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Abstract— In the world of information technology and the 

Internet, which has become a part of human life today and is 

constantly expanding, Attention to the users' requirements such 

as information security, fast processing, dynamic and instant 

access, and costs savings has become essential. The solution that 

is proposed for such problems today is a technology that is called 

cloud computing. Today, cloud computing is considered one of 

the most essential distributed tools for processing and storing 

data on the Internet. With the increasing using this tool, the need 

to schedule tasks to make the best use of resources and respond 

appropriately to requests has received much attention, and in 

this regard, many efforts have been made and are being made. 

To this purpose, various algorithms have been proposed to 

calculate resource allocation, each of which has tried to solve 

equitable distribution challenges while using maximum 

resources. One of these calculation methods is the DRF 

algorithm. Although it offers a better approach than previous 

algorithms, it faces challenges, especially with time-consuming 

resource allocation computing. These challenges make the use of 

DRF more complex than ever in the low number of requests with 

high resource capacity as well as the high number of 

simultaneous requests. This study tried to reduce the 

computations costs associated with the DRF algorithm for 

resource allocation by introducing a new approach to using this 

DRF algorithm to automate calculations by machine learning 

and artificial intelligence algorithms (Autonomic Dominant 

Resource Fairness or A-DRF). 

Keywords— A-DRF, Resource Allocation, Cloud Computing, 

Fairness, Autonomic, Dominant Resource, DRF 

I. INTRODUCTION 

The allocation of resources in cloud computing is the most 
significant alarm. So many parameters will damage the virtual 
machine, such as time consumption, service quality, cost, etc., 
because the cloud is heterogeneous. When there are massive 
requests, it is necessary for a virtual machine to the allocation 
of resources in the shortest time [1].   

In the literature and the industrial fields, the need for an 
efficient and fair resource allocation in cloud systems has long 
been recognised. Cloud computing is a promising platform 
that provides on-demand and scalable computing resources, as 
well as usage-based payment. However, the IT world's 
increasing complexity has made Quality of Service (QoS) in 
the cloud a complex topic and an NP-hard challenge over the 
last decade [2].  

Fairness in resource allocation is recognised as a 
fundamental issue in computing systems, at least for the last 
two decades. The most conventional research in this area is 
computer networks in which the fair allocation of bandwidth 
among flows with various requirements, is a substantial 
concern [2-4]. By rapidly increasing the use of computing 
frameworks, resource allocation has become a more 
interesting and challenging concern. In modern computing 
frameworks, such as cloud computing, users show a 

significant interest in submitting multiple types of resources 
like CPU, RAM, etc. Therefore, fairly allocating resources, 
taking into account such diversity, is a complicated and NP-
hard problem [4-6]. 

One of the proposed methods for fair resource allocation 
is the DRF algorithm. DRF employs the advanced filling 
algorithm as well as a linear optimisation method to allocate 
resources among users. Additionally, DRF satisfies some 
desirable fairness properties such as the sharing incentive, 
strategy-proof, envy-free, resource monotonicity, and Pareto-
efficiency [3]. Among all these promising features, 
nonetheless, DRF suffers from autonomic decisions in 
calculating dominant resources for incoming requests. That is 
said, in each iteration, DRF tries to calculate dominant 
resources, which leads to increasing the response time in 
serving users’ requests and degrading Service Level 
Agreement (SLA) [2, 4]. DRF although originally published 
in 2011, is a method that is still heavily used inside Apache 
Hadoop and Yarn scheduler which is widely used in many 
systems. A comparison with other state-of-the-art methods is 
detailed in the literature review. 

To tackle this problem associated with DRF, we propose 
Autonomic DRF called A-DRF that empowers it to make real-
time decisions. A-DRF, employs machine learning algorithms 
to monitor and classifies incoming tasks. More details of this 
algorithm will be discussed in the following sections.  

The rest of this article is structured as follows. Section 2 
presents the literature review of this article. Section 3 
introduced related works. Section 4 describes the proposed 
method. Section 5 presents experimental result, including 
dataset data description and performance evaluation. Lastly, 
the conclusion and future work of this article are presented in 
Section 6. 

II. LITERATURE REVIEW 

This section first explains the cloud computing Service 
and its scheduling and resource allocation techniques and then 
reviews machine learning and its methods. 

A. Cloud Computing 

One of the newest platforms for mobile computing, IT 
enterprise, and business is Cloud Computing. Instead of 
purchasing resources such as Software, Memory, CPU, and 
Input or Output devices (I/O), etc. Because of dramatically 
increased cloud usage, a proper and effective allocation of 
resources has been led to a challenge. Diverse promising 
technologies were developed to enhance resource allocation 
process efficiency [7]. However, when the system is 
overloaded, there is some inefficiency regarding resource 
scheduling. So, to improve the performance of the resource 
allocation process, a proper scheduling algorithm is required.  



The following will introduce three basic methods in 
allocating resources, namely First Input First Output (FIFO) 
Scheduling, Capacity Scheduling, and Fair Scheduling, and 
then compare them. 

1) First Input First Output (FIFO) Scheduling: First 

Input First Output (FIFO) scheduling is a common 

scheduling algorithm that creates one job queue. Users 

submit all assignments to the queue according to the rule of 

first input, first output. This scheduler is easy to use and 

requires no configuration. However, it’s not appropriate for 

shared clusters. Because massive applications consume all of 

the resources in a cluster, each application must wait its turn. 

Therefore, this scheduling method covers neither multiple 

user management nor cluster sharing [8]. 

2) Capacity Scheduling: Yahoo created Capacity 

Scheduler (CS) to handle a large number of resource sharing 

requests. Equal resource allocation according to the queue 

length is the fundamental thought behind the Capacity 

Scheduler. Once the job is executing, the priority is not 

supported by this algorithm. Therefore, some high 

preemption jobs may suffer from a longer lag than their 

deadline [9]. 

3) Fair Scheduling: Another popular scheduler offered 

for cloud systems is the Fair Schedule (FS) that is used to 

allocate a proportionate amount of resources to all requests. 

If there is only one request in the system, all the cluster's 

resources can be used until entering another job. The fair 

scheduler allows shorter jobs to finish in proper time, whereas 

long jobs are not starving [9]. One of the internal policies that 

can be set up with Fair scheduler is Dominant Resource 

Fairness or DRF. In a system with many kinds of resources, 

it is a just policy for allocating resources. In other words, 

DRF is a scheduling technique with different types of 

resources that is similar to the fair scheduling strategy, except 

that a new parameter called dominant resource is used to 

specify the most requested resource type. The instance's 

dominant resource is the most frequent type of requested 

resources (job or user). DRF attempts to balance instances' 

dominant resource usages by making scheduling decisions 

[3]. As shown in Algorithm 1, DRF keeps track of both the 

total resources allocated to each user and each user's 

dominant share, si. DRF selects the client with the smallest 

dominant share at each stage among those with tasks ready to 

execute. DRF assumes that a user can perform several tasks, 

each with a separate demand vector, and it uses attribute D to 

represent the demand vector for the next task the user wishes 

to start. To keep it simple, the pseudo-code does not catch the 

completion of a job. In this scenario, the task's resources are 

extracted by the user, then DRF chooses the user with the 

least dominant share to execute her task once again. 

 
Algorithm 1: DRF [3] 

𝑅 = < 𝑟1, 𝑟2, … , 𝑟𝑛 >: Capacity of Resources. 

𝐶 = < 𝑐1 , 𝑐, … , 𝑐𝑛 >: Consumed Resources (initially 0). 

𝐷 = < 𝑑1, 𝑑2, … , 𝑑𝑚 >: Demanded Resources. 

𝐴 = < 𝑎1, 𝑎2, … , 𝑎𝑚 >: Allocated Resources (initially 0). 

𝑠𝑖  (i =  1: n) ∶ user 𝑖’s dominant shares, (initially 0). 

1.  pick user 𝑖 with lowest dominant share 𝑠𝑖 

2.  if  𝐶 +  𝐷𝑖  ≤  𝑅 then  

3.         𝐶 =  𝐶 + 𝐷𝑖  (update consumed vector) 

4.         𝐴𝑖 =  𝐴𝑖  +  𝐷𝑖  (update 𝑖’s allocation vector) 

5.         𝑠𝑖  =  𝑚𝑎𝑥𝑗=1
𝑚 {

𝑎𝑖,𝑗

𝑟𝑗
} 

6.  else  

7.         Return 𝐴 

8.  end if 

B. Machine Learning 

Machine learning focuses on applications that enhance 
their decision-making or predictive performance over time 
through learning from their past experiences. A machine 
learning algorithm is normally classified as supervised and 
unsupervised. the purpose of supervised learning is to predict 
the right answer for new data using training data that has been 
labelled with classes. In unsupervised learning, unlike 
supervised learning, there is no label for the data. The vast 
majority of algorithms in machine learning are supervised 
[10]. A machine-learning supervised algorithm can be used 
to accelerate resource allocation in cloud computing. 
Regression and Classification are two types of supervised 
machine learning techniques. The key difference between 
Regression and Classification algorithms is that we use 
Regression algorithms to predict the continuous values and 
use Classification algorithms to predict/classify the discrete 
values. A machine-learning supervised algorithm and 
specifically the regression type can accelerate resource 
allocation in cloud computing. Several types of regression 
analysis methods can be used based on the number of factors 
that contain the shape of the regression line, the number of 
independent variables, and the type of target variable. In the 
following, six regression methods have been examined in this 
project. 

1) Linear Regression: In machine learning, Linear 

regression is one of the most fundamental forms of 

regression. A predictive feature and a dependent feature are 

linked linearly in the linear regression model. When there are 

multiple independent variables in the data, linear regression 

is referred to as multiple linear regression models [11]. 

2) Polynomial Regression: Another type of regression 

analysis method in machine learning is Polynomial 

Regression, which is like Multiple Linear Regression with a 

bit of alteration. The relationship between dependent and 

independent features in polynomial regression is marked by 

the n-th degree [12]. 

3) KNN Regression: K Nearest Neighbours (KNN) 

Regression is another technique to estimate the relationship 

among independent features and the continuous result by 

averaging the same neighbourhood observations. The 

neighbourhood size must be arranged using cross-validation 

to choose the size that minimizes the mean-squared error (It 

will be seen later). A large K value is generally more accurate 

because it reduces overall noise; however, it comes at the cost 

of blurring the distinct boundaries within the feature space 

[13]. 

4) Support Vector Regression (SVR): Support Vector 

Machine (SVM) can also be used as a regression technique 

called SVR while retaining all of the algorithm's main 



characteristics, such as maximal margin. SVR is created 

according to the Support Vector Machine (SVM) concept and 

minimise the error by customising the hyperplane that 

maximises the margin while keeping in mind that some error 

is tolerable. Despite being less popular than SVM, SVR has 

been shown to be an effective tool for estimating real-value 

functions [14]. 

5) Bayesian Regression: Bayesian regression is a form of 

machine learning regression that employs the Bayes theorem 

to determine the regression coefficients values. After 

determining a model, the method calculates the model 

predictions and the posterior distribution of parameters. 

Bayesian Linear Regression is similar to both ridge and linear 

regressions, but it is more robust than basic linear regression. 

This statistical analysis enables the technique to specify 

complexity during training, resulting in a model with a lower 

likelihood of overfitting [15]. 

6) Multi-Layer Perceptron Regression (MLP) : MLP is a 

supervised learning algorithm capable of learning a non-

linear function estimator for classification or regression. The 

difference between MLP and logistic regression is that there 

can be one or more non-linear layers called hidden layers 

among the input and the output layer. The loss function for 

MLP regression scenarios is a square error, and the loss 

function for classification is cross-entropy, and it can operate 

for single and multiple goal values regression [16]. 

III. RELATED WORKS 

Many researchers have contributed by optimising the 
work-time and resources to improve resource schedulers' 
performance. Because multi-resource fairness in organisations 
has been an obstacle for hierarchical scheduling, within large 
organisations, DRF is extended for hierarchical scheduling 
[17]. However, if the number of nodes increases, the 
recalculation of dominant shares in each node would also need 
to be optimised. DRF, in particular, must sort request 
timestamps [3] and has an O(log n) complexity per allocation, 
where n is the number of users in each timestamp. It isn't easy 
to implement DRF at high speeds when n is big. 

In [18], Tetris has been presented as a new scheduler that 
achieves a lower MakeSpan by using multidimensional bin 
packaging. Although the job resource requirements can be 
unpredictable, it assigns the minimum amount of resources to 
the jobs with the minimum amount of remaining work. They 
used heuristics to provide both at the same time because 
fairness is incompatible with high efficiency. 

The purpose of [19] is to introduce HRSYARN (fair 
resource sharing based on Heuristics), a new resource 
scheduling that employs the Weighted Arithmetic Mean 
(WAM) to ensure fair resource sharing between tenants. 
Additionally, it includes a heuristic table that keeps track of 
resources that have been lent or leased to and from other 
tenants. In terms of resource usage efficiency and fairness, 
their scheduler outperforms other long-term YARN 
schedulers currently available. But there is no discussion or 
outcome regarding the scheduling of multiple resource types. 
Despite the fact that the majority of schedulers focus on short-
term optimisations through greedy decisions, Altruistic 
Scheduling [20] takes a long-term optimisation approach. 

They demonstrated that it performs similarly to DRF while 
reducing completion time. 

[21] is another research that works on long-term fairness. 
They introduced Long-Term Resource Fairness (LTRF) to 
allocate resources in a fair manner and Hierarchical Long-
Term Resource Fairness (H-LTRF) as LTRF extension to 
solve the problem of memoryless resource allocation. LTRF 
is limited to fair allocation to a specific resource entity, which 
can be considered a constraint. 

[22] some changes were made to the fair scheduling 
algorithm by considering fairness limitations to improve this 
algorithm. It proposed a system with several phases, including 
pool resource allocation, work classification, job sorting, job 
priority adjustments, and delay time adjustments.  

Based on the experimental result section (Section 5), our 
scheduling method, A-DRF, shows better performance than 
DRF. It has been demonstrated to decrease resource allocation 
run time because the time complexity of A-DRF is O(1) across 
to DRF with O(log n) which is a radical improvement. 

IV. PROPOSED METHOD 

The main idea of job scheduling is maximising the 
throughput and minimising the jobs' run time under different 
requirements and resource constraints. The DRF algorithm for 
job scheduling has a high time complexity to calculate 
resource allocation; In other words, every scheduling decision 
takes O(log n) time, while n is the number of users. This issue 
complicates the resource allocation process when either there 
is a large number of simultaneous requests or a low number of 
requests while a large capacity of resources is available. 
Therefore, we have tried to automate the DRF algorithm 
without changing the concept of the DRF algorithm by 
eliminating the time-consuming calculation process using 
machine learning techniques. So the A-DRF method has been 
proposed to significantly reduce resource allocation time 
while having an almost fair strategy. 

A-DRF employs machine learning algorithms to monitor 
and classifies incoming tasks. For this purpose, each training 
feature vector's solution to the resource allocation problem 
should be calculated in advance (In this study, the DRF 
algorithm is used). In A-DRF, and in each iteration, it is not 
required to calculate dominant resources; instead, A-DRF 
identifies dominant resources for incoming tasks based on the 
similarity, existing in the historical data which is obtained in 
the first iteration of requests. Then, when a new request 
arrives, using the trained model, the amount of resources 
allocated to that request is determined in a concise time. In 
other words, as shown in Algorithm 2, A-DRF consists of two 
steps. In the first step, we have a set of historical data to teach 
the resource allocation prediction model called the H set. This 
set includes the resource requests, the priority of the requests, 
and the amount allocated to these requests according to 
Algorithm 1. This dataset is then given to one of the machine 
learning methods, and then, we will have a trained model for 
allocating resources to future requests. In the second step, a 
new request is given to the trained model, and finally, the 
allotted amount is returned to that request. 

According to this algorithm, every scheduling decision in 
A-DRF takes O(1) time for any number of users. Experimental 
results have shown A-DRF provides better efficiency 
compared to the DRF method. 



Algorithm 2: A-DRF 

𝑅 = < 𝑟1, 𝑟2, … , 𝑟𝑛 >: Capacity of Resources. 

Stage 1: 

𝐻 = < 𝑋, 𝑌 >: Historical Data < 𝑋 : Resource Requests and 

their Priority, 𝑌 : Allocated Resources> 

M: Prediction Model 

𝑇𝑀 =  𝑀(𝐻): Training Model 

Stage 2: 

𝐷 = < 𝑑1, 𝑑2, … , 𝑑𝑚 >: New Demanded Resources. 

𝐴 = < 𝑎1, 𝑎2, … , 𝑎𝑚 >: Allocated Resources (initially 0). 

𝑇𝑀: Trained Model (was trained in previous stage) 

𝐴 = 𝑇𝑀(𝐷)  

Return 𝐴 

V. EXPRIMENTAL RESULT 

To evaluate the proposed mechanism, the performance of 
the A-DRF algorithm is examined in terms of utilisation and 
allocation of resources. For this purpose, first, the data set used 
to review and evaluate the proposed method in Section 5.1 is 
introduced. Then in Section 5.2, the performance of the 
proposed method on this data is reviewed and compared with 
the DRF algorithm in terms of time and error rate. 

A. Data Description 

The dataset used in this research is related to version 3 of 
Google cluster-usage traces. This trace dataset contains data 
on eight distinct Borg cells during the month of May 2019 and 
focuses on resource requests and usage. Borg supports two 
types of resource requests: jobs (consisting of one or more 
tasks) that specify the computations a user wishes to run, and 
alloc sets (consisting of one or more allocs, or alloc instances) 
that define a resource reservation in which jobs may be run.  

In this study, the InstanceEvents table is used to achieve 
the amount of resource requests. This table contains details 
about instances' events (tasks and alloc instances). We use 
fields “priority” and “resource_request” as attributes and 
calculate the resource allocation to these requests based on the 
DRF algorithm (Algorithm 1) as the amount of estimation. 
Due to a large amount of data, we have used only 200,000 
records of this dataset in our experiments. Fig. 1 depicts the 
distribution of demanded resources (CPU & Memory) for the 
selected data. 

 

Fig. 1. Distribution of Demanded Resources 

B. Performance Evaluation 

Our assessments to evaluate the performance of A-DRF 
and, in general, the success of the final goal of the project is 
divided into two parts. In the first part, which is defined as an 
internal evaluation, we evaluate the performance of all the 

models used as the A-DRF method in comparison to each 
other. In this section, the efficiency of A-DRF is evaluated by 
performing experiments using the six regression methods 
introduced in Section 2.3. 

 

Fig. 2. Evaluate Mean Squared Error for different degree in Polynomial 

Regression Model 

The first method that has been studied is Linear 
Regression method. The second is Polynomial Regression 
model. To determine the best degree in this model, Mean 
Squared Error had been examined for different degrees 1 to 5, 
as shown in Fig. 2. As you can see in the picture, the minimum 
error is related to grades 1 to 3, and we have chosen degree 2 
to compare this method with other methods. 

The third method that has been compared is the k nearest 
neighbour method or KNN. The analyst must set the 
neighbours' size, or it can be selected by cross-validation 
(which was used) to find the size that minimises the mean-
squared error. Although this is an attractive method, it soon 
becomes unfeasible as the problem's dimension grows, 
especially when there are numerous independent features. 
Also, choosing the appropriate k has a great impact on 
building a proper model. Therefore, we evaluate Mean 
Squared Error for different K in this model. As depicted in 
Fig. 3, k with size 1 is the best number of neighbours to 
evaluate the amount of resource allocation. 

 

Fig. 3. Evaluate Mean Squared Error for different K in KNN Model  

In these evaluations, methods Support Vector Regression 
(SVR), Bayesian Regression, and Multi-Layer Perceptron 
Regression (MLP) are also considered.  

Before proceeding, it is necessary to mention that based on 
the type of data set used for testing, machine learning 
algorithms' performance varies. Therefore, to better evaluate 
the performance of the models, we have used three different 
types of test datasets. 

1) Trained Test Data: In this type, a part of the data used 

in the model training stage is given as test data to the model, 



which, as shown in Fig. 4, almost all models have performed 

better with this type of test data. This is a sign that the models 

are over-fit. 

2) Cross-Validation: In this type, a part of the training 

data in each stage is kept and do not enter the training process 

and test it as test data, and finally consider the average error 

of all stages as the total performance error, but in fact, all test 

data have already been given to the model as training data in 

one of the steps. In this method, the over-fit is less that the 

previous one. However, the evaluations are still not 

completely reliable. It should also be noted that in both of 

these test methods, the KNN model had the best performance, 

but as you can see in Table I and Fig. 4, the error approaches 

zero that indicates the model was fully familiar with the test 

data. 

3) Not Trained Test Data: The third type of test data is 

completely new for the model, and the model did not know 

about it in the training stage. In this method, the error rate 

provides the actual performance of the model, which, as we 

see, the SVR model was able to have the best performance. 

You can also see that the KNN model differs significantly 

from its performance in the two previous methods. 

In the following, we calculated the training error, 

validation error, and test error using the Mean Squared Error. 

The results can be seen in Table I and Fig. 4. As shown in 

Table I, the lowest train and validation error is related to the 

KNN method, and the lowest test error is related to the SVR 

method. But in the average case, the Bayesian method is 

evaluated as the best method with the Least Mean Squared 

Error.

TABLE I.  COMPARE MEAN SQUARED ERROR IN DIFFERENT MACHINE LEARNING METHODS 

Method Training Error Validation Error Test Error Average 

Linear Regression 1.0983 0.3810 49.6582 17.0458 

Polynomial Regression 1.0579 0.8000 49.0501 16.9693 

KNN Regression 0.0001 0.0060 37.1554 12.3871 

SVR 0.5455 0.9469 14.8967 5.4630 

Bayesian Regression 0.5112 0.5824 14.9266 5.3400 

MLP 1.0279 1.2072 14.9266 5.7205 

 

Fig. 4. Compare Mean Squared Error in Different Machine Learning Methods 

The second part of the evaluation, which is actually the 

most important part of the project, is to evaluate the 

performance of the proposed idea (A-DRF) in achieving the 

goals. Our main goal has been to reduce the resource 

allocation time in the DRF method, so we need to compare 

the resource allocation time in the A-DRF method compared 

to the DRF method. 

In this section, we have calculated the amount of resource 

allocation time in each of the models used as the A-DRF 

method and compared it with the DRF method (Fig. 5). This 

chart identifies two important issues for us. The first is the 

time complexity of the DRF algorithm It has been talked 

about before, and the second is the better performance of 

most models used in the A-DRF method, which indicates that 

the project goal has been achieved. 

First, as can be seen from the Fig. 5, the DRF algorithm 

has a high fluctuation performance in the resource allocation 

process over the time. The most important reason for this is 

that when you have a large amount of resources but the 

number of requests for these resources is small and the 

amount of this request is also low, the DRF algorithm face 

problem. Because the DRF algorithm must continue the 

process of calculating the dominant source for each request 

until the full resource capacity is exhausted, and repeating 

this process at each step is time-consuming, which is well 

visible in the diagram and, as you can see, the highest time is 

for intervals of less than five simultaneous requests in the 

whole process. Then the oscillating performance of the DRF 

continues, and more rises and downs are observed. This is 

clearly visible in intervals 10, 20 and 30. To study this issue, 

it is necessary to examine the amount of resource requests 

along with the number of simultaneous requests. The study 

shows that when the volume of resource requests was higher 

in some periods, the DRF calculation process has depreciated 

a larger share of the total resource capacity at each stage.  



 

Fig. 5. Compare Runtime in Different Machine Learning Methods 

As a result, the time of the calculation and resource 

allocation process has been reduced, although note that in any 

case, the performance of all A-DRF models except MLP has 

been better. According to Fig. 5, in the DRF algorithm, after 

the interval of 30 requests, the resource allocation time 

decreases with a steep slope and reaches its minimum in the 

40-interval. From here on, there is a direct relationship in the 

number of requests. With the amount of resource allocation 

time in the DRF algorithm, we see that as the number of 

requests increases, the resource allocation time also increases 

slowly. This reminds us that DRF will not perform well on a 

large number of requests in terms of time as well. In contrast, 

A-DRF has been able to reduce resource allocation time 

drastically. And, in all models except MLP, it has seen a 

uniform and impressive performance compared to DRF. 

CONCLUSION AND FUTURE WORK 

DRF algorithm is known as one of the most important 

algorithms for fair resource allocation. However, DRF suffers 

from autonomous decisions in calculating the dominant 

resources for incoming requests from users. Therefore, we 

have proposed a new A-DRF algorithm by considering this 

feature and using machine learning algorithms. Based on the 

experimental results, A-DRF shows great functionality of 

autonomic in calculating dominant resources and maintaining 

good fairness properties. But, the best characteristic of A-

DRF rather than DRF is to accelerate resource allocation, 

especially in the huge amount of simultaneous requests. 

In this project, we sought to improve the DRF algorithm 

using artificial intelligence techniques. but it might be 

interesting to take a step back for future work and look at 

using machine learning techniques to find more creative 

algorithms for resource allocation in the cloud. It may even 

be interesting to predict resource requests through these 

algorithms. For example, by considering a characteristic of 

each user, such as the user's location (based on IP), type of 

work, the relationship between features, etc., allocate 

resources appropriate to it. 

We can use a converter to explain our new approach for 

scheduling to Hadoop and the Yarn scheduler in some cloud 

platforms such as Apache Hadoop. So, for future work, the 

resource allocation algorithm can be defined based on each 

of the machine learning algorithms as a built-in policy that 

can be changed by the user, such as select between KNN or 

SVM, etc. We also plan to experiment with more parts of the 

same and other available datasets as future work although we 

had ran some experiments and the results were similar. 

REFERENCES 

[1] S. Nath, P. Bose, A. Mondal, and A.K. Das,  “Cloud Allocation 
Technique: A Comparative Study,” Fourth International Conference on 
I-SMAC (I-SMAC), Palladam, India, pp. 235-238, 2020. 

[2] H. Hamzeh, S. Meacham, K. Khan, K.T. Phalp, and A. Stefanidis, 
“FFMRA: A Fully Fair Multi-Resource Allocation Algorithm in Cloud 
Environments,” The 3rd IEEE Symposium on Software Engineering 
for Smart Systems (SSESS), pp. 19-23, 2019. 

[3] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. 
Stoica, “Dominant resource fairness: Fair allocation of multiple 
resource types,” inProc. USENIX NSDI, vol. 11, pp. 323–336, 2011. 

[4] M. Ghanavatinasab, M. Bahmani, and R. Azmi, “SAF: Simulated 
Annealing Fair Scheduling for Hadoop Yarn Clusters,” Journal of Grid 
Computing, 2020. 

[5] Y. Yao, H. Gao, J. Wang, B. Sheng, and N. Mi, “New Scheduling 
Algorithms for Improving Performance and Resource Utilization in 
Hadoop YARN Clusters,” IEEE Transactions on Cloud Computing, 
2019. 

[6] Y. Zhao, and H. Liu, “Cloud curriculum resource management 
platform based on Hadoop,” Measurement and Control, 2020. 

[7] J. Praveenchandar, A. Tamilarasi, “Dynamic resource allocation with 
optimized task scheduling and improved power management in cloud 
computing,” J Ambient Intell Human Comput, 2020. 

[8] P. Shu-Jun, Z. Xi-Min, H. Da-Ming, L. Shu-Hui, and Z. Yuan-Xu, 
“Optimization and Research of Hadoop Platform Based on FIFO 
Scheduler,” Seventh International Conference on Measuring 
Technology and Mechatronics Automation, China, pp. 727-730, 2015. 

[9] I. Ullah, M.S. Khan, M. Amir, J. Kim, and S.M. Kim, “LSTPD: Least 
Slack Time-Based Preemptive Deadline Constraint Scheduler for 
Hadoop Clusters,” IEEE Access, vol. 8, pp. 111751-111762, 2020. 

[10] J.B. Wang, J. Wang, Y. Wu, J.Y. Wang, H. Zhu,M. Lin, and J. Wang, 
“A Machine Learning Framework for Resource Allocation Assisted by 
Cloud Computing,” IEEE Network, vol. 32(2), pp. 144-151, 2018. 

[11] D.A. Freedman, “Statistical Models: Theory and Practice,” Cambridge 
University Press. vol. 26, 2009. 

[12] J. Fan, I. Jianqing, “Local Polynomial Modelling and Its Applications: 
From linear regression to nonlinear regression,” Monographs on 
Statistics and Applied Probability, 1996. 

[13] N.S. Altman, “An introduction to kernel and nearest-neighbor 
nonparametric regression,” The American Statistician, vol. 46 (3), pp. 
175–185, 1992. 

[14] M. Awad, R. Khanna, “Support Vector Regression. Efficient Learning 
Machines,” Apress, Berkeley, CA, pp. 67-80, 2015. 

[15] CM. Bishop, and ME. Tipping, “Bayesian Regression and 
Classification,” Computer and Systems Sciences, vol. 190, pp. 267-
285, 2003. 

[16] F. Murtagh, “Multilayer perceptrons for classification and regression,” 
Neurocomputing, vol. 2, pp. 183-197, 1991. 

[17] A.A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, and 
I. Stoica, “Hierarchical scheduling for diverse datacenter workloads,” 
Proceedings of the 4th annual Symposium on Cloud Computing, vol. 
4, 2013. 

[18] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella, 
“Multi-resource packing for cluster schedulers,” ACM SIGCOMM 
Computer Communication Review, vol. 44, pp. 455–466, 2014. 

[19] K.K. Pulamolu, D.V. Subramanian, “Heuristics based resource sharing 
with fairness in yarn: Hrsyarn,” International Journal of Pure and 
Applied Mathematics, vol. 116(22), pp. 491–503, 2017. 

[20] R. Grandl, M. Chowdhury, A. Akella, G. Ananthanarayanan, 
“Altruistic scheduling in multi-resource clusters,” 12th Symposium on 
Operating Systems Design and Implementation, pp. 65–80, 2016. 

[21] S. Tang, B.S. Lee, and B. He, “Fair resource allocation for data-
intensive computing in the cloud,” IEEE Transactions on Services 
Computing, vol. 11(1), pp. 20–33, 2016. 

[22] Y.W. Cheng, S.C. Lo, “Improving fair scheduling performance on 
hadoop,” International Conference on Platform Technology and 
Service, IEEE, pp. 1–6, 2017.

 


