance being one of the challenging tasks [32]. As a result, there is a need of a metaheuristic 

approach that can satisfy critical parameters, which are required for CH selection, in an optimized 

manner [33]. Hence, for optimizing the cluster selection various metaheuristic methods were 

proposed. 

Chandirasekaran and Jayabarathi [34] exploited cat swarm optimization (CSO) for selecting 

the CH by considering (a) signal strength, (b) residual energy, and (c) intra-cluster distance. 

Chawra and Gupta [35] proposed a metaheuristic-based clustering method which has utilized salp 

swarm optimization algorithm to target the energy hole and non-uniform load distribution in the 

network. John and Rodrigues [36] presented multi-objective taylor crow optimization algorithm 

(MOTCO) based CH selection by utilizing the several parameters like distance, energy, and traffic 

density of the nodes and delay in the data transmission. Lee et al. [37] implemented a spider 

monkey optimization for CH selection with the aim to improve the selection accuracy. Poluru et 

al. [38] presented an improved fruit fly optimization algorithm  (IFFOA) for selecting the CH by 

integrating the various factors such as: (a) residual energy, (b) total distance to base-station, (c)  

distance from node to node link, and (d) vicinity. Rambabu et al. [39] proposed a hybrid artificial 

bee colony and monarchy butterfly optimization algorithm (HABC-MBOA) for CH selection. 

HABC-MBOA found effective in eliminating the overloading of sensor node to be selected as CH. 

Vijayalakshmi and Anandan [40] utilized tabu particle swarm optimization to select CH in an 

effective way. It is comprehended from the deep study of the aforesaid algorithms that the network 

performance is deprived to be optimum for one or another factor [41].  

2.3 Genetic algorithm inspired cluster head selection  

Further, we comprise the prospective work stated for the selection of CH by implementing the 

genetic algorithm (GA). GA is one of the most outstanding optimization methods. GA has been 
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implemented to solve NP hard problems. Literature reveals [31] [42] [43] that GAs was 

implemented successfully for CH selection. GA based routing strategies are illustrated in Table 1. 

Hussain et al. [31] implemented GA to frame clusters for energy effective data processing. 

This method worked well for CH selection, but residual energy was neglected. Liu et al. [42] 

suggested LEACH-GA for CH selection. Here, authors have given less importance to the energy 

factor and, therefore, LEACH-GA was noted ineffective for numerous broad area requirements in 

WSNs environment. Singh et al. [43] implemented an elitism dependent GA for CH selection. 

Here, residual energy was considered mostly for the current node. This method suffered mainly 

because it was not suitable to increase the network lifespan.  

Attea and Khalil [10] presented evolutionary based routing protocol (ERP) protocol that 

focused on enhancing the stability period and network lifetime. This method suffered because CH 

selection and routing criteria was inefficient. Kuila et al. [44] proposed a GA protocol to perform 

load balancing in WSN, but it didn’t discuss much on CH selection. Gupta et al. [45] recommended 

genetic algorithm-based clustering and routing (GACR) to achieve an improved number of rounds 

until the first gateway gets dead.  

Elhoseny et al. [15] proposed dynamic cluster head selection using genetic algorithm (DCH-

GA). It uses six factors for CH selection and designed for the multi-hop communication. DCH-

GA suffered from the hot spot and extreme overhead problem. Genetic algorithm-based distance 

aware-leach (GADA-LEACH) [16], genetic algorithm for heterogeneous network (GAHN) [46], 

and application specific low power routing (ASLPR) [47] protocols are discussed in Table 1. These 

protocols were largely influenced by scalability and by node density as a factor of CH selection 

was avoidable in these methods. Yuan et al. [48] suggested genetic algorithm-based, self-

organizing network clustering (GASONeC) for CH selection on the premise of predicted energy 

usage, distance, and node density parameter, respectively.  

But it suffered because: (a) computation cost was high and (b) ineffective routing (occurs due 

to long-haul communication next to the time of sink placement at the boundary). Moreover, there 

is no approach is characterized instead of multi-hop communication appearing in huge network. 

In fact, there is no obvious manifestation of network remains rendered. Hamidouche et al. [49] 

reported low energy-efficient hierarchical clustering and routing protocol based on genetic 

algorithm (LECR-GA) that not only focused on the network lifetime but also on the Quality of  
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Table 1. Comparison of genetic algorithm-based optimization developed in literature. 

Reference GA-based 
technique Targeted key factors 

 
Integration of parameters in proposed method Research gap 

Kuila et al. 
[44] (2013) GA Consumption of energy, time of execution, active 

member nodes and CHs, and convergence rate number  

Cluster load distribution happens while the 
standard variance of the gateway load is retained 

An algorithm has been proposed that 
utilizes a sink beyond the network and 
uses multi-hop contact with hot-spot 
concern is raised.  

Gupta et al. 
[45] 
(2015) 

Genetic Algorithm 
based Clustering and 
Routing (GACR) 

Number of hops, total distance covered in a round, 
number of node dead, energy consumption, and 
number of gateways dead. 

Ratio of the gateway's residual energy included 
standard deviation, average distance from cluster 
head and sensor node and number of member 
sensor nodes of a CH 

Gateway node collection should not take 
into account node density and a multi-
hop connectivity issue exists. 

Elhoseny et al. 
[46] (2015) Genetic algorithm 

for heterogeneous 
network (GAHN) 

Remaining energy of the node and network lifetime. 

Sensor node density, spatial distances through 
energy factor. 

There is a serious problem of scalability, 
but routing is not addressed. 

Shokouhifar et 
al. [47] (2015) GA-SA with ASLPR Efficiency of the network with various sensor nodes. 

Distance from the base station, distance between 
the CHs and the residual energy 

A long-haul transmission facility drains 
a lot of energy since sink is situated at 
the middle of the network. 

Bhatia et al. 
[16] (2016) GADA LEACH Throughput and network lifetime 

Number of CHs, distance between CH and BS, 
distance between member nodes of cluster and CH, 
and node energy. 

Inter-cluster coordination is ineffective, 
the process of choosing CH is also 
unpromising. Inefficient solution of 
implementing the relay node. 

Elhoseny et al. 
[15] (2017)  DCH-GA Efficiency of lifetime of the network with three 

various values of energy  

Density of the node, residual energy, energy 
consumption of node, distance of energy 
consciousness, and degree of mobility  

The main challenge is scalability, 
overheads are too high, algorithm 
complexity is really high 

Yuan et al. 
(2017) [49] GASONeC Network lifetime with varying number of nodes 

Overall distance of CH from BS and the density of 
the local node, the remaining energy, and initial 
energy 

Sink positioning is carried out beyond 
the network, so long-distance transport 
contributes to heavy energy drainage 

Hamidouche 
[49] et al. 
(2018) 

LER-GA Data packets received (QoS) at the base station and 
network lifetime 

Distance of node from neighbor node, residual 
energy of the cluster and for routing: distance, hop 
and energy. 

Due to the multi-hop routing hot spot 
dilemma, the difficulty of the algorithm 
significantly outweighs the benefits. 

Mittal et al. 
[52] (2018) 

Genetic algorithm-
based threshold-
sensitive energy-
efficient routing 
protocol (GATERP) 

Efficiency of the network with various sensor nodes, 
number of active CHs and active sensor nodes 

Residual energy, schedule time, expected energy 
consumption 

Scalability is the major concern and hot-
spot problem arises. 

Bhola et al. 
[57] (2020)   O-LEACH with GA Efficiency of the network which optimum probability 

for selection of CH 
Total energy consumption of the node and distance 
between member nodes of cluster and CH 

Only energy usage factors are regarded 
when selecting CH. 

Osamy et al. 
[32] (2020) ETDMA-GA Minimizes the total network latency 

TDMA schedule, slots and routes of the broadcasts Long haul transmission drains a lot of 
energy 

Shahzad et al. 
[33] (2021) GAFOR Network lifetime with energy efficiency 

Fuzzy optimized re-clustering and en-route 
filtering 

The main problem is scalability; 
overheads would be excessive, and the 
algorithm complexity is very high. 
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Service (QoS) parameter to achieve an improved performance. This algorithm suffered due to its 

complex nature of implementation and, was not suitable to deal with the hot-spot problem. 

Guo et al. [50] proposed scheduling for linked coverage enhancement in WSNs. Some 

literature [51] [53-54] discussed the role of other the metaheuristic algorithms for obtaining the 

network’s optimum efficiency. Different streamlined methods [55-56] were proposed to discover 

the most energy-efficient variation of CH to reduce energy consumption of the network.  

It can be contemplated from the study reported in the state-of-art techniques that for multi-

hop communication, and the large scale of the networks suffers from the hot-spot problem [52]. 

The perspicacious aspect that can be obtained from Table 1 is reported as follows: 

a) While various techniques have been suggested to function against CH selection by using GA, 

none of the techniques have optimally conserved energy. CH must be chosen such that multi-

hop connectivity along with the other variables is not properly considered. Consequently, the 

current work incorporates a GA, which employs CMD in its fitness function.  

b) The work is focused on the topology of the data scenario is considered in the SEECP protocol 

which includes the sink within the network.  

This research uses a GA among all the metaheuristic algorithms to improve network 

performance. GA is a search and optimization algorithm. It remains one of the most popular 

optimization processes based on searching the best optimum solution. It enhances the process of 

optimization exploration effectively, which improve during mimicking the flexible evolution 

method which is accessible from nature [51]. GA have been successfully utilized proactively to 

devise the resolution for  problems optimization concerning several disciplines viz. wireless 

networking, artificial intelligence, bio-medical engineering etc., [59]. GA is those metaheuristic 

optimization algorithms that imitate the genetic selection and advancement process, which is done 

naturally and biological, respectively. In this process at very first individuals are selected randomly 

produced as of the candidate solution and then they are included within population. GA is one of 

the most popular optimization procedures that supports to adapt the natural evolution process. 

Through GA, individuals are randomly chosen and then included in the community. Subsequently, 

the individuals have developed through numerous phases, including selection, crossover, and 

mutation. The new population of individuals is created after choosing the most appropriate or 

qualified individuals. The robust actions behind preferring GAs over other algorithms in 

metaheuristics and it has another characteristic that not only with the single point of operations, 
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but it can also perform with parallel computations as well. Additionally, it helps to avoid the local 

optimal point and helps in acquiring the global optimal solution. GAs may be used to decrease the 

difficulty of the applications that are extracted from the derivative details by turning over the 

capability to the fitness function [58][60].  

3. The system structure of NCOGA 

     This section sheds light on the proposed NCOGA algorithm. Here, we present the operational 

steps involved in the working of the NCOGA.  

3.1 Heterogeneous model of NCOGA 

       For operation the proposed NCOGA employs energy heterogeneous nodes as well as 3-level 

of energy heterogeneity remains engaged during this network. In heterogeneous wireless sensor 

network with additional energy supply in some nodes. The main functions of the high-energy 

nodes is to act as repositories for the other nodes on the network. These nodes ensures that this 

role is done effectively using the GA algorithm. The quantity of normal node as 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, advanced 

node as 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁  and super nodes as 𝑁𝑁𝑆𝑆𝑆𝑆𝑃𝑃 used in the network respectively as given equation (1-9). 

In this model, advance node and super node are signified as high energy nodes as fraction 

correspond by 𝜃𝜃 and Ʊ with total number of nodes i.e., represented by n, separately. 

NSUP = n ∗ Ʊ (1) 

NADVN = n ∗ θ (2) 

NNORM = n ∗ (1 − Ʊ − θ) (3) 

As compared to normal nodes, the advanced and super nodes remain ɸ and ɷ times higher in the 

sphere of energy. Eq. (4-9) compute the network total energy is denoted by (ET). 𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 denote 

the energy of normal node as well as  𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝑁𝑁 and 𝐸𝐸𝑆𝑆𝑆𝑆𝑃𝑃  denoted by energy of advanced and super 

nodes, respectively. 

 

ESUP = EO ∗ (1 + ɷ) ∗ n ∗ Ʊ (4) 

EADVN = EO ∗ (1 + ɸ) ∗ n ∗ θ (5) 

ENORM = EO ∗ (1 − Ʊ− θ) ∗ n (6) 
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ET = EADVN + ESUP + ENORM (7) 

ET = EO ∗ (1 + ɸ) ∗ n ∗ Ʊ + EO ∗ (1 + ɷ) ∗ n ∗ θ + EO ∗ (1 − Ʊ − θ) ∗ n (8) 

From the above equation 8, the final expression of ET is as follows  

ET = n ∗ EO ∗ (1 + ɷ ∗ θ + Ʊ ∗ ɸ) (9) 

      While integration parameters of fitness function in the following Subsection this above process 

is used in CH selection 

3.2 Operational working of NCOGA 

 The bit frame structure will be recalculated using the validation procedure for NCOGA 

protocol. If the bit is '1,' then the node is a CH; otherwise, it is a '0.' To begin, the validation 

procedure helps select the nodes that are appropriate for further consideration. 

3.2.1 Initialization 

      There are certain chromosomes which remain initialized based upon their performance of the 

validation process. The possibilities of CH nodes are considered through GA in this initialization 

stage. It can manage a population of various chromosome solutions where the length of one 

complete solution of a chromosome is equals to the number of sensor nodes in the network. It also 

helps to identifying the location of CH nodes and their member nodes in WSN. 

       Let Vi = (Vi1 , Vi2 , … ViM) represents the ith population vector of a sensor network with M 

sensors and their binary assignment to sensor nodes is given in equation (10). 

Vi(j) = �1, 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤  𝐶𝐶𝐻𝐻𝑃𝑃
0, 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 >   𝐶𝐶𝐻𝐻𝑃𝑃

 (10) 

      Where, Vi(j) ∈ {1, 0}, j ∈ {1, 2, 3,…, M}. 𝐶𝐶𝐻𝐻𝑃𝑃 is the suggested probability of cluster heads. 

Member nodes and cluster head nodes represent the values as 0 and 1 respectively and uniform 

random number is denoted by rand. 

3.2.2 Derivation of fitness function 

      Fitness function stands for combination of various types of performing parameters towards set 

up for develop the minimization or maximization of an expression. Fitness function discusses 

different fitness criteria that define the individual's fitness. Fitness function incorporated in GA 

eliminates the weak chromosomes so as to exclude them from their further evaluation. However, 
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the chromosomes selected via computing the fitness function are included in the competition of 

selecting the fittest chromosome. The optimal point is observed and the chromosome converging 

to the point is declared as fittest chromosome. Fitness parameter is evaluated due to its present 

value dependent based on several significant aspects. It should be observed that the higher the 

significance of the parameter, the higher the optimization would be obtained. The fitness 

parameters (FP) here focus on minimizing energy usage and allowing the network durability 

through the network. When designing fitness function, the following criteria are taken into 

consideration, that is to be used for selection of CH as discussed as follows.  

• Fitness parameter 1 (Residual energy): A node's residual energy is one of the most 

important elements in determining the CH after each cycle. The CH's rotation is dependent on the 

node residual energy, which is why this factor was chosen. For a long time, the network's energy 

must be balanced by rotating the CH. Due to the heterogeneous network, the nodes with maximum 

energy are favoured for selection as the CH. The equation (11) is denoted as below.  

𝐹𝐹𝐹𝐹1𝑠𝑠𝑡𝑡  = 1 �(
𝐸𝐸𝑁𝑁(𝑖𝑖)

𝐸𝐸𝑇𝑇 

𝑁𝑁

𝑖𝑖=1

)�  (11) 

      In above equation (11), 𝐸𝐸𝑁𝑁(𝑖𝑖) represents residual energy and 𝐸𝐸𝑇𝑇  represents the total energy 

considered to calculate the  𝐹𝐹𝐹𝐹1𝑠𝑠𝑡𝑡. The symbol of M represents the number of nodes.   

• Fitness parameter 2 (Initial energy): In this aspect, the initial energy is assigning to a node 

for consideration to select CH of the network. Moreover, deployment of nodes in the network as 

per initial energy consideration together with heterogeneity nodes. According to heterogeneity of 

nodes in the comparison of super nodes maintain lengthier time instead of advanced nodes as well 

as advances nodes remain ideal than normal nodes. 𝐹𝐹𝐹𝐹2𝑛𝑛𝑛𝑛 is the second parameter for fitness 

function as shown in eq. (12), a node of initial energy is normalized to have value between 0 and 

1.  

𝐹𝐹𝐹𝐹2𝑛𝑛𝑛𝑛 = 1 𝐸𝐸(𝑖𝑖)⁄  (12) 

• Fitness parameter 3 (Distance between node and sink): The energy consumption of a 

node decides the communication among the nodes or with the sink. The sum of energy that is 

consumed by the sink remains strictly proportional to the distance from the sink to the node. 

Therefore, the networking technique for CH selection takes into account of the parameter under 

which the median gap between the nodes and the sink can be optimized accordingly. The target 
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purpose rather than CH selection decisions should be framed, FP3rd is presented in conjunction 

with the equation (13) with the distance variable. 

𝐹𝐹𝐹𝐹3𝑟𝑟𝑛𝑛 = ∑ (𝑁𝑁
𝑖𝑖=1

𝐴𝐴(𝑁𝑁(𝑑𝑑)−𝑆𝑆)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑁𝑁(𝑑𝑑)−𝑆𝑆)
) (13) 

where,                                    𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴(𝑁𝑁(𝑖𝑖)−𝑆𝑆) = �
∑ 𝐴𝐴(𝑁𝑁(𝑑𝑑)−𝑆𝑆)
𝑁𝑁
𝑑𝑑=1,

𝑁𝑁
� (14) 

      The above equation (13) evaluates the sum of the distance costs obtained for any ith node by 

third fitness parameter (𝐹𝐹𝐹𝐹3𝑟𝑟𝑛𝑛), where i ranges from 1 to M (Number of nodes) and in the equation 

(14), 𝐷𝐷𝑁𝑁(𝑖𝑖)−𝑆𝑆 denotes the Euclidean distance from the sink to the ith node, 𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴(𝑁𝑁(𝑖𝑖)−𝑆𝑆) signifies an 

average distance at the middle of the ith node and sink.  

• Fitness parameter 4 (Neighbors of a node): In this respect, the intra-cluster connectivity 

improves a controlling entity until the network has developed throughout the larger area. If the 

selection of CH is independent of the number of adjacent nodes, it contributes to the selection of 

a node as a CH that is far from other nodes. The CH node would also use more resources when 

gathering data from the other nodes in a cluster. To avoid this kind of selection, we must consider 

the number of neighboring nodes. FP4th is defined by the following eq. (15). 

𝐹𝐹𝐹𝐹4𝑡𝑡ℎ = 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑁𝑁𝐶𝐶𝐶𝐶

   (15) 

     where,                                   𝑁𝑁𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 = ∑ 𝐷𝐷(𝑁𝑁(𝑖𝑖)−𝑁𝑁(𝑗𝑗))
𝑁𝑁𝐶𝐶𝐶𝐶
𝑖𝑖=1,𝑗𝑗=1,𝑖𝑖≠𝑗𝑗                                             (16)  

  

In the above equation (15), the ratio of 𝑁𝑁𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 and 𝑁𝑁𝐶𝐶𝐶𝐶 is evaluated by FP4th. Whereas 𝑁𝑁𝑛𝑛𝑖𝑖𝑠𝑠𝑡𝑡 denotes 

the distance intervals of neighbor nodes and 𝑁𝑁𝐶𝐶𝐶𝐶 denotes the total number of nodes in the cluster. 

In equation (16), the distance interval between ith and jth nodes is denoted by D(N(i)−N(j)).  

• Fitness parameter 5 (Communicating mode decider): One of the essential contributions 

in this work is the involvement of CMD factor in the CH selection. CMD decides a node’s ability 

to be relay CH for performing dual hop communication. When the average distance among the 

node and sink remains lesser than the threshold distance, the node is preferred to be CH and it will 

be forwarding data to the sink directly. The aforementioned threshold distance is the standard 

distance of the whole nodes from the sink. It is to be noted that the CH forwarding data from the 

farther located clusters is termed as Relay CH (RCH). CMD factor is computed by calculating the 
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distance between the nearby CHs or between the sink whichever is nearest. Minimum CMD value 

to be enhance a node as a CH in the network. 

      Therefore, the fifth fitness parameter (FP5th) computes CMD such that (CMD=1/ FP5th) for a 

node as follows. NC is the number of clusters or the number of CHs in the network. 

𝐹𝐹𝐹𝐹5𝑡𝑡ℎ = �
∑ 𝐴𝐴(𝐶𝐶𝐶𝐶(𝑑𝑑)−𝐶𝐶𝐶𝐶(𝑗𝑗))
𝑁𝑁𝐶𝐶
𝑑𝑑=1,𝑗𝑗=1

𝑁𝑁𝐶𝐶  
+ 𝐷𝐷(𝑁𝑁(𝑖𝑖)−𝑆𝑆)�   (17) 

      Through the equation (17), 𝐷𝐷(𝐶𝐶𝐶𝐶(𝑖𝑖)−𝐶𝐶𝐶𝐶(𝑗𝑗)) signifies the distance between the CHs and 𝐷𝐷(𝑁𝑁(𝑖𝑖)−𝑆𝑆) 

denotes the distance between the ith node and sink. Lesser the value of 𝐹𝐹𝐹𝐹5𝑡𝑡ℎ, more will be value 

of CMD. Hence, the node will be selected with least distance such that it follows single hop 

communication. Otherwise, it will act as RCH node. 

      It is noted that the distance and CMD factors inclusion hold their individual significance. The 

CH selection of a node is governed through the distance factor, which supports the selection of 

nearest node towards the sink. However, CMD factor helps to select appropriate node as relay CH.  

• Fitness parameter 6 (Load balancing): It improves during network durability as it 

improves in preventing the imprisonment of excessive energy nodes have been carefully chosen 

as CH repeatedly no matter that they have energy. This one, like a CH, may pick a node at any 

time throughout its ten-round period of time. The node that hasn't yet become CH is still increasing 

its chances of becoming CH as the term concludes. Initially, each node in the competition for 

improving CH is given a value of 0.1. With each the increase in intensity during the round, the 

value will be improved through 0.1 till it reaches 1 as shown in Fig. 1. As quickly as possible as it 

reaches 1 that one becomes CH. Therefore, sixth fitness parameter includes load balancing given 

as follows in equation (18). 

𝐹𝐹𝐹𝐹6𝑡𝑡ℎ =
1

∑ 𝐿𝐿.𝐵𝐵. (𝑖𝑖)1
𝑖𝑖=0.1

 (18) 

      It is to be noted that higher the value of L.B. for a node, more chances to enhance a node as a 

CH. The reason for employing these six fitness parameters is the fact that the inclusion of these 

parameters altogether brings the energy balancing through the network. Every parameter is 

essentially explained individually, and the fitness function thus framed leaves a great impact on 

the CH selection by selecting the best profile node as CH.  The existing techniques used different 



16 
 

parameters for CH selection, but the above-discussed parameters are not included altogether. It is 

believed that this process of inclusion will help in acquiring the energy efficient CH selection.  

 

Fig. 1. Load balancing scenario. 

• Fitness function: We considered above the integration of various fitness parameters of the 

network is completely express in given fitness function as follows in equation (19).  

F =
1

φ × FP1st + δ × FP2nd + γ × FP3rd + α × FP4th + σ × FP5th + β × FP6th 
 (19) 

To achieve maximum network efficiency at the lowest feasible cost, it is necessary to reduce the 

fitness function F in equation (16). This basically includes various fitness parameters which are 

computed in eq. (11-18). In this eq. (19), the weight coefficients are used which are used to give 

different weightage to the different parameters used in the integration of fitness function. It 

depends upon the user to tune these parameters according to the application for which the sensor 

network is employed. 

     The reason for keeping the sum of all weighted fitness parameters in denominator is the fact 

that the proposed algorithm is to minimize the objective function and must maximize the weighted 

sum. In eq. (19), consequent fitness parameters are increased with weight coefficients 

i.e., 𝜑𝜑,𝛿𝛿,𝛾𝛾,α,𝜎𝜎, and  𝛽𝛽. Such elements are uniformly weighted as given as follows in equation (20). 

To be precise, select two fittest indices by using fitness function and the weight coefficients are all 

set to 1/6. However, we obtained the best outcome by setting the weight coefficients to 1/6.   
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𝜑𝜑 + 𝛿𝛿 + γ + α + σ + β = 1 (20) 

      Hence, the main objective of GA is to minimize this function over metaheuristic processes to 

perform for optimum performance of the network.  

3.2.3. Binary tournament selection 

      The selection process is adopted for selecting most suitable individuals to be used as parents 

for next generation through crossing and mutation. In this work, the process of binary tournament 

selection is used to determine the fittest chromosome. Such approach is implemented in a way that 

any fittest chromosome is assigned a rank and distance metric.  

      Binary tournament method starts with two players chosen randomly with a comparison 

operator, (≤𝑛𝑛)  where one winner is selected with the help of equation (21). Two attributes are 

taken into consideration for comparison operator and are as follows: (a) non-domination rank 

(irank); and (b) Crowding distance ( 𝑖𝑖𝑐𝑐𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑). Let i and j are two fittest chromosomes chosen for 

tournament, then the crowded operator is described using equation (21). 

𝑖𝑖 ≤𝑛𝑛  𝑗𝑗  𝑖𝑖𝑖𝑖 (𝑖𝑖𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 < 𝑗𝑗𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟) 𝑜𝑜𝑟𝑟 ((𝑖𝑖𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 = 𝑗𝑗𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟)𝑟𝑟𝑟𝑟𝑟𝑟 �𝑖𝑖𝑐𝑐𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 > 𝑗𝑗𝑐𝑐𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�) (21) 

 

3.2.4 Adaptive crossover 

      After performing mating operation, the recombination of component material is done. When 

two parents are crossed over, a new set of offspring is created. Adaptive crossover technique is 

adopted here to enhance the GAs performance that selects two better individuals as parents for 

generating new individuals [60]. The crossover probability of each individual chromosome is 

obtained from their genome. In this process a chromosome 𝐶𝐶𝑟𝑟 is chosen randomly as a parent and 

the second partner for this crossover is obtained from the matrix variance 𝑈𝑈𝑟𝑟𝑘𝑘 for each chromosome 

𝐶𝐶𝑘𝑘 associated with 𝐶𝐶𝑟𝑟 having highest 𝑈𝑈𝑟𝑟𝑘𝑘, as given in equation (22). 

𝑈𝑈𝑟𝑟𝑘𝑘 = ∑ ∑ (𝑔𝑔𝑟𝑟𝑛𝑛𝑖𝑖 − 𝑔𝑔𝑘𝑘𝑛𝑛𝑖𝑖)2
max (|𝐴𝐴𝑘𝑘𝑘𝑘|,|𝐴𝐴𝑙𝑙𝑘𝑘|)
𝑖𝑖=1

𝑁𝑁
𝑛𝑛=1   (22) 

      Where Gkn is the gene ϵ 𝐶𝐶𝑟𝑟 and |Gkn| is the number of sets that belongs to sk sensor and 𝑔𝑔𝑟𝑟𝑛𝑛𝑖𝑖 is 

the set number. The Chromosome 𝐶𝐶𝑘𝑘 having superior 𝑈𝑈𝑟𝑟𝑘𝑘 is consider as other parent. If the genetic 

coding of all chromosomes is same in the population, then the other parent will be chosen with 

maximum crossover rate Pc between 0.5 to 1. The Crossover takes place between 𝐶𝐶𝑟𝑟 and 𝐶𝐶𝑘𝑘 

chromosomes for production of new offspring 𝐶𝐶�̅�𝑟 and 𝐶𝐶𝑘𝑘� . 
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3.2.5 Mutation 

      To explore a better chromosome, we have implemented move mutation, which ensures that a 

new gene sequence is inserted into a chromosome. Move mutator approach, transfers one data 

point from one offspring chromosome to another offspring of the cluster to avoid the stuck of 

evolutionary optimization among the local optimum. The mutation rate determines how often 

mutation is introduced for better chromosomes. It is observed that the novel mutation operation 

contributes to improved results. Mutation () presents steps used for performing mutation operation. 

 Mutation () 

1. Randomly generate 𝑟𝑟 ∈ {1,𝑀𝑀}, 𝑙𝑙 ∈ {1, 𝐽𝐽𝑖𝑖 } and let 𝑥𝑥𝑛𝑛 ∈  𝐶𝐶�̅�𝑟. 

2. If 𝐶𝐶𝑘𝑘� ≠ 𝐶𝐶�̅�𝑟 then move 𝑥𝑥𝑛𝑛 from 𝐶𝐶�̅�𝑟 into 𝐶𝐶𝑘𝑘� , else go to the step 1. 

3. Again, evaluate the offspring of 𝐶𝐶𝑘𝑘�  and 𝐶𝐶�̅�𝑟 and change the corresponding values of the 

individual. 

3.2.6 Termination 

      These stages are repeated as maximum times as necessary until the prerequisites are met. A 

new version of the chromosome is added until the best possible value is found. Fitness values are 

saved and compared to prior values after each iteration, and only the fittest are saved. After 

iteration, the node with the highest fitness value is associated with the fittest chromosome. 

Following that, the better chromosomes or nodes are selected as CHs accordingly.   

3.2.7 Pseudocode of the NCOGA  

      Algorithm 1 presents the pseudocode of the proposed NCOGA algorithm. We highlighted 

terms used, input and output for the proposed algorithm.  

Algorithm - 1. NCOGA Algorithm for CH selection. 

Term used: N: number of chromosomes; M: number of sensor nodes; Pc: crossover rate; Pm: 

mutation rate; 𝐶𝐶𝐻𝐻𝑃𝑃: The probability of cluster head selection; gen: generation number; itermax: 

number of iterations; genmax: maximum number of generations; 𝐹𝐹𝐹𝐹1𝑠𝑠𝑡𝑡,𝐹𝐹𝐹𝐹2𝑛𝑛𝑛𝑛, 𝐹𝐹𝐹𝐹3𝑟𝑟𝑛𝑛, 𝐹𝐹𝐹𝐹4𝑡𝑡ℎ, 

𝐹𝐹𝐹𝐹5𝑡𝑡ℎ, 𝐹𝐹𝐹𝐹6𝑡𝑡ℎ: fitness parameters.  

Input: Chromosomes Vi, 1≤ i ≤ N 

Output: Best_fit_chrome 

1. Begin 

2.    Initialization of Pc, Pm, and gen=0.  
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3.    While round <= itermax Do   /*Loop to check termination */ 

4.    For i =1: N Do                       /*Initialization of nodes for CHs with probability CHp */ 

5.        For j = 1: M Do 

6.                       𝑉𝑉𝑖𝑖(𝑗𝑗) = �1, 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤  𝐶𝐶𝐻𝐻𝑃𝑃
0, 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 >   𝐶𝐶𝐻𝐻𝑃𝑃

 

7.        End For 

8.    End For 

9.    No_of_CHs = 0                       /*Obtained the number of eligible CHs */ 

10.    For j = 1: M Do 

11.       If (Vi(j) = = 1) then 

12.            No_of_CHs = No_of_CHs + 1 

13.       End If 

14.    End For  

15.    For i = 1: No_of_CHs Do 

16.          For j = 1: M Do 

17.                Obtained  𝑖𝑖𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 and  𝑖𝑖𝑐𝑐𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  to add into cluster 

18.          End For 

19.    End For 

20.    Determine 𝐹𝐹𝐹𝐹1𝑠𝑠𝑡𝑡,𝐹𝐹𝐹𝐹2𝑛𝑛𝑛𝑛, 𝐹𝐹𝐹𝐹3𝑟𝑟𝑛𝑛, 𝐹𝐹𝐹𝐹4𝑡𝑡ℎ, 𝐹𝐹𝐹𝐹5𝑡𝑡ℎ, 𝐹𝐹𝐹𝐹6𝑡𝑡ℎ through Equations (11) – (18). 

21.    Fitness_value(i) = F(Vi)       /*using Equation (19) */ 

22.    For gen = 1: genmax Do 

23.             For i= 1: N Do 

24.               Select two fittest indices (by using fitness function) using Equation (21)   /*Selection*/ 

25.             End For 

26.                For j = 1: M Do 

27.                     New offspring  𝐶𝐶�̅�𝑟 and 𝐶𝐶𝑘𝑘�  from parent 𝐶𝐶𝑟𝑟 and 𝐶𝐶𝑘𝑘 using Eq (22)   /*Crossover*/ 

28.                     Perform mutation operation using Mutation ()     /*Mutation*/  

29.                End For  

30.      For i= 1: N Do 

31.                  If Best_fit_chrome < Fitness_value(i) then   

32.      Best_fit_chrome = Fitness_value(i)  
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33.     Else 

34.      Best_fit_chrome = V(i) 

35.    End For 

36.       End For 

37.    End While 

38. End 

*Terms used are discussed in abbreviations table. 

   We assume the set of chromosomes Vi = {V1, V2, . . ., VN} of the population where N is the 

number chromosomes. Each chromosome is represented by a bit frame structure or vector. The 

size of the bit frame or vector is M, where M is the number of nodes. The first location in the frame 

corresponds to a node with ID one. If the node selected as CH, its corresponding location in the 

vector updates with '1' otherwise '0'. The objective of the GA-based algorithm is to the selection 

of CHs. After initialization, each chromosome is evaluated using the fitness function defined in 

Eq. (19), The CH selection method used in the proposed GA is presented as Algorithm 1. The 

fitness value for each chromosome in Vi is evaluated (line 21). In the initial iteration each 

chromosome Vi itself is the best fittest value. The output Best_fit_chromo represents the final 

selection of CHs. Next, the process continues until the stopping criteria are acquired (line 3-37). 

In line 22, the generation count is increased by one, i.e., (gen=gen+1) and. we used tournament 

selection to choose two fittest indices (by using fitness function) using Eq. (21).  For offspring 

generation, crossover operation has been implemented as indicated in Eq. 22. To get the new 

offspring 𝐶𝐶�̅�𝑟 and 𝐶𝐶𝑘𝑘�  from parent 𝐶𝐶𝑟𝑟 and 𝐶𝐶𝑘𝑘 the perform crossover operation with crossover rate Pc. 

The new offspring mutation () is further exploited by the mutation operation with pre-defined 

mutation rate Pm. After mutation operation, again calculated the fitness value of new generation 

and update the best fitness value, i.e., Best_fit_chromo. The stopping criteria is the maximum 

number of iterations is set by the user. Algorithm 1 presents the overall process of the GA 

implemented for CH selection. 

 As discussed above, the operation of GA follows the steps defined in Algorithm 1 and also 

demonstrated in the Fig. 2. Once the heterogeneous nodes are deployed in the network of defined 

dimensions and sink being placed at the middle of the network, the role of GA comes into play. 

The process of clustering and CH selection is comprehended by operation of GA involving various 
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stages as explained above. Once the CH is selected the network operates in steady state phase. 

Henceforth, the operation is terminated once the energy of all nodes is exhausted.  

                     

 
Fig. 2. GA outfit flowchart in NCOGA. 

 

3.2.8 Complexity analysis of NCOGA  

In terms of the complexity of the viability of proposed algorithms, it is imperative to conduct 

the real-time analysis of the proposed algorithm. The complexity of the algorithm is found to be 

O (𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚  × 𝑁𝑁) which can be seen in Algorithm 1, where N is represented as the size of population 

and  𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚 is represented the maximum number of rounds for which the network is performed. 
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3.3 The operational process of NCOGA 

      In Fig. 3, the operational process of NCOGA is elaborate systematically. The protocol is 

operated in one of the phases called set-up-phase and another called steady-state-phase that are 

described given as get along. 

Set-up-phase: A network planned in compliance with the following phases. The node with energy 

heterogeneity such as normal, intermediate, and advance node levels is used arbitrarily within the 

intended network region. The node is then transferred to somewhere in the center of the 

communication network for transport from the cluster to the consumer over the Network. 

Subsequently completing the deployment of the heterogeneous node, the selection of CH by nodes 

is performed for each cluster using GA. By this set up phase it seems this clustering technique is 

conventional, but there is a unique promising approach at the selection of CH. CH selection from 

each cluster is performed by exploiting six parameters becoming it to enhance the durability of 

network. 

Steady-state-phase: In this phase NCOGA executes between Cluster Head and sink 

communication after completing set up phase. As the NCOGA is a responsive protocol in such a 

way that it does about idea of hard threshold as well as soft threshold like the implementation in 

the TSEP protocol. The outcomes of the transition determine whether or not to use a hard or soft 

threshold. If the actual sensed value indicated by (C(V)) is larger than a hard threshold (H(T)), 

intra-cluster data will be transported from the node into the CH. Furthermore, only the following 

round of contact is established if the difference between the current value and the previously 

detected value surpasses the predetermined soft threshold. If this doesn't happen, the following 

phase of data transmission will be delayed. Moreover, if the node is gone, and the energy of the 

node is depleted, the dead nodes would be connected to the dead nodes by an increase of 1. 

However, since the data was transmitted in accordance with CH and afterwards an aggregation of 

valuable data was transmitted to the sink from CH, aggregation of data for CH persists. The same 

procedure is replicated until all nodes are dead, and it is said that the network is stop working when 

all nodes are dead. 
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Fig. 3. Overall Flowchart for working method of NCOGA Protocol. 

Lemma 1. NCOGA ceases throughout preset iterations 𝑰𝑰𝒕𝒕𝒓𝒓 = 𝑶𝑶(𝟏𝟏) and CH selection is 

enhanced in each and every important aspect. 

Proof: After completion of the setup process, NCOGA performs the steady-state process, which 

gathers data and combines it to the CH. Moreover, the unavoidable data is transferred over to the 

sink and this phase can proceed until the network is dead, i.e., all the network nodes are drained. 

As nodes begin to transfer data on to CH, they concurrently deplete their energies, and it depends 

on the difficult and soft threshold. Until the node loses its resources or becomes a dead node the 

next round of data transfer cannot be done. This method would stay unchanged until all nodes have 

been depleted. Thus, as the number of iterations grows, the number of nodes logically reduces. 

Which ensures that the numbers of death nodes and iterations are inversely proportional. In 

addition, hence, the number of dead nodes stays the same and the NCOGA procedure finishes with 

a fixed iteration.   
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      Residual energy and original energy are more desirable for CH selection when more energy 

has been implanted. Consequently, NCOGA's main purpose involves many primary variables that 

consider beneficial energy that also takes into account the energy source for that operation. 

Furthermore, it's another significant element in power usage that separates the nodes from the 

drain. This distance component and energy consumption are mutually proportional. This interval 

between the nodes and the sink node often enables energy usage to be decreased to be reduced. 

One of the major significant facts is that optimizes the CH selection to the significant level is the 

involvement of CMD and load balancing factor that makes it possible for nodes to avoid hot spot 

problem in the network as well.  

3.4 Network structure of NCOGA 

Here, we explore a heterogeneous network with three levels of heterogeneity energy. These 

nodes consume enough energy when processing data. To restrict this energy consumption here we 

discussed about an energy model i.e., sensor radio energy paradigm. This model adopts the 

quantity of energy consumed that make up the nodes for data transmission for NCOGA until it 

became completely exhausted.  

 

 
Fig. 4. Debauchery Paradigm of Radio Energy. 

3.4.1 Sensor radio energy paradigm 

Fig. 4 depicts the suggested system structure for NCOGA's sensor radio energy paradigm, which 

is responsible for consuming the nodes' energy consumption. The energy consumption of the data 

transceiver is elaborated in equations (23-27). The consumption of total energy during data 

transmission is inversely conditional on the distance between nodes. Explanation for the following 
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equation let assume, transferred data by nodes is z-bit and the distance between the nodes is ‘d 

’and the consumed energy is indicated by 𝐸𝐸𝑡𝑡𝑚𝑚(z, d) and provided equation looks like the following.  

Etx(z, d) = 𝑧𝑧 ∗ Eele + 𝑧𝑧 ∗ Eefs ∗ d2  for d ≤do     (23) 

Etx(z, d) = 𝑧𝑧 ∗ Eele + 𝑧𝑧 ∗ Eamp ∗ d4  for d>do (24) 

The distance between nodes and sink in eq. (23-24) is denoted by ‘d’. 𝐸𝐸𝑒𝑒𝑘𝑘𝑒𝑒 denotes the energy 

consumed instead of initiating a transmitter and a receiver circuitry. ‘do’ indicates a threshold 

distance and shall be expressed as in eq. (25). 

do = �
Eefs
Eamp

    (25) 

Transmission amplifier characteristics are specified by 𝐸𝐸𝑒𝑒𝑒𝑒𝑠𝑠 and 𝐸𝐸𝑟𝑟𝑚𝑚𝑎𝑎 where 𝐸𝐸𝑒𝑒𝑒𝑒𝑠𝑠 is defined as 

“free space energy model (power loss d2)” and 𝐸𝐸𝑟𝑟𝑚𝑚𝑎𝑎 is defined as the “energy consumption for 

multi path energy model (power loss d4)”. 

Energy consumption for the data per bit is provided by the equation (26).  

Erx(z) = 𝑧𝑧 ∗ Eele (26) 

     The eq. (27) specifies the amount of energy required by the CH to aggregate the data. 

Edx(𝑧𝑧) = x ∗ 𝑧𝑧 ∗ Eda   (27) 

where Erx(z) is defined as the energy consumed while receiving z-bit of data. 𝐸𝐸𝑛𝑛𝑟𝑟 is defined 

as the energy consumption of the data aggregation of 1-bit data. Moreover, 𝐸𝐸𝑛𝑛𝑚𝑚(𝑧𝑧) is defined as 

the “energy expenditure during data aggregation of received z-bit data of x number of data 

packets”. 

3.4.2 Assumption of network model for NCOGA 

The sensor node properties had some impacts on the framing of the network. Therefore, we have 

to look after the characteristics of the frame for NCOGA with sensor nodes and the attributes are 

the following: 

i. The network remains utilize in order which shows that the nodes stay stagnant and sinks in 

the network.  

ii. Particularly super nodes, advanced nodes, and regular nodes are three-level energy 

heterogeneity nodes inside a heterogeneous framework. Super nodes are made up with 

maximal energy between the nodes and also the smallest of regular nodes. 

iii. For the nodes, the energy use is limited although there is no constraint for the drain. Therefore, 
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the nodes are drained after a certain round of data transfer to CH. Therefore, no such constraint 

on power usage for sinks is different for nodes. 

iv. Location is not mentioned anywhere in the circuit of the nodes.  

v. There are some other considerations regarding signal dilution which are not considered here. 

vi. The shape of the network area is supposed to be square.  

vii. In Euclidean node, distance is considered the measured signal intensity of the receiver Signal 

strength Signal Indicator (RSSI).   

Real time application for GA based CH selection: 

Monitoring the temperature inside of a building using WSNs in real world environment allows 

for an examination of GA-based CH selection. The sensor node incorporates a microcontroller, a 

low power transceiver, and a thermistor into its construction to measure the temperature of its 

surrounding environment. The temperature of the surrounding environment is garnered by the 

sensor node, which then relays this information to the sink through the CHs. In the experiment that 

we are carrying out, the placement of each sensor node has already been decided upon by 

computing the Euclidean distance between the sensor nodes. The WSN node that is employed in 

the experimental set up is equipped with both a transmitter and a receiver, and the communication 

distance between two sensor nodes is calculated based on the value of the received signal strength. 

Table 2 represent the 𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖) value of node i of a cluster and 𝐶𝐶𝐻𝐻𝑃𝑃 value of sensor nodes. 

Table 2 Initial CH information of 𝐶𝐶𝐻𝐻𝑃𝑃 and 𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖) 

Number of 
Sensor Node 

Received Signal 
Strength (𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖)) 

𝐶𝐶𝐻𝐻𝑃𝑃 

M1 0.7 0.11 
M2 0.3 0.05 
M3 0.8 0.13 
M4 0.2 0.03 
M5 0.4 0.06 
M6 0.5 0.08 

 

                                                       𝐶𝐶𝐻𝐻𝑃𝑃 = 𝑁𝑁𝑆𝑆𝑆𝑆(𝑖𝑖)
∑ 𝑁𝑁𝑑𝑑
𝑀𝑀
𝑑𝑑=1

                                                                                        (28)                                                  

where, 𝐶𝐶𝐻𝐻𝑃𝑃 is the suggested probability of cluster heads at initial selection as per eq. (10). 

Sensor nodes and cluster head nodes represent the values as 0 and 1 respectively. 𝑅𝑅𝑅𝑅𝑅𝑅(𝑖𝑖) is denotes 
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the received signal strength of node i, and M is the total number of sensor nodes represent in eq. 

(28). 

The initial CH is chosen by calculating the RSS values of all of the sensor nodes in the network. 

The RSSI values of the sensor nodes that are located within 10 meters of the sink are measured as 

follows: [ 0.7, 0.3, 0.8, 0.2, 0.4, 0.5] and the eq. (28) used to determine the probability of a sensor 

node becoming the initial CH as follows: [0.11, 0.05, 0.13, 0.03, 0.06, 0.08]. As per eq. (10), the 

𝐶𝐶𝐻𝐻𝑃𝑃  value of [0.05, 0.03] is designated as CH and others are the member nodes in the first round. 

For each round, the fitness value is calculated using eq. (19) and the node with a best fitness is 

chosen as the CH. The outcome is recorded in a database that is referred to as the node information 

data table. This information is sent to the CH and other cluster members during a first-round 

network operation. In order to establish a transmission and receiving schedule for each of its 

member nodes, the CH must first assemble its members. After obtaining the transmission schedule 

from the cluster's CH, the members of the cluster transmit messages to that CH. The CH gathers 

data from its member nodes, then sending the aggregated data to sink. The microcontroller's 

channel is utilized to monitor the real temperature. 

3.5 Time Complexity Analysis 

 The computational complexity of CH selection and relay CH selection is the feasibility for its 

real time implementation. In NCOGA method, time complexity reduces and convergence speed 

increases. The time complexity of CH selection and relay CH selection is represented as                     

O (𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚  × 𝑀𝑀 ×  𝑘𝑘2  ×   𝑇𝑇𝑒𝑒𝑖𝑖𝑡𝑡), and O (𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚  × 𝑀𝑀 ×  𝑘𝑘 ×   𝑇𝑇𝑒𝑒𝑖𝑖𝑡𝑡),  where M is represented as the 

total nodes and  𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚 is represented the maximum number of rounds,  𝑘𝑘 represent the total number 

of CH and 𝑇𝑇𝑒𝑒𝑖𝑖𝑡𝑡 is the time complexity of fitness function. 

4. Simulation, results and analysis 

This section elaborates on simulation setting, performance metrices, state-of-the-art methods 

used for performance comparison and statistical analysis.    

4.1 Simulation settings 

All the simulations have been conducted using MATLAB R2016a with system configuration 

as 4 GB RAM, 1 TB HD, Intel i5 processor with 2.60 GHz and Window 7. Network parameters 

and sensor radio energy paradigm used in simulations are summarized in Table 3.  
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Table 3. Simulation parameters of NCOGA 

Parameters Values 
Size of Area 100 m ×100 m 
Nodes (N) 100-200 

 Sink for NCOGA  1  
Initial energy (𝐸𝐸𝑜𝑜) of nodes 0.5 Joule 

 Heterogeneous nodes  Advanced, Super, and Normal node 
 Super nodes (Ʊ), advanced nodes (𝜃𝜃) as per energy fraction Ʊ=1 Joule, 𝜃𝜃=2 Joule 
Proportions value of Super node (ɷ), and Advance node (ɸ) ɷ=0.1, ɸ=0.2 

Essential transceiver energy (𝐸𝐸𝑒𝑒𝑘𝑘𝑐𝑐) 50nJ/bit 
Threshold-distance (𝑟𝑟𝑜𝑜) 87m 
 Size of the data packets 2000bits 

Small distance energy  𝑟𝑟 ≤ 𝑟𝑟𝑜𝑜  (𝐸𝐸𝑒𝑒𝑒𝑒𝑠𝑠) 10pJ/bit/m2 
Large distance energy 𝑟𝑟 > 𝑟𝑟𝑜𝑜  (𝐸𝐸𝑚𝑚𝑎𝑎) 0.0013pJ/bit/m4 

 Utilization of energy in data aggregation (𝐸𝐸𝑛𝑛𝑟𝑟) 5nJ/bit/signal 
𝐶𝐶𝐻𝐻𝑃𝑃 0.05 

  Size of the population (P) 30 
 𝐹𝐹𝑐𝑐 0.5-1.0 
 𝐹𝐹𝑚𝑚 0.031 

 Selection method Binary Tournament   
 Total chromosomes 30 
No. of Generations 30 

 Simulation run 20 
 

In our simulation, 100 nodes were deployed randomly over (100 m x 100 m) with the network 

of different energy nodes. The energy heterogeneous nodes which include 50% of normal nodes 

(low energy nodes), 30% advanced nodes (Medium energy nodes), and 20% super nodes (High 

energy nodes). In this aspect, the initial energy is assigning to a node for consideration to select 

CH of the network. Moreover, deployment of nodes in the network as per initial energy 

consideration together with heterogeneity nodes. According to heterogeneity of nodes in the 

comparison of super nodes maintain lengthier time instead of advanced nodes as well as advances 

nodes remain ideal than normal nodes. A node of initial energy is normalized to have value 

between 0 and 1. Three level of sensor nodes and energy fraction nodes, and GA parameters remain 

summarized in the Table 3, so it precisely provides the standard values for population size, 

‘mutation and crossover rate’, number of generation, and other parameters are employed into 

deliberation for performance GA processes for CH selection. The binary tournament selection 

method was utilized before termination, elitism process was followed.  

It is observed that its nodes are separated into various genres based on their initial energy 

resources and established specific identifiers. However, the energy of the node reduces due to the 

radical data transfer. The designed algorithm works in a way that the algorithm designed for 

different categories of sensor nodes works according to the energy profile of these nodes.  
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There would be a period when the nodes in one group will move between the genres. The truth 

is, though, that the guidelines for all node genres remain the same for the network's entire working. 

For starters, if a node called a super node goes beyond normal node energy, then it also has the 

same CH selection criterion as the super nodes.  

4.2 Performance metrics 

Standard performance metrics are used to validate the performance of the proposed NOCGA. 

Five performance metrics such as (a) stability period, (b) network longevity, (c) number of dead 

nodes against rounds, (d) throughput, and (e) network’s remaining energy are considered. The 

rationale behind selection of these metrics is discussed below:  

4.2.1 Stability period 

      The number of rounds completed may be calculated until each node has completely depleted 

its energy supply, at which point it becomes a dead node. This parameter may have a substantial 

impact on the performance of tasks in which a loss of information simply cannot be accepted. The 

higher stability benefit assures better durability.  

4.2.2 Network longevity 

      To assess the efficiency of covered rounds while there is no node left alive in the network to 

communicate. For certain roles where the management of the network is a continuous operation, 

it is important. Any of the scenarios where the durability of the network is extremely relevant are 

applications such as farming, flood prediction, etc. 

4.2.3 Number of dead nodes against rounds 

      The efficiency appraisal observes the protocol's responses as energy is expended through data 

transfer, the rate of energy exhaustion of the nodes before they are completely dead.  

4.2.4 Throughput 

      The number of data packets following the efficient transmission can be described as an output. 

The QoS status for each node is explained. If QoS is inadequate for any routing protocol, the 

stability period and network long life have no importance.   

4.2.5 Network’s remaining energy 

      At various number of rounds, the network remaining energy is monitored. It displays the 

network load balance. Network energy is simply the amount of energy used within the network by 

all nodes.  
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4.3 Performance comparison with state-of-the-art algorithm 

      The performance of the proposed NCOGA is tested against the most recently developed state-

of-the-art algorithms such as: (a) BMHGA [60]; (b) GAOC [18]; (c) GASONeC [48]; and 

GATERP [52]. We selected these algorithms because of the following reasons: (a) these 

algorithms have exploited GA technique, (b) having compared with these techniques it renders a 

fair comparison to reflect the fact that the results obtained are not just due to the characteristics of 

GA, rather it is due to the proposed approach of CH selection.  

4.4 Results and analysis 

This section presents the results and analysis of the NCOGA based on the five-performance 

metrics are discussed in Section 4.2  

4.4.1 Stability Period 

      It is seen that in NCOGA, after 6631 rounds first node is dead but in the situation of GATERP 

[52], BMHGA [60], GAOC [18], and GASONeC [48], it remains just 5853, 5446, 5136, and 4180 

rounds, respectively as presented in Fig. 5. The important thing is the understanding that NCOGA 

enhances stability period in accordance with the 21.75%, 13.29%, 29.1%, and 58.63% as compare 

to the protocols BMHGA, GATERP, GAOC, and GASONeC, respectively. An improvement such 

as stability period as well as HND is the unification of six fitness factors that make sure the energy 

conservation even as in the process of data transmission. Therefore, distance between the nodes 

and nodes as well as sink to nodes is efficiently decreased.  

 

Fig. 5 Stability Period, HND and Network lifetime comparative analysis of NCOGA with other protocols. 
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      Stability period can be grasped that NCOGA outperform the state-of-art protocols from the 

perspective of the networks. The incorporation of energy efficient fitness parameters in fitness 

function is a major factor for this improvement in stability period. The integration of load balancing 

and energy factors in CH selection decreases unbalanced and unexpected energy usage and 

improves preserve energy. 

4.4.2 Network Lifetime 

      It is seen that in NCOGA is completed at 26500 rounds while the network lifetime just for the 

BMHGA [60], GATERP [52], GAOC [18], and GASONeC [48] has been seen on 24140, 23996, 

22621, and 19595 rounds, respectively. From the analysis, it can be seen that 2360, 2504, 3879, 

and 6905 more rounds are covered by NCOGA in comparison with the BMHGA, GATERP, 

GAOC, and GASONeC protocols, correspondingly outlined in the fig. 6.  Enhancement of network 

lifetime is monitored because of load-balancing and CMD factors combined in objective function 

in NCOGA. The communication mode decider (CMD) factor encourages the CH selection of a 

node that has more surrounding nodes. Thus, total network energy is conserved, extending network 

lifespan. Therefore, with large number of surrounded nearby nodes, a standard distance amongst 

node and CH is reduced broadly. 

 

Fig. 6. Comparative analysis of alive nodes vs rounds of NCOGA with other protocols. 
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4.4.3 Number of dead nodes against rounds 

      NCOGA is seen to have a lower number of rounds compared to other protocols with regard to 

the number of dead nodes. According to the Fig. 7, after 6631 rounds the First Node Dead (FND) 

in NCOGA whereas 5853, 5446, 5163, and 4180 rounds FND in GATERP, BMHGA, GAOC, and 

GASONeC, respectively and after 12948 rounds Half Nodes Dead (HND) in NCOGA but in just 

11579, 11035, 9882, and 8988 rounds as per the BMHGA [60], GATERP [52], GAOC [18], and 

GASONeC [48] protocols separately. Moreover, in enhancement of last node dead (LND) that is, 

also referred to as the network lifetime, likewise stated in NCOGA covering 26500 rounds whereas 

BMHGA, GATERP, GAOC, and GASONeC covers 24140, 23996, 22621, and 19595 rounds, 

respectively. In the above analysis, NCOGA is able to complete more rounds at various phases of 

dead nodes related to reduced energy consumption during intra-cluster communication and CH 

selection. Enhancement has been described while after the CH selection has been optimized in 

accordance with several factors, higher energy conservation is obtained in NCOGA in comparison 

with other protocols, separately.   

 

Fig. 7. Comparative analysis of dead nodes vs rounds of NCOGA with other protocols. 
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4.4.4 Network’s remaining energy 

      It can be shown that the NCOGA protocol assumes a reduction of network energy based on 

data transfer. The performance of networks residual energy through the upsurge into the number 

of rounds as per the observation. NCOGA achieves better as compared GATERP [53], BMHGA 

[60], GAOC [18], and GASONeC [49] protocols, correspondingly in a manner that it comprises a 

larger number of rounds whereas the data transmission is improvement such as presented in Fig. 

8. Moreover, in dual hop communication the energy consumption of a node in each round for 

NCOGA is less over in order to compare protocols. NCOGA performs better than GATERP and 

GAOC because the optimum selection of CH helps maintain the energy of nodes. Due to the 

distance and CMD factors, inclusion holds their significance. The CH selection of a node is 

governed through the distance factor, which supports the selection of the nearest node towards the 

sink.  

 

Fig. 8. Comparative analysis of Network’s remaining energy of NCOGA with other protocols. 
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4.4.5 Throughput 

      As shown in Fig. 9, throughput is improved systematically due to the fact that it effectively 

transmits 746390 data packets for NCOGA while GATERP [52], BMHGA [60], GAOC [18], and 

GASONeC [48] transmit 630032, 568458, 532837, and 486432 data packets, correspondingly. It 

has been observed that, comparison of throughput, NCOGA enhances throughput by 18.46%, 

31.3%, 40.07%, and 53.44% as compared to GATERP, BMHGA, GAOC, and GASONeC 

protocols, separately. Throughput has been improved gigantically since during the transmission of 

data packet successfully forwarded due to reduction of loss reported and with a choice of enhanced 

CH in proposed protocol.  

 
Fig. 9. Comparative analysis of throughput of NCOGA with other protocols. 
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that the GA variant used in our approach performs better search as compared to the other existing 

GA variants. It is noteworthy from the plot here that NCOGA converges faster as compared to 

BMHGA, GAOC, GATERP, and GASONeC. 

 

Fig. 10. Convergence analysis of NCOGA with other protocols 
      In a nutshell, Evaluation performance summary is improvement stated by NCOGA is 

summarized in Fig. 11. The performance of NCOGA indicates that, it much better than other 

protocols as per the comparative analysis in terms of different performance metrics. 

 

 

Fig. 11. Comparative analysis of NCOGA with other protocols in different metrics 
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Fig. 12. Percentage improvement by the NCOGA against the other protocols. 

 

The percent improvement in accordance with the NCOGA in the sense of stability period, 

HND, Network Lifetime and Throughput are provided in the Fig 12.  
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(29) 

HA : NCOGA BMHGA GAOC GATERP GASONeCµ µ µ µ µ≠ ≠ ≠ ≠  

      Table 4 and 5 present descriptive statistics respectively for remaining energy and throughput 

with respect to the algorithms. This result statistics were achieved on 30 samples were collected 

from each of the algorithm. Result reveals that NCOGA has outperformed all the other algorithms 

such as GATERP [52], BMHGA [60], GAOC [18] and GASONeC [48].  ANOVA test was 

conducted for both remaining energy and throughput.  Result of ANOVA test showed that the p-

value is less than 0.05 ((p = 0.000 < 0.05) respectively for remaining energy and throughput. 

Hence, from equation (29), H0 is rejected. Further, this result concludes that one of sample is better 
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than the other one. But looking the results it is hard to say which algorithms are responsible for 

the difference in the sample. Therefore, multiple comparisons or posthoc test has been conducted 

to compare the individual group or pair results.  
Table 4. Descriptive analysis of remaining energy with respect to algorithms. 

Algorithm N Mean Std. Deviation Std. Error 95% Confidence Interval for Mean Minimum Maximum 
Lower Bound Upper Bound 

GATERP 30 -0.00694 0.00122 0.00022 -0.00739 -0.00648 -0.00896 -0.00493 
BMHGA 30 -0.00728 0.00124 0.00022 -0.00774 -0.00681 -0.00933 -0.00524 
NCOGA 30 -0.00647 0.00110 0.00020 -0.00689 -0.00606 -0.00831 -0.00465 
GAOC 30 -0.00730 0.00134 0.00024 -0.00780 -0.00680 -0.00952 -0.00509 
GASONeC 30 -0.00953 0.00150 0.00027 -0.01009 -0.00897 -0.01202 -0.00705 
Total 150 -0.00750 0.00165 0.00013 -0.00777 -0.00724 -0.01202 -0.00465 

 

Table 5. Descriptive analysis of throughput with respect to algorithms. 

Algorithm N Mean Std. Deviation Std. Error 95% Confidence Interval for Mean Minimum Maximum 
Lower Bound Upper Bound 

GATERP 30 630032.00 0.00 0.00 630032.00 630032.00 630032.00 630032.00 
BMHGA 30 568457.56 0.50 0.09 568457.37 568457.75 568457.00 568458.00 
NCOGA 30 746390.00 0.00 0.00 746390.00 746390.00 746390.00 746390.00 
GAOC 30 532837.00 0.00 0.00 532837.00 532837.00 532837.00 532837.00 
GASONeC 30 486432.00 0.00 0.00 486432.00 486432.00 486432.00 486432.00 
Total 150 592829.71 90277.39 7371.11 578264.28 607395.14 486432.00 746390.00 

 

      TukeyHSD (Tukey–Kramer honestly significant difference) test has been conducted. It is less 

liable to type-1 error and well suited for equal samples (in our case N = 30). Table 6 and 7 show 

the result of TukeyHSD respectively variable remaining energy and throughput. It is noted from 

Table 6 that NCOGA showed significantly better performance as compared to GASONeC for 

remaining energy. On the other hand, NCOGA’s performance is significantly better than 

GATERP, BMHGA, GAOC and GASONeC for throughput as shown in Table 7.  
Table 6. Multiple comparisons test (Posthoc test) with respect to algorithms (dependent variable: remaining energy).  

(I) Algorithms (J) Algorithms Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

GATERP BMHGA 0.00034 .00033 0.845 -0.00058 0.00126 

NCOGA -0.00046 .00033 0.633 -0.00138 0.00045 

GAOC 0.00036 .00033 0.810 -0.00055 0.00128 

GASONeC 0.00259* .00033 0.000 0.00166 0.00351 

BMHGA GATERP -0.00034 .00033 0.845 -0.00126 0.00058 

NCOGA -0.00080 .00033 0.117 -0.00172 0.00011 
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GAOC 0.00002 .00033 1.000 -0.00089 0.00094 

GASONeC 0.00225* .00033 0.000 0.00132 0.00317 

NCOGA GATERP  0.00046 .00033 0.633 -0.00045 0.00138 

BMHGA 0.00080 .00033 0.117 -0.00011 0.00172 

GAOC 0.00082 .00033 0.100 -0.00009 0.00175 

GASONeC 0.00305* .00033 0.000 0.00213 0.00397 

GAOC GATERP -0.00036 .00033 0.810 -0.00128 0.00055 

BMHGA -0.00002 .00033 1.000 -0.00094 0.00089 

NCOGA -0.00082 .00033 0.100 -0.00175 0.00009 

GASONeC 0.00222* .00033 0.000 0.00130 0.00314 

GASONeC GATERP -0.00259* .00033 0.000 -0.00351 -0.00166 

BMHGA -0.00225* .00033 0.000 -0.00317 -0.00132 

NCOGA -0.00305* .00033 0.000 -0.00397 -0.00213 

GAOC -0.00222* .00033 0.000 -0.00314 -0.00130 

*. The mean difference is significant at the 0.05 level. 

 
Table 7. Multiple comparisons test (Posthoc test) with respect to algorithms (dependent variable: throughput).  

(I) Algorithms (J) Algorithms Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval 
Lower Bound Upper Bound 

GATERP BMHGA 61574.43* 0.058 0.00 61574.27 61574.59 
NCOGA -116358.00* 0.058 0.00 -116358.16 -116357.83 
GAOC 97195.00* 0.058 0.00 97194.83 97195.16 
GASONeC 143600.00* 0.058 0.00 143599.83 143600.16 

BMHGA GATERP -61574.43* 0.058 0.00 -61574.59 -61574.27 
NCOGA -177932.43* 0.058 0.00 -177932.59 -177932.27 
GAOC 35620.56* 0.058 0.00 35620.40 35620.72 
GASONeC 82025.56* 0.058 0.00 82025.40 82025.72 

NCOGA GATERP 116358.00* 0.058 0.00 116357.83 116358.16 
BMHGA 177932.43* 0.058 0.00 177932.27 177932.59 
GAOC 213553.00* 0.058 0.00 213552.83 213553.16 
GASONeC 259958.00* 0.058 0.00 259957.83 259958.16 

GAOC GATERP -97195.00* 0.058 0.00 -97195.16 -97194.83 
BMHGA -35620.56* 0.058 0.00 -35620.72 -35620.40 
NCOGA -213553.00* 0.058 0.00 -213553.16 -213552.83 
GASONeC 46405.00* 0.058 0.00 46404.83 46405.16 

GASONeC GATERP -143600.00* 0.058 0.00 -143600.16 -143599.83 
BMHGA -82025.56* 0.058 0.00 -82025.72 -82025.40 
NCOGA -259958.00* 0.058 0.00 -259958.16 -259957.83 
GAOC -46405.00* 0.058 0.00 -46405.1608 -46404.83 

*. The mean difference is significant at the 0.05 level. 
 



39 
 

Table 8. TukeyHSD homogeneous subsets test with respect to algorithms (dependent variable: remaining energy). 

Algorithms N Subset for alpha = 0.05 
1 2 

GASONeC 30 -0.00953  
GAOC 30  -0.0073 

BMHGA 30  -0.0072 

GATERP 30  -0.0069 

NCOGA 30  -0.0064 

Sig.  1.000 .100 

Means for groups in homogeneous subsets are displayed. 
a. Uses Harmonic Mean Sample Size = 30.000. 

 

Table 9. TukeyHSD homogeneous subsets test with respect to algorithms (dependent variable: throughput). 

Algorithms N Subset for alpha = 0.05 
1 2 3 4 5 

GASONeC 30 486432.00     
GAOC 30  532837.00    
BMHGA 30   568457.56   
GATERP 30    630032.00  
NCOGA 30     746390.00 
Sig.  1.00 1.00 1.00 1.00 1.00 
Means for groups in homogeneous subsets are displayed. 
a. Uses Harmonic Mean Sample Size = 30.000. 

      TukeyHSD homogeneity test is conducted for remaining energy and throughput to verify the 

performance similarity of the algorithms. The means of algorithms in homogenous subsets are 

presented in Table 8 and 9 respectively for remaining energy and throughput. Table 8 shows that 

performance of NCOGA – GASONeC is significantly different while other pair of algorithms 

(NCOGA – GAOC, NCOGA - BMHGA and NCOGA – GATERP) showed almost similar results 

where NCOGA’s performance is better. Table 9 reveals the homogeneity test results for 

throughput. We can see that the performance of the proposed NCOGA is significantly better than 

the other algorithms. In other words, we can say that NCOGA has outperformed the other 

algorithms.  
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Fig. 13. Estimated marginal mean plot for remaining energy with respect to each algorithm. 

 
 

Fig. 14. Estimated marginal mean plot for throughput with respect to each algorithm. 

 

The estimated marginal mean plots are presented in Figure 13 and 14, respectively, for 

remaining energy and throughput. The graphical result reveals that the NOCGA has demonstrated 

significantly better performance over the other algorithms. This result also indicates that the 

GATERP [52] showed fairly good results, GAOC [18] and BMHGA [60] average performance, 

while GASONeC’s [48] reported worst results.     
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5 Conclusions 

 In this paper, NCOGA has been proposed that integrates objective function by considering six 

parameters viz. residual energy, initial energy, distance to the sink, number of neighbors 

surrounded by a node, load balancing factor and communicating mode decider (CMD). The fitness 

parameters have been mathematically modelled and integrated to generate a fitness function. The 

performance of NCOGA has been evaluated on the basis of different performance metrics. It has 

been found that NCOGA elongates stability period by 21.75%, 13.29%, 29.1%, and 58.63% and 

network lifetime by 9.77%, 10.43%, 17.14%, and 35.23% as compared to BMHGA, GATERP, 

GAOC, and GASONeC, respectively. The underlying reason of the enhancement in the stability 

period is due to the energy preservation attributed to the CMD and load balancing factors. These 

factors not only helped in making dual hop communication energy efficient but also balances the 

load distribution over the clusters. Statistical tests have also been conducted which reveals the 

superiority of the proposed NCOGA over the other state-of-the-art methods. We observed that 

NCOGA converges faster as compared to existing methods. Furthermore, the multiple sinks which 

should be used, is another crucial concern which seeks optimization. In the future, this work can 

be extended to introduce the mobility of sink in the network that will improve its Quality of Service 

(QoS) parameters.  
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