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Abstract: Intracranial hemorrhaging is considered a type of disease that affects the brain and is very
dangerous, with high-mortality cases if there is no rapid diagnosis and prompt treatment. CT images
are one of the most important methods of diagnosing intracranial hemorrhages. CT images contain
huge amounts of information, requiring a lot of experience and taking a long time for proper analysis
and diagnosis. Thus, artificial intelligence techniques provide an automatic mechanism for evaluating
CT images to make a diagnosis with high accuracy and help radiologists make their diagnostic
decisions. In this study, CT images for rapid detection of intracranial hemorrhages are diagnosed by
three proposed systems with various methodologies and materials, where each system contains more
than one network. The first system is proposed by three pretrained deep learning models, which
are GoogLeNet, ResNet-50 and AlexNet. The second proposed system using a hybrid technology
consists of two parts: the first part is the GoogLeNet, ResNet-50 and AlexNet models for extracting
feature maps, while the second part is the SVM algorithm for classifying feature maps. The third
proposed system uses artificial neural networks (ANNs) based on the features of the GoogLeNet,
ResNet-50 and AlexNet models, whose dimensions are reduced by a principal component analysis
(PCA) algorithm, and then the low-dimensional features are combined with the features of the GLCM
and LBP algorithms. All the proposed systems achieved promising results in the diagnosis of CT
images for the rapid detection of intracranial hemorrhages. The ANN network based on fusion of the
deep feature of AlexNet with the features of GLCM and LBP reached an accuracy of 99.3%, precision
of 99.36%, sensitivity of 99.5%, specificity of 99.57% and AUC of 99.84%.

Keywords: CNN models; hybrid method; ANN; SVM; hemorrhage diseases; LBP; GLCM; PCA

1. Introduction

An intracranial hemorrhage (ICH) involves bleeding that occurs in an intracranial
vault [1]. This disease represents a high-risk health problem that requires prompt diagnosis
and treatment. ICHs account for about 10–30% of strokes, but it is the most dangerous type
of stroke, accounting for 35–52% of deaths compared with other strokes. They are also the
fifth leading cause of death in the United States of America [2]. The most critical factors of
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infection of an ICH are high blood pressure, weak blood vessels, external trauma to the
skull, drug abuse and leakage into the veins associated with the ICH. The major types of
ICHs are epidural hemorrhages, subdural hemorrhages, subarachnoid hemorrhages and
intraventricular and intraparenchymal hemorrhages [3]. According to the American Stroke
Association, early diagnosis and prompt and timely treatment of the patient is necessary,
because these cases can kill the patient after they occur [4]. For medical treatment of disor-
ders that cause cerebral hemorrhaging, determining the type and location of bleeding is
essential for the patient’s treatment. Therefore, to examine disorders, doctors rely on many
imaging techniques of the brain’s internal structures, such as angiography (CTA), magnetic
resonance imaging and computer tomography (CT) of the head. CT is considered one of the
best medical techniques used to diagnose cerebral hemorrhages because of its advantages,
such as its high sensitivity to blood and the short scanning time, showing the bleeding
area with a high density [5]. Thus, CT provides accurate and reliable information that the
radiologist can diagnose an ICH with, as well as the amount of bleeding and its location in
the patient. Strokes caused by reduced blood flow to the brain have clinical characteristics
similar to ICHs, and therefore treatment differs significantly between strokes and cerebral
hemorrhages. Therefore, prompt and accurate diagnosis by doctors and radiologists is criti-
cal to dealing with a cerebral hemorrhage and its location [6], though there is a lack of highly
experienced radiologists, especially in developing countries. Additionally, analyzing all the
data in CT images requires highly experienced specialists, as well as great effort and a lot of
time. Due to the increase of big data in CT, patients have the risk of misdiagnosis. Although
highly experienced radiologists are limited in analyzing massive CT image data [7], it is
not easy to obtain correct diagnostic results in a short time [8]. Thus, artificial intelligence
techniques helped experts, radiologists and patients with their high speeds to analyze
all CT image data with high accuracy and determine the type and location of a cerebral
hemorrhage. Artificial intelligence algorithms have achieved effective performance and
high speeds in recent years. Deep learning models have shown superior generalizability for
solving complex medical problems such as analyzing and forming diagnoses from medical
images [9], discovering diseases [10] and detecting internal organs [11]. CNN models are
the most efficient and effective because they have many convolutional layers to extract
more complex deep feature maps that cannot be detected manually. Several CNN models
have been developed, such as GoogLeNet, AlexNet, ResNet-xx, MobileNet and VGG [12].
All of these models were extensively trained on a dataset called ImageNet, which contains
more than a million images for classifying into more than a thousand classes [13]. However,
ImageNet does not contain many medical images, though these models can be used with
the transfer learning method. The transfer learning method builds on the experience gained
by CNN models to perform new tasks of classifying medical datasets [14–16]. In this study,
several proposed systems, materials and methods are applied to diagnose the CT images of
a hemorrhage dataset. The first proposed system is pretrained CNN models to perform new
tasks on a new dataset. The second system uses hybrid techniques between CNN models
and machine learning algorithms. The third system extracts features in a hybrid method
between CNN models and GLCM and LBP algorithms and then feeds them to ANN neural
networks to classify them. This study contains the following major contributions:

• Removing all noise and artifacts and showing the hemorrhage’s edges using overlap-
ping filters;

• Adjusting the training options for CNN models for the best performance;
• Applying hybrid technology consisting of two blocks: the first block being deep

learning models for feature extraction and the second block being an SVM algorithm
for classifying the extracted features;

• Reducing the dimensions of the features extracted from the deep learning models
using the PCA algorithm and combining them with the features of the GLCM and
LBP algorithms;

• Developing automated systems to assist radiologists in supporting their decisions for
saving patients’ lives.
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The remainder of the paper is organized as follows. Section 2 reviews the previous
relevant studies. Section 3 describes the methodological mechanism of the proposed
methods for analyzing and evaluating CT images for early detection of the hemorrhage
disease. Section 4 summarizes the experimental results of each proposed method. Section 5
presents a discussion of the proposed methods and compares the diagnostic results of all
the proposed methods. Section 6 concludes the study.

2. Related Work

This section presents a set of previous studies related to the diagnosis of hemor-
rhage dataset. This study was distinguished by the diversity of methods and methodolo-
gies for analyzing the dataset and reaching superior results in indicating which image
contained an ICH.

Awwal et al. presented an AlexNet model and AlexNet-SVM network method for
locating cerebral hemorrhages through CT for the hemorrhage dataset. The dataset was
classified by a pretrained AlexNet model built from scratch in addition to the AlexNet-SVM
hybrid method. The experiments proved the superiority of AlexNet-SVM over the rest of
the models [17]. Anas et al. proposed a CNN model for diagnosing 200 samples from the
dataset with secondary data for the classification of hemorrhages. This method achieved an
accuracy of 93.14% [18]. Sofia et al. proposed a CNN and supervised machine learning to
diagnose the dataset as bleeding or healthy. Images were processed for noise removal and
edge extraction by a watershed and feature extraction, and they were classified using the
SVM and CNN models [19]. Xiaohong et al. proposed a method based on deep learning to
classify and segment the cerebral hemorrhage zone. To effectively segment the cerebral
hemorrhage area requires sufficient information, and because the large parameters of the
model do not make the model reach the optimum level, Bayesian-based deep learning and
hybrid models were thus applied to classify the bleeding site effectively [20]. Romany et al.
proposed a deep learning model for diagnosing ICHs. The model first includes image
preprocessing and segmentation by an elephant herd optimization (EHO) algorithm and
then applies the Inception v4 model to extract deep feature maps. The deep feature maps
were classified by the multilayer perceptron (MLP) [21]. Jiajie et al. proposed two neural
networks, EfficientNet-B3 and SE-ResNeXt50, to classify intracerebral hemorrhages based
on feature extraction. The models performed better than the experts for the classifica-
tion of cerebral hemorrhages, achieving a score of 0.0548 during the testing phase [22].
Ruijuan et al. discuss a method for discovering brain engineering data based on a three-
dimensional brain model consisting of four layers of brain structure reconstruction. Then,
they applied four CNN models to solve the problem of restructuring the brain, which
achieved good results [23]. Lu et al. proposed a U-net-based CNN methodology to detect
the locations and strokes of bleeding in CT images. The methodology enhances the differ-
ence between the normal brain tissue and the bleeding area by comparing different CNN
models through changing layers and expansion rates, which increases the acquisition of the
lesion features’ information [24]. Tomasz et al. proposed the ResNet-50 model to determine
bleeding quickly and efficiently. The system achieved an accuracy of 93.3% and recall of
76% [25]. Luis et al. presented an automated approach based on deep learning EfficientDet
to classify CT images for classification as either a cerebral hemorrhage or healthy, which
achieved an accuracy of 92.7%. It also provides a visual interpretation by the Grad-CAM
method [26]. Ali et al. proposed a deep learning methodology with deep supervision
(CNN-DS) to segment the lesion area and measure the volume of bleeding within the brain.
The data were trained and tested by the CNN-DS model. The methodology achieved a dice
coefficient of 0.84 ± 0.06 and recall of 83% [27]. Young et al. proposed an artificial neural
network (ANN) algorithm to detect cerebral hemorrhages and determine their type. For the
classification of cerebral hemorrhages, the algorithm achieved a sensitivity of 78% and an
AUC of 85.9%. It reached a sensitivity of 82.5% and an AUC of 90.3% for the localization of
cerebral hemorrhages [28]. Anupama et al. proposed a synergic deep learning model using
the GrabCut segmentation method called GC-SDL. Images were enhanced by a Gabor filter
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and bleeding area segmentation with GrabCut to separate the bleeding areas from the
healthy areas. Synergic deep learning extracted deep feature maps and categorized them
with softmax, achieving an accuracy and sensitivity of 95.73% and 94.01%, respectively [29].
Junghwan et al. introduced a method of two sequential CNNs and dual fully convolutional
networks (FCNs) to detect a cerebral haemorrhage type and location. Binary classification
and bleeding area extraction were also applied, which performed better than the CNN and
FCNs. It achieved a hash of 80.19%, compared with the accuracy of 76.75% achieved by the
FCNs [30].

3. Methods and Materials

This section reviews the various methodologies and methods for evaluating CT images
for early hemorrhage disease detection. The first step in this work was to optimize all
images to remove artifacts and reveal the edges of the hemorrhage area. Three proposed
systems classified the dataset. First, the dataset was classified using deep learning through
the GoogLeNet, ResNet-50 and AlexNet models. Second, the dataset was classified by a
hybrid technique between the deep learning models and the SVM algorithm. Third, the
dataset was classified by an ANN based on the hybrid features between the deep learning
models and the GLCM and LPB algorithms as shown in Figure 1.

Figure 1. Proposed methodology for diagnosing CT images for early detection of hemorrhage disease.

3.1. Description of the Dataset

This study evaluated all the proposed systems on the CT dataset for hemorrhages
collected from the Near East Hospital in Cyprus [31]. The list of risk factors that leads to a
hemorrhage is as follows:

1. Patients with diabetes in their clinical histories, plasma glucose of 200 mg/dL, fasting
≥126 mg/dL or glycated haemoglobin of 6.5%;

2. The ratio of cholesterol and lipoprotein is 100 mg, and the triglycerides are at 150 mg/dL;
3. Arterial blood pressure is a systolic 140 mm Hg or diastolic 90 mm Hg;
4. Patients with cardiovascular diseases and atherosclerosis.

The dataset consists of 7032 CT brain images obtained from 18 patients with cerebral
hemorrhages and 27 people without cerebral hemorrhages. Everyone has many CT images
of their brains. The dataset is divided into two categories, where 2689 hemorrhagic and
4343 healthy non-hemorrhagic images were all acquired in the medical digital imaging
format with a resolution of 512 × 512 pixels. Figure 2 shows samples from the dataset that
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were randomly selected for the hemorrhagic and non-hemorrhagic classes (https://www.
kaggle.com/abdulkader90/brain-ct-hemorrhage-dataset (accessed on 1 May 2022)).

Figure 2. CT samples for the hemorrhage dataset.

3.2. Enhancement of CT Images

The image enhancement process is vital to obtaining high-quality images in the later
stages. The resolution, reliability and interoperability reflect the quality of the images.
Many factors affect the accuracy of CT images, including the patient’s movement inside
the scanner, reflections and the accuracy of different devices and the scanner. Unwanted or
low signals destroy CT images. The field of bias in CT images is the differences in intensity
from black to white. Thus, failure to correct the bias field will destroy the CT images, which
leads to incorrect diagnostic results. Therefore, removing noise and correcting the bias field
will result in high-resolution and reliable images. In this study, the mean RGB colors of CT
images were tuned, and color consistency was achieved by adjusting the scaling. After that,
the images were enhanced by two filters: the average filter to remove noise and increase the
contrast of the images and the Laplacian filter to show the edges of the cerebral hemorrhage
area [32]. First, the average filter is set to a size of 5 × 5 pixels, so a pixel will be selected at
a time and replaced by an average of 24 adjacent pixels as described in Equation (1) [33]:

m(l) =
1
L

L−1

∑
i=0

z(l − 1) (1)

where m(l) is the input, z(l − 1) is the previous input and L refers to the number of
pixels in the image. Second, a Laplacian filter is applied to show the edges of the cerebral
hemorrhage area and distinguish it from healthy brain areas, as described by Equation (2):

52f =
∂2 f
∂x2 +

∂2 f
∂y2 (2)

where52 f is a second-order differential operator, x and y are the coordinates of the matrix
and ∂2 indicates second-order partial derivatives.

https://www.kaggle.com/abdulkader90/brain-ct-hemorrhage-dataset
https://www.kaggle.com/abdulkader90/brain-ct-hemorrhage-dataset
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Finally, the two enhanced images are merged. The reason for overlapping the two
images to show a clearer enhanced image is because the image generated by the averaging
filter increases the contrast of the images, while the Laplacian filter works to show the
edges of the bleeding area. Thus, we find an improved bleeding area as described by
Equation (3):

Image enhanced = m(l)−52 f (3)

Figure 3 shows a set of CT samples for hemorrhages after all dataset images have
undergone enhancement.

Figure 3. Set of CT images of a hemorrhage after image enhancement.

3.3. Deep Learning Models

Deep learning techniques are considered some of the most important artificial intelli-
gence techniques to have entered many fields. Still, the complexity of their development
and their high cost have strongly influenced their postponement and return in the past
few years. These are helpful because they require huge amounts of data to classify items
efficiently, but they require large computing resources, are expensive and take time to train.
Deep learning networks are known as convolutional neural networks (CNNs). A CNN
contains many 2D layers and thus is suitable technology for 2D image processing [14].
In general, a CNN’s weights are filters that wrap around the image to process a specific
task. Therefore, the specificity of these networks lies in the fact that each neuron receives
connections from cells in the same layer and does not receive connections from the previous
layers. Therefore, each layer is specialized for a specific task and reduces the number of
weights and connections in the network.

CNNs are characterized by having many layers, and they eliminate the need to
extract features manually. There is no need to specify features to classify them with one
of the classification algorithms. A CNN trains the features and learns them during the
training phase. Automatic feature extraction is what makes CNNs accurate and efficient for
classification. CNN architectures show how the first layers extract lower-level features and
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the subsequent layers extract deeper levels. Each layer increases the extraction of complex
features. For example, the first layer can extract the edge features. In contrast, the next
layer works to extract the geometric features of the object, and thus each convolutional
layer performs a specific task.

CNNs consist of many layers, the most important of which are the following:
Convolutional Layer: CNNs contain many convolutional layers, and each layer has a

specific task. Three parameters control this layer: the filter size, zero-padding and p-step.
Each layer has a particular filter size and works in a particular way to wrap the filter f (t)
with a specific image size x(t) [34]. The filter moves over all parts of the image, calculates
the product of the filter with the target area of the image and then adds the values as
described by Equation (4). Zero-padding preserves the size of the original image, and
p-step determines the step size the filter moves with on the image:

y(t) = (x× f )(t) =
∫

x(a) f (t− a)da (4)

where f (t) is the filter, x(t) is the image input and the output is represented by y(t).
Pooling layer: The pooling layers work to reduce the image dimensions, which reduces

the computational cost in the later layers and reduces the parameters and connections used.
There are two ways to reduce the dimensions: max pooling and average pooling. Each
method has a specific mechanism of action. The average pooling layers determine a certain
amount of the image according to the filter size. Then, the selected values are averaged [35].
All selected values are replaced with their average values as shown in Equation (5). The
max pooling method defines a group of image pixels according to the filter size. Then, the
max value is chosen and represented instead of the selected area in the image as described
by Equation (6):

P(i, j) =
1
k2 ∑

m,n=1...k
A[(i− 1)p + m, (j− 1)p + n] (5)

P(i, j) = maxm,n=1...k A[(i− 1)p + m, (j− 1)p + n] (6)

where A is the number of pixels in the filter, m and n represents the matrix’s dimensions, k
is the size of the matrix and p is the step.

Fully Connected Layer: This is a layer connected to the last convolutional layer of a
model which is responsible for converting data from bi-directional to unidirectional. It
consists of thousands of neurons linked together. Finally, the softmax activation layer
is responsible for attaching the label to the image to sort it into its appropriate class by
applying the similarity probability.

There are also many auxiliary classes, such as the rectified linear unit (ReLU), which
pass positive values but convert negative values to zero, as described in Equation (7):

ReLU(x) = max(0, x) =
{

x, x ≥ 0
0, x < 0

(7)

The dropout layer overcomes the overfitting problem caused by millions of network
parameters. Thus, this layer works to pass a certain amount of neurons in each repetition.
In this study, the dropout layer was set to 50%, which means that the network passed 50%
of the neuron’s information on each iteration, but it doubled the model’s training time. This
study evaluated the CT images of the hemorrhage dataset with three deep learning models:
GoogLeNet [36], ResNet-50 [15] and AlexNet [16]. Figure 4 describes the basic architecture
of the pretrained GoogLeNet, ResNet-50 and AlexNet models for computed tomography
evaluation for cerebral hemorrhage diagnosis.
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Figure 4. Infrastructure framework for CNN models for evaluating CT images for the diagnosis of
cerebral hemorrhage disease.

3.4. Hybrid of Deep Learning and Machine Learning

In this section, a new technique is presented, namely a hybrid technology between the
deep learning models applied in this study (GoogLeNet, ResNet-50 and AlexNet) with a
machine learning (SVM) algorithm for CT image diagnosis for early and rapid detection
of hemorrhages. CNNs require high specifications and costly computer resources, and
training a dataset is very time-consuming, so these are challenges faced by CNN models.
Therefore, hybrid techniques require medium-cost computer resources which are fast in
training the dataset. Thus, this technique solves the challenges faced by CNN models.
Hybrid methods consist of two blocks: CNN models and SVM algorithms. The first block
(GoogLeNet, ResNet-50 and AlexNet) receives the enhanced CT images, extracts the deep
feature maps, and sends them to the second block [37]. The second block receives the
feature maps and classifies them with high accuracy and efficiency by the SVM algorithm.
Figure 5a–c shows the methodology of the hybrid techniques which is noted to consist of
two blocks, called GoogLeNet + SVM, ResNet-50 + SVM and AlexNet + SVM, for CT image
diagnosis for early detection of hemorrhages.
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Figure 5. Hybrid methodology between deep learning and SVM. (a) GoogleNet+SVM. (b) ResNet-50
+ SVM. (c) AlexNet + SVM.

3.5. Combining the Features of Deep Learning with Traditional Algorithms

This section presents a hybrid technology similar to that in the previous section.
Still, this technique is characterized by the fusion of features extracted by CNN models
(GoogLeNet, ResNet-50 and AlexNet) with hybrid features extracted by GLCM and LBP
algorithms. This proposed method is characterized by its requirement of medium-cost
computer resources and its speed in training the dataset. The mechanism of the proposed
system is as follows. First, the CT images are fed to the CNN models, where each model
extracts the feature maps and stores them in a feature vector so that each image contains
4096 features. Therefore, the dataset is represented in a matrix of features with a size of
7032 × 4096. Due to the high-dimensional features, the features matrix is fed to the PCA
algorithm [38] to reduce the dimensions and choose the essential representative features
for each image. Then, the features matrix becomes 7032 × 1024 in size.

After the improvement, the hemorrhagic area is divided and separated from the
healthy part. Extracting the features from the entire image leads to extracting features for
the affected and healthy parts and leads to inaccurate diagnostic results. This method is
considered one of the most critical and complex image processing methods. In this study,
the adopted region growth algorithm was used. The algorithm groups similar pixels so that
the pixels of each region are the same. The algorithm is based on an incremental approach
so that the image is divided into many regions, each region starts with one pixel, and then
each region grows gradually by collecting similar pixels in one region. Thus, the algorithm
continues until each pixel is assigned to its own region, and there cannot be similar pixels
in two regions. The process continues until the segmentation is completed and the region
of interest is obtained.
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After the fragmentation process, tiny holes are left in the regions of interest that do
not belong to the region of interest. Therefore, applying the morphological method is one
of the ways to improve the images after the segmentation process to obtain more enhanced
images. The method searches for holes in the region of interest. It treats them according
to many operations such as opening, closing, erosion and dilation based on wrapping the
structure element around the image.

The third step is the application of GLCM and LBP algorithms to extract features
from the lesion area. The GLCM algorithm produces 13 statistically features [39], while
the LBP algorithm produces 203 features [40]. Then, the features of the two algorithms
are combined into one feature vector so that each vector represents 216 features. Thus,
the dataset becomes represented in the feature matrix with a size of 7032 × 216. Fourth,
the resulting features from CNN models after dimensionality reduction are combined
with the features extracted by the GLCM and LBP algorithms and stored in a new feature
matrix so that its size becomes 7032 × 1240. Fifth, the hybrid features between the CNN
models and the (GLCM and LBP) algorithms are fed to an ANN for classifying them with
higher accuracy and efficiency than the other proposed methods. Figure 6 shows the
basic structure and methodology of extracting features using CNN models and GLCM
and LBP algorithms, merging them and then feeding them to the ANN algorithm for
classification. This method is one of our main contributions to this study.

Figure 6. Basic methodology of hybrid feature extraction technique between CNN models and GLCM
and LBP algorithms and their classification by an ANN.
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4. Experimental Results
4.1. Splitting Dataset and Environment Set-Up

The performance of all proposed networks was evaluated on the same CT images of
the hemorrhage dataset. The dataset consists of 7032 CT images divided into two categories:
hemorrhage and non-hemorrhage. The dataset was split at the subject level during the
training, validation and testing phases. Table 1 summarizes the breakdown of the data
set during all phases, splitting into 80% for the training and validation phases (80:20) and
20% for the testing phase. First, for the cerebral hemorrhage category, 14 subjects (patients)
suffering from a cerebral hemorrhage, representing 2152 CT images, were allocated for
the training and validation phase, and four subjects (patients) with cerebral hemorrhages
represented 537 CT images for the testing phase. Second, for the healthy images, 22 subjects
were allocated to patients without cerebral hemorrhages, which represented 3474 CT images
for the training and validation phase, and five subjects were for patients without cerebral
hemorrhages, which represented 869 CT images for the testing phase. A MATLAB 2018b
operating environment implemented the proposed systems in this study with Intel® i5 6th
generation computer specifications, with 12 GB RAM and a 4-GB GPU.

Table 1. Splitting of the hemorrhage dataset for the training, validation and testing phases.

Phase Training and Validation
(80:20) 20% for Testing

Classes 80% for Training 20% for Validation

Hemorrhage 1722 430 537
Non-hemorrhage 2779 695 869

4.2. Evaluation Metrics

All methods proposed in this study were evaluated with the same measures—accuracy,
precision, sensitivity, specificity, and AUC—for diagnosing the CT images of the hemor-
rhage dataset. Equations (8)–(11) illustrate the performance of the proposed systems [41,42].
It is noted that the equations contain variables that represent correctly and incorrectly clas-
sified images. The equations’ variables were obtained from the confusion matrix produced
by all the proposed systems. A confusion matrix is a tool for assessing the performance
of systems on the hemorrhage dataset. The confusion matrix contains all samples of the
dataset, either correctly classified as TP or TN or incorrectly classified as FP or FN:

Accuracy =
TN + TP

TN + TP + FN + FP
× t100% (8)

Precision =
TP

TP + FP
× 100% (9)

Sensitivity =
TP

TP + FN
× 100% (10)

Specificity =
TN

TN + FP
× 100% (11)

where true positive (TP) is the number of correctly classified hemorrhage CT images,
true negative (TN) is the number of correctly classified non-hemorrhage CT images, false
positive (FP) is the number of CT images that are not hemorrhages but are classified as
hemorrhages, and false negative (FN) is the number of hemorrhage CT images classified as
non-hemorrhage CT images.

The AUC is the area under the curve of the ROC plot, which is defined as the true
positive rate against the false positive rate at various threshold values.
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4.3. Results of the Deep Learning

This section presents the performance results of the pretrained GoogLeNet, ResNet-50
and AlexNet models. In these methods, pretrained models were used on the ImageNet
database, which contains more than 1 million images for more than 1000 classes but does not
contain a hemorrhage dataset, and thus the transfer learning technique was used. Transfer
learning is the CNN models’ acquired experience to perform new tasks (classification of the
hemorrhage dataset). For high-efficiency performance, CNN models require a large dataset,
which is not available, especially in medical image datasets. Thus, CNN models face the
problem of overfitting during the training phase, and therefore this challenge can be solved
by using the data augmentation method. The data augmentation method increases each
image in the dataset artificially and by a specified amount in many operations, such as
rotation, shifting, flipping and cropping [43]. In addition, this method helps solve the
problem of the unbalanced dataset, as it increases the class of the minority by an amount
more than that of the majority. In this study, Table 2 summarizes the dataset before and after
applying the data increase during the training phase, where it is noted that the hemorrhage
class increased each image by five times, while in the non-hemorrhage class, each image
increased by three times, which means obtaining a nearly balanced dataset during the
training stage.

Table 2. Using the data augmentation method to overcome the overfitting and balancing of the dataset.

Name of Class Hemorrhage Non-Hemorrhage

Without augmentation 1722 2779
With augmentation 8605 8337

Table 3 summarizes the training options for the GoogLeNet, ResNet-50 and AlexNet
models during the training phase. In this study, the training options were tested and
changed many times until the training options were set as shown in the table, which was
the best training option. As such, the models reached the best evaluative results for the
hemorrhage dataset CT images. It is noted from the table that the optimizer option was
chosen, in addition to setting the initial learn rate, validation frequency, mini batch size,
execution environment and time spent to train the dataset.

Table 3. Set training options for GoogLeNet, ResNet-50 and AlexNet models.

Options GoogLeNet ResNet-50 AlexNet

Training Options adam adam adam
Mini Batch Size 18 10 120
Max Epochs 3 6 10
Initial Learn Rate 0.0003 0.0001 0.0001
Validation Frequency 3 5 50
Training Time (min) 347 min 14 s 221 min 38 s 57 min 13 s
Execution Environment GPU GPU GPU

The GoogLeNet, ResNet-50 and AlexNet models produced promising results in evalu-
ating the CT images to make a diagnosis of the hemorrhage dataset. Table 4 summarizes
the results achieved by all the proposed models. It is noted that all models were good at
evaluating the CT images to make a diagnosis that helps doctors and experts in the rapid
diagnosis of intracranial hemorrhages, as this is a sensitive disease that needs a proper
diagnosis and prompt and appropriate treatment. It is also noted that GoogLeNet is slightly
superior to other networks. The GoogLeNet model achieved an accuracy of 94%, precision
of 93.53%, sensitivity of 93.48%, specificity of 93.87% and AUC of 96.82%. In contrast, the
ResNet-50 model achieved an accuracy of 91.7%, precision of 91.1%, sensitivity of 92.34%,
specificity of 92.44% and AUC of 95.76%. In contrast, the AlexNet model achieved an
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accuracy of 91.5%, precision of 93.31%, sensitivity of 90.41%, specificity of 91.17% and AUC
of 97.12%.

Table 4. Evaluative results of diagnosed CT images of hemorrhage dataset using GoogLeNet, ResNet-
50 and AlexNet.

Measure GoogLeNet ResNet-50 AlexNet

Accuracy (%) 94 91.7 91.5
Precision (%) 93.53 91.1 93.31
Sensitivity (%) 93.48 92.34 90.41
Sepecificy (%) 93.87 92.44 91.17
AUC (%) 96.82 95.76 97.12

Figure 7 shows the performance of the GoogLeNet, ResNet-50, and AlexNet models
for early hemorrhage diagnosis CT images in graph form.

Figure 7. Performance of CNN models for diagnosing the hemorrhage dataset.

Figure 8 shows the performance of the GoogLeNet model for evaluating CT images
for the rapid diagnosis of the hemorrhage dataset, where it is noted that the system reached
an overall accuracy of 94% and an accuracy of 92% for diagnosing hemorrhage images. In
contrast, it achieved an accuracy of 95.3% for diagnosing non-hemorrhage images. The
model also reached an AUC of 96.82%.

Figure 8. Performance of the GoogLeNet model for diagnosing hemorrhage dataset. (a) Confusion
matrix. (b) AUC.

It is noted from the figure that there were CT images that were incorrectly classified,
where 43 images of the hemorrhagic class were incorrectly classified as non-hemorrhagic.



Electronics 2022, 11, 2460 14 of 27

In comparison, 41 images of the non-hemorrhagic class were incorrectly classified as
hemorrhagic.

Figure 9 shows the performance of the ResNet-50 model for evaluating CT images for
the rapid diagnosis of the hemorrhage dataset, where it is noted that the system reached
an overall accuracy of 91.7% and an accuracy of 93.1% for diagnosing hemorrhage images.
In contrast, it achieved 90.8% for diagnosing non-hemorrhage images, and the model also
reached an AUC of 95.76%.

Figure 9. Performance of the ResNet-50 model for diagnosing the hemorrhage dataset. (a) Confusion
matrix. (b) AUC.

It is noted from the figure that there were CT images that were incorrectly classified,
where 37 images of the hemorrhagic class were incorrectly classified as non-hemorrhagic. In
comparison, 80 images of the non-hemorrhagic class were incorrectly classified as hemorrhagic.

The AlexNet model reached an overall accuracy of 91.5%, and it reached an accuracy
of 79.1% for diagnosing hemorrhage images. In contrast, it achieved an accuracy of 99.1%
for diagnosing non-hemorrhage images. The system also reached an AUC of 97.12% for
evaluating CT images for rapid diagnosis of the hemorrhage dataset, as shown in Figure 10.

Figure 10. Performance of the AlexNet model for diagnosing the hemorrhage dataset. (a) Confusion
matrix. (b) AUC.
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It is noted from the figure that there were CT images that were incorrectly classified,
where 112 images of the hemorrhagic class were incorrectly classified as non-hemorrhagic.
In comparison, eight images of the non-hemorrhagic class were incorrectly classified
as hemorrhagic.

4.4. Results of Hybrid Deep Learning with the SVM Algorithm

This section discusses the performance of hybrid techniques between the deep learning
networks (GoogLeNet, ResNet-50 and AlexNet) and the SVM algorithm for CT image
diagnosis for rapid detection of the hemorrhage dataset. There are many reasons for
applying this technique: its requirements for medium specification computer resources, its
speed in training the dataset and its efficiency in super-diagnostics. This technique consists
of two blocks: deep learning models and the SVM. Deep learning models extract the deep
feature maps and send them to the SVM algorithm to classify them with high accuracy.

Table 5 summarizes the performance of the hybrid techniques, namely GoogLeNet +
SVM, ResNet-50 + SVM and AlexNet + SVM, for evaluating CT images for rapid diagnosis
of intracranial hemorrhages. It is noted that the GoogLeNet + SVM system was slightly
superior to the rest of the systems. The GoogLeNet + SVM network reached an accuracy of
97.4%, precision of 97.43%, sensitivity of 97.38%, specificity of 98.1% and AUC of 98.74%.
At the same time, the ResNet-50 + SVM network reached an accuracy of 97.2%, precision of
97.13%, sensitivity of 96.89%, specificity of 98.67% and AUC of 98.51%. Additionally, the
AlexNet + SVM network reached an accuracy of 95.7%, precision of 96.23%, sensitivity of
95.5%, specificity of 96.18% and AUC of 99.14%.

Table 5. Evaluative results of diagnosed CT Images of hemorrhage dataset using GoogLeNet + SVM,
ResNet-50 + SVM and AlexNet + SVM.

Measure GoogLeNet + SVM ResNet-50 + SVM AlexNet + SVM

Accuracy (%) 97.4 97.2 95.7
Precision (%) 97.43 97.13 96.23
Sensitivity (%) 97.38 96.89 95.5
Sepecificy (%) 98.1 98.67 96.18
AUC (%) 98.74 98.51 99.14

Figure 11 shows the performance of the proposed hybrid techniques for interpreting
CT images to make a diagnosis of a hemorrhage dataset in graph form.

Figure 11. Performance of hybrid technique for diagnosing the hemorrhage dataset.

The performance of hybrid systems was evaluated using the confusion matrix. The
confusion matrix summarizes all samples of the dataset that were correctly classified and
those that were incorrectly classified and then produces the overall accuracy and diagnostic
accuracy for each class.

Figure 12 shows the evaluation of the CT images using the GoogLeNet + SVM network
for rapid diagnosis of the hemorrhage dataset. It is noted that the system reached an overall
accuracy of 97.4% and, for diagnosing hemorrhage images, an accuracy of 95.9%. In
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contrast, it achieved up to 98.3% accuracy for diagnosing non-hemorrhage images. The
model also reached an AUC of 98.74%.

Figure 12. Performance of the GoogleLeNet + SVM model for diagnosing the hemorrhage dataset.
(a) Confusion matrix. (b) AUC.

It is noted from the figure that there were CT images that were incorrectly classified,
where 22 images of the hemorrhagic class were incorrectly classified as non-hemorrhagic.
In comparison, 15 images of the non-hemorrhagic class were incorrectly classified as
hemorrhagic.

The ResNet-50 + SVM network reached an overall accuracy of 97.2%, and for diagnos-
ing hemorrhage images, its accuracy was 96.8%. In contrast, it achieved 97.4% accuracy
in diagnosing non-hemorrhage images. The system also reached an AUC of 98.51% for
evaluating CT images for rapid diagnosis of the hemorrhage dataset, as shown in Figure 13.

Figure 13. Performance of the ResNet-50 + SVM model for diagnosing the hemorrhage dataset.
(a) Confusion matrix. (b) AUC.

It is noted from the figure that there were CT images that were incorrectly classified,
where 17 images of the hemorrhagic class were incorrectly classified as non-hemorrhagic. In
comparison, 23 images of the non-hemorrhagic class were incorrectly classified as hemorrhagic.

Figure 14 shows the performance of the AlexNet + SVM network for evaluating the
CT image for rapid diagnosis of the hemorrhage dataset, where it is noted that the system
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reached an overall accuracy of 95.7% and an accuracy of 94.2% for diagnosing hemorrhage
images. In contrast, it achieved an accuracy of 96.5% for the diagnosis of non-hemorrhage
images. The model also reached an AUC of 99.14%.

Figure 14. Performance of the AlexNet + SVM model for diagnosing the hemorrhage dataset.
(a) Confusion matrix. (b) AUC.

It is noted from the figure that there were CT images that were incorrectly classified,
where 31 images of the hemorrhagic class were incorrectly classified as non-hemorrhagic. In
comparison, 30 images of the non-hemorrhagic class were incorrectly classified as hemorrhagic.

4.5. Results of the Hybrid Feature Deep Learning with the GLCM and LBP Algorithms

This section introduces a new technique that combines features extracted by CNN
models and the GLCM and LBP algorithms, combines all features and classifies them with
the ANN algorithm. This proposed method diagnoses CT images accurately and quickly
because the intracranial hemorrhage’s treatment cannot be delayed.

The hemorrhage dataset was divided into 63.3% for training, 16% for validation and
20.7% for testing. The algorithm was trained several times, and its performance was set at
the best performance. The algorithm achieved the best performance when adjusting the
number of hidden layers to 20 hidden layers. The performance of the proposed system was
evaluated by several evaluation tools, as illustrated below.

4.5.1. Best Validation Performance

The mean square error or cross-entropy is one tool that evaluates the ANN network
of the hemorrhage dataset. The dataset goes through many epochs, and in each epoch,
a cross-entropy (mean square error) is obtained during all phases (training, validation
and testing) to evaluate the ANN algorithm. The algorithm continues until it reaches the
minimum mean square error between the expected and actual output. Figure 15 shows
the performance of the ANN algorithm on the hemorrhage dataset during the training
phase, represented by the blue color, the test phase, represented by the red color, and the
validation phase, represented by the green color. It is noted that the algorithm reached
the best performance (i.e., reached the minimum error between the expected and actual
values) at the best validation performance of 0.0005904 at epoch 34, 0.0027462 at epoch 21
and 0.00087469 at epoch 25 based on the hybrid features of GoogLeNet + (GLCM and LBP),
ResNet-50 + (GLCM and LBP) and AlexNet + (GLCM and LBP), respectively.
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Figure 15. Best performance of ANN on hemorrhage dataset based on hybrid features by (a) GoogLeNet
and GLCM + LBP, (b) ResNet-50 and GLCM + LBP and (c) AlexNet and GLCM + LBP.

4.5.2. Error Histogram

The error histogram is one of the tools used to evaluate the performance of the ANN
network of CT images of a hemorrhage dataset. The ANN network evaluated the dataset
during the training phase, represented by the blue histogram bin, the validation phase,
represented by the green histogram bin, and the testing phase, represented by the red
histogram bin. The algorithm continued until it reached the minimum error between the
target values and the output. The orange color represents the best network performance.
Figure 16 shows the error histogram of the ANN algorithm for the hemorrhage dataset,
where the best network performance was observed between bins −0.9499 and 0.9499 when
fed to the network by both methods (GoogLeNet + (GLCM and LBP)), and for ResNet-50 +
(GLCM and LBP), it was observed between bins −0.9482 and 0.9482. When fed to the ANN
algorithm by AlexNet + (GLCM and LBP), the best network performance was observed
between bins −0.9492 and 0.9492.

Figure 16. Error histogram of ANN on hemorrhage dataset based on hybrid features by (a) GoogLeNet
and GLCM + LBP, (b) ResNet-50 and GLCM + LBP and (c) AlexNet and GLCM + LBP.

4.5.3. Receiver Operating Characteristic (ROC)

The ROC curve is one of the essential tools for measuring the classification performance
of any binary classifier, because it illustrates its diagnostic ability as the discrimination
threshold is varied. Specifically, the ROC curve is the plot of the true positive rate (or
sensitivity on the y-axis) against the false positive rate (or 1-specificity on the x-axis)
at various threshold values. The closer the ROC curve gets to the top left corner, the
better the classifier is. The ROC curve was used to evaluate the performance of the ANN
by computing the AUC during the training, validation and testing phases. Figure 17
describes the performance of the ANN for evaluating the dataset during all stages. The
ANN reached a total AUC of 98.74%, 98.51% and 99.14% based on the hybrid features of
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GoogLeNet + (GLCM and LBP), ResNet-50 + (GLCM and LBP) and AlexNet + (GLCM and
LBP), respectively.

Figure 17. ROC of ANN on hemorrhage dataset based on hybrid features by (a) GoogLeNet and
GLCM + LBP, (b) ResNet-50 and GLCM + LBP and (c) AlexNet and GLCM + LBP.

4.5.4. Confusion Matrix

The confusion matrix is the essential standard tool for evaluating the performance
of systems. In this study, the ANN network was fed with three feature matrixes. Each
feature matrix was the hybrid feature between one of the CNN (GoogLeNet, ResNet-50
and AlexNet) models and the features extracted by the GLCM and LBP algorithms.

Table 6 summarizes the performance of the feature hybrid, namely GoogLeNet deep
features + (GLCM and LBP), ResNet-50 deep features + (GLCM and LBP) and AlexNet deep
features + (GLCM and LBP), for evaluating CT images for rapid diagnosis of intracranial
hemorrhages. When fed to the ANN using GoogLeNet feature + (GLCM and LBP), it
achieved an accuracy of 98.9%, precision of 99.17%, sensitivity of 98.95, specificity of 99.36%
and AUC of 99.58%. At the same time, when fed to the ANN using ResNet-50 feature
+ (GLCM and LBP), it achieved an accuracy of 99.1%, precision of 99.51%, sensitivity of
99.32%, specificity of 99.41% and AUC of 99.62%. Additionally, when fed to the ANN using
the AlexNet feature + (GLCM and LBP), it achieved an accuracy of 99.3%, precision of
99.36%, sensitivity of 99.5%, specificity of 99.57% and AUC of 99.84%.

Table 6. Performance of ANN through hybrid features for early detection of hemorrhages.

Method of GoogLeNet Feature ResNet-50 Feature AlexNet Feature
Combining Map + (GLCM) Map + (GLCM) Map + (GLCM

Features and LBP and LBP and LBP)

Accuracy (%) 98.9 99.1 99.3
Precision (%) 99.17 99.51 99.36

Sensitivity (%) 98.95 99.32 99.5
Specificity (%) 99.36 99.41 99.57

AUC (%) 99.58 99.62 99.84

Figure 18 shows the performance of the ANN network based on the hybrid features
extracted from the CNN models and GLCM and LBP algorithms for computed tomography
image diagnosis of the hemorrhage dataset in graph form.
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Figure 18. Performance of the ANN network based on hybrid features extracted.

Figure 19 shows the confusion matrix produced using the ANN algorithm to evaluate
the features extracted by the GoogLeNet model with the hybrid features of the GLCM
and LBP algorithms. The algorithm achieved superior results in evaluating the CT im-
ages to make a diagnosis of the hemorrhage dataset during the training, validation and
testing phases. The network reached the following overall results. It is noted that the
network reached an overall accuracy of 98.9% and an accuracy of 98.5% for diagnosing the
hemorrhage images, and in contrast, it achieved an accuracy of 99.2% for diagnosing the
non-hemorrhage images.

Figure 19. ANN’s confusion matrix based on features fused between GoogLeNet and GLCM and LBP.

It is noted from the figure that there were CT images that were incorrectly classified,
where eight images of the hemorrhagic class were incorrectly classified as non-hemorrhagic.
In comparison, seven images of the non-hemorrhagic class were incorrectly classified
as hemorrhagic.

Figure 20 shows the confusion matrix obtained using the ANN algorithm to evalu-
ate the features extracted by ResNet-50 with the hybrid features from GLCM and LBP
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algorithms. The network achieved superior results in evaluating the CT images to make a
diagnosis of the hemorrhage dataset during all phases. The network reached the following
overall results. It is noted that the network reached an overall accuracy of 99.1% and
an accuracy of 98.1% for diagnosing the hemorrhage images. In contrast, it achieved an
accuracy of 99.8% for diagnosing the non-hemorrhage images.

Figure 20. ANN’s confusion matrix based on features fused between ResNet-50 and GLCM and LBP.

It is noted from the figure that there are CT images that are incorrectly classified, where
ten images of the hemorrhagic class are incorrectly classified as non-hemorrhagic. In com-
parison, two images of the non-hemorrhagic class are incorrectly classified as hemorrhagic.

Figure 21 shows the confusion matrix produced using the ANN algorithm to evaluate
the features extracted by the AlexNet model with the hybrid features of the GLCM and
LBP algorithms. The network achieved superior results in evaluating CT images to make a
diagnosis of the hemorrhage dataset during all phases. The network reached overall results,
where it is noted that the network reached an overall accuracy of 99.3%; and an accuracy of
98.9% for diagnosing hemorrhage images. In contrast, it achieved an accuracy of 99.5% for
diagnosing non-hemorrhage images.

It is noted from the figure that there are CT images that are incorrectly classified, where
six images of the hemorrhagic class are incorrectly classified as non-hemorrhagic. In com-
parison, four images of the non-hemorrhagic class are incorrectly classified as hemorrhagic.
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Figure 21. ANN’s confusion matrix based on features fused between AlexNet and GLCM and LBP.

Figure 22 shows four slides that were incorrectly classified by the system, where the
first row represents two TP slides, meaning that they are non-hemorrhagic slides, but
the system classified them as hemorrhagic. Meanwhile, the two slides of the second row
represent TN slides, meaning that they are hemorrhagic slides, but the system classified
them as non-hemorrhagic.

Figure 22. Four samples from the hemorrhagic data set which were incorrectly classified.
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5. Discussion and Comparison of the Proposed Methods

ICH and IVH were split at the same time by CT scans using minimally invasive
surgery, alteplase and clot lysis [43]. A probabilistic technique based on deep Gaussian
processes was developed for training by multi-instance learning and predicting cerebral
intracranial hemorrhages. The technique takes the relationships between features using
multiple Gaussian layers that outperform single-layer Gaussian operations [44]. Numerous
patients with neurological problems received head CT scans. The link between hematoma
and clinical factors was demonstrated using a number of univariate and multivariate
techniques [45]. The ResNet-18 model was used to discriminate between normal CT and
ICH images. In addition to using a Grad-weighted class activation mapping method to
detect ResNet-18 decisions [46]. Based on radiology records, a pretrained deep learning
network may identify brain haemorrhages. It has been observed that the effectiveness of
fine-tuned deep learning models improves the classification results [47]. Using a three-
dimensional deep learning network, the subtypes of haemorrhages are segmented in [48].
The CT images were segmented using the area growth method and then optimized.

In this study, three proposed methods have been discussed for evaluating CT images
to make a diagnosis for rapid detection of an intracranial hemorrhage. Each proposed
system contains more than one model with various methodologies and materials. The
study aimed to find an automatic method that helps doctors and radiologists in the rapid
diagnosis of an intracranial hemorrhage and determine its location for the patient to receive
appropriate treatments. All CT images were improved, all artifacts were removed, and
the edges of the hemorrhagic region appeared with the same filters for all the proposed
methods. The data augmentation method was used to avoid the overfitting problem during
the training phase.

Due to the dataset’s limited subject availability and the usage of artificial intelligence
techniques in the developed systems, the classification was concentrated at the level of
the slide (image) rather than the level of the subject (patient). Additionally, the dataset
comprised various numbers of slides for every subject. It is sufficient to diagnose the patient
as having hemorrhagic disease if a hemorrhage appears on one of the many patient slides.
The dataset was divided into the training, validation and testing stages according to the
patient. In contrast to obtaining results at the patient level, results were acquired based on
each image, which was more precise. To be more detailed, for the hemorrhagic class, four
patients were chosen during the testing phase. Each patient had the following number of
slides: 196, 195, 23 and 123. In addition, five patients from the non-hemorrhagic class were
chosen. Each patient had 131, 217, 134, 123 and 129 slides. In Figure 21, for instance, we see
four images of non-hemorrhagic classes that were incorrectly classified as hemorrhagic and
six images of hemorrhagic classes that were wrongly classified as non-hemorrhagic when
looking at the confusion matrix. Additionally, due to the small number of images relative to
the number of images for each patient, these incorrectly classified images did not accurately
represent the patient. Therefore, artificial intelligence systems are classifying images one
after the other. As a result, this study diagnosed the CT images of all the proposed systems
at the slide level.

The proposed methods in this study are the following. The first proposed method for
evaluating CT images to make a diagnosis of the hemorrhagic dataset by CNNs involves
pretrained GoogLeNet, ResNet-50 and AlexNet models. The second proposed method
is hybrid technology between the CNN models (GoogLeNet, ResNet-50 and AlexNet).
The third proposed method is to diagnose the hemorrhagic dataset by an ANN network
based on extracting the hybrid features between the CNN models and the GLCM and LBP
algorithms and fusing them together.

The first proposed method was the GoogLeNet, ResNet-50 and AlexNet models, where
the parameters and training options were tuned to extract deep feature maps and classify
them. The GoogLeNet, ResNet-50 and AlexNet models achieved overall accuracies of 94%,
91.7% and 91.5%, respectively. The second proposed method represents a hybrid technique
consisting of two blocks: the first block is CNN models to extract the feature maps, and
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the second block is the SVM algorithm for classifying the feature maps. The GoogLeNet +
SVM, ResNet-50 + SVM and AlexNet + SVM networks achieved overall accuracies of 97.4%,
97.2% and 95.7%, respectively. The third proposed method is to diagnose the hemorrhage
dataset with an ANN based on the hybrid features extracted by the GoogLeNet, ResNet-50
and AlexNet models and apply the PCA algorithm to reduce the dimensions of the feature
maps and combine them with the hybrid features extracted using the GLCM and LBP
algorithms. The ANN network based on combining GoogLeNet feature maps with the
features of the GLCM and LBP algorithms achieved 98.9% overall accuracy. When the
ANN network was based on the combination of ResNet-50 feature maps with the features
of the GLCM and LBP algorithms, the overall accuracy was 99.1%. In comparison, the ANN
network reached a 99.3% overall accuracy based on the combination of AlexNet feature
maps with the features of the GLCM and LBP algorithms.

Table 7 summarizes the evaluative performance of all proposed methods for CT
imaging for the rapid detection of intracranial hemorrhages. First, all the proposed methods
reached superior results for the hemorrhage class. The ANN algorithm based on the hybrid
features between the CNN models and GLCM and LBP features achieved the best diagnosis
of the hemorrhage dataset. It is noted that the best diagnosis of hemorrhage images was
accomplished by an ANN classifier based on the features of ResNet-50 + (GLCM and LBP),
which reached an accuracy of 99.8%, while the best diagnosis of the hemorrhage images
was by the ANN classifier based on the features of GoogLeNet + features (GLCM and LBP),
which reached an accuracy of 99.2%.

Table 7. Performance of all proposed methods for CT imaging diagnostics for early detection of
hemorrhage disease.

System Diseases Hemorrhage Non-Hemorrhage Accuracy (%)

GoogLeNet 92 95.3 94
Deep Learning ResNet-50 93.1 90.8 91.7

AlexNet 79.1 99.1 91.5
GoogLeNet + SVM 95.9 98.3 97.4

Hybrid ResNet-50 + SVM 96.8 97.4 97.2
AlexNet + SVM 94.2 96.5 95.7

GoogLeNet + (GLCM and LBP) 98.5 99.2 98.9
Hybrid Features ResNet-50 + (GLCM and LBP) 99.8 98.1 99.1

ANN AlexNet + (GLCM and LBP) 98.9 99.5 99.3

Figure 23 shows the performance of all the proposed methods for CT diagnostics for
the fast detection of hemorrhage disease in graph form.

Figure 23. Performance of all proposed methods for fast detection of hemorrhage disease in
graph form.
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The limitations that we encountered in this study were the small number of patients
in the standard dataset, in addition to the dataset not including the characteristics of the
patients or the type of cerebral hemorrhage for each patient. Due to the inaccessibility of pa-
tients’ descriptions, the generalization of our results requires an external validation dataset.

6. Conclusions and Future Works

In this study, the problems of CT image diagnosis for the rapid detection of intracra-
nial hemorrhages were solved by many proposed methodologies, which involve many
different methods and materials. All the proposed methods yielded promising results
that helped physicians and radiologists make decisions when diagnosing and analyzing
hemorrhage images and distinguishing them from suspected images. This paper proposed
three methods, each containing more than one system. The first proposed method was
to diagnose the hemorrhage dataset using pre-trained CNN models, namely GoogLeNet,
ResNet-50 and AlexNet, which achieved accuracies of 94%, 91.7% and 91.5%, respectively.
The second proposed method is a hybrid technique between deep learning (GoogLeNet,
ResNet-50 and AlexNet) to extract the feature maps and a machine learning algorithm
(SVM) to classify the feature maps extracted using deep learning models. GoogLeNet +
SVM, ResNet-50 + SVM and AlexNet + SVM achieved superior results, with accuracies
of 97.4%, 97.2% and 95.7%, respectively. The third proposed method is to diagnose the
hemorrhage dataset using an ANN algorithm based on the hybrid features extracted from
the GoogLeNet, ResNet-50 and AlexNet models, reduce the feature dimensions with a PCA
algorithm and then combine the features after reducing the dimensions with the features
of the GLCM and LBP algorithms. This method obtained the best results compared with
the other proposed methods, where the ANN reached an accuracy of 99.3%, precision of
99.36%, sensitivity of 99.5%, specificity of 99.57% and AUC of 99.84% based on the features
of AlexNet, GLCM and LBP.

In future works, the proposed systems will be evaluated on a dataset containing cerebral
hemorrhage types such as intraventricular, subarachnoid and parenchymal hemorrhages.
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