
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Autonomic Dominant Resource Fairness (A-DRF)

in Cloud Computing

Amin Fakhartousi

Faculty of Science and Technology

Bournemouth University

Bournemouth, United Kingdom

s5222844@bournemouth.ac.uk

Sofia Meacham

Faculty of Science and Technology

Bournemouth University

Bournemouth, United Kingdom

smeacham@bournemouth.ac.uk

Keith Phalp

Faculty of Science and Technology

Bournemouth University

Bournemouth, United Kingdom

kphalp@bournemouth.ac.uk

Abstract— In the world of information technology and the

Internet, which has become a part of human life today and is

constantly expanding, Attention to the users' requirements such

as information security, fast processing, dynamic and instant

access, and costs savings has become essential. The solution that

is proposed for such problems today is a technology that is called

cloud computing. Today, cloud computing is considered one of

the most essential distributed tools for processing and storing

data on the Internet. With the increasing using this tool, the need

to schedule tasks to make the best use of resources and respond

appropriately to requests has received much attention, and in

this regard, many efforts have been made and are being made.

To this purpose, various algorithms have been proposed to

calculate resource allocation, each of which has tried to solve

equitable distribution challenges while using maximum

resources. One of these calculation methods is the DRF

algorithm. Although it offers a better approach than previous

algorithms, it faces challenges, especially with time-consuming

resource allocation computing. These challenges make the use of

DRF more complex than ever in the low number of requests with

high resource capacity as well as the high number of

simultaneous requests. This study tried to reduce the

computations costs associated with the DRF algorithm for

resource allocation by introducing a new approach to using this

DRF algorithm to automate calculations by machine learning

and artificial intelligence algorithms (Autonomic Dominant

Resource Fairness or A-DRF).

Keywords— A-DRF, Resource Allocation, Cloud Computing,

Fairness, Autonomic, Dominant Resource, DRF

I. INTRODUCTION

The allocation of resources in cloud computing is the most
significant alarm. So many parameters will damage the virtual
machine, such as time consumption, service quality, cost, etc.,
because the cloud is heterogeneous. When there are massive
requests, it is necessary for a virtual machine to the allocation
of resources in the shortest time [1].

In the literature and the industrial fields, the need for an
efficient and fair resource allocation in cloud systems has long
been recognised. Cloud computing is a promising platform
that provides on-demand and scalable computing resources, as
well as usage-based payment. However, the IT world's
increasing complexity has made Quality of Service (QoS) in
the cloud a complex topic and an NP-hard challenge over the
last decade [2].

Fairness in resource allocation is recognised as a
fundamental issue in computing systems, at least for the last
two decades. The most conventional research in this area is
computer networks in which the fair allocation of bandwidth
among flows with various requirements, is a substantial
concern [2-4]. By rapidly increasing the use of computing
frameworks, resource allocation has become a more
interesting and challenging concern. In modern computing
frameworks, such as cloud computing, users show a

significant interest in submitting multiple types of resources
like CPU, RAM, etc. Therefore, fairly allocating resources,
taking into account such diversity, is a complicated and NP-
hard problem [4-6].

One of the proposed methods for fair resource allocation
is the DRF algorithm. DRF employs the advanced filling
algorithm as well as a linear optimisation method to allocate
resources among users. Additionally, DRF satisfies some
desirable fairness properties such as the sharing incentive,
strategy-proof, envy-free, resource monotonicity, and Pareto-
efficiency [3]. Among all these promising features,
nonetheless, DRF suffers from autonomic decisions in
calculating dominant resources for incoming requests. That is
said, in each iteration, DRF tries to calculate dominant
resources, which leads to increasing the response time in
serving users’ requests and degrading Service Level
Agreement (SLA) [2, 4]. DRF although originally published
in 2011, is a method that is still heavily used inside Apache
Hadoop and Yarn scheduler which is widely used in many
systems. A comparison with other state-of-the-art methods is
detailed in the literature review.

To tackle this problem associated with DRF, we propose
Autonomic DRF called A-DRF that empowers it to make real-
time decisions. A-DRF, employs machine learning algorithms
to monitor and classifies incoming tasks. More details of this
algorithm will be discussed in the following sections.

The rest of this article is structured as follows. Section 2
presents the literature review of this article. Section 3
introduced related works. Section 4 describes the proposed
method. Section 5 presents experimental result, including
dataset data description and performance evaluation. Lastly,
the conclusion and future work of this article are presented in
Section 6.

II. LITERATURE REVIEW

This section first explains the cloud computing Service
and its scheduling and resource allocation techniques and then
reviews machine learning and its methods.

A. Cloud Computing

One of the newest platforms for mobile computing, IT
enterprise, and business is Cloud Computing. Instead of
purchasing resources such as Software, Memory, CPU, and
Input or Output devices (I/O), etc. Because of dramatically
increased cloud usage, a proper and effective allocation of
resources has been led to a challenge. Diverse promising
technologies were developed to enhance resource allocation
process efficiency [7]. However, when the system is
overloaded, there is some inefficiency regarding resource
scheduling. So, to improve the performance of the resource
allocation process, a proper scheduling algorithm is required.

The following will introduce three basic methods in
allocating resources, namely First Input First Output (FIFO)
Scheduling, Capacity Scheduling, and Fair Scheduling, and
then compare them.

1) First Input First Output (FIFO) Scheduling: First

Input First Output (FIFO) scheduling is a common

scheduling algorithm that creates one job queue. Users

submit all assignments to the queue according to the rule of

first input, first output. This scheduler is easy to use and

requires no configuration. However, it’s not appropriate for

shared clusters. Because massive applications consume all of

the resources in a cluster, each application must wait its turn.

Therefore, this scheduling method covers neither multiple

user management nor cluster sharing [8].

2) Capacity Scheduling: Yahoo created Capacity

Scheduler (CS) to handle a large number of resource sharing

requests. Equal resource allocation according to the queue

length is the fundamental thought behind the Capacity

Scheduler. Once the job is executing, the priority is not

supported by this algorithm. Therefore, some high

preemption jobs may suffer from a longer lag than their

deadline [9].

3) Fair Scheduling: Another popular scheduler offered

for cloud systems is the Fair Schedule (FS) that is used to

allocate a proportionate amount of resources to all requests.

If there is only one request in the system, all the cluster's

resources can be used until entering another job. The fair

scheduler allows shorter jobs to finish in proper time, whereas

long jobs are not starving [9]. One of the internal policies that

can be set up with Fair scheduler is Dominant Resource

Fairness or DRF. In a system with many kinds of resources,

it is a just policy for allocating resources. In other words,

DRF is a scheduling technique with different types of

resources that is similar to the fair scheduling strategy, except

that a new parameter called dominant resource is used to

specify the most requested resource type. The instance's

dominant resource is the most frequent type of requested

resources (job or user). DRF attempts to balance instances'

dominant resource usages by making scheduling decisions

[3]. As shown in Algorithm 1, DRF keeps track of both the

total resources allocated to each user and each user's

dominant share, si. DRF selects the client with the smallest

dominant share at each stage among those with tasks ready to

execute. DRF assumes that a user can perform several tasks,

each with a separate demand vector, and it uses attribute D to

represent the demand vector for the next task the user wishes

to start. To keep it simple, the pseudo-code does not catch the

completion of a job. In this scenario, the task's resources are

extracted by the user, then DRF chooses the user with the

least dominant share to execute her task once again.

Algorithm 1: DRF [3]

𝑅 = < 𝑟1, 𝑟2, … , 𝑟𝑛 >: Capacity of Resources.

𝐶 = < 𝑐1 , 𝑐, … , 𝑐𝑛 >: Consumed Resources (initially 0).

𝐷 = < 𝑑1, 𝑑2, … , 𝑑𝑚 >: Demanded Resources.

𝐴 = < 𝑎1, 𝑎2, … , 𝑎𝑚 >: Allocated Resources (initially 0).

𝑠𝑖 (i = 1: n) ∶ user 𝑖’s dominant shares, (initially 0).

1. pick user 𝑖 with lowest dominant share 𝑠𝑖

2. if 𝐶 + 𝐷𝑖 ≤ 𝑅 then

3. 𝐶 = 𝐶 + 𝐷𝑖 (update consumed vector)

4. 𝐴𝑖 = 𝐴𝑖 + 𝐷𝑖 (update 𝑖’s allocation vector)

5. 𝑠𝑖 = 𝑚𝑎𝑥𝑗=1
𝑚 {

𝑎𝑖,𝑗

𝑟𝑗
}

6. else

7. Return 𝐴

8. end if

B. Machine Learning

Machine learning focuses on applications that enhance
their decision-making or predictive performance over time
through learning from their past experiences. A machine
learning algorithm is normally classified as supervised and
unsupervised. the purpose of supervised learning is to predict
the right answer for new data using training data that has been
labelled with classes. In unsupervised learning, unlike
supervised learning, there is no label for the data. The vast
majority of algorithms in machine learning are supervised
[10]. A machine-learning supervised algorithm can be used
to accelerate resource allocation in cloud computing.
Regression and Classification are two types of supervised
machine learning techniques. The key difference between
Regression and Classification algorithms is that we use
Regression algorithms to predict the continuous values and
use Classification algorithms to predict/classify the discrete
values. A machine-learning supervised algorithm and
specifically the regression type can accelerate resource
allocation in cloud computing. Several types of regression
analysis methods can be used based on the number of factors
that contain the shape of the regression line, the number of
independent variables, and the type of target variable. In the
following, six regression methods have been examined in this
project.

1) Linear Regression: In machine learning, Linear

regression is one of the most fundamental forms of

regression. A predictive feature and a dependent feature are

linked linearly in the linear regression model. When there are

multiple independent variables in the data, linear regression

is referred to as multiple linear regression models [11].

2) Polynomial Regression: Another type of regression

analysis method in machine learning is Polynomial

Regression, which is like Multiple Linear Regression with a

bit of alteration. The relationship between dependent and

independent features in polynomial regression is marked by

the n-th degree [12].

3) KNN Regression: K Nearest Neighbours (KNN)

Regression is another technique to estimate the relationship

among independent features and the continuous result by

averaging the same neighbourhood observations. The

neighbourhood size must be arranged using cross-validation

to choose the size that minimizes the mean-squared error (It

will be seen later). A large K value is generally more accurate

because it reduces overall noise; however, it comes at the cost

of blurring the distinct boundaries within the feature space

[13].

4) Support Vector Regression (SVR): Support Vector

Machine (SVM) can also be used as a regression technique

called SVR while retaining all of the algorithm's main

characteristics, such as maximal margin. SVR is created

according to the Support Vector Machine (SVM) concept and

minimise the error by customising the hyperplane that

maximises the margin while keeping in mind that some error

is tolerable. Despite being less popular than SVM, SVR has

been shown to be an effective tool for estimating real-value

functions [14].

5) Bayesian Regression: Bayesian regression is a form of

machine learning regression that employs the Bayes theorem

to determine the regression coefficients values. After

determining a model, the method calculates the model

predictions and the posterior distribution of parameters.

Bayesian Linear Regression is similar to both ridge and linear

regressions, but it is more robust than basic linear regression.

This statistical analysis enables the technique to specify

complexity during training, resulting in a model with a lower

likelihood of overfitting [15].

6) Multi-Layer Perceptron Regression (MLP) : MLP is a

supervised learning algorithm capable of learning a non-

linear function estimator for classification or regression. The

difference between MLP and logistic regression is that there

can be one or more non-linear layers called hidden layers

among the input and the output layer. The loss function for

MLP regression scenarios is a square error, and the loss

function for classification is cross-entropy, and it can operate

for single and multiple goal values regression [16].

III. RELATED WORKS

Many researchers have contributed by optimising the
work-time and resources to improve resource schedulers'
performance. Because multi-resource fairness in organisations
has been an obstacle for hierarchical scheduling, within large
organisations, DRF is extended for hierarchical scheduling
[17]. However, if the number of nodes increases, the
recalculation of dominant shares in each node would also need
to be optimised. DRF, in particular, must sort request
timestamps [3] and has an O(log n) complexity per allocation,
where n is the number of users in each timestamp. It isn't easy
to implement DRF at high speeds when n is big.

In [18], Tetris has been presented as a new scheduler that
achieves a lower MakeSpan by using multidimensional bin
packaging. Although the job resource requirements can be
unpredictable, it assigns the minimum amount of resources to
the jobs with the minimum amount of remaining work. They
used heuristics to provide both at the same time because
fairness is incompatible with high efficiency.

The purpose of [19] is to introduce HRSYARN (fair
resource sharing based on Heuristics), a new resource
scheduling that employs the Weighted Arithmetic Mean
(WAM) to ensure fair resource sharing between tenants.
Additionally, it includes a heuristic table that keeps track of
resources that have been lent or leased to and from other
tenants. In terms of resource usage efficiency and fairness,
their scheduler outperforms other long-term YARN
schedulers currently available. But there is no discussion or
outcome regarding the scheduling of multiple resource types.
Despite the fact that the majority of schedulers focus on short-
term optimisations through greedy decisions, Altruistic
Scheduling [20] takes a long-term optimisation approach.

They demonstrated that it performs similarly to DRF while
reducing completion time.

[21] is another research that works on long-term fairness.
They introduced Long-Term Resource Fairness (LTRF) to
allocate resources in a fair manner and Hierarchical Long-
Term Resource Fairness (H-LTRF) as LTRF extension to
solve the problem of memoryless resource allocation. LTRF
is limited to fair allocation to a specific resource entity, which
can be considered a constraint.

[22] some changes were made to the fair scheduling
algorithm by considering fairness limitations to improve this
algorithm. It proposed a system with several phases, including
pool resource allocation, work classification, job sorting, job
priority adjustments, and delay time adjustments.

Based on the experimental result section (Section 5), our
scheduling method, A-DRF, shows better performance than
DRF. It has been demonstrated to decrease resource allocation
run time because the time complexity of A-DRF is O(1) across
to DRF with O(log n) which is a radical improvement.

IV. PROPOSED METHOD

The main idea of job scheduling is maximising the
throughput and minimising the jobs' run time under different
requirements and resource constraints. The DRF algorithm for
job scheduling has a high time complexity to calculate
resource allocation; In other words, every scheduling decision
takes O(log n) time, while n is the number of users. This issue
complicates the resource allocation process when either there
is a large number of simultaneous requests or a low number of
requests while a large capacity of resources is available.
Therefore, we have tried to automate the DRF algorithm
without changing the concept of the DRF algorithm by
eliminating the time-consuming calculation process using
machine learning techniques. So the A-DRF method has been
proposed to significantly reduce resource allocation time
while having an almost fair strategy.

A-DRF employs machine learning algorithms to monitor
and classifies incoming tasks. For this purpose, each training
feature vector's solution to the resource allocation problem
should be calculated in advance (In this study, the DRF
algorithm is used). In A-DRF, and in each iteration, it is not
required to calculate dominant resources; instead, A-DRF
identifies dominant resources for incoming tasks based on the
similarity, existing in the historical data which is obtained in
the first iteration of requests. Then, when a new request
arrives, using the trained model, the amount of resources
allocated to that request is determined in a concise time. In
other words, as shown in Algorithm 2, A-DRF consists of two
steps. In the first step, we have a set of historical data to teach
the resource allocation prediction model called the H set. This
set includes the resource requests, the priority of the requests,
and the amount allocated to these requests according to
Algorithm 1. This dataset is then given to one of the machine
learning methods, and then, we will have a trained model for
allocating resources to future requests. In the second step, a
new request is given to the trained model, and finally, the
allotted amount is returned to that request.

According to this algorithm, every scheduling decision in
A-DRF takes O(1) time for any number of users. Experimental
results have shown A-DRF provides better efficiency
compared to the DRF method.

Algorithm 2: A-DRF

𝑅 = < 𝑟1, 𝑟2, … , 𝑟𝑛 >: Capacity of Resources.

Stage 1:

𝐻 = < 𝑋, 𝑌 >: Historical Data < 𝑋 : Resource Requests and

their Priority, 𝑌 : Allocated Resources>

M: Prediction Model

𝑇𝑀 = 𝑀(𝐻): Training Model

Stage 2:

𝐷 = < 𝑑1, 𝑑2, … , 𝑑𝑚 >: New Demanded Resources.

𝐴 = < 𝑎1, 𝑎2, … , 𝑎𝑚 >: Allocated Resources (initially 0).

𝑇𝑀: Trained Model (was trained in previous stage)

𝐴 = 𝑇𝑀(𝐷)

Return 𝐴

V. EXPRIMENTAL RESULT

To evaluate the proposed mechanism, the performance of
the A-DRF algorithm is examined in terms of utilisation and
allocation of resources. For this purpose, first, the data set used
to review and evaluate the proposed method in Section 5.1 is
introduced. Then in Section 5.2, the performance of the
proposed method on this data is reviewed and compared with
the DRF algorithm in terms of time and error rate.

A. Data Description

The dataset used in this research is related to version 3 of
Google cluster-usage traces. This trace dataset contains data
on eight distinct Borg cells during the month of May 2019 and
focuses on resource requests and usage. Borg supports two
types of resource requests: jobs (consisting of one or more
tasks) that specify the computations a user wishes to run, and
alloc sets (consisting of one or more allocs, or alloc instances)
that define a resource reservation in which jobs may be run.

In this study, the InstanceEvents table is used to achieve
the amount of resource requests. This table contains details
about instances' events (tasks and alloc instances). We use
fields “priority” and “resource_request” as attributes and
calculate the resource allocation to these requests based on the
DRF algorithm (Algorithm 1) as the amount of estimation.
Due to a large amount of data, we have used only 200,000
records of this dataset in our experiments. Fig. 1 depicts the
distribution of demanded resources (CPU & Memory) for the
selected data.

Fig. 1. Distribution of Demanded Resources

B. Performance Evaluation

Our assessments to evaluate the performance of A-DRF
and, in general, the success of the final goal of the project is
divided into two parts. In the first part, which is defined as an
internal evaluation, we evaluate the performance of all the

models used as the A-DRF method in comparison to each
other. In this section, the efficiency of A-DRF is evaluated by
performing experiments using the six regression methods
introduced in Section 2.3.

Fig. 2. Evaluate Mean Squared Error for different degree in Polynomial

Regression Model

The first method that has been studied is Linear
Regression method. The second is Polynomial Regression
model. To determine the best degree in this model, Mean
Squared Error had been examined for different degrees 1 to 5,
as shown in Fig. 2. As you can see in the picture, the minimum
error is related to grades 1 to 3, and we have chosen degree 2
to compare this method with other methods.

The third method that has been compared is the k nearest
neighbour method or KNN. The analyst must set the
neighbours' size, or it can be selected by cross-validation
(which was used) to find the size that minimises the mean-
squared error. Although this is an attractive method, it soon
becomes unfeasible as the problem's dimension grows,
especially when there are numerous independent features.
Also, choosing the appropriate k has a great impact on
building a proper model. Therefore, we evaluate Mean
Squared Error for different K in this model. As depicted in
Fig. 3, k with size 1 is the best number of neighbours to
evaluate the amount of resource allocation.

Fig. 3. Evaluate Mean Squared Error for different K in KNN Model

In these evaluations, methods Support Vector Regression
(SVR), Bayesian Regression, and Multi-Layer Perceptron
Regression (MLP) are also considered.

Before proceeding, it is necessary to mention that based on
the type of data set used for testing, machine learning
algorithms' performance varies. Therefore, to better evaluate
the performance of the models, we have used three different
types of test datasets.

1) Trained Test Data: In this type, a part of the data used

in the model training stage is given as test data to the model,

which, as shown in Fig. 4, almost all models have performed

better with this type of test data. This is a sign that the models

are over-fit.

2) Cross-Validation: In this type, a part of the training

data in each stage is kept and do not enter the training process

and test it as test data, and finally consider the average error

of all stages as the total performance error, but in fact, all test

data have already been given to the model as training data in

one of the steps. In this method, the over-fit is less that the

previous one. However, the evaluations are still not

completely reliable. It should also be noted that in both of

these test methods, the KNN model had the best performance,

but as you can see in Table I and Fig. 4, the error approaches

zero that indicates the model was fully familiar with the test

data.

3) Not Trained Test Data: The third type of test data is

completely new for the model, and the model did not know

about it in the training stage. In this method, the error rate

provides the actual performance of the model, which, as we

see, the SVR model was able to have the best performance.

You can also see that the KNN model differs significantly

from its performance in the two previous methods.

In the following, we calculated the training error,

validation error, and test error using the Mean Squared Error.

The results can be seen in Table I and Fig. 4. As shown in

Table I, the lowest train and validation error is related to the

KNN method, and the lowest test error is related to the SVR

method. But in the average case, the Bayesian method is

evaluated as the best method with the Least Mean Squared

Error.

TABLE I. COMPARE MEAN SQUARED ERROR IN DIFFERENT MACHINE LEARNING METHODS

Method Training Error Validation Error Test Error Average

Linear Regression 1.0983 0.3810 49.6582 17.0458

Polynomial Regression 1.0579 0.8000 49.0501 16.9693

KNN Regression 0.0001 0.0060 37.1554 12.3871

SVR 0.5455 0.9469 14.8967 5.4630

Bayesian Regression 0.5112 0.5824 14.9266 5.3400

MLP 1.0279 1.2072 14.9266 5.7205

Fig. 4. Compare Mean Squared Error in Different Machine Learning Methods

The second part of the evaluation, which is actually the

most important part of the project, is to evaluate the

performance of the proposed idea (A-DRF) in achieving the

goals. Our main goal has been to reduce the resource

allocation time in the DRF method, so we need to compare

the resource allocation time in the A-DRF method compared

to the DRF method.

In this section, we have calculated the amount of resource

allocation time in each of the models used as the A-DRF

method and compared it with the DRF method (Fig. 5). This

chart identifies two important issues for us. The first is the

time complexity of the DRF algorithm It has been talked

about before, and the second is the better performance of

most models used in the A-DRF method, which indicates that

the project goal has been achieved.

First, as can be seen from the Fig. 5, the DRF algorithm

has a high fluctuation performance in the resource allocation

process over the time. The most important reason for this is

that when you have a large amount of resources but the

number of requests for these resources is small and the

amount of this request is also low, the DRF algorithm face

problem. Because the DRF algorithm must continue the

process of calculating the dominant source for each request

until the full resource capacity is exhausted, and repeating

this process at each step is time-consuming, which is well

visible in the diagram and, as you can see, the highest time is

for intervals of less than five simultaneous requests in the

whole process. Then the oscillating performance of the DRF

continues, and more rises and downs are observed. This is

clearly visible in intervals 10, 20 and 30. To study this issue,

it is necessary to examine the amount of resource requests

along with the number of simultaneous requests. The study

shows that when the volume of resource requests was higher

in some periods, the DRF calculation process has depreciated

a larger share of the total resource capacity at each stage.

Fig. 5. Compare Runtime in Different Machine Learning Methods

As a result, the time of the calculation and resource

allocation process has been reduced, although note that in any

case, the performance of all A-DRF models except MLP has

been better. According to Fig. 5, in the DRF algorithm, after

the interval of 30 requests, the resource allocation time

decreases with a steep slope and reaches its minimum in the

40-interval. From here on, there is a direct relationship in the

number of requests. With the amount of resource allocation

time in the DRF algorithm, we see that as the number of

requests increases, the resource allocation time also increases

slowly. This reminds us that DRF will not perform well on a

large number of requests in terms of time as well. In contrast,

A-DRF has been able to reduce resource allocation time

drastically. And, in all models except MLP, it has seen a

uniform and impressive performance compared to DRF.

CONCLUSION AND FUTURE WORK

DRF algorithm is known as one of the most important

algorithms for fair resource allocation. However, DRF suffers

from autonomous decisions in calculating the dominant

resources for incoming requests from users. Therefore, we

have proposed a new A-DRF algorithm by considering this

feature and using machine learning algorithms. Based on the

experimental results, A-DRF shows great functionality of

autonomic in calculating dominant resources and maintaining

good fairness properties. But, the best characteristic of A-

DRF rather than DRF is to accelerate resource allocation,

especially in the huge amount of simultaneous requests.

In this project, we sought to improve the DRF algorithm

using artificial intelligence techniques. but it might be

interesting to take a step back for future work and look at

using machine learning techniques to find more creative

algorithms for resource allocation in the cloud. It may even

be interesting to predict resource requests through these

algorithms. For example, by considering a characteristic of

each user, such as the user's location (based on IP), type of

work, the relationship between features, etc., allocate

resources appropriate to it.

We can use a converter to explain our new approach for

scheduling to Hadoop and the Yarn scheduler in some cloud

platforms such as Apache Hadoop. So, for future work, the

resource allocation algorithm can be defined based on each

of the machine learning algorithms as a built-in policy that

can be changed by the user, such as select between KNN or

SVM, etc. We also plan to experiment with more parts of the

same and other available datasets as future work although we

had ran some experiments and the results were similar.

REFERENCES

[1] S. Nath, P. Bose, A. Mondal, and A.K. Das, “Cloud Allocation
Technique: A Comparative Study,” Fourth International Conference on
I-SMAC (I-SMAC), Palladam, India, pp. 235-238, 2020.

[2] H. Hamzeh, S. Meacham, K. Khan, K.T. Phalp, and A. Stefanidis,
“FFMRA: A Fully Fair Multi-Resource Allocation Algorithm in Cloud
Environments,” The 3rd IEEE Symposium on Software Engineering
for Smart Systems (SSESS), pp. 19-23, 2019.

[3] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I.
Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” inProc. USENIX NSDI, vol. 11, pp. 323–336, 2011.

[4] M. Ghanavatinasab, M. Bahmani, and R. Azmi, “SAF: Simulated
Annealing Fair Scheduling for Hadoop Yarn Clusters,” Journal of Grid
Computing, 2020.

[5] Y. Yao, H. Gao, J. Wang, B. Sheng, and N. Mi, “New Scheduling
Algorithms for Improving Performance and Resource Utilization in
Hadoop YARN Clusters,” IEEE Transactions on Cloud Computing,
2019.

[6] Y. Zhao, and H. Liu, “Cloud curriculum resource management
platform based on Hadoop,” Measurement and Control, 2020.

[7] J. Praveenchandar, A. Tamilarasi, “Dynamic resource allocation with
optimized task scheduling and improved power management in cloud
computing,” J Ambient Intell Human Comput, 2020.

[8] P. Shu-Jun, Z. Xi-Min, H. Da-Ming, L. Shu-Hui, and Z. Yuan-Xu,
“Optimization and Research of Hadoop Platform Based on FIFO
Scheduler,” Seventh International Conference on Measuring
Technology and Mechatronics Automation, China, pp. 727-730, 2015.

[9] I. Ullah, M.S. Khan, M. Amir, J. Kim, and S.M. Kim, “LSTPD: Least
Slack Time-Based Preemptive Deadline Constraint Scheduler for
Hadoop Clusters,” IEEE Access, vol. 8, pp. 111751-111762, 2020.

[10] J.B. Wang, J. Wang, Y. Wu, J.Y. Wang, H. Zhu,M. Lin, and J. Wang,
“A Machine Learning Framework for Resource Allocation Assisted by
Cloud Computing,” IEEE Network, vol. 32(2), pp. 144-151, 2018.

[11] D.A. Freedman, “Statistical Models: Theory and Practice,” Cambridge
University Press. vol. 26, 2009.

[12] J. Fan, I. Jianqing, “Local Polynomial Modelling and Its Applications:
From linear regression to nonlinear regression,” Monographs on
Statistics and Applied Probability, 1996.

[13] N.S. Altman, “An introduction to kernel and nearest-neighbor
nonparametric regression,” The American Statistician, vol. 46 (3), pp.
175–185, 1992.

[14] M. Awad, R. Khanna, “Support Vector Regression. Efficient Learning
Machines,” Apress, Berkeley, CA, pp. 67-80, 2015.

[15] CM. Bishop, and ME. Tipping, “Bayesian Regression and
Classification,” Computer and Systems Sciences, vol. 190, pp. 267-
285, 2003.

[16] F. Murtagh, “Multilayer perceptrons for classification and regression,”
Neurocomputing, vol. 2, pp. 183-197, 1991.

[17] A.A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, and
I. Stoica, “Hierarchical scheduling for diverse datacenter workloads,”
Proceedings of the 4th annual Symposium on Cloud Computing, vol.
4, 2013.

[18] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” ACM SIGCOMM
Computer Communication Review, vol. 44, pp. 455–466, 2014.

[19] K.K. Pulamolu, D.V. Subramanian, “Heuristics based resource sharing
with fairness in yarn: Hrsyarn,” International Journal of Pure and
Applied Mathematics, vol. 116(22), pp. 491–503, 2017.

[20] R. Grandl, M. Chowdhury, A. Akella, G. Ananthanarayanan,
“Altruistic scheduling in multi-resource clusters,” 12th Symposium on
Operating Systems Design and Implementation, pp. 65–80, 2016.

[21] S. Tang, B.S. Lee, and B. He, “Fair resource allocation for data-
intensive computing in the cloud,” IEEE Transactions on Services
Computing, vol. 11(1), pp. 20–33, 2016.

[22] Y.W. Cheng, S.C. Lo, “Improving fair scheduling performance on
hadoop,” International Conference on Platform Technology and
Service, IEEE, pp. 1–6, 2017.

