
I m pr o v e d  Att e nti v e P air wis e I nt er a cti o n ( A PI- N et)
f or Fi n e- Gr ai n e d I m a g e  Cl assi f c ati o n

E m ail: m u st afi z ur @ u m p. e d u. m y 

O n g  Z u  Yet 1 ,  Ta h a  H.  R ass e m2 ,  M d  Ar af at ur  R a h m a n3 , a n d  M.  M.  R a h m a n4

1 F a c ult y of  C o m p uti n g,  C oll e g e of  C o m p uti n g a n d  A p pli e d S ci e n c es,  U ni v ersiti  M al a ysi a P a h a n g, P e k a n,  M al a ysi a
E m ail: z u . y . o n g 5 2 8 @ g m a i l . c o m  

2 F a c ult y of S ci e n c e a n d  Te c h n ol o g y,  B o ur n e m o ut h  U ni v ersit y, P o ol e  B H 1 2 5 B B,  U K
E m ail: t a h a h u s s e i n @ i e e e . o r g  

3 U ni v ersit y of  W ol v er h a m pt o n, S c h o ol of  M at h e m ati cs a n d  C o m p ut er S ci e n c e,  W ol v er h a m pt o n,  W V 1 1 L Y,  U K

4 D e p art m e nt of  M e c h a ni c al  E n gi n e eri n g,  C oll e g e of  E n gi n e eri n g,  U ni v ersiti  M al a ysi a P a h a n g, 2 6 3 0 0  K u a nt a n,  M al a ysi a.

A bstr a ct — Fi n e- g r ai n e d cl assi f c ati o n is a c h all e n gi n g p r o bl e m
as o n e h as t o d e al  wit h a si mil a r cl ass of o bj e cts b ut  wit h v a ri o us
t y p es of v a ri ati o ns.  F o r  m o r e el a b o r ati o n, t h e y a r e al m ost si mil a r
a n d h a v e s u btl e diff e r e n c es, a n d a r e c o nf usi n g. I n t his st u d y,
ai r c r aft  will b e t h e f n e- g r ai n e d o bj e ct t o b e f o c us e d o n.  Ai r c r aft
w hi c h h as al m ost si mil a r s h a p es a n d p att e r ns c a n b e h a r dl y
r e c o g ni z e d e v e n f o r h u m a ns, es p e ci all y t h os e  w h o h a v e n n ot g o n e
t h r o u g h a n y t r ai ni n g. I n r e c e nt y e a rs, a l ot of p r o p os e d  m et h o ds
a d d r ess e d t o s ol v e t h e dif f c ulti es i n f n e- g r ai n e d p r o bl e ms b y
l e a r ni n g c o nt r asti v e cl u es f r o m a n i m a g e.  T his st u d y ai ms
t o i n c r e as e t h e a c c u r a c y of t h e  Att e nti v e  P ai r wis e I nt e r a cti o n
N et w o r k ( A PI- N et) b y i nt r o d u ci n g d at a a u g m e nt ati o n i nt o t h e
n et w o r k st r u ct u r e. S o m e of t h e p r e vi o us st u di es p r o v e d t h at d at a
a u g m e nt ati o n d o es h el p i m p r o v e a n et w o r k. S o, t his st u d y is
g oi n g t o  m o dif y t h e  A PI- N et  wit h diff e r e nt d at a a u g m e nt ati o n
s etti n gs. I n t his st u d y, v a ri o us s etti n gs h a v e b e e n i nt r o d u c e d t o
t h e  A PI- N et. S e v e r al e x p e ri m e nts h a d b e e n d o n e  wit h a si m pl e
m o di f c ati o n  w h e r e a p o rti o n of t h e t r ai n d at as et’s i m a g es  will
r a n d o ml y c o n v e rt i nt o g r e ys c al e i m a g es.  T h es e s etti n gs a r e, o nl y
b ri g ht n ess  & c o nt r ast 0. 2, o nl y g r a ys c al e 0. 3, o nl y g r a ys c al e 0. 5,
b ri g ht n ess  & c o nt r ast 0. 2  wit h g r a ys c al e 0. 3, a n d b ri g ht n ess
& c o nt r ast 0. 2  wit h g r a ys c al e 0. 5.  As a r es ult, t h e p r o p os e d
m o di f c ati o n a c hi e v e d  wit h 9 2. 7 4 %  wit h b ri g ht n ess  & c o nt r ast
0. 2, 9 2. 8 0 % o n b ri g ht n ess  & c o nt r ast 0. 2  wit h g r a ys c al e 0. 5,
a n d 9 2. 8 6 % o n b ri g ht n ess  & c o nt r ast 0. 2  wit h g r a ys c al e 0. 3.
W hil e g r a ys c al e 0. 3 al o n e a c hi e v e 9 3. 2 5 % a n d g r a ys c al e 0. 5 al o n e
a c hi e v e 9 3. 4 6 % c o m p a r e d  wit h t h e o ri gi n al r es ults  w hi c h r e a c h e d
9 2. 7 7 %.

I. I N T R O D U C T I O N

C o m p ut er visi o n s u p p orts a  wi d e r a n g e of a p pli c ati o ns s u c h
as  O pti c al  C h ar a ct er  R e c o g niti o n( O C R) [ 1], o bj e ct d et e cti o n
a n d r e c o g niti o n [ 2], visi o n bi o m etri cs [ 3],  m e di c al i m a gi n g,
s m art cit y, s m art tr a ns p ort, s o ci al  m e di a, et c.  O C R c o n v erts
dis pl a y e d or pri nt e d t e xt or h a n d writt e n t e xt i nt o di git al f or m.
Still, t h er e is a l ot of c h all e n g es f o u n d i n  O C R b e c a us e of t h e
e xist e n c e of diff er e nt l a n g u a g es, f o nts, st yl e, c o m pl e x r ul es of
l a n g u a g es, a n d h a n d writi n g [ 1].  Visi o n bi o m etri cs d e als  wit h
t h e p h ysi c al a n d b e h a vi or al c h ar a ct eristi cs of a n i n di vi d u al.
P h ysi c al c h ar a ct eristi cs s u c h as f a c e, iris, a n d f n g er pri nts, a n d
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b e h a vi or al c h ar a ct eristi cs s u c h as si g n at ur e  m o v e a n d g ait.
C h all e n g es i n visi o n bi o m etri cs s u c h as a l ar g e n u m b er of
i d e ntiti es, i ntr a p ers o n al v ari ati o n, e xtr a cti n g bi o m etri c i nf or-
m ati o n h a v e t o b e o v er c o m e t o  m a k e t h e s yst e m eff e cti v e [ 3].
O bj e ct d et e cti o n a n d r e c o g niti o n h a v e b e e n  wi d el y a p pli e d i n
m ulti pl e  w or ks.  T h es e i n cl u d es g e n eri c o bj e ct d et e cti o n [ 4],
[ 5], [ 6], [ 7], [ 8], s p e ci f c o bj e ct d et e cti o n s u c h as r o a d tr af f c
si g n d et e cti o n [ 9], p e d estri a n d et e cti o n [ 1 0], [ 1 1], v e hi cl e d e -
t e cti o n [ 1 2] a n d f a c e d et e cti o n [ 1 3].  W hil e t h es e als o e xt e n d e d
t h eir a p pli c ati o n i nt o t h e  m e di c al f el d s u c h as i n [ 1 4], [ 1 5],
[ 1 6].

R e c o g ni zi n g a n o bj e ct i n t h e i m a g e h as b e e n a l o n gst a n di n g
a n d c h all e n gi n g pr o bl e m i n c o m p ut er visi o n. F or s e v er al
d e c a d es, t h e i nt er est of r es e ar c h i n t his ar e a h as b e e n a cti v el y
i n v ol v e d.  T h e g o al of t his a p pr o a c h is t o d et e ct t h e o bj e ct i n t h e
i m a g e, d et er mi n e a n d cl assif y it t o t h e c orr e ct c at e g or y, cl ass,
et c. F or d e c a d es, t h e e m er g e n c e of d e e p l e ar ni n g i n c o m p ut er
visi o n h as r e v ol uti o ni z e d t o b e a bl e t o s ol v e t as ks s u c h as
i m a g e cl assi f c ati o n, i m a g e d et e cti o n, i m a g e s e g m e nt ati o n,
et c.  D e e p l e ar ni n g al g orit h ms s u c h as  C o n v ol uti o n al  N e ur al
N et w or ks ( C N Ns) utili z e t h e a d v a nt a g e of pr o p erti es s u c h as
l o c al c o n n e cti o ns, s h ar e d  w ei g hts, p o oli n g, l o a ds of l a y ers, a n d
c o m p ositi o n hi er ar c hi es [ 1 7]  m a d e si g ni f c a nt a d v a n c e m e nts i n
o bj e ct r e c o g niti o n. S e v er al d e e p l e ar ni n g i n cl u di n g  C N Ns o n
o bj e ct d et e cti o n a n d o bj e ct r e c o g niti o n ar e s u m m ari z e d i n [ 2].

Si n c e t h e r e m ar k a bl e br e a kt hr o u g h a c c o m plis h m e nt of  C N N
m a k es p ossi bl e i n vis u al r e c o g niti o n b y s o m e c o n v ol uti o n al
n et w or k s u c h as  R es N et [ 6],  D e ns e N et [ 1 8], i m a g e r e c o g niti o n
a c hi e v es hi g h er a c c ur a c y t h a n b ef or e, b ut, t h es e  m o d el oft e n
h a v e li mit e d c a p a biliti es i n r e c o g ni zi n g f n e- gr ai n e d c at e g ori -
c al i m a g es d u e t o t h eir hi g hl y c o nf usi n g a n d hi g h si mil arit y
c h ar a ct eristi cs. Fi n e- gr ai n e d vis u al cl assi f c ati o n ( F G V C)  will
b e t h e f o c us of t his st u d y.  T h e  m ai n o bj e cti v e i n f n e- gr ai n e d
r e c o g niti o n is t o ai m f or t h e s u btl e dis cri mi n ati v e d et ails
of s u b or di n at e c at e g ori es  wit hi n a b asi c l e v el c at e g or y a n d
diff er e nti at e t h e m. I n a n ot h er  w or d, f n e- gr ai n e d i m a g e cl as -
si f c ati o n d e als  wit h t h e o bj e cts of  m or e i ntr a- cl ass v ari a n c e
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than inter-class variance, and these images don’t have much
noticeable difference and almost look alike. Therefore, a lot
of works have to be done on top of these CNN to make
the fne-grained image classifcation even better. Several fne-
grained frameworks have been proposed in the past by fnding
prominent regions [19], [20]. A more recent proposed work
such as Yang et al. [21] uses a Navigator-Teacher-Scrutinizer
system as multi-agent cooperation arranged in multi-stages. In
an effort from Sun et al. [22] proposed a way to explicitly force
the network to fnd the subtle differences among closely related
class with a diversifcation block and a gradient boosting
loss. Some of the latest work such as Attention Pairwise
Interaction Network (API-Net) from Zhuang et al. [23] focus
on making the machine learning from not just one image,
but two. API-Net adaptively discovers contrastive clues from
two fne-grained images and attentively distinguish them via
pair interaction while another approach of branching into
multiple focus of an image in the Multi-branch and Multi-scale
Attention Learning for Fine-Grained Visual Categorization
(MMAL-Net) [24]

This paper will focus on fne-grained visual categorization
(FGVC). FGVC, on the other hand, differs from standard
object detection in that there is more intra-class variance
than inter-class variance. This suggests that there is not much
of a distinction between the categories, and they appear to
be nearly identical. As a result, discovering discriminative
features within similar classes is diffcult in this area of
research.

Aircrafts are considered one of the FGVC’s objects along
with other FGVC such as birds, pets, fowers, and cars. With
aircraft designs improving across decades, with various mod-
els and variants introduced and delivered from each aircraft
manufacturer, aircraft model recognition has been increasingly
challenging and requires more effort to achieve better accu-
racy. The structure of aircraft changes for different architecture
such as wing shapes, number of wings, engines, number of
wheels, etc. This particular variation does not share the same
with categories such as animals [21]. With custom design and
make for different airlines, a similar aircraft model for different
airlines will have different look(livery) or a different look for
a similar aircraft model will coexist in an airline.

In this paper, Section II explores some fne-grained visual
classifcation related works. The proposed work is explained
in Section III. Then, the experiments and results are explored
in Section IV. Finally, Section V concludes the paper.

II. RELATED WORK

There are a lot of research works have been proposed for
fne-grained visual classifcation. In this section, three recent
works that achieve superior or state-of-the-art performance in
the FGVC will be summarized and briefy mentioned some
methods.

The spatial transformer network [25] proposed by Jaderberg
et al. allows the neural network to be able to actively spatially
transform feature maps with no additional modifcation to
the optimization process. While multi-attention convolutional

neural network (MA-CNN) [20] generates parts from fea-
tures learning and classifes the image by each part by their
probability scores. Yang et al. [26] utilize the proposed self-
supervision mechanism to localize the features on the image
itself. The self-supervision is mainly driven by the Navigator-
Teacher-Scrutinizer agents which every agent supports each
other, was called NTS-Net. Zheng et al. then proposed the
trilinear attention sampling network(TASN) [27] uses attention
maps generated from feature maps and extract details from it
for further optimization. One recent work generates gates by
comparing mutual vector, which is learned from the semantic
difference between two input images, with individual vectors.
This gives the Attentive Pairwise Interaction Network(API-
Net) [23] the ability to capture information by pairwise
interaction between two images. Another recent work [28]
introduce an effcient end-to-end localization and achieved
a high recognition accuracy in the FGVC and achieved the
second highest accuracy in FGVC Aircraft after TBMSL-
Net [24]. TBMSL-Net or three-branch and multi-scale learning
use a raw image, object image generated through attention
object location module(AOLM), and parts image generated
through attention part proposal module(APPM) to train in
three different “branches”.

A. Attentive Pairwise Interaction Network (API-Net) [23]

This proposed API-Net by Zhuang, Wang, and Qiao [23]
inspired by human behavior instead of learning from one
image, we often compare image pairs of the same fne-grained
objects and learn the subtle differences between them. Thus,
API-Net, like humans, can constructively recognize two fne-
grained images by looking for constructive clues from them
and attentively distinguishing them by pair interaction [23].
These consist of three submodules in API-Net which play
important roles in progressively distinguishing pair image
input, they are mutual vector learning, gate vector generation,
and the pairwise interaction.

In the mutual vector learning module, a mutual vector Xm
is learned using a multilayer perceptron(MLP) by extracting
the feature vector from two input images X1 and X2. In gate
vector generation, further comparison between Xm with X1
and X2 to discover gi, which stores the distinctive of each
image, as a result of performing Hadamard product between
each image with Xm and gone through a sigmoid function.
Zhang et al. have the pairwise interaction inspired by human
behavior not only checking the image’s prominent parts but
also with distinct parts from the other image. This results
in two feature vectors being produced via residual attention
for each image from its gate vector and also from its pair’s
gate vector to make the clues more obvious for each image.
The authors then introduce a SoftMax classifer to predict the
image into each respective category with training loss to learn
more for API.

B. Effcient End-to-end Localization [28]

This proposed method by Hanselmann and Ney [28] elimi-
nates the approach used by other localization methods which



are ineffcient in the end-to-end setup. This proposed network
utilized the AttNet, AffNet, and classifcation network in
an end-to-end localization. Attention map derived from the
input image processed in AttNet will be passed to AffNet to
defne the bounding box. Then, bilinear sampling is applied
to do the cropping and then the cropped image is sent to the
classifcation network. Figure 1 shows the The architecture of
the End-to-End Localization model.

Fig. 1. The architecture of the End-to-End Localization model. Dashed arrows
show supervision signals for self-supervised losses thus no gradient fows
back [28]

AttNet in this End-to-end Localization model is lightweight
and effcient as stated by the author, and it will predict an
attention map for AffNet. AttNet will learn from its local loss.

C. Three-Branch and Mutil-Scale Learning (TBMSL-Net) [24]

The TBMSL-Net is designed like its given name, which
consists of three branches in the network design. Each branch
is like a standalone small network and can work on its own but
at the same time work closely with each other. The parameters
of the convolutional network and the fully connected network
in these three branches are shared and this helps increase the
classifcation accuracy and at the same time reduce calculation.
TBMSL-Net is not only able to recognize the discriminative
region but it can also be trained end-to-end. There consists
of two modules in TBMSL-Net, playing a very important
role in the network and at the same time connecting the
branches. The frst module is the Attention Object Location
Module(AOLM) and the second module is the Attention Part
Proposal Module(APPM). From the feature maps output from
the convolutional network of the input raw image, AOLM will
acquire the object’s location information and crop them from
the raw image. Then, the feature maps output from the object
image is gone through APPM to locate the information of
parts that consist of distinct features. Then the object image
is sent down to have it crop into part images. Figure 2 shows
the framework of the TBMSL-Net.

All three branches use cross-entropy loss as the classifca-
tion loss. The total loss, which is the addition of all three
losses, works together to allow classifcation predictions make
based on object characteristics or part’s fne-grained charac-
teristics. This optimizes the performance of the TBMSL-Net.

Fig. 2. The framework of the TBMSL-Net [24]

So far, TBMSL-Net achieved the best performance in FGVC-
Aircraft which is 94.5/

Beside the above explained related works, Table 1 summa-
rize the results of some of the state-of-the art works on on
FGVC-Aircraft.

III. PROPOSED DESIGN

A. Database

Aircraft, like birds and automobiles, are fne-grained ob-
jects. Identifying aeroplanes is diffcult for a computer due
to the numerous models and designs created over decades. A
benchmark dataset for FGVC is Fine-Grained Visual Classif-
cation of Aircraft (FGVC-Aircraft) [21]. This information was
used in the FGComp 2013 fne-grained recognition challenge,
which ran concurrently with the ImageNet Challenge 2013.
This collection contains 10,200 aeroplane photographs, includ-
ing 100 images for each of the 102 aircraft model variants.
About 60–70% of the total photographs will be used for
training, with the remaining images being used for testing.

B. Implementation

The Attentive Pairwise Interaction Network (API-Net) em-
ployed in this study for fne-grained aircraft image classif-
cation is discussed in this section. The structure of the API-
Net is described in depth frst, followed by the modifcations
made to the entire learning process using the API-Net. Instead
of learning the visual importance from a single image, the
Attentive Pairwise Interactive Network evaluates two images
at the same time and discovers the signifcant distinctions
between them, as mentioned in the literature. This design was
inspired by how humans frequently distinguish similar objects
by comparing image pairs to determine the small differences.
The original work used three different convolutional neural
network backbones in the network and released the API-Net
with the highest accuracy from those three separate CNN
implementations.

ResNet-50, ResNet-101, and DenseNet-161 are the back-
bones recommended in the literature for installation. The
degradation was addressed by ResNet by incorporating a deep
residual learning architecture into their research. ResNet’s core



TABLE I
LIST OF RECENT STATE-OF-ART PERFORMANCE WORK ON FGVC-AIRCRAFT

Paper Model Year Accuracy(%)

Three-branch and Mutil-scale learning for Fine-grained Image Recognition TBMSL-Net 2020 94.5
(TBMSL-Net) [24]

Fine-Grained Visual Classifcation with Effcient End-to-end Localization [28] AttNet & AffNet 2020 94.1

Learning Attentive Pairwise Interaction for Fine-Grained Classifcation [23] API-Net 2020 93.9

Weakly Supervised Fine-Grained Image Classifcation via Gaussian Mixture DF-GMM 2020 93.8
Model-Oriented Discriminative Learning [29]

Fine-grained Recognition: Accounting for Subtle Differences between Similar DB 2019 93.5
Classes [22]

Fine-Grained Visual Classifcation with Batch Confusion Norm [30] BCN 2019 93.5

ELoPE: Fine-Grained Visual Classifcation with Effcient Localization, Pooling ELoPE 2019 93.5
and Embedding [31]

Fine-Grained Visual Classifcation via Progressive Multi-Granularity Training of PMG 2020 93.4
Jigsaw Patches [32]

Channel Interaction Networks for Fine-Grained Image Categorization [33] CIN 2020 93.3

Graph-propagation based Correlation Learning for Weakly Supervised Fine- GCL 2020 93.2
grained Image Classifcation [34]

concept is an identity shortcut connection, which skips one or
more levels and performs identity mapping after each block,
with the identity output layered with the output of the stacked
layers. As depicted in Figure 3, the identifcation shortcut
connection building blocks.

Fig. 3. A residual building block

While on the other hand, Huang et al. proposed DenseNet
further exploits the shortcut connections and utilizing a dif-
ferent connectivity pattern. In DenseNet, it connects all layers
directly with each other comparing to ResNet which is done
only on a building block. Consequently, a layer will aggregate
the feature maps of all preceding layers as input.

IV. EXPERIMENTS AND RESULTS

A. Experiments without data augmentations

Figure 4 depicts the outcomes of research reported in the
literature. Using DenseNet-161 as the backbone CNN with 30
class sizes and 4 image size settings, the literature achieved the
greatest accuracy of 93.9 percent in FGVC-Aircraft. While the
second top result, 93.4%, was reached by using ResNet-101
as the backbone CNN with the same 30 class size and 4 image
size parameter. The literature achieved a little lower number,
93.0 percent, when ResNet-50 was used as the backbone CNN
with 30 class size and 4 image size confguration. When
comparing the literature’s settings to mine, the class/image size
setting remains 30/4, despite the literature’s use of ResNet-50.

We can reach 92.77% accuracy by using the literature’s
original ResNet-50 setup and only tweaking the class/image
size to 10 class size and 2 image size. This score will be used
as the baseline for the next experiment in this study.

Fig. 4. Comparison with The-State-of-The-Art on the FGVC Aircraft. Where
Extra S. stands for Extra Supervision

B. Experiment with data augmentations

We have obtained the benchmark score after obtaining the
API-Net score using ResNet-50 with 10/2 class/image size.
We will compare the results of each experiment with data
augmentation to the benchmark score in the Figure 4. It is
worth noting that the class size and image size will be set
to 10 and 2 in all subsequent trials. Begin by adjusting the
brightness and contrast to 0.2. This setting yielded a 92.74%
result, which is somewhat lower than the benchmark score.
After that, we added grayscale to the data augmentation in the
second experimental setting, which kept the brightness and
contrast values the same. When the grayscale value is set to
0.3, the system will select 30 percent of the whole training
image at random and convert it to grayscale for an epoch.

Fortunately, we can see that this setting yields a somewhat
higher result of 92.86%. In the second experiment, we kept
everything the same but changed the grayscale from 0.3 to
0.5 and got a reading of 92.8%. Things improved when we
deleted the brightness and contrast from the data augmenta-
tion, leaving only the grayscale. For one new trial, we used
grayscale 0.3, while for another experiment, we used grayscale



0.5. For the frst time, the resulting percentage exceeded 93%,
with 93.25% for grayscale 0.3 and 93.46% for grayscale 0.5.

Various studies have shown that data augmentation can
assist improve network accuracy, particularly on data-hungry
networks. As a result, in this study, we will integrate data aug-
mentation into API-Net to see if data augmentation applied to
the API-Net improves the network’s accuracy. The following
are examples of data augmentation used in this paper:

• Colour Jitter
• Grayscale
With these two data augmentation, we have empirically tried

with different setting on the API-Net. These settings are:
• The frst setting: Colour Jitter: Brightness = 0.2, Contrast

= 0.2, Grayscale = 0.3.
• The second setting: Colour Jitter: Brightness = 0.2, Con-

trast = 0.2, Grayscale = 0.3.
• The third setting: Colour Jitter: Brightness = 0.2, contrast

= 0.2.
• The fourth setting: Grayscale = 0.3.
• The ffth setting: Grayscale = 0.5
With a variety of settings planned for the API-Net, we had

the ability to see which ones helped boost accuracy the most.
Furthermore, in the MMAL-Netz [24], the colour jitter with
brightness = 0.2 and contrast = 0.2 has been shown to improve
accuracy. We utilised the grayscale settings of 0.3 and 0.5
to see which one might obtain the highest level of accuracy.
Figures 5 and 6 show the API-Net networks with colour jitter
and grayscale.

Fig. 5. API-Net with introduced colour jitter

Fig. 6. API-Net with introduced grayscale

Every image is frst scaled to 512×512 pixels, then cropped
with random cropping in training and centre cropping in
testing to 448 × 448 pixels. After that, the image is randomly
modifed in colour jitter, and the random image is turned
into grayscale. ResNet-50 was used as the CNN backbone,

and a random sample of 10 categories was taken in a batch,
with two images randomly selected from each category. The
literature’s architecture, including the completely connected
layer, is fully employed in the network architecture. Learning
rate, momentum, and weight decay are all fully transferred
from the literature. With a learning rate of 0.01, SGD has 0.9
momentum and 0.0005 weight decay. Using cosine annealing
as the function, the learning rate will be changed. We will
train for 100 epochs in each setting.

Table II shows the results of different setting in comparison
to the literature’s result under the similar CNN backbone.

TABLE II
COMPARISON OF DIFFERENT SETTING WITH THE LITERATURE’S ORIGINAL

VERSION

Backbone Class/Image Data Augmenta- Accuracy
size tion

ResNet-50 30/4* Nil 93.0*

ResNet-50 10/2** Nil 92.77**

Brightness = 0.2
Contrast = 0.2ResNet-50 10/2 92.86
Grayscale = 0.3

Brightness = 0.2
ResNet-50 10/2 Contrast = 0.2 92.8

Grayscale = 0.5

Brightness = 0.2
ResNet-50 10/2 92.74Contrast = 0.2

ResNet-50 10/2 Grayscale = 0.3 93.25

ResNet-50 10/2 Grayscale = 0.5 93.46

ResNet-101* 30/4* Nil 93.4*

DenseNet-161* 30/4* Nil 93.9*

*The literature’s setting on class/image size and the respective accuracy
**The literature’s setting with class/image size changed to 10/2 and the
respective accuracy. This result will be the benchmark of the following work
in the study

We can see that data augmentation increases overall accu-
racy marginally, as indicated in Table II. In the table, we can
see a special value of 92.74%, which is a tiny decrease from
the previous API-Net option of 10/2 class/image size, which
was 92.77%. Furthermore, we see that data augmentation with
a brightness and grayscale pair does not result in an accuracy
increase of more than 93.0%, although data augmentation with
grayscale alone is capable of exceeding 93.0% accuracy. It is
a little unusual that adjusting the brightness and contrast of
the images won’t help the API-Net, but introducing grayscale
will. With this result, we can demonstrate that brightness and
contrast do not aid API-Net training. While, if we introduce
a longer training time, which will be our future work, the
accuracy may be higher than the one shown in the table.

V. CONCLUSION

In this study, data augmentation was added to an existing
CNN for FGVC-Aircraft. API-Net is a pre-existing CNN that
was used in this investigation. The study concluded that data
augmentation does help to improve the API-Net when tweak-
ing with various data augmentation settings. Brightness and



contrast adjustment, on the other hand, are ineffective in the
research context, and they have reduced the network’s potential
to achieve higher accuracy. Grayscale, on the other hand, aids
in boosting the API-accuracy. Net’s API-Net requires a huge
load of GPU to train using the settings in the literature, hence
this work is primarily constrained by the hardware setup.
Although we can demonstrate the improvement of the API-
Net in this study, we can push the API-accuracy Net’s higher
than the literature’s if given a more powerful machine.
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