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Abstract

Point-of-care remote photoplethysmography (rPPG) devices that uti-
lize low-cost RGB cameras have drawn considerable attention due to
their convenience in contactless and non-invasive vital signs monitor-
ing. In rPPG, sufficient lighting conditions are essential for obtaining
accurate diagnostics by observing the complete signal morphology. The
effects of illuminance intensity and light source settings play a signif-
icant role in rPPG assessment quality, and it was previously observed
that different lighting schemes result in different signal quality and mor-
phology. This study presents a quantitative empirical analysis where
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2 Effects of Illuminance Intensity

the quality and morphology of rPPG signals were assessed under dif-
ferent light settings. Participants’ faces were exposed to the white LED
spotlight, first when the sources were installed directly behind the
video camera, and then when the sources were installed in a cross-
polarized scheme. Hence, the effect of specular reflectance on rPPG
signals could be observed in an increasing projection. The signal quali-
ties were analyzed in each intensity level using a signal-to-noise (SNR)
ratio metric. In 3 of 7 participants, placing the video camera on the
same level as the light source led to signal quality loss of up to 3
dB for the range 30-60 Lux. In addition, two fundamental morpho-
logical features were analyzed, and the derivative-related feature was
found to be increasing with illuminance intensity in 6 of 7 participants.

Keywords: remote photoplethysmography (rPPG), vital signs
measurements, heart rate, digital health, health-care applications

1 Introduction

Advancements in mobile technologies have led to a new era in transferring
and processing a wide range of data types Abd Elaziz et al (2021); Attiya
et al (2022). Integration with smart devices facilitated access to healthcare ser-
vices Acar et al (2019). Recent advancements in image processing have made
the extraction of vital signs from remote, contactless, photoplethysmographic
(rPPG) signals possible Rouast et al (2018). The fundamental principle gov-
erning rPPG is similar to that of contact PPG; they both exploit the light
absorption differences of oxygenated and deoxygenated hemoglobin in capil-
lary blood vessels Kamshilin and Margaryants (2017). While PPG primarily
uses visible and near-infrared light sources, rPPG merely acquires visible wave-
length as modern video cameras compose images in the RGB color channels
Sun and Thakor (2016); Allen (2007). The rPPG measures the blood that
circulates through the facial capillaries in every heartbeat resulting in imper-
ceptible color variations on the skin, and modern video cameras can capture
those variations under sufficient ambient conditions. It has been previously
shown that the green channel has the most robust pulse information amongst
the three RGB channels since the hemoglobin absorption is at its highest under
green light Verkruysse et al (2008). This is the main reason why we attempted
to investigate the effects only on the denoised green channel.

Different methods have been proposed for generating pulse signals in rPPG.
These methods have recently been classified under three subsections as design-
based, model-based, and blind source separation methods Sinhal et al (2020).
Design-based methods involve the algorithms where the spatial representation
is redefined, and they usually do not require a priori information of skin tone
or illuminant Eaton et al (2018); Xu et al (2014). However, they are mostly
dependent on the number of pixels in the region of interest (ROI) mask Wang
et al (2016b). Model-based methods, on the other hand, are very useful for
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motion robustness de Haan and van Leest (2014). Chrominance-based method
(CHROM) was introduced which builds two orthogonal chrominance signal
components (X,Y); then it generates the pulse signal as combinations of X,Y
de Haan and Jeanne (2013). Blind source separation methods are also effective
when the original RGB signals are contaminated with noise or motion arti-
facts. Their principle is to exploit the signals as statistical data sets rather than
to process them in a time or a frequency domain directly. JADE-ICA algo-
rithm was successfully implemented in rPPG for heart rate (HR) predicting
with 12 participants Poh et al (2010). Later, component analysis techniques
were improved and tailored in rPPG applications for better accuracy Tsouri
et al (2012); Macwan et al (2019). However, in cases where subjects have less
or no motion at all, there is usually no need to use source separation meth-
ods for heart rate estimation as the raw signals have already sufficient pulse
information.

The quality of an rPPG signal depends on several things such as illuminance
level, type of camera lenses, skin type, skin color, environmental conditions,
and make up Wang and Shan (2019). However, it is essential to consider the
principles of skin reflection properties prior to collecting data for measure-
ments. Wang et al. described the skin reflection model in detail and explained
how the pulsatile information could be interpreted mathematically as depicted
in Figure 1 Wang et al (2016a). Their analysis was purely based on the dichro-
matic reflection model Tominaga (1994). The skin pixels of RGB channels were
defined as a time-varying function as in Equation 1;

Ck(t) = I(t) ∗ [vs(t) + vd(t)] + vn(t) (1)

where I(t) represents the luminance intensity, vs(t) represents the specu-
lar reflection, vd(t) represents the diffuse reflection, and vn(t) represents the
noise induced by the camera sensor. The specular reflection phenomenon was
described as a mirror-like effect which has no pulsatile information whatso-
ever. However, diffuse reflection is directly related to the light absorption of
the skin, and it contains information regarding blood volume changes.

Light variance is one of the common challenges in rPPG and researchers
have attempted to improve light tolerance with different methods. Jeanne et
al. presented a method using infra-red reference light for remote HR measure-
ments where the ambient light conditions are highly dynamic Jeanne et al
(2013). Li et al. implemented an adaptive least mean square filter in their algo-
rithm to reduce the noise induced by light variation for HR measurements Li
et al (2014). Tulyakov et al.’s method calculates the HR while simultaneously
determining suitable ROI depending on the environmental conditions such as
motion or illumination variation Tulyakov et al (2016). Wu et al. proposed
a neural network-based method for denoising pulse signals of a driver under
ambient traffic lights Wu et al (2019). In addition to the techniques proposed
to overcome those challenges regarding light conditions, Blackford et al. pro-
posed a spectroscopy analysis to investigate the spectral properties of blood
volume pulses Blackford et al (2018).
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Fig. 1: Skin Reflection Model explains the reflection properties of skin, and it
helps to justify the pulsatile information extracted from rPPG.

One of the significant effects of light variance is on rPPG pulse morphol-
ogy. Unlike the conventional PPG, rPPG signals do not have a characteristic
pulse morphology as it varies according to several factors (e.g., lighting, sensor,
recording device). This situation calls some of the vital signs measurements in
question (i.e., blood pressure [BP]). Especially for BP measurements, an accu-
rate feature extraction process is essential when training the artificial neural
networks being used Luo et al (2019). The studies published so far do not
prove that the rPPG features are reliable enough to be fed into the neural net-
works for running solid health applications/algorithms. This is one of the main
reasons why all aspects of the rPPG signal morphology must be studied thor-
oughly; the ambient light conditions (light settings, light intensity), subject’s
skin tone (as this may have an effect on the reflectivity, which is related to the
quality of the pulsatile information taken from the rPPG measurement), and
skin conditions (cleanness, oil, make-up, local melanin variations, etc.).

Several physiological models have been proposed in cPPG to explain
the light interaction in reflective photoplethysmography Kamshilin and Mar-
garyants (2017). While each model has its own advantages in justifying the
signal morphology and behavior, more empirical analyses are needed for
hypothesizing similar models in rPPG-based sensing applications. The findings
in this study, therefore, are essential to find the answers of the following ques-
tions; (1) How does the illuminance intensity affect the rPPG signal quality?
(2) Does the illuminance intensity affect the morphological features in rPPG,
and if so, to what extent and what are the associated experimental challenges?

Although there are studies associated with the effects of light intensity
variations on PPG signals, this is the first attempt to quantify the signal
quality under different illuminance intensities systematically. We established
two experimental setups and analyzed the illuminance intensity effects on 42
rPPG recordings with a signal quality metric and two morphological features.
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2 Methods

2.1 Experimental Setup & Participants

The experiments were carried out in the physiology laboratory in Bournemouth
University (BU) where the Research Panel of BU approved the study. Seven
Caucasian volunteers aged between 24 and 38 participated in the study. Darker
skin tones are excluded for this trial as they require different biases and
assumptions when processing rPPG signals Nowara et al (2020). The informed
consent of each participant was obtained prior to the sessions. They were
priorly requested not to wear make-up as such a factor requires additional
assumptions and knowledge such as the type or quantity of the material that
covered the specific parts of the face Wang and Shan (2019).

First, the subjects’ faces were exposed to 30-60-100 lux respectively in a
direct scheme as shown in Figure 2a; then they were exposed to 60-90-130 lux
in a cross-polarized scheme as shown in Figure 2b. The illuminance ranges
were so selected because our empirical pre-studies had shown that those lux
levels would not irritate and induce discomfort to the human eye under those
settings.

Controlled lighting equipment (Neewer 480 LED Panel Light) was used as
the illuminant source. Illuminance was measured with a lux meter installed
directly in front of the participant’s face (Urceri MT-912 Light Meter). The
RGB video camera was a CCD Sony DSCH300, and it was stabilized on an
adjustable tripod. No additional lenses were attached, and no artificial effects
were used. The distance between the participant and lighting equipment was
70 cm. The position of the equipment was so arranged that the regions of
interest were not exposed to any potential shadow fall induced by the rays of
light. As Kwon et al. and Lempe et al.’s analyses showed that the best ROI
for spatial averaging is the cheeks, we manually created ROI masks for each
participant Lempe et al (2013); Sungjun Kwon et al (2015). Participants were
asked to keep as still as possible throughout the sessions. The recordings were
taken in 30 frames per second, and video lengths were 30 seconds for each
illuminance level.

2.2 Signal Analysis

All signal processing operations were carried out in custom-written scripts in
MATLAB (MathWorks, Natick, Massachusetts, USA). The rPPG pulse data
were presented as the normalized green channel only by taking the spatial
average of the ROI pixels in every frame. This can be formalized as in the
Equation 2 where µ(Gi) is the spatial mean in time domain. The multipli-
cation of -1 is due to the need for inverting the signal as the video camera
rPPG exhibits a reflectance oximetry behaviour, and it needs to be flipped
over after normalization. In order to observe the morphological changes, a 3rd
order Savitzky-Golay filter was used because of its better transient capturing
properties for removing high frequency components from all the signals.
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6 Effects of Illuminance Intensity

(a)

(b)

Fig. 2: In direct scheme (a), video camera and lighting were in the same
horizontal plane. In cross-polarized scheme (b), 45 degree was set between the
camera and lighting.

Gn = −1 ∗ Gi

µ(Gi)
(2)

We have implemented De Haan et al.’s signal-to-noise ratio (SNR) metric
to assess the usability and quality of rPPG signals de Haan and Jeanne (2013).
The 30-second filtered temporal datasets were assessed in frequency domain.
This method calculates the energy around the harmonics and remaining por-
tion in the power spectrum; then an SNR score in dB is presented by taking
the ratio of both. Signal and noise calculations are formulated as in Equation
3 and 4 where S(f) represents the spectrum and Ut(f) represents the binary
template.
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Signal =

15∑
f=0.2

(Ut(f)S(f)) (3)

Noise =

15∑
f=0.2

((1 − Ut(f))(S(f))) (4)

SNR score = 10 log10

(
Signal

Noise

)
(5)

Since all the participants were asked to keep as still as possible during
the recordings, the predictions extracted from the frequency domain were
consistent and the spectra were clean.

3 Results

Pulse signal qualities were assessed using the SNR metric to see the illuminance
intensity effect on rPPG signals. The SNR scores of the normalized green
channel are presented in Figures 3a and 3b.

Beside the signal quality, the two main features of the rPPG signals were
analyzed to observe the change in morphology in the normalized green chan-
nel. The first feature is the time in seconds between the maxima of the first
derivative of the pulse signal (where it rises rapidly) and the crest point. This
is shown with a participant image in Figure 4 as “Length A.” The second fea-
ture, on the other hand, is simply the amplitude of the pulse signal; it is the
distance in y axis between the start and crest points of the pulse. This is shown
as “Length B.” Signal morphology analyses were made by detecting each pulse
in the time domain. The values presented in tables are the mean values of the
features extracted from each pulse in 30-second recordings. Standard devia-
tion (SD) for the pulse amplitude in each intensity level was within the range
of 0.1-0.2, and SD for the time between the maxima of the first derivative
of the pulse signal and the crest point was within the range of 0.01-0.1. The
only linearity observed in morphology analyses was in the distance between
the maxima of the first derivative of the pulse signal and crest point. In 6 par-
ticipants, the feature “Length A” increased with the illuminance intensity as
can be followed in Table 1. The pulse amplitude did not exhibit a linearity
in distance between the start and crest points of the pulse (Length B) in any
case whatsoever. However, in the cross-polarized scheme, the amplitudes have
been shown to vary by up to 0.1 (RGB colour unit), and in direct scheme, they
have been shown to vary by up to 0.13 (RGB colour unit) in the y axis.

4 Discussion

The prevailing opinion in remote measurements is that “the illuminance inten-
sity will affect the rPPG assessment positively”, however, our results have
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8 Effects of Illuminance Intensity

shown that this notion is likely to be refuted when the video camera is placed
within the same horizontal direction as the light source. The effect of the light
setting in the direct scheme where there is zero angle between the light source
and video capturing device, might reduce the usability of the rPPG signals.
Figure 3b shows how such an inappropriate setup design could introduce an
unpredictability in the pulse signal quality where high illuminance increased
the mirror-like effect in 3 of the participants.

(a)

(b)

Fig. 3: SNR scores of the green channel in cross-polarized scheme form an
increasing projection in all participants (a). When the video camera and light
source are in the same horizontal plane with no angle, SNRs exhibited an
unpredictability in 3 participants (b).

The SNR analyses have shown that the readability of the pulsatile informa-
tion increases with higher illuminance intensity where the illuminant is set up
in a cross-polarized scheme. When there is no angle between the illuminant and
the video recording device (i.e., direct scheme), the mirror-like phenomenon of
the skin-light interaction (i.e., specular reflectance) engenders a signal quality
loss and this potentially might lead to an inaccurate rPPG assessment in which
case an advanced algorithm can be implemented to the application Jeanne et al
(2013). Though the sample size was small in this trial, these findings show that
the raw signal morphology concept needs more detailed spectroscopy studies
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Fig. 4: Once the RGB channel data were extracted from the same region in all
participants, the green channel was filtered with a smoothing Sav-Gol. Finally,
morphological features were extracted.

Cross-Polarized Scheme Direct Scheme
60 Lux 90 Lux 130 Lux 30 Lux60 Lux100 Lux

Participant 1 0.1836 0.2266 0.1946 0.1941 0.2395 0.196
Participant 20.18910.2377 0.2753 0.1768 0.2378 0.2108
Participant 30.22190.2267 0.2472 0.2381 0.2079 0.2213
Participant 40.31610.3233 0.3596 0.3587 0.2709 0.2834
Participant 50.22610.2229 0.244 0.1202 0.2454 0.1883
Participant 6 0.167 0.1756 0.1905 0.2209 0.1908 0.1966
Participant 7 0.216 0.2451 0.2706 0.2377 0.2617 0.2482

Table 1: Average Length A. The time in seconds between the maxima of the
first derivative of the pulse signal and the crest point.

to improve understanding of the rPPG theory better. The factors to be inves-
tigated might be the types of camera (whether it is an RGB color model or
not), and the color sensors embedded in the recording device (CCD, CMOS
or a combination of those technologies). The major limitation in our study,
on the other hand, was the illuminance intensity range. Safety was an impor-
tant matter, and it was decided not to risk causing any eye discomfort to the
participants. However, with light-blocking glasses, the study can be extended
in the future with different light wavelengths. Also, the sample size could be
extended including darker skin tones. It is still not clear that if rPPG fea-
tures carry vital information about blood pressure as cPPG features do Rong
and Li (2021). We expect this study to initiate a trend in which morphologi-
cal features are deeply investigated from the spectroscopic and light intensity
aspects.

5 Conclusion

Remote photoplethysmography (rPPG) signals carry vital information about
human cardiovascular dynamics. Here, we investigated how the green chan-
nel in rPPG reacts to illuminance intensity change in the ranges 30-60-90 and
60-90-130 lux. We reported signal qualities in SNR metric and analyzed the
morphological changes by observing the two main features of photoplethysmog-
raphy signals in two different experimental setups. It was hypothesized that the
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specular reflectance leads to signal quality loss in rPPG signals, and we found
that in the range of 60-130 lux, which is considered to be low level in compari-
son with a typical office environment, illuminance intensity can affect the SNR
up to 7 dB. The derivative-related morphological feature, on the other hand,
was observed to vary up to 0.1 (RGB color unit) in both settings. Additionally,
linearity was observed when the light setting was in a cross-polarized scheme.
This study confirms that the placement of light sources significantly affects
rPPG assessments and must be carefully considered when designing such an
application in rPPG. The results encourage us to propose more detailed stud-
ies to determine the best pulse generation methods in various environmental
conditions and ambient settings to get an accurate rPPG assessment. In future
works, we plan to extend the study where more volunteers from multiple back-
grounds are recruited, especially females and the elderly. Thus we will be able
to investigate not only the effects of skin homogeneity but also the skin color
on rPPG signals as well.
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