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Abstract

Web bots are programs that can be used to browse the web and perform different types

of automated actions, both benign and malicious. Such web bots vary in sophistication

based on their purpose, ranging from simple automated scripts to advanced web bots

that have a browser fingerprint and exhibit a humanlike behaviour. Advanced web bots

are especially appealing to malicious web bot creators, due to their browserlike fingerprint

and humanlike behaviour which reduce their detectability.

Several effective behaviour-based web bot detection techniques have been pro-

posed in literature. However, the performance of these detection techniques when target-

ing malicious web bots that try to evade detection has not been examined in depth. Such

evasive web bot behaviour is achieved by different techniques, including simple heuris-

tics and statistical distributions, or more advanced machine learning based techniques.

Motivated by the above, in this thesis we research novel web bot detection techniques

and how effective these are against evasive web bots that try to evade detection using,

among others, recent advances in machine learning.

To this end, we initially evaluate state-of-the-art web bot detection techniques against

web bots of different sophistication levels and show that, while the existing approaches

achieve very high performance in general, such approaches are not very effective when

faced with only advanced web bots that try to remain undetected. Thus, we propose a

novel web bot detection framework that can be used to detect effectively bots of varying

levels of sophistication, including advanced web bots. This framework comprises and

combines two detection modules: (i) a detection module that extracts several features

from web logs and uses them as input to several well-known machine learning algo-

rithms, and (ii) a detection module that uses mouse trajectories as input to Convolutional

Neural Networks (CNNs).

Moreover, we examine the case where advanced web bots utilise themselves the re-

cent advances in machine learning to evade detection. Specifically, we propose two novel

evasive advanced web bot types: (i) the web bots that use Reinforcement Learning (RL)

to update their browsing behaviour based on whether they have been detected or not,

and (ii) the web bots that have in their possession several data from human behaviours
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and use them as input to Generative Adversarial Networks (GANs) to generate images of

humanlike mouse trajectories. We show that both approaches increase the evasiveness

of the web bots by reducing the performance of the detection framework utilised in each

case.

We conclude that malicious web bots can exhibit high sophistication levels and com-

bine different techniques that increase their evasiveness. Even though web bot detection

frameworks can combine different methods to effectively detect such bots, web bots can

update their behaviours using, among other, recent advances in machine learning to in-

crease their evasiveness. Thus, the detection techniques should be continuously updated

to keep up with new techniques introduced by malicious web bots to evade detection.

Keywords: web bots, web bot detection, evasive web bots, advanced web bots,

mouse movements, mouse biometrics, humanlike behaviour, machine learning, convolu-

tional neural networks, generative adversarial networks, reinforcement learning
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1 Introduction

1.1 Motivation

1.1.1 Web Bots

Web bots are an integral part of the web, since they allow the automation of several vital

tasks, some of which would have otherwise been impossible to perform. In particular,

they are responsible for numerous browsing automation processes, such as web index-

ing, website monitoring and testing (validation of hyperlinks, HTML code, and site func-

tionality), data extraction for commercial purposes, and feed fetching web content. Some

of these tasks require web bots to visit web servers repeatedly and, in some cases, for

prolonged periods of time. As a result, web bots generate a huge amount of web traf-

fic; based on Imperva (2021), web bots accounted for 40.8% of the total traffic that they

monitored.

Early versions of web bots were simple scripts. However, the need from web bots

to perform more advanced automation tasks, including performing mouse movements

and keystrokes, resulted in the creation of browsing automation software. This software

can be used to perform actions similar to human visitors, such as mouse over actions,

clicking on items, filling forms, etc. Two of the most well known browsing automation

software are Selenium1 and Puppeteer.2 Both tools support the main functionalities of a

browser, including mouse movements, clicks, and keystroke actions.

Web bots that are based on browsing automation software can be configured to have

a fingerprint that is very close to a browser one (i.e., they cannot be distinguished from

browsers using special scripts that collect hardware and software information about the

device, which would normally reveal the browsing automation software). For example, the

Puppeteer stealth plugin3 has been designed to make Puppeteer browsing automation

software harder to detect. Additionally, web bots can be configured to exhibit a humanlike

browsing behaviour. Thus, such web bots are very appealing to malicious authors that

aim at creating web bots that evade detection by presenting themselves as humans.
1https://www.seleniumhq.org/
2https://pptr.dev/
3https://www.npmjs.com/package/puppeteer-extra-plugin-stealth

1

https://www.seleniumhq.org/
https://pptr.dev/
https://www.npmjs.com/package/puppeteer-extra-plugin-stealth


1.1. MOTIVATION 2

Such evasive web bots can be and have been abused for malicious purposes, since

they can avoid detection. Distil Networks (2018) has shown that these malicious web

bots can perform highly complex tasks and at the same time try to avoid detection by pre-

senting a browser fingerprint and a humanlike behaviour. This makes them particularly

dangerous since they present themselves as humans and perform several actions in a

humanlike way, which severely hinders their detectability.

Allowing malicious web bots to visit a web server and perform uncontrolled actions

can have devastating results. As discussed in different works in literature, such as Wat-

son and Zaw (2018), Distil Networks (2019) and Azad et al. (2020), malicious web bots

can perform a variety of malicious behaviours, including trying out different credit card

numbers, gift card numbers, and login credentials, buying all the available stock of spe-

cific limited products to later resell at higher price (i.e., scalper bots), holding items in

shopping carts thus preventing access to valid customers, scraping item prices to gain

competitive advantage, generating accounts to spam messages or amplify propaganda,

and more.

1.1.2 Web Bot Detection

Due to the dangers associated with web bot visitors, it is in the best interest of web

servers to place special restrictions on web bots upon detection to limit those malicious

acts.

For many years, the most popular techniques for detecting web bots were based on

CAPTCHAs (i.e., Completely Automated Public Turing test to tell Computers and Humans

Apart) proposed by von Ahn et al. (2003). CAPTCHA challenges are usually based on

visual challenges that can be accompanied with aural ones for the visually impaired. The

tests are based on the assumption that a human can easily fulfil these visual challenges,

while a web bot cannot. There are multiple CAPTCHA-like challenges, examples of which

include the extraction of letters from a distorted image or audio file (such as Google’s

reCAPTCHA version 1), and the click of a checkbox on a web page which, in some

cases, also includes the selection of images which fulfil certain criteria (such as Google’s

reCAPTCHA version 24).

While visual/aural based CAPTCHA challenges used to be effective for the detection

of web bots, current advances in image processing and speech recognition have reduced

their effectiveness. A variety of highly accurate techniques have been proposed to bypass
4https://developers.google.com/recaptcha/docs/display

Bournemouth University, Department of Computing and Informatics, Dissertation



CHAPTER 1. INTRODUCTION 3

popular CAPTCHA challenges, ranging from simply using public online speech to text

engines proposed by Bock et al. (2017), to a combination of several techniques, including

image reverse search, tagging, recognition, and processing as shown by Sivakorn et al.

(2016). These attacks led CAPTCHA challenges to increase in difficulty. Original versions

of CAPTCHA challenges have received a lot of criticism, especially from people with

disabilities who sometimes struggle with fulfilling these requests, and also from people

who feel that their everyday work is slowed down.

The usability and effectiveness issues associated with visual challenges led current

research to focus on rule-based and behavioural based detection techniques that do not

affect the user experience (i.e., they do not interrupt the user to ask them to solve some

visual challenges unless an abnormal behaviour has been detected). Additionally, the

latest version of Google’s CAPTCHA challenge5 (reCAPTCHA version 3), introduced in

2018, also performs adaptive risk analysis based on the context of the action and returns

a score for each request without user friction.

Current web bot detection approaches in literature propose the use of (i) rule-based

web bot detection based on browser fingerprinting techniques, and (ii) web bot detec-

tion based on the behaviour of the visitors (e.g., the spatial characteristics of the mouse

movements, the browsing speed, etc.). For the latter, several measurable values (i.e., fea-

tures) are extracted from the visitors’ behaviour and are used as input to machine learn-

ing models to distinguish human behaviours from web bots’ ones. In a similar manner,

commercial solutions, such as Distil Networks (2019), combine the rule-based browser

fingerprinting techniques with behaviour-based detection techniques to more effectively

detect web bots.

After a visitor is identified as a bot by the aforementioned approaches, additional

steps are taken, which can also be chosen by the administrators of the sites. Based

on Distil Networks (2019), such actions include delivering different content to bots, or

requesting from the visitor to prove that they are human by solving additional challenges

(e.g., visual challenges).

1.1.3 Advanced Evasive Web Bots

Evasive web bots use different techniques to evade detection; such techniques can also

be specific to the detection mechanism(s) that they face. Advanced web bots use the

aforementioned challenge-solving capabilities (e.g., CAPTCHA-solving software) when
5https://www.google.com/recaptcha

Bournemouth University, Department of Computing and Informatics, Dissertation

https://www.google.com/recaptcha


1.1. MOTIVATION 4

necessary, but also increase their evasiveness by introducing additional evasion tech-

niques based on the current state-of-the-art detection techniques that they may face: (i)

the generation of a fingerprint similar to a browser one to evade detection based on their

fingerprint, and (ii) the generation of a humanlike behaviour to evade detection based on

their behaviour.

To achieve a fingerprint similar to a browser one, web bots can use specially con-

figured browsing automation software that allows them to avoid detection techniques that

examine their fingerprint, as mentioned in Laperdrix et al. (2020) and Jonker et al. (2019).

Moreover, plugins that increase the evasiveness of such software against detection based

on their fingerprint are available, such as the Puppeteer stealth plugin. Additionally, web

bots can also use regular browsers (instead of using an automated browsing software),

which make fingerprint based detection even harder, as shown by Akrout et al. (2019).

Thus, in this thesis we chose to focus on behaviour-based methods for the detection of

advanced web bots.

Concerning the behaviour, web bots can use heuristics, statistical distributions, or

mode advanced machine learning based techniques to generate a humanlike behaviour.

For example, Iliou et al. (2017) and Acien et al. (2020b) proposed the use of statistical

distributions to simulate a humanlike browsing behaviour. Additionally, Akrout et al. (2019)

proposed the use Reinforcement Learning (RL) and Acien et al. (2020b) proposed the use

of Generative Adversarial Networks (GANs) to create evasive web bots.

Additionally, as discussed in Distil Networks (2019), there has been a rise in the

sophistication of evasive web bots over the years, especially concerning their behaviour.

Advanced web bots started exhibiting a sophisticated behaviour that is close to humans,

making it difficult to be recognised as bots. Since such characteristic can be useful for

malicious web bots, there is a need by web bot detection frameworks to identify such

sophisticated bots. However, this is something that has not been examined in literature,

where bots are not split based on their sophistication. Thus, even though web bot detec-

tion methods in literature achieve very high performance, it is not evident how effective

they are against only advanced web bots, which can be particularly dangerous, as dis-

cussed before.

1.1.4 The Interplay Between Web Bot Detection and Detection Evasion

As shown in Figure 1.1, both parties (i.e., the evasive web bots, and the web bot detec-

tion frameworks) continuously update their techniques to achieve their goals. Web bots
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continuously try to find ways to evade detection, and, at the same time, web bot detec-

tion frameworks continuously update their models and techniques to detect new evasive

techniques introduced by web bots.

Figure 1.1: The web bot detection/evasion problem, where both the web bots and the

detection framework continuously update their techniques

To this end, in this thesis the web bot detection problem is examined from both the

defender’s side (i.e., the web server that deploys web bot detection techniques), as well

as the attacker’s side (i.e., the advanced web bots that try to remain undetected). We

argue that using this approach will allow us to gain a better understanding of the web bot

detection problem, as well as the detection mechanisms that can be and are used.

1.2 Aims and Objectives

This research aims to answer the following question:

• R: How (malicious) advanced web bots can be detected based on their behaviour

This question comprises and can be split into three more targeted questions that cover

the different aspects of the main research question:

• R1: What are the different types of web bots based on their sophistication and

functionality

• R2: What techniques can be used to detect web bots based on their behaviour,

focusing on detecting advanced web bots

• R3: How effective are behaviour-based web bot detection techniques against ad-

vanced web bots that use sophisticated techniques to evade detection

Thus, the main aims of this thesis and the respective objectives for each aim are:
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• A1: To outline the web bots’ landscape, considering the bots’ functionality, purpose,

and sophistication

– O1.1: Review of academic publications as well as company reports regarding

the web bots landscape

– O1.2: Categorisation of web bots and definition of the functionality of the ad-

vanced web bots that this research will focus on

• A2: To evaluate current web bot detection techniques, and propose novel tech-

niques for the detection of advanced web bots based on their behaviour

– O2.1: Creation/Usage of datasets for evaluation

– O2.2: Evaluation of state-of-the-art behaviour-based web bot detection tech-

niques against different types of web bots based on their sophistication (e.g.,

simple vs advanced)

– O2.3: Proposition of a novel web bot detection framework to detect advanced

web bots

• A3: To evaluate how well the aforementioned novel web bot detection techniques

perform against advanced web bots that use the recent advances in machine learn-

ing to evade detection based on their behaviour

– O3.1: Identification of different machine learning based techniques that web

bots can use to generate an evasive behaviour

– O3.2: Evaluation of the latest and most effective web bot detection techniques

against the advanced web bots that use the aforementioned machine learning

techniques to avoid detection

The evaluation of how our objectives have been achieved (including the chapters and

publications corresponding to each objective) is presented in Section 5.2.

1.3 Research Methodology

The purpose of this work is to research techniques that can be used to detect advanced

web bots based on their behaviour. However, very few works exist that analyse the land-

scape of malicious web bots and the techniques that they use to evade detection based

on their behaviour. Also, there are different techniques that sophisticated web bots can
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use to generate evasive behaviours, including those that take advantage of recent ad-

vances in machine learning and deep learning, that have not yet been examined in liter-

ature.

Thus, in this work we approach the web bot detection problem from both the de-

fender’s side (i.e., the web server that deploys web bot detection techniques), as well

as the attacker’s side (i.e., the advanced web bots that try to remain undetected). We

argue that both parties constantly update their techniques to achieve their goal; the de-

fender examines additional characteristics of the visitors and uses novel techniques for

the detection of the web bots, while the web bots try to generate fingerprints and exhibit

behaviours that are close to human visitors, allowing them to remain undetected.

We initially outlined the web bot landscape, defining the different types of web bots

based on their functionality, and sophistication. This landscape was periodically updated

during the duration of this research and was used as the base for this research. The

different sophistication levels and functionality of web bots presented in literature indicate

that web bots can vary in characteristics and behaviour, and that advanced web bots can

be very close to human visitors.

At the same time, we investigated how state-of-the-art web bot detection techniques

(at that time) performed against web bots of different sophistication levels. The state-

of-the-art behaviour-based web bot detection techniques at that time were using only

web logs to identify whether a visitor is a bot or a human. Thus, in our experiments we

used the web logs of a public web server that was visited regularly by humans as well as

(malicious) web bots. During our experiments we showed that state-of-the-art web bot

detection approaches performed poorly in detecting advanced web bots that try to evade

detection.

This motivated us to perform further research on the advanced web bot detection

problem and to identify alternative solutions, including using the mouse trajectories of

visitors to detect web bots. At that time, different researchers who were also working on

the same topic also started publishing new approaches that use mouse trajectories for

the detection of web bots. Thus, we combined our current framework and techniques

with the newly published works of that time and proposed a novel web bot detection

framework that comprises and advances two detection modules, one that uses web logs

and one that uses mouse trajectories. To evaluate our novel framework, we created a

dataset with several human subjects. The evaluation of our framework has shown that

this combination of techniques outperforms the previous works.

Bournemouth University, Department of Computing and Informatics, Dissertation



1.4. NOVEL ASPECTS AND CONTRIBUTION 8

In the last part of our research, we focused on the techniques that web bots can

use to generate a behaviour that allows them to evade their detection. We opted to do

that, since this can give additional insights on the web bot detection problem and the

robustness of the current detection techniques against “active” adversaries. Specifically,

we focused on web bots that may use the recent advances in machine learning to evade

detection. For that, two cases were considered, (i) the case of web bots that update their

browsing behaviour based on whether they have been detected or not, and (ii) the case

of web bots having in their possession several data from human behaviours and using

them to generate (synthetic) humanlike data that can be used to generate a humanlike

behaviour. Based on the evaluation of these approaches we concluded that the web bot

detection problem is not a static problem and that both parties (the detection framework,

and the web bots) can continuously update their techniques to achieve their goals.

1.4 Novel Aspects and Contribution

This thesis examines the web bot detection problem from both the defender’s side (i.e.,

the web server that deploys web bot detection techniques), as well as the attacker’s side

(i.e., the advanced web bots that try to remain undetected). Thus, in this thesis (i) we

propose novel methods for detecting web bots that have been designed to overcome

limitations of the approaches proposed in literature, and (ii) we examine novel techniques

that web bots can use in their attempt to evade detection. We argue that using this

approach will allow us to gain a better understanding of the web bot detection problem,

as well as the detection mechanisms that can be and are used.

In Figure 1.2 we include a diagram summarising the different approaches and tech-

niques that (to the best of our knowledge) have been proposed in literature (including

our published works, with red colouring, and underlined). Specifically, we approach the

behaviour-based web bot detection/evasion problem using three methodologies based

on the data that are utilised: the “Web logs” (blue), the “Mouse trajectories” (green), and

the ‘’Combination” (purple). For each of those methodologies, different techniques have

been used in literature, such as heuristic approaches that may use statistics, and different

machine learning (ML) and deep learning (DL) algorithms.

In the early days, literature in the web bot detection that examined visitors behaviour

used web logs. Different supervised and unsupervised machine and deep learning based

techniques for the detection of web bots have been proposed and improved over the
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Figure 1.2: General research methodology and novel aspects, using red colouring and

underlining to indicate our work

years. Additionally, techniques that are based on heuristics and statistical distributions

were proposed to evade those detection techniques.

Later approaches proposed in literature used mouse trajectories for the detection of

web bots. Similarly to web logs, different machine learning and deep learning algorithms

were used. In this case, the approaches either extracted high level actions or features

from the mouse trajectories of visitors, or processed the mouse trajectories as images. To

evade those techniques, heuristics and statistical distributions were proposed (similarly

to web logs), but also machine and deep learning techniques were used, including use of

Reinforcement Learning (RL), and Generative Adversarial Networks (GANs).

This thesis has three main contributions. The first contribution of this research,

published in Iliou et al. (2019), evaluates state-of-the-art (at that time) web bot detection

techniques against web bots of different sophistication levels. Current approaches at that

time focused on detecting web bots using web logs (see Figure 1.2, blue color). For

that, in Iliou et al. (2019) we proposed a framework that uses state-of-the-art machine

learning and deep learning techniques for the detection of web bots using web logs.

This framework was evaluated on a real-world data collected from a public web server,

containing both simple and advanced web bots.

Using this framework, we identified the unique challenges when state-of-the-art web
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bot detection techniques are utilised for detecting advanced bots as opposed to simple

bots. Specifically, the evaluation showed that very effective machine learning methods

against simple web bots performed poorly when faced only with advanced web bots.

Since advanced web bots require additional investment and effort on behalf of the mali-

cious actors using them, their existence implies that higher impact attacks are performed

with their use. Therefore, security solutions should give higher weight on detecting those

advanced web bots.

The second contribution of this research published in Iliou et al. (2021a) addresses

the aforementioned problem, by proposing a web bot detection framework that comprises

two detection modules in a novel way: (i) a detection module that utilises web logs, and (ii)

a detection module that leverages mouse movements. The evaluation of this framework

showcases the effectiveness of this method in detecting advanced web bots. Additionally,

in the same work a dataset was created that contained both the visitors web logs and

mouse movements, and is available for sharing upon request.

Finally, the last contribution of this research focuses on the potential use of the recent

advances in machine learning by web bots to evade detection. For that, we examined two

novel cases on which machine learning techniques can be used for evasion: (i) advanced

web bots updating their browsing behaviour based on whether they have been detected

or not, and (ii) advanced web bots having in their possession several data from human

behaviours and using them to generate (synthetic) humanlike data.

For the first case (i.e., bots using machine learning to update their browsing be-

haviour), we examined the case of advanced web bots using RL to evade detection by

updating their browsing behaviour based on, among others, whether they have been de-

tected or not. In Iliou et al. (2022) we show that, as opposed to approaches that use

heuristics that usually get detected, RL can be used by web bots to learn browsing be-

haviours that can evade detection. To the best of our knowledge, this has not been

examined in literature.

Concerning the case of we bots having being trained on human behaviours, in Iliou

et al. (2021b) we evaluated the case where advanced web bots use GANs to generate

images of trajectories similar to those of humans, which can then be used by bots to

evade detection. We show that GANs are very effective in evading state-of-the-art de-

tection techniques. At the time of publication, GANs had only been used by Acien et al.

(2020b) in that area to generate synthetic swipe and accelerometer data, but not mouse

trajectories.
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The papers that present the outcomes of this research are listed below:

• Iliou, C., Kostoulas, T., Tsikrika, T., Katos, V., Vrochidis, S. and Kompatsiaris, Y.,

2019. Towards a framework for detecting advanced web bots. Proceedings of the

14th International Conference on Availability, Reliability and Security, ARES 2019,

Canterbury, UK, August 26-29, 2019, ACM, 18:1–18:10.

• Iliou, C., Kostoulas, T., Tsikrika, T., Katos, V., Vrochidis, S. and Kompatsiaris, I.,

2021. Detection of advanced web bots by combining web logs with mouse be-

havioural biometrics. Digital Threats: Research and Practice, 2 (3).

• Iliou, C., Kostoulas, T., Tsikrika, T., Katos, V., Vrochidis, S. and Kompatsiaris, I.,

2021. Web bot detection evasion using generative adversarial networks. IEEE

International Conference on Cyber Security and Resilience, CSR 2021, Rhodes,

Greece, July 26-28, 2021, IEEE, 115–120.

• Iliou, C., Kostoulas, T., Tsikrika, T., Katos, V., Vrochidis, S. and Kompatsiaris, I.,

2022. Web bot detection evasion using deep reinforcement learning. Proceedings

of the 17th International Conference on Availability, Reliability and Security, ARES

2022, Vienna, Austria, August 23-26, 2022, ACM.

1.5 Outline of Thesis

In this section, the chapters of this thesis are outlined along with a brief overview of their

contents.

In Chapter 2 we present the web bot landscape outlining the different types of web

bots based on their functionality and sophistication (Section 2.1). Additionally, we in-

clude the literature review on the different signature-based and behaviour-based web bot

detection techniques (Section 2.2). The behaviour-based detection techniques are split

based on the two types of input sources considered in literature, i.e. the web logs, and

the mouse movements. Moreover, we present the detection evasion methods that have

been proposed in literature for the signature-based and behaviour-based web bot detec-

tion techniques (Section 2.3). Also, we conclude Chapter 2 with some insights on the

current literature and limitations (Section 2.4)

In Chapter 3 we evaluate and show the limitations of common traditional web bot

detection techniques against advanced web bots (Section 3.1). Additionally, we propose
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a novel web bot detection framework that combines both web logs and mouse trajectories

to overcome the limitations of the individual approaches when faced with advanced web

bots (Section 3.2).

In Chapter 4 we evaluate the aforementioned web bot detection techniques against

web bots that use recent advances in machine learning to evade detection based on their

behaviour. Specifically, two approaches were examined; the web bots using RL to update

their browsing behaviour based on whether they have been detected or not (Section 4.1),

and the web bots using data of human mouse movements performed on web pages to

learn and generate (synthetic) humanlike mouse trajectories using GANs (Section 4.2).

Finally, this thesis concludes with a discussion about the web bot detection and eva-

sion problem and how our aims and objectives have been achieved (Chapter 5), followed

by its conclusions and future work (Chapter 6).
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Figure 1.3: Organisation of this report
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2 Literature Review

In this chapter we present the literature review on the web bot detection problem. Since

there exist different types of web bots with different sophistication levels, we start by

presenting the web bot landscape (Section 2.1). The landscape includes the different

malicious actions that web bots can perform and showcases the importance of detecting

such bots. Additionally, the landscape outlines the different sophistication levels that

web bots need to have to perform the aforementioned actions, which shows the need of

detection methods to consider those as well.

Then, we present the different web bot detection techniques that have been pro-

posed in literature to detect different types of web bots based on their functionality and

sophistication (Section 2.2). We show the drawbacks of signature-based detection tech-

niques and the need for combining those with behaviour-based detection techniques,

an approach that has been adapted by most well-known companies that offer web bot

detection products and services.

Furthermore, since malicious web bots can use different techniques to evade detec-

tion, we also perform a literature review on those evasion techniques (Section 2.3). The

latter can be used to better understand the current problems that new web bot detection

approaches should focus on and address.

Finally, we conclude this chapter with some insights and limitations on the literature

(Section 2.4). Also, we discuss the importance of the problem we aim to address in this

thesis.

2.1 Web Bot Landscape

Web bots are an integral part of the web, since they allow the automation of several

vital tasks, some of which would have otherwise been impossible to perform. Based on

their purpose, web bots vary in sophistication, as presented in Distil Networks (2019).

For example, to download the HTTP content of a web server, a simple web bot would

be sufficient. However, when it is required to test a web server’s functionality by filing

web forms, running complex JavaScript code on a web page, and performing mouse

movements (i.e., mouseover actions to specific elements of a web page), then a web bot

14
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Figure 2.1: Web bot landscape

which supports all functionalities of a web browser should be used.

At the same time, as shown by the same report, Distil Networks (2019), such web

bots may be abused for malicious purposes. These malicious web bots can perform

highly-complex tasks and, at the same time, try to avoid detection by having a browser

fingerprint and exhibiting a humanlike behaviour. This makes them particularly dangerous

since they present themselves as humans and perform several actions in a humanlike

way, which severely hinders their detectability. Distil Networks (2019) and Azad et al.

(2020) have shown that malicious web bots are being used for several purposes such

as price and content scraping, account takeover, credit card fraud, denial of service, and

denial of inventory.

Next, we present a comprehensive landscape of the malicious web bots, including

the different types of web bots based on their functionality (Section 2.1.1) and sophistica-

tion (Section 2.1.2) by reviewing different sources both from the academia as well as from

companies that offer web bot detection products and extract analytics on their customer

data. The main categories of web bots identified are presented in Figure 2.1.
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2.1.1 Malicious Web Bots Functionality

Web bots allow the automation of different tasks, making them ideal for malicious actions

that take place over the web. Below, we present a comprehensive list of the different types

of malicious actions that have been presented in literature, to showcase the importance

of detecting such bots.

Content Scraping

One of the most known usages of malicious web bots is content scraping. Distil Networks

(2019) has shown that web bots can extract different types of information from a web

page content depending on the sector that each web page belongs to (e.g., e-commerce,

airlines, gambling, etc.). For example, web bots can gather information about the prices,

the available inventory, information about the products and their availability (e.g., in the

aviation domain, seat availability). Some of this information might require authentication,

which is also achieved by web bots (as we will discuss in the following subsections).

Additionally, Watson and Zaw (2018) show that scraper bots might try to access different

paths and provide several parameter values for web pages and Application Programming

Interfaces (APIs) to extract info and insights about the web pages structure.

Scalping

Another use of web bots, which has seen a rise in the past few years, is scalping; scalping

bots that are used to obtain limited availability goods and services and usually resell

them at higher prices. Such bots can monitor websites awaiting availability of goods and

services and performs rapid actions depleting the available stock. These bots can use

stolen credit cards to buy these products. This approach is called cashing out by Watson

and Zaw (2018). Additionally, web bots might not complete the transaction but keep the

products in their “inventory”, which may result in the denial of inventory as presented

by Watson and Zaw (2018). As discussed in Distil Networks (2019), one of the targets of

such bots are ticketing systems. Another well-known case is the GPU market, where, as

also discussed in Molloy (2021), due to the limited stock of Nvidia’s new GPUs, scalper

bots extinguished all the available stock to resell them at higher prices.
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Credential Cracking / Account Takeover

Web bots have also been used for credential cracking purposes when web sites offer

login functionalities. As shown by Watson and Zaw (2018), and Azad et al. (2020), com-

mon brute-force credential cracking techniques are used, such as password guessing,

password spraying (i.e., trying a list of commonly used passwords against many different

accounts), and credential stuffing (i.e., trying credentials obtained from breach dumps of

unrelated accounts).

Account takeover is usually the first step of web bots to achieve a specific mali-

cious purpose. Distil Networks (2019) and Imperva (2019) show that, after the account

takeover, different actions can be performed. For example, in the aviation domain, web

bots can use the accounts’ loyalty program awards. Additionally, credit card and other ac-

count information may be accessible and retrieved by web bots, when they gain access

to the account.

Account Creation

Automatic account creation can be used for different malicious purposes including con-

tent spam, amplifying propaganda (especially in social media), posting reviews, misin-

formation, and content at forums, filling surveys, and performing other similar actions

depending on the site functionality. Also, hacked and malicious accounts can be used

for spreading malware and skewing metrics calculated by the web sites. For the latter,

sometimes there is no need to have/create an account (depending on the web site’s

functionality). Finally, having several accounts in their possession, attackers can obtain a

consolidated overview of the application, and provide integrated reporting and analysis.

As also mentioned in Watson and Zaw (2018), web bots can use these fake accounts

(as well as take advantage of web pages that do not require authentication) for Search

Engine Optimisation (SEO), by making a website more visible to its target audience via

boosting its ranking among the relevant results returned by mainstream search engines.

That can be achieved by posting promotional content and referring links to websites on

other websites. There are several tools called “black hat SEOs” that support bypassing

security techniques commonly used by forums and blogs to deter automated spam, such

as account registration, bot detection, many forms of CAPTCHAs, and e-mail activation

before posting.
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Validation of Stolen Card Data

Another common malicious action is when bots use payment pages of websites to val-

idate in bulk stolen credit card data, gift cards, or codes such as coupons or vouchers.

Such data can be obtained from illegal marketplaces from the dark web. Some appli-

cations allow brute-forcing missing payment information, such as expiration dates, Card

Security Code (CSC), also referred to Card Validation Code (CVC), Card Verification

Value (CV2), etc., when the other information has been stolen.

Web Scanning

Web bots can also be used for scanning web servers and applications for vulnerabilities.

As discussed in Watson and Zaw (2018), web bots can identify paths, file names, pa-

rameters, perform fingerprinting actions to profile the application and identify versions of

the software and frameworks used, etc.. This information can be used by attackers to

identify weaknesses and potential vulnerable points to exploit. Vulnerable web servers

can be used for different purposes including SEO, via, for example, defacing the websites

as mentioned in Yang et al. (2021).

Footprinting

Footprinting techniques can be used to identify different properties of the application,

such as composition, configurations, and security mechanisms to identify the underlying

logic, structures, algorithms, functions, methods, etc. of application.

DoS / DDoS Attacks

Web bots have also been used for performing (Distributed) Denial of Service (DoS) at-

tacks, such as HTTP-flooding attacks whose detection is also studied by Wang et al.

(2015b). For that, web bots can perform specific functions that lead to the exhaustion of

resources for the web pages, such as requesting several pages. As mentioned by Distil

Networks (2019), this can be used by competitors to decrease the up-time and redun-

dancy so that real customers cannot use the site, resulting in severe long-term effects

on your online brand reputation and generate significant overage charges from hosting

providers.
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Ad Fraud

In a similar manner, web bots have been used for ad fraud. Such bots perform fake clicks

and fraudulent display of web-placed advertisements. This falsification of the number of

times an item such as an advert is clicked on, or is displayed can affect both the web page

displaying this information as well as the customer wanting to advertise their products.

Expediting

Furthermore, there is a general category of bots called expediting bots that can be used

for some of the aforementioned malicious purposes or for custom purposes (based on

the web site) that perform rapid actions and violate explicit or implicit assumptions about

the application’s normal usage. As mentioned by Watson and Zaw (2018), this can give

them unfair individual gain or cause loss to the other party. Similarly, actions by such bots

can be performed “in the latest opportunity” on a website to achieve a specific objective

and leaving insufficient time for another user to, for example, bid/offer (called sniping).

Skewing Decision-making Metrics

Finally, Distil Networks (2019) show that web bots can skew decision-making metrics by

visiting links repeatedly, submitting specific forms, etc. This can affect specific application-

based metrics such as visit counts, frequency of events, rate, etc. Some of that informa-

tion can be visible to other users (e.g., visit counts) or affect the functionality (e.g., when

dynamic pricing is provided). Additionally, this can affect investment decisions, as shown

by Marenzi (2019), where it was estimated that 5% of all web traffic is attributable to

investment-scraping bots.

2.1.2 Sophistication Levels

To achieve some of the aforementioned tasks, web bots should support several function-

alities of a web browser, and, at the same time, exhibit sophisticated behaviours (i.e.,

perform tasks in a similar way as humans do). Next, we present the different sophistica-

tion levels of web bots showing that, based on the sophistication level, different detection

techniques should be utilised.
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Simple Scripts

These web bots usually use programming libraries that allow them to perform HTTP re-

quests. They are usually simple scripts that do not exhibit any type of intelligence, perform

multiple requests and follow a predictable behaviour. Such bots are used for very specific

and simple tasks that do not require advanced functionality.

Since programming libraries are used, these bots have a fingerprint that is very

different from a browser. Nikiforakis et al. (2013) have shown that the fingerprint of such

bots can reveal their nature. Since they use such libraries, usually these bots have agent

names that do not match any browser. Additionally, these libraries usually do not support

main functionalities of the browser, such as parsing and running JavaScript, keeping

cookies, performing any mouse movements, or pressing keystrokes.

Moreover, such web bots have behaviours that are very different from humans as

shown by our work, Iliou et al. (2019). They follow consecutive hyperlinks on a web page

with rapid speed. As a result, rapid browsing speed and browsing behaviour can indicate

bot nature.

Web Bots Using Browsing Automation Software

As discussed before, simple scripts do not support functionalities of a browser, such as

running JavaScript or keeping cookies. However, some (legitimate) purposes of web bots

require those. Thus, the second category of web bots use browsing automation software

that allows them to visit web pages and process them as a real browser.

Such bots use browsing software either in headless mode or by using the browsers’

User Interface (UI) to visit the web pages. They do not have any intelligence and perform

actions similar to simple bots. However, they can run JavaScript on web pages which

may be useful when this is required to display the pages correctly.

As discussed in Azad et al. (2020), Laperdrix et al. (2020), and Schwarz et al. (2019),

such software has a fingerprint that can be distinguished from that of common browsers.

For example, as mentioned by Azad et al. (2020), browsing automation software, such

as Selenium, can be detected by printing a stack trace and searching for the “selenium”

keyword. Additionally, browsing automation software can be detected by examining spe-

cific JavaScript variables, such as a variable that starts with ”cdc ” which is unique to

Selenium. Similar variables can be found in other automation software.
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Moderate Web Bots

Moderate web bots have a browser-like fingerprint and perform some additional actions

such as mouse movements and keystrokes. Similarly to the previous category of web

bots, moderate web bots use browsing automation software and exhibit a more advanced

behaviour via keeping sessions, performing logins, adjusting their behaviour (e.g., adding

random “sleep” time between successive requests).

Additionally, such web bots perform mouse movements and keystrokes, allowing

them to perform more advanced tasks, such as testing the functionality of web applica-

tions similarly to humans. In some cases, they may try to mimic a humanlike bahaviour

using statistics.

Malicious moderate web bots can also use real browsers via malware installed into

victims. Additionally, they may change IPs, use proxies, and combine different technolo-

gies to evade detection (depending on the web site).

Advanced Web Bots

We consider as advanced web bots the bots that have a browser-like fingerprint and ex-

hibit a humanlike behaviour. These bots use specially configured browsing automation

software or control directly the browsers allowing them to have fingerprints indistinguish-

able from real browsers. For that, anti-fingerprinting techniques can also be utilised, such

as special applications that randomise properties of the browsers’ fingerprints, as shown

by Schwarz et al. (2019). Such bots can also take advantage of plugins that increase the

evasiveness of browsing automation software against detection based on fingerprint are

available, such as the Puppeteer stealth plugin.

Additionally, such bots exhibit a humanlike behaviour in regards to how they navigate

to web pages as well as the actions that they perform. They perform mouse movements,

press keystrokes, full in login forms, click on hyperlinks, and more.

Moreover, such bots can be equipped with CAPTCHA solving functionalities allowing

them to bypass detection. As presented by Watson and Zaw (2018), web bots can utilise

tools to perform Optical Character Recognition (OCR), or matching against a prepared

database of pre-generated images, or using other machine reading, or human farms.

Also, as mentioned by Distil Networks (2019), advanced web bots can work as a

globally distributed botnet. Such web bots use multiple IPs (which can be either region

specific or global) and perform single-request attacks and user agent rotation, making
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their detection even harder.

Finally, advanced web bots can take advantage of external services (using them

as proxies) to increase their evasiveness by performing their requests through IPs of

trusted organisations or IPs that have not shown any malicious activity before. For exam-

ple, DataDome (2021b) shows the case where web bots used Facebook’s link preview

feature (and thus, the trusted/whitelisted Facebook infrastructure) to perform several re-

quests and gather large amounts of data from the websites they were interested in.

2.2 Web Bot Detection Techniques

As presented above, it is of the utmost importance to detect web bots and apply the

respective protection mechanisms. Web bot detection aims to accurately distinguish

whether a web visitor is a bot or a human. This categorisation most commonly entails sim-

ply distinguishing web bots from human visitors, as it was done in Sisodia et al. (2015),

Cabri et al. (2018), and Chu et al. (2018). Other works, such as Doran and Gokhale

(2012), further categorise web bots based on their functionality, while Bai et al. (2014),

Seyyar et al. (2017) and Zabihimayvan et al. (2017) categorise web bots based on their

purpose.

Current web bot detection approaches used by commercial solutions, including the

ones of the most well-known companies in this domain such as Distil Networks (2019),

Akamai (2021), Cloudflare (2021), DataDome (2021a), and PerimeterX (2021), adver-

tise that they combine (i) signature-based web bot detection techniques with (ii) web bot

detection based on the behaviour of the visitors (e.g., the spatial characteristics of the

mouse movements, the browsing speed, etc.). Similarly, in academia there are works

that propose (i) signature-based techniques to identify web bots based on their finger-

print, such as Azad et al. (2020), Laperdrix et al. (2020), and Schwarz et al. (2019),

and (ii) machine learning based techniques that examine the visitors’ behaviour, such

as Rovetta et al. (2020), Lagopoulos and Tsoumakas (2020), and Acien et al. (2020b

2021).

Finally, as mentioned in Distil Networks (2019), after a visitor is identified as a bot

by Imperva’s (former Distil) Advanced Bot Protection system, additional steps are taken

(which can also be chosen by the administrators of the sites) such as to block the visitor,

deliver different content, or request from the visitor to prove that they are human by solving

some visual challenges.
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Next, we present in detail the two most prevalent methods for detecting web bots:

(i) signature-based techniques that rely either on specific challenges or on examining

different characteristics of the visitors to identify whether they are bots or not, and (ii)

behavioural based techniques that examine the browsing behaviour of the visitor and

usually train machine learning models to distinguish web bots from human visitors.

2.2.1 Signature Based Detection

As discussed in Azad et al. (2020), the most common signature based detection tech-

niques can be split into three main categories: (i) visual challenges (e.g., CAPTCHA

challenges), (ii) techniques that examine whether the visitor accesses specific resources

that human visitors should not have accessed (e.g., because they are not visible when

rendering the web page in a browser), and (iii) browser fingerprinting techniques.

Visual Challenges

For many years, the most popular techniques for detecting web bots were based on the

work of von Ahn et al. (2003) on CAPTCHAs. CAPTCHA challenges are usually based on

visual challenges that can be accompanied with aural ones for the visually impaired. The

tests are based on the assumption that a human can easily fulfil these visual challenges,

while a web bot cannot.

There are multiple CAPTCHA-like challenges, with most of them belonging to the

general categories of text-based CAPTCHAs, image-based CAPTCHAs, and sound-

based CAPTCHAs. Text-based CAPTCHA has been one of the most widely used types

of CAPTCHA, as mentioned by Xu et al. (2020). In this type of CAPTCHA, users were

required to recognise and extract letters and numbers from (distorted) images. Google’s

first version of CAPTCHA (reCAPTCHA version 1) also used this approach.

Image-based CAPTCHAs provide challenges that require the visitor to understand

the image content (e.g., object identification, scene understanding, etc.) and select im-

ages from a grid of images which fulfil certain criteria. Google’s second version of re-

CAPTCHA also uses this approach after the user behaviour analytics indicate bot be-

haviour. As mentioned in Xu et al. (2020), such approaches are also “mobile-friendly”,

since they simply require users to select images as opposed to writing text.

Audio-based CAPTCHAs are developed primarily for the visually impared, acting as

a replacement to text and image based CAPTCHAs. Visitors are requested to enter the

words they hear spoken over an audio clip.
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Finally, there have been some other not so well-known CAPTCHA-like challenges

proposed in literature, such as “swipe” based challenges proposed by Jiang and Dogan

(2018) for touch-enabled smart devices that ask users to move objects from the left side

of the canvas to touch another specific object on the right side of the canvas.

While visual/aural based CAPTCHA challenges used to be effective for the detection

of web bots, current advances in image processing and speech recognition have reduced

their effectiveness. These attacks led CAPTCHA challenges to increase in difficulty. Ad-

ditionally, original versions of CAPTCHA challenges have received a lot of criticism, espe-

cially from people with disabilities who sometimes struggle with fulfilling these requests,

and also from people who feel that their everyday work is slowed down.

The usability and effectiveness issues associated with visual challenges led current

research to focus on rule-based and behaviour-based detection techniques that do not

affect the user experience (i.e., they do not interrupt the user to ask them to solve some

visual challenges unless an abnormal behaviour has been detected). For example, the

latest version of Google’s CAPTCHA (reCAPTCHA version 3), introduced in 2018, also

runs in the background and generates a score that is based on interactions of the visitors.

Such methods usually require as input both legitimate and abusive behaviours so as to

be adjusted to each specific web site and work better.

Content Traps

One general and relatively old category of rule-based web bot detection techniques is

the use of “crawling traps”, which in recent works such as Chen et al. (2020) is presented

as honeypots. These techniques aim to distinguish humans from web bot visitors via

creating special links that only web bots could follow. One reason for that is that humans

see the web page as rendered by the browser, while web bots access the source code.

Thus, adding special parts of the source code not visible to humans can lead web bots to

access them and get detected.

There are several technical approaches to achieve that, such as including hyperlinks

with the same colour as the background of the image, using CSS functionality to hide part

of the web page, and more. For example, in Vastel et al. (2020) they detected crawler

traps that used invisible links with the “nofollow” property that also appended a unique

random identifier to the URL pointed to by the link.

Additionally, crawler traps can be created via the automatic generation of several

web pages from a general link but with different parameters, as presented by David et al.
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(2021). The latter can also lead to an infinite loop of links that the bot will follow. However,

as shown by David et al. (2021) advanced techniques that utilise machine learning can

be used to identify such traps.

Browser Fingerprinting

Finally, one of the more recent and highly effective signature-based web bot detection

techniques is browser fingerprinting. Browser fingerprinting is a category of device fin-

gerprinting or machine fingerprinting techniques, where the server collects information

about the software and hardware of a remote computing device from the browser of the

device.

Such techniques can very easily detect simple web bots and more sophisticated

web bots that do not use advanced techniques to evade detection, and this is why they

have been adopted by security companies as shown by Azad et al. (2020). There are

several fingerprinting techniques that distinguish browsing automation software from real

browsers. A comprehensive library that includes a considerable amount of those tech-

niques is the FingerprintJS.1 This library computes a hashed visitor identifier from them,

which can be used to identify the same visitors even if the visitors use incognito/private

mode and even when browser data is purged.

Techniques included in this library as well as additional techniques have been pro-

posed in literature. As discussed in Azad et al. (2020), Laperdrix et al. (2020), and

Schwarz et al. (2019), examples of such techniques include font detection, plugin enu-

meration, WebGL fingerprinting, examination of unique to browser automation software

strings in JavaScript variables, and more. Furthermore, Schwarz et al. (2019) proposed

more advanced fingerprinting techniques that can extract low level properties, such as

the instruction-set architecture, and the memory allocator used by the browser.

As discussed in Section 2.1.2, web bots may use browsing automation software,

with a fingerprint that is close to a browser one. Using the aforementioned advanced

browser fingerprinting techniques, browsing automation software can be identified based

on the fingerprint that it generates, even though it can be very close to a browser one.

However, the advances in the technologies used by web bots allow the creation of

browsing automation software with a fingerprint that is very close to a browser one. As

shown by Pastrana et al. (2018), Campobasso et al. (2019), and Sivakorn et al. (2016), a

fingerprint that is close to one of a browser can be achieved with the use and configuration
1https://github.com/fingerprintjs/fingerprintjs
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of specific browsing automation software. Additionally, Akrout et al. (2019) showed that

web bots can also use regular browsers, which makes their fingerprint indistinguishable

from common browsers. Thus, even though browser fingerprinting techniques are very

effective in most cases, they can still be bypassed.

2.2.2 Behaviour Based Detection

Behaviour-based web bot detection techniques collect data generated from visitors while

they are browsing the web server, and find unique characteristics from those data that

can be used to distinguish bots from real visitors.

As opposed to signature-based detection techniques, detecting web bots based on

their behaviour makes the evasion harder, since more effort is required to change the

general behaviour of a tool as opposed to changing specific Indicators of Compromise

(IoC) that it generates. Thus, as discussed in Bianco (2013), signature-based detection

techniques that utilise different IoC have a low pain threshold (i.e., they require low effort

to be changed).

To detect web bots based on their behaviour, methods proposed in literature typically

examine: (i) the web logs that visitors generate, and (ii) the visitor’s mouse movements.

Figure 2.2 presents a classification of the articles based on the sophistication of the web

bots in question (i.e., simple, moderate, or advanced) and the detection methods used

(i.e., detection using web logs or mouse movements, and classification or clustering).

Concerning the sophistication of web bots, when not mentioned explicitly by the authors

of each work, we categorised the articles based on the labeling process performed. For

example, when authors label a session based on the visitor’s fingerprint (such as the

agent name) or whether the visitor has accessed robots.txt, a file that is only meant to be

accessed by web bots (and primarily good behaving web crawlers), we can assume that

these are simple web bots.

As we can see, most works in literature focus on detecting simple to moderate web

bots using web logs with methods that use classification algorithms. They usually ad-

dress this problem as a binary classification problem, where the algorithm has to decide

whether a visitor is a bot or not.

Additionally, we see that as web bots’ sophistication increases, mouse trajectories

are preferred, most probably because it is far more difficult for malicious users to create

humanlike mouse movements as opposed to web logs. Also, simple web bots do not

generate any mouse trajectories at all since, as discussed in Section 2.1.2, they usually
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Figure 2.2: Classification of articles based on web bot sophistication and the detection

method followed
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use programming libraries that allow them to perform HTTP requests.

Next, we present in detail the literature on the behaviour-based web bot detection

when web logs, and mouse movements are used.

Web Bot Detection Using Web Logs

The earliest approaches in behaviour-based web bot detection examine the web logs that

the visitors make. Web logs are grouped into sessions and, based on these sessions,

some measurable values (i.e., features) are extracted. These features are used to train

machine learning models. The trained models are used to classify new visitors as bots or

humans based on the web logs that they generated.

Since web logs of servers do not store information that can be used to uniquely

identify different visitors by default (e.g., by the use of a PHP session ID), the majority

of works in literature consider a combination of the IP with the browser agent name for

the creation of a unique identifier per visitor. Examples of works that follow this approach

are Stevanovic et al. (2012 2013), Bhargav and Bhargav (2014), Zabihi et al. (2014),

Grzinic et al. (2015), Rude and Doran (2015), Sisodia et al. (2015), Doran and Gokhale

(2016), Hamidzadeh et al. (2018), Rovetta et al. (2017 2020), and Suchacka et al. (2021).

Only very few works, such as Haidar and Elbassuoni (2017) and Almahmoud et al. (2019),

use a session ID value. However, as discussed in Section 2.1.2, in both cases (e.g., using

the combination of IP with the agent name, and using a session ID) malicious users can

manipulate their fingerprint by changing their agent name, IP, or removing the session

cookies so as to be considered as a different user when they want to. There are more

advanced techniques that can make this manipulation harder, such as advanced browser

fingerprinting, discussed in Azad et al. (2020), Laperdrix et al. (2020), and Schwarz et al.

(2019), but they are not widespread in literature yet, most probably because they require

additional configurations of the web servers.

Then, to split the visitors’ data into sessions, most works in literature propose the

end of the session when more than 30 minutes have passed and no new requests with

the same session identifier have been performed. Even though this is an arbitrary num-

ber, the proposed approaches that follow this approach achieved very high performance.

Examples of works that follow this approach are Stevanovic et al. (2012 2013), Siso-

dia et al. (2015), Bhargav and Bhargav (2014), Zabihi et al. (2014), Rude and Doran

(2015), Doran and Gokhale (2016), Hamidzadeh et al. (2018), Rovetta et al. (2017 2020)

and Suchacka et al. (2021). Finally, Rude and Doran (2015) consider only sessions that
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have a number of requests greater than a threshold, to make sure that there are enough

data to distinguish web bots from humans.

After splitting the logs into sessions, several measurable values (i.e., features) are

extracted. These features aim to describe the behaviour of the visitors based on the web

logs that they generate and they have to do with the total requests that they make, the

file types accessed, the values of the request headers, the URLs accessed, the time

between successive requests, the semantics of the web pages accessed, and more.

Also, these can be domain-specific (e.g., the are adapted to a specific domain such as

the e-commerce domain), or generic ones that can be applied to any domain. A full list

of features is presented in Appendix A. As we can see, these features try to represent

the general behaviour of web bots and humans and, eventually, to detect web bots by

distinguishing them. Also, as shown by Zabihimayvan and Doran (2018), some feature

distributions of data collected from different web servers with different content and of

different geographical regions share the same characteristics. However, this does not

apply to all features. Thus, since most of these features alone can be simulated by

evasive web bots when bots know the general behaviour of humans and the structure of

the web servers of interest, the extracted features aim at covering different aspects of the

visitors to make this harder.

Features extracted from web logs are used to train machine learning models to

classify the new visitors as bots or humans. As shown in Figure 2.2 and Figure B.1

from Appendix, web bot detection approaches proposed in literature that examine web

logs mainly use either classification or clustering algorithms for detection, with the former

being considerably more popular. Also, we see that it is common for different works to

use the same classification algorithms as opposed to clustering algorithms, where most of

them are used by one or two works. For example, classification algorithms such as Naive

Bayes, Support Vector Machines (SVM), MultiLayer Perceptron (MLP), Random Forest,

and AdaBoost classifiers are very commonly used in the web bot detection using web

logs. Additionally, as we see in Table B.1 from Appendix, there is no clear performance

benefit of one algorithm against the others. We see that in some cases some algorithms

work better while in others they do not. This, of course, depends on other aspects such as

the dataset, extracted features, and experimental setup used in each work. The general

performance of all algorithms is relatively high, except the case of Naive Bayes which has

shown very low performance in Stevanovic et al. (2012) and Sisodia et al. (2015), which

indicates that more focus should be given on the other aspects when detecting web bots

Bournemouth University, Department of Computing and Informatics, Dissertation



2.2. WEB BOT DETECTION TECHNIQUES 30

(such as the the general method and the feature engineering) rather than the algorithms

themselves.

Furthermore, almost all works perform the detection process offline (i.e., after the

end of the session), while only Rovetta et al. (2017) and Chu et al. (2018) performed it on-

line by performing an estimation during the session outlining the importance of detecting

web bots as soon as possible. However, this adds an overhead since several estimations

should be made during a session of visitors. Additionally, less popular approaches ex-

tract patterns from the web requests and use these to detect web bots. Specifically, Kwon

et al. (2012) extracted HTTP request patterns which considered whether the visitor ac-

cessed the “main” web page, other web pages, or files of a specific type (such as images,

compressed files, binary executable files, etc.). Based on those, they created a table that

shows which patterns appeared more often in human sessions and which in bot sessions.

A new session is classified as bot or human in an online manner (i.e., as requests arrive)

when a specific pattern is identified and based on how many such patterns were found in

the training set for the human and bot visitors. In a similar manner, Doran and Gokhale

(2016) extracted patterns and used them as input to two first-order discrete time Markov

chain (DTMC) models, one for the humans and one for the bots. Again, based on which

probability of those DTMC is higher for a specific pattern of a new session, the session is

classified as human or bot. Even though these approaches work well, they aim at specific

types of web bots (such as web crawlers, or image crawlers) that are primarily simple and

do not download files like a browser does while visiting web pages (which is something

commonly done by advanced web bots).

Web Bot Detection Using Mouse Trajectories

More recent research has proposed detection methods that use mouse movements.

However, such approaches are relatively recent and there are only a few works that utilise

mouse trajectories for the detection of web bots.

Chu et al. (2018) proposed the extraction of several high level actions from them

(e.g., click, point-and-click, and drag-and-drop) and then extracted additional features

from those actions, such as duration, distance, displacement, etc. These features are

then used as input to machine learning algorithms in a similar manner as the features

extracted from web logs. As discussed before, simulating humanlike mouse movements

is far more difficult than web logs, thus features that have to do with mouse movements

can be more effective in detecting web bots, especially those that try to evade detection.
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Furthermore, Wei et al. (2019) utilised the very promising performance of Convo-

lutional Neural Networks (CNNs) for identifying patterns (in this case humanlike and bot

mouse movement patterns) from images, and proposed to transform the mouse trajecto-

ries into images and use them as input to CNNs.

Finally, Acien et al. (2021) focused on mobile web bots that try to generate touch-

screen trajectories with similar features as the ones extracted from humans (such as

duration of mouse movements, velocity, etc.) using statistics or GANs. By extracting fea-

tures that have to do with the swipe duration, distance, displacement, angle, velocity, and

efficiency and using them as input to traditional machine learning algorithms (i.e., SVM,

kNN, and Random Forest), they were able to detect both types of web bots. However,

the specific task (swipe action) is very limited, thus human and bot actions can be easily

modelled.

As shown in Table B.2 from Appendix, web bot detection techniques that are based

on mouse and touchscreen trajectories have shown very promising results when faced

with web bots that try to present a humanlike behaviour through heuristic approaches.

However, the difficulty in generating evasive web bots that have humanlike mouse move-

ments outlines the limitations of the evaluation of the aforementioned methods. For ex-

ample, Chu et al. (2018) have shown the effectiveness of such approaches against web

bots that perform mouse movements following a specific type of lines heuristically gen-

erated. Additionally, Wei et al. (2019) tested these techniques against web bots that use

similar types of lines generated heuristically, with parametric curves, or using statistical

distributions. Finally, Acien et al. (2021) showed the effectiveness of those techniques

against web bots that try to generate touchscreen swipe trajectories, and not generic

touchscreen events while browsing. Thus, even though the aforementioned approaches

have achieved very promising results, these techniques have not been tested with “more

advanced” web bots.

2.3 Detection Evasion Techniques

As detection techniques advance, web bots update their methods to remain undetected.

Web bots use and combine different techniques to evade signature-based detection as

well as detection based on their behaviour. Next, we present the techniques that web

bots can use to evade detection.
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2.3.1 Evasion of Signature Based Detection Techniques

Visual Challenges

As discussed above, one of the earlier web bot detection techniques is the use of chal-

lenges to distinguish web bots from humans, with CAPTCHAs being the most common

ones as mentioned by Na et al. (2020). Evasive web bots can be equipped with function-

ality that allows them to solve those challenges when requested.

For example, as shown by Chen et al. (2017), text-based CAPTCHAs (i.e., where

an image is presented to visitors and they are requested to type the characters included

into a box) can be solved using methods such as OCR techniques or CNNs. Even though

some additional strengthening techniques have been proposed (e.g., addition of noise,

image distortion, etc.), such techniques have also been bypassed by using OCR tech-

niques or CNNs as shown by Chen et al. (2017). Additionally, Recurrent Neural Networks

(RNNs) have also been used to solve such CAPTCHAs as shown by Rui et al. (2013).

The poor performance of text-based CAPTCHAs against the aforementioned attacks

led to the use of different, image-based CAPTCHAs. These CAPTCHAs are challenges

that request from users to select one or more images with specific semantic meanings

from several candidate images. Thus, recognising the semantic of images is more difficult

compared to character recognition, thus being more resilient to automated attacks. How-

ever, the advancements in machine learning and deep learning enabled the creation of

techniques to bypass image-based CAPTCHAs. For example, Alqahtani and Alsulaiman

(2020) proposed a method that employs deep learning technologies, and machine learn-

ing algorithms, including Random Forests, classification and regression trees (CART),

bagging with CART, and Naı̈ve Bayes, to automatically answer image-based CAPTCHA

challenges. Similar techniques can be used by web bots to bypass those challenges.

Moreover, Sivakorn et al. (2016) proposed a combination of machine learning based

techniques along with Google’s reverse image search2 and image tagging to bypass

Google image-based reCAPTCHA. Specifically, to break Google’s reCAPTCHA, Sivakorn

et al. (2016) initially used Google’s reverse image search to get more images and with

higher resolution. Then, they used services such as the Clarifai3 using techniques from Zeiler

et al. (2011) to return tags (along with conference score) that describe the input images.

Finally, since tags do not always match the description of reCAPTCHA, they used word
2https://support.google.com/websearch/answer/1325808
3https://www.clarifai.com/
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embeddings using the Word2Vec algorithm, proposed in Mikolov et al. (2013), to calculate

the similarity between the generated tags and the text of the reCAPTCHA.

Additionally, Bock et al. (2017) showed that Google’s reCATPCHA can also be by-

passed easily by solving the audio challenge accompanying the CAPTCHA instead of the

visual one. For that, they segmented the reCAPTCHA audio, and used it as input to sev-

eral speech recognition tools (including Google Speech API, Bing Speech Recognition,

and other similar services). Additionally, to address the issue of such services supporting

general speech recognition (and not only digits), they also used two layers of phonetic

mapping (i.e., exact-homophone, and near-homophone). Finally, they performed a voting

over the output of all the speech recognition services.

Finally, web bots can be human assisted when solving those challenges. As men-

tioned in Datadome (2020), CAPTCHA farms are services that bot developers can use

to use humans for solving such challenges. Thus, instead of using AI-based techniques,

web bots distribute CAPTCHA challenges to a pool of human workers, usually in devel-

oping countries. When the challenges are solved, then web bots can continue to visit

the web server undisturbed. Additionally, human farms can be used to generate a huge

amount of such solved challenges to be used by AI for training.

Content Traps

Content traps can be evaded by programming web bots to examine some additional char-

acteristics before visiting a hyperlink, such as the color or location of the hyperlink. As

discussed above, crawler traps can use invisible links with the “nofollow” property and

appends a unique random identifier to the URL pointed to by the link. These techniques

are very effective but can be easily bypassed if the web bot authors know about them (or

can identify them by examining the web pages of interest). Web authors can add specific

rules that ensure that web bots do not follow such hyperlinks.

Browser Fingerprinting

Finally, as mentioned by Azad et al. (2020), web bots focus on generating a browser-

like fingerprint to evade fingerprint based detection techniques, which are very common

nowadays. For that evasive web bots use software that allows them to have fingerprint

similar to browsers and support the majority of common browsers functionalities. To

achieve that, Laperdrix et al. (2020), Bock et al. (2017), and Jonker et al. (2019) mention

that web bots can use specially configured browsing automation software (since such
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software in their vanilla configurations can be detected). Moreover, Akrout et al. (2019)

have shown that web bots can be designed to use the regular browsers of a machine

(instead of using an automated browsing software), which makes fingerprint based de-

tection even harder.

2.3.2 Evasion of Behaviour Based Detection Techniques

Web bots can use different techniques to exhibit a behaviour that can evade detection.

Since behaviour-based bot detection methods examine visitors’ web logs and mouse

trajectories to decide whether they are bots or not, evasion methods proposed in literature

focus on creating bots that exhibit a humanlike browsing behaviour regarding the web

pages they visit, and the mouse movements that they generate. These approaches are

summarised in Figure 2.3 and discussed below.

Figure 2.3: Web bot detection evasion techniques

Evasion of Behaviour Based Detection Techniques that Use Web Logs

Concerning the browsing behaviour of web bots (i.e., the web logs they generate), Yu

et al. (2015) argues that there are three main aspects that have to be decided to model

a humanlike behaviour: (a) the total number of web pages to go through, (b) the time to

spend on each web page, and (c) the specific pages to visit. To model those, literature

uses (i) approaches based on heuristics, (ii) statistical distributions, (iii) statistical models,
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and (iv) machine learning. It is also common to face each aspect of the humanlike be-

haviour differently and to use different or combinations of the aforementioned techniques

to simulate each aspect.

Approaches based on heuristics usually depend on several pre-defined parameters

that are selected by the authors to generate a humanlike behaviour. For example, Pas-

trana et al. (2018) and Campobasso et al. (2019) proposed the addition of time sleeps

on each web page simulating a “reading” functionality that depends on the length of

text in each web page, and skipping or spending a few seconds (a value between two

pre-defined integers indicating the seconds to “sleep”) on content that they have already

visited. Additionally, Iliou et al. (2017) proposed the use of random sleeps (i.e., bots

stop making requests for a specific period of time) that is also calculated based on some

pre-defined values. Moreover, Pastrana et al. (2018) proposed the use of several pre-

configured navigational patterns based on the types of web pages that they visit. These

patterns can be used by web bots to present a humanlike browsing behaviour. However,

as it is evident, deciding these navigational patterns requires expertise as well as knowl-

edge of the target websites’ visitors behaviour and characteristics. Additionally, since

visitors usually have different behaviours (even on the same web pages), it is not always

feasible to model those patterns and it requires a lot of expertise. Campobasso et al.

(2019) avoided this issue by enhancing the proposed web bots functionality by introduc-

ing a training period, where the bots “watch” a real human navigating the web pages and

learn to repeat those actions. However, this also requires humans to navigate the web

servers (at least during the bot training period).

Statistical distributions have also been used to model the different aspects of the

humanlike behaviour. For that, researchers analyse the behaviour of several humans

accessing web servers and see what behaviours match which statistical distributions. To

model the total number of requests, Oikonomou and Mirkovic (2009) proposed the use of

a uniform distribution, Yu et al. (2011) proposed the use of inverse Gaussian distribution,

while Iliou et al. (2017) and Yu et al. (2015) proposed the use of a Zipf-like distribution.

Besides the total number of hyperlinks to visit, Iliou et al. (2017) used a uniform distribu-

tion for the selection of the total number of web pages to follow from a specific web page.

Concerning the time that visitors should spend on each web page, Yu et al. (2011), Yu

et al. (2015), and Iliou et al. (2017) proposed the use of (double) Pareto distribution,

while Oikonomou and Mirkovic (2009) proposed the use of the uniform distribution. For

the selection of which pages to visit, Yu et al. (2011) selects the first page to visit using
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the a Zipf-like distribution to calculate the probability of visiting each web page, assuming

that they have all the web pages of the web server ranked based on their popularity.

As we can see, works that use statistical distributions to model a humanlike be-

haviour require an adequate amount of knowledge about the web servers of interest and

their visitors. Having this information, we see that it is possible to simulate a humanlike

behaviour. For example, Yu et al. (2015) assume that they can obtain information such as

the ranking of the page popularity of the target web site, the total number of requests to

the web server, and the total number of requests to specific web pages. As it is evident,

this information is rarely accessible and additional actions are required. Additionally, we

see that behaviours on different servers are being simulated better with different distribu-

tions. This means that such techniques are limited to specific visitors of specific websites.

Markov Models have also been used in literature alone or in combination with other

techniques for the modeling of browsing behaviour. In such approaches, the researchers

consider that evasive bots need to know only their current state to decide which pages

to follow and how to remain undetected. Specifically, Xie and Yu (2009) proposed the

use of Hidden Semi-Markov Model to model the request rate, viewing time, and request

sequence of a human browsing behaviour. They have seen that these depend on the

structure of a website and the way users access those web pages. Additionally, Awad and

Khalil (2012) proposed the use of a technique that combines a modified Markov model

and a classifier to predict the next web pages that visitors will follow. This technique aims

to also alleviate the problem with the several different paths that the visitor can follow

in a web page. By assuming that the order of the web pages to visit does not matter

as well as by performing a “pruning” technique to limit those paths, they were able to

predict the next web pages that a visitor will follow based on the currently visited web

pages. Furthermore, Yu et al. (2015) combined a Markov based model with the statistical

distributions that simulate the duration of each session, the browsing length, and the

probability to select a specific web page, to model a humanlike behaviour. However, as

discussed above, information about the web site and their visitors are required for that.

Finally, machine learning based techniques have also been proposed to allow the

better modeling of a humanlike browsing behaviour. As discussed above, Awad and Khalil

(2012) used a machine learning based classifier in combination with a Markov model

based approach to modelling a humanlike behaviour. Additionally, Iliou et al. (2017) cal-

culated the contextual similarity of the new page to visit with the current one so as to make

bots following web pages of similar topics to better simulate a humanlike behaviour. Ad-
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ditionally, differentiating from the other works, in Iliou et al. (2017) the machine learning

approach does not depend on the structure of the web server or the visitors browsing

behaviour on the specific web server, since it is a more generic one.

As we can see, all the aforementioned approaches that model a humanlike be-

haviour depend (to some extend) to the unique characteristics of the specific target web

servers as well as the behaviour of their visitors. Only the machine learning based text

classifier proposed by Iliou et al. (2017) does not require such knowledge, but models a

very small part of a humanlike behaviour. Thus, such approaches require this additional

knowledge for the effective modeling of a humanlike browsing behaviour.

Evasion of Behaviour Based Detection Techniques that Use Mouse Trajectories

In the recent years, as web bot detection techniques started examining the mouse tra-

jectories of visitors, web bots enhanced their evasive behaviour by mimicking humanlike

mouse movements while browsing. However, there are only a few works proposed in

literature for that. Specifically, current works in literature focus on (a) generating mo-

bile touchscreen events, and (b) generating mouse movements to bypass specific chal-

lenges. For those, (i) heuristics, (ii) statistical distributions, (iii) parametric curves, and (iv)

machine learning have been used to achieve that.

Chu et al. (2018) used heuristics to select random values to simulate various effects

when bots perform mouse movements. In a similar manner, Wei et al. (2019) used heuris-

tics when selecting the starting and ending point of a mouse trajectory to be simulated by

the web bots, the “step” size of the mouse trajectories (i.e., the distance between each

point/pixel that the mouse, when controlled by the web bot, hovers over), and the time in-

terval (i.e. time difference) between two consecutive points. Additionally, Chu et al. (2018)

proposed a bot that uses as input human mouse trajectories and repeats them (without

exhibiting any intelligence). Furthermore, Acien et al. (2020b 2021) proposed the use of

heuristics to model the velocity of mobile mouse touchscreen trajectories, by spacing the

points of the trajectory on a log scale (emulating a velocity profile with acceleration simi-

lar to the one observed in human samples). Similar to the heuristic approaches used for

the simulation of the browsing behaviour of humans, such techniques require knowledge

about the specific web pages as well as the behaviours of visitors, which is not always

easy to obtain, limiting their effectiveness.

Additionally, statistical distributions have been used to generate evasive behaviours.

Similarly to the heuristic approaches, Wei et al. (2019) tested the use of uniform and
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Gaussian distributions to simulate the “step” size of the mouse trajectories, and the time

interval between two consecutive points. Furthermore, Acien et al. (2021) used statistical

distributions to generate mobile touchscreen events. Specifically, they extracted several

aspects from the mobile touchscreen trajectories of humans and noticed that all these

follow the Gaussian distribution, which they used thereafter to generate additional values

for those aspects that simulate a humanlike behaviour. The aspects that they examined

were duration, distance, angle, mean velocity, move efficiency, and displacement. Again,

these method requires knowledge of the behaviour of humans. Also, Acien et al. (2021)

generated only the extracted information of the swipe trajectories, not the pixels with the

respective timestamps that make the trajectory.

Parametric curves have been used by Wei et al. (2019) to generate humanlike

mouse movements. Specifically, they used the Bézier curve to generate a smooth contin-

uous curve that can look humanlike. Even though such curves present more humanlike

mouse movements compared to simple straight lines, these can be easily distinguished

visually from human ones.

Concerning the machine learning based techniques, Akrout et al. (2019) proposed

the use of Reinforcement Learning (RL) to bypass Google reCAPTCHA v3 by generating

humanlike mouse movements. However, this technique only targeted to evade a specific

CAPTCHA challenge instead of generating general humanlike mouse trajectories. Ad-

ditionally, Acien et al. (2021) proposed the use of GANs with Long Short Term Memory

(LSTM) network layers to generate synthetic swipe data that can be used by mobile web

bots. These techniques have shown very promising results, as the RL approach works

without any knowledge of the human behaviours, and the GANs are able to generate

humanlike mobile trajectories.

2.4 Conclusions, Insights, and Limitations

In this chapter we presented the literature review on the web bot detection/evasion do-

main, starting from the web bot landscape, and then presenting the different signature-

based and behaviour-based web bot detection and detection evasion techniques pro-

posed in literature.

As discussed above, web bots vary in sophistication, with advanced web bots being

especially appealing to malicious web bot creators, due to their browserlike fingerprint

and humanlike behaviour which reduce their detectability. Such evasive web bots can

Bournemouth University, Department of Computing and Informatics, Dissertation



CHAPTER 2. LITERATURE REVIEW 39

be and have been abused for malicious purposes, since (i) they can perform highly com-

plex tasks, and (ii) avoid detection by presenting a browser fingerprint and a humanlike

behaviour. This makes them particularly dangerous since they present themselves as

humans and perform several actions in a humanlike way, which severely hinders their

detectability.

Additionally, even though for many years the most popular techniques for detecting

web bots were based on CAPTCHAs, current advances in machine learning that can

be used by web bots have considerably reduced their effectiveness. Thus, current web

bot detection approaches used by commercial solutions, combine (i) rule-based web bot

detection based on browser fingerprinting techniques, with (ii) web bot detection based

on the behaviour of the visitors.

However, we show that literature on behaviour-based web bot detection techniques

does not focus on detecting only advanced web bots, but proposes general detection

frameworks that target all web bots regardless of their sophistication level. Thus, even

though most techniques proposed in literature achieve very high performance, these tech-

niques might not be very effective when detecting only advanced web bots. This raises

the question concerning the effectiveness of the state-of-the-art web bot detection tech-

niques against (only) advanced web bots that try to evade detection, and the potential

need of novel web bot detection techniques that target those advanced web bots (if cur-

rent approaches achieve low performance). Such web bots should be considered partic-

ularly dangerous, as discussed in Section 2.1.

Moreover, we show that in the last years literature started focusing on using mouse

movements for the detection of web bots, since it is harder for web bots to generate

humanlike mouse movements compared to web logs. Considering the importance in

detecting advanced web bots, there is a need for evaluating such detection techniques

alone or in combination with more traditional detection techniques that use web logs

against advanced web bots.

Also, we show that there are several types of evasive web bots proposed in literature,

which use either a single technique or a combination of different techniques, including

heuristic approaches, statistical distributions, statistical models, parametric curves, and

machine learning. The latter (i.e., machine learning based techniques) are very promising

since they usually do not depend on specific configurations and structure of a target web

site. However, very few works in literature have used machine learning based techniques.

This raises the question of how well the (state-of-the-art) web bot detection techniques
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perform when faced with advanced web bots that use recent advances in machine learn-

ing to evade detection. As we discussed before, it is of utmost importance to detect

such advanced web bots, since they can be very dangerous by presenting themselves as

humans and performing similar actions as humans do.

Bournemouth University, Department of Computing and Informatics, Dissertation



3 Behaviour Based Web Bot Detec-

tion

As discussed in Chapter 2, the limitations of signature-based detection techniques, and

the advances in browsing automation technologies that enabled the generation of browser-

like fingerprints by web bots resulted in bot detection techniques to focus on visitors’

behaviour. Well-known security companies’ reports, such as Akamai (2021), Cloudflare

(2021), DataDome (2021a), PerimeterX (2021), and Distil Networks (2019), showcase

that these companies use and combine in their latest products signature-based detection

techniques (primarily browser fingerprinting techniques) with machine learning methods

that examine the visitors’ behaviour to detect web bots.

However, as shown in Figure 2.2, only in recent years web bot detection frameworks

have started being evaluated against advanced web bots. As discussed in Chapter 2,

advanced web bots are particularly dangerous since they present themselves as humans

and perform several actions in a humanlike way, which severely hinders their detectabil-

ity. If malicious authors invest the time in creating advanced web bots, such web bots

will be used for high impact attacks. Thus, web servers should consider creating detec-

tion frameworks that focus on advanced web bots. Additionally, later works from literature

have been evaluated on both moderate and advanced web bots, instead of only advanced

web bots, thus their true performance against only advanced web bots cannot be deter-

mined.

To this end, in this chapter we initially evaluate the web bot detection techniques that

were state-of-the-art in the beginning of our research (i.e., before 2018) against web bots

of different sophistication levels and examine how this affects the detection performance

(Section 3.1). We showcase the limitations of the aforementioned web bot detection

techniques in detecting advanced web bots that try to evade detection, a work that was

published in Iliou et al. (2019).

Additionally, we propose a novel detection framework that can be used for the de-

tection of advanced web bots (Section 3.2). Instead of trying to further improve traditional

web detection techniques that use web logs for the detection of web bots (where sev-

41



3.1. MACHINE LEARNING BASED DETECTION USING WEB LOGS 42

eral works in literature have been proposed on that), we propose a novel approach that

utilises the mouse movements of visitors.

We opted to do that since humanlike mouse movements are far more difficult to

simulate compared to web browsing behaviours. Our approach was in line with other

researchers, where they also started utilising mouse movements (in parallel with us,

but without being aware of each ones works before). Additionally, differentiating of all

state-of-the-art approaches proposed in literature, the proposed framework comprises

and advances two detection modules, one that uses web logs and one that uses mouse

trajectories. The modules are used in a novel way to capture the different temporal and

spatial characteristics of the types of data utilised, which results in a more robust de-

tection framework able to detect web bots even in cases where one of the individual

detection modules fails. This novel framework was published in Iliou et al. (2021a).

Next, we present in detail the detection framework used for the evaluation of the

state-of-the-art web bot detection technique that use web logs (Section 3.1), followed by

the novel web bot detection framework that combines web logs and mouse movements

for the detection of advanced web bots (Section 3.2).

3.1 Machine Learning Based Detection Using Web Logs

As discussed before, in the beginning of our research (i.e., before 2018), literature fo-

cused on detecting web bots based on their behaviour using web logs. However, such

approaches have not been evaluated against advanced web bots that try to evade detec-

tion, even though such bots could probably have been used for high impact attacks.

Thus, in this section we propose and evaluate a framework that uses the most promi-

nent detection techniques at that time (i.e., before 2018) against web bots of different

sophistication levels. The evaluation shows that even though such techniques are very

effective against simple web bots (something that is in line with literature, as shown in

the Table B.1 which summarises the performances of literature), such techniques fail to

detect advanced web bots. This work was published in Iliou et al. (2019).

Next, we present the web bot detection framework (Section 3.1.1), followed by the

evaluation setup (Section 3.1.2), and the evaluation results (Section 3.1.3) against simple

and advanced web bots.
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3.1.1 Web Bot Detection Framework

The web bot detection framework is based on and combines the most prevalent web bot

detection techniques that had been proposed in literature when this research took place

(i.e., before 2018). These techniques extract several measurable values (i.e., features)

from the web logs and used them as input to train machine learning models for the de-

tection of web bots.

The architecture of the web bot detection framework is shown in Figure 3.1. The

input of the framework is a directory path in which the HTTP logs from the web server

are stored. The framework uses a regular expression to extract the relevant content from

HTTP logs. Thus, the process of applying different log files as input is trivial, since any

new format of interest can be incorporated by only adapting this regular expression rule.

After the successful connection of the framework with the HTTP server log files, the

session extraction procedure takes place, where HTTP log data are split into sessions. As

discussed in Section 2.2.2, it is common for web bot detection frameworks to classify web

bots and human visitors based on their total behaviour over a session, since only single

requests do not include enough information for behaviour of visitors. For each session, a

feature vector is created using a set of features proposed in literature. This feature vector

aims to represent the general behaviour of the visitors throughout the session, which can

be used to uncover the different characteristics of the behaviour of web bots and humans.

After that, each session is annotated as web bot or human using an automated way.

Furthermore, the importance and effectiveness of each feature is evaluated and a subset

is selected, which is commonly used in machine learning. Finally, the selected feature

vectors are used to create the classification models which are used for the classification

of new sessions as bots or humans.

In the testing phase (i.e., when the detection framework is deployed on a running

web server), the previously created classification models are used to identify web bot

sessions in new unseen data. When new data are available, their sessions and features

are extracted accordingly. Each classifier uses a unique subset of the available features

which consists of the ones that were deemed most important during their training stage.

The trained classifiers take the new data as input and determine whether each visitor is

a bot or a human.

Next, we present the technical details of the proposed framework.
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Figure 3.1: The web bot detection framework

Session Extraction

The first step in identifying whether a visitor is a human or a web bot is the extraction of

the visitor’s session(s) from the log files. As discussed in Chapter 2, it is common to use

a combination of the IP with the browser agent name for the creation of a unique iden-

tifier per visitor, when no additional information about the visitors session exists (which

is the default configuration of common web servers). Examples of works that follow this

approach are Stevanovic et al. (2012 2013), Bhargav and Bhargav (2014), Zabihi et al.

(2014), Grzinic et al. (2015), Rude and Doran (2015), Sisodia et al. (2015), Doran and

Gokhale (2016), Hamidzadeh et al. (2018), Rovetta et al. (2017 2020), and Suchacka

et al. (2021).

The aforementioned technique will not necessarily result in distinguishing all users

from each other, since there might be two users with the same IP and agent name or

one user changing several agent names in rotating order. To this end, more advanced

fingerprinting techniques could have been used, such as the ones proposed by Nikiforakis

et al. (2013), Azad et al. (2020), Laperdrix et al. (2020), and Schwarz et al. (2019),

that extract information about browser-based characteristics (e.g. ActiveX support, Flash

enabled, language enumeration, etc.), OS and applications features (e.g. OS and kernel

version, Windows registry, etc.) and hardware features (e.g. screen resolution). However,

since this information is not available in the web log data that we used, we followed the

default approach of identifying separate sessions by the combination of a unique IP -

agent name pair.

To define when a user session has ended, we use a 30 minute threshold, as pro-

posed in Stevanovic et al. (2012 2013), Sisodia et al. (2015), Bhargav and Bhargav

(2014), Zabihi et al. (2014), Rude and Doran (2015), Doran and Gokhale (2016), Hamidzadeh
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et al. (2018), Rovetta et al. (2017 2020) and Suchacka et al. (2021). More specifically,

when a session stays idle for more than 30 minutes (i.e., no request is performed from a

specific IP - agent name pair for more than 30 minutes), a new session is created upon

a new request. Furthermore, sessions that have a total number of HTTP requests lower

than a threshold k are not taken into consideration because it is not feasible to distinguish

bots and humans based on only a few HTTP requests, as shown by Rude and Doran

(2015).

Feature Extraction

The information included in each session is encoded into measurable values and used as

input to train the classification models. To decide which measurable values (i.e., features)

to consider, we accumulated the most promising features that had been proposed over

the past six years in the beginning of this research (i.e., 2012∼2017). The total features

proposed in literature are presented in Appendix A. Out of those, we selected 23 that were

available/applicable to our environment, which are presented in Appendix C. For example,

features specific for e-commerce sites, or features that required additional information

that we currently did not have were not included. In short, to distinguish web bots from

humans we considered the total requests that visitors make, the file types accessed,

the values of the request headers, the URLs accessed and the respective navigational

patterns, and the time between successive requests.

Automatic Annotation

The extracted sessions that are used for training the classifiers are annotated as “bot

visitor sessions” or as “human visitor sessions”. Bot visitor sessions contain two different

types of sessions; (i) those in which the web bots are conspicuous, i.e. they are not trying

to hide the fact that they are bots, and (ii) those in which the web bots are inconspicuous,

i.e. they replace one or more of their normal bot characteristics with those of a human

visitor to remain undetected.

The annotation process which we followed is depicted in Figure 3.2 and it is a two

step process. The first step is to identify simple web bots by examining whether their

agent name is similar to a browser one, while the second one is to identify, to the best

of our ability, web bots that present a browser fingerprint and, in some cases, a hu-

manlike behaviour by using an external honeypot. Initially, we used the API provided
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by Useragentstring1, a server that classifies agent names in several categories such as

“browser”, “crawler”, “library”, “link checker”, etc. After that, we used the API provided by

GreyNoise2, a server that collects and analyzes untargeted, widespread, and opportunis-

tic scans and attacks or malicious activities, to check whether the IPs have been found to

perform any of the above.

session

simple bot

IP has shown

malicious activity2

has browser

agent name1

yes

no

yes

no

human

advanced bot

[1] useragentstring.com

[2] greynoise.io

Figure 3.2: Automatic annotation process

The main idea behind our approach is that it is not common for a human visitor to

change the agent name of their browser. Thus, if a session has a non-browser agent

name, it can be safely annotated as web bot. However, as also mentioned by Distil

Networks (2018), Jacob et al. (2012), and Yang et al. (2015), all sessions that have a

browser agent name are not necessarily from human visitors, since bots might change

their agent name to present a browser-like fingerprint.

Feature Analysis and Selection

Feature selection is described as a method whereby specific features are selected from

the set of all available features. In machine learning, and more specifically, classifica-

tion problems, some features might result in the decrease of the models’ accuracy, thus

feature selection usually is performed to select the most promising features. However,

feature selection is not very commonly used in the web bot detection domain. Specif-

ically, Haidar and Elbassuoni (2017) and Suchacka et al. (2021) performed a feature

selection step which was done primarily manually via several experiments or by checking

the performance of features in other works. Zabihi et al. (2014) used a significance test
1http://useragentstring.com/
2https://greynoise.io/
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to see which features are significantly different between the bot and humans sessions.

Finally, Hamidzadeh et al. (2018) and Zabihimayvan et al. (2017) proposed the use of

FRS for the dynamic selection of the most premising features.

Furthermore, as discussed in Hamidzadeh et al. (2018), the best performing features

can differ between different datasets. For example, they show that in one dataset, the

feature that calculates the HTML-to-image ratio of the session requests is a very good

separator, while in other datasets the percentage of 4xx requests found to be better, and

in a third one the percentage of the 3xx requests was better.

Thus, our framework also supports the analysis of all the available features and the

selection of the most important ones. Two selection modes are supported, one which

selects the most promising features based on the feature analysis regardless of the clas-

sification algorithm employed and one that is classifier dependent. In both cases, each

classifier is accompanied by a boolean array that indicates which features are to be used

from all the available features for its training. The same features are used in the testing

process.

Classification

The classification process consists of two phases, the training phase and the testing

phase. In the training phase we feed the framework with known web bot and human

sessions as input to create the classification models. These models are stored into the

framework so that they can be used for the testing process.

The testing process is similar to the training one. The new (unseen by the classi-

fiers) web sessions are used as input to the framework and the classifiers generate the

respective label (web bot or human). To evaluate the framework, the labels of the ses-

sions used for testing are known (but kept secret). However, in a real case scenario, the

nature of these sessions would be unknown.

3.1.2 Evaluation

To assess the effectiveness of the framework that uses web logs for the detection of web

bot sessions, a series of experiments were conducted using real HTTP traffic collected

from a public web server. This section describes the evaluation methodology, the dataset,

the feature analysis and selection process, the evaluation metrics considered and, finally,

the classification algorithms tested and their configuration.
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Evaluation Methodology

The purpose of this framework is to identify and show the unique challenges that arise

when state-of-the-art web bot detection techniques are utilised for detecting advanced

web bots as opposed to simple bots. To this end, we evaluated our framework on how

well it can identify simple and advanced web bots separately. Initially, we identified the

most important features in the case of simple and advanced Web bots. We used these

features to generate the respective classification models and evaluate our framework

after the models’ deployment.

Furthermore, we took into account the fact that, in a real world case scenario, it

is imperative to have a low false positive rate in order to avoid miscategorising human

visitors. Thus, we tested our framework’s general performance in various working points

(i.e., classification thresholds) and analysed its performance on the working point in which

the false positive rate is relatively low.

Dataset

To evaluate our work we created a dataset from our lab’s web server. We opted to do that

since there are no public datasets available on this domain and we were not able to get

access to datasets from other works in literature. Specifically, the framework was tested

on HTTP log data collected from MKLab’s public web server.3 Instead of feeding the

framework with data real time, we used a year’s worth of HTTP log data (from 20/3/2016

to 20/3/2017) as input in a simulated time mode. Similarly to Rude and Doran (2015), we

only considered web sessions with more than k=30 requests per session to ensure that

the framework has adequate data to identify the nature of each visitor. The value of k

was chosen heuristically.

We annotated the dataset by examining the agent name of the visitor as well as

whether its IP has shown malicious activity (see Section 3.1.1). The total unique agent

names extracted from sessions with more than k=30 requests were 2793. From them,

the 2723 were annotated by the useragentstring’s API as “browser” (2628) or “bot” (95)

and 70 were annotated as “unknown”. For the “unknown” agent names, we manually

annotated them as browsers (66) or bots (4).

As we mentioned in Section 3.1.1, the IPs of the sessions that were annotated as

“browsers” by the useragentstring’s API (15452) are also checked for malicious activity
3Multimedia Knowledge and Social Media Analytics Laboratory, https://mklab.iti.gr/
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using the GreyNoise’s API. Thus, we end up changing the annotation of 299 unique IPs

(554 sessions) which were originally annotated as “browser” but their IPs have been

marked as bots by GreyNoise. The total unique agent names and IPs per class (i.e.

browser, simple bot, advanced bot) are shown in Table 3.1.

Table 3.1: Unique agent names and IPs

Bots
Humans Total

Simple Advanced Total

Agent names 99 105 204 2589 2793

IPs 602 299 901 15153 16054

To evaluate the framework, we split the dataset into two sets, one for training and

one for testing. Our web server by default splits the HTTP log data into files based

on a log rotation technique.4 The total files that were generated over a year were 13.

We grouped the files into two packages, (i) the training one using the first 8 files (from

20/3/2016 to 4/12/2016) and (ii) the testing one using the other 3 files (from 4/12/2016

to 20/3/2017). For each of these files we extracted all sessions with more than k=30

requests per session, following a similar approach to Rude and Doran (2015).

The final number of extracted sessions is shown in Table 3.2. To assess the frame-

work’s performance in identifying simple bots and advanced bots separately, we created

two “sub-datasets”, the D1 that contains the human and simple bot sessions and the D2

that contains the human and the advanced web bot sessions.

Table 3.2: Human and Web bot sessions

Bots
Humans

Total

D1

Total

D2Simple Advanced Total

Train 1321 431 1752 17462 18783 17893

Test 1034 123 1157 6195 7229 6318

Total 2355 554 2909 23657 26012 24211

By comparing our dataset with the datasets used in literature (based on the infor-

mation that is included in the respective papers, since these datasets were not publicly

available), we see that the total traffic of our web server was far less than in the ones from

the literature. For example, Cabri et al. (2018) and Suchacka et al. (2021) observed half
4https://httpd.apache.org/docs/2.4/logs.html
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the amount that we collected (which was over period of one year, as discussed above) in

only one month, while Stevanovic et al. (2013) observed more than double the amount

of our data in one month. However, those works only considered one month of log data,

instead of a whole year, so our dataset (in total size) was comparable. Also, having a

dataset that spans over one year can be considered as an advantage, since web bots’

behaviour can change over a specific period during the year (e.g., summer period vs rest

of the year). Thus our evaluation covers these cases as well.

Additionally, we see that most of our sessions were annotated as humans (about

∼89), which is contradictory to the percentages presented in Distil Networks (2017)

and Distil Networks (2018), two reports of Distil Networks (now acquired by Imperva),

a lead in web bot detection, for the respective periods of time. Specifically, in Distil Net-

works (2017) and Distil Networks (2018) it is mentioned that in 2016 and 2017 61.3% and

57.8% of the total traffic was found to be from human visitors (respectively). Concerning

the datasets used in literature, the most recent one collected in 2018 from Almahmoud

et al. (2019), where the authors observed that the simple bots were only 1.22% of the

users (while there is no other information about the total human and bot sessions). Older

datasets, such as datasets collected in Doran and Gokhale (2016) and Zabihimayvan

et al. (2017) collected in 2009 and 2013 respectively (in these works a few datasets were

collected), had a relatively low percentage of human sessions. Specifically, they observed

the human sessions to be 14.5% and 38.5% of the total sessions respectively. How-

ever, similar works, such as Sisodia et al. (2015), Hamidzadeh et al. (2018), and Loyola-

González et al. (2018), (not mentioning the year the datasers were collected) observed

a percentage of human sessions of 93.1%, 93.3%, and 97.8% (respectively), was were

closer to our dataset.

Furthermore, we see that the percentage of simple vs advanced web bots we ob-

served in our dataset is close to Distil Networks (2017) and Distil Networks (2018).

Specifically, in our dataset, ∼19% of the web bots were advanced which is similar to

the 19.9% and 21.2% reported in Distil Networks (2017) and Distil Networks (2018) (re-

spectively). Concerning the equivalent percentages of works proposed in literature, there

was no distinction between simple and advanced web bots, thus we cannot compare our

dataset with those on that aspect.

Thus, we see that there are some commonalities of our dataset with the ones pro-

posed in literature and web bot detection companies, in regards to the percentages of

the bots of different sophistication levels and humans. Additionally, we see that there
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are differences in the percentages and volume of data even among different works in

literature. This can be attributed to the fact that (i) the amount of the bots targeting a spe-

cific web server depends on many things, including the content hosted on the server as

well as their services, and (ii) there are differences in the bot and human annotation pro-

cess in literature making the percentage of human sessions dependant on the annotation

process.

Feature Analysis and Selection

To analyse the importance of the extracted features in the detection of simple as well as

advanced web bots we utilised the Principal Component Analysis (PCA) and the x2 (chi-

square) feature selection techniques. For both of these techniques the data were scaled.

When scaling the data for the PCA, we subtracted the mean values and then divided by

standard deviation for each feature in the training set. In the case of x2, we divided by

standard deviation without subtracting the mean to avoid negative values. We then used

the mean and standard deviation values calculated from the training set to perform the

same process in the testing set.

PCA can be used to assess the importance of each feature by calculating its con-

tribution to the generated principal components. To do that, we followed the work of Jo-

hannes (2016) and measured the mean of each feature “contribution” to all the generated

components of the PCA using the training set (D1 for simple bots and D2 for advanced

bots). Usually, as Johannes (2016) mentions, the smaller principal components (i.e., with

lower variance) are associated with noise and thus they can be omitted. Thus, the fea-

tures with the lowest cumulative “contribution” to all the principal components can also

be associated with noise. However, the high variance principal components are not nec-

essarily all useful, since they might not be correlated with the respective class (i.e., web

bot or human) or they may refer to noise existing within the data. Thus, we combined

the results of the PCA technique with the x2 feature selection technique to see the most

important features to the web bot detection problem.

To select the features that will give us the highest score for each classifier, we used

the greedy Sequential Feature Selection (SFS) technique presented in Pudil et al. (1994).

The SFS works as a wrapper on top of each classifier. It is an iterative process where in

each iteration the feature with the highest metric (in our case balanced accuracy) on the

training set is chosen and added to the features that are used for each classifier. By this

way, the features that perform the worst will be added in the end and can be omitted if
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they do not contribute to the performance. Thus, SFS provides different results for each

classifier, which is useful because each feature may contribute differently depending on

the classifier that was used.

Evaluation Metrics

Several researchers used accuracy as the evaluation metric for web bot detection, such

as Rude and Doran (2015), Stevanovic et al. (2012), Wang et al. (2013), and Rovetta

et al. (2017). Since it is possible for an algorithm to have high accuracy while maintain-

ing low precision, Alam et al. (2014), Wang et al. (2015a), Doran and Gokhale (2016),

Sisodia et al. (2015), Stevanovic et al. (2012), and Rovetta et al. (2017) use the precision

and recall metrics as well to assess the performance of the proposed approaches more

accurately. Furthermore, Wang et al. (2015a), Doran and Gokhale (2016), Sisodia et al.

(2015), Stevanovic et al. (2012), and Rovetta et al. (2017) calculated the harmonic mean

of the precision and the recall which is called F-measure, F1 score or simply F-score.

Due to the unbalanced classes in our dataset (something that is commonly observed

in this domain, as shown in the dataset section), we decided to use balanced accuracy as

opposed to accuracy. Furthermore, to evaluate the framework’s performance in both the

case of web bot detection as well as human user detection we calculated the precision,

recall, and their harmonic mean, F-score, for both classes. Finally, to gain a more general

understanding of the performance of the classifiers irrespective of the working point (i.e.,

classification threshold) we considered the Area Under Curve (AUC) evaluation metric,

presented in Fawcett (2006), that can be calculated by plotting the Receiver Operating

Characteristic (ROC) curve for a classifier.

Classification Algorithms Tested

Our framework is built to allow for the effortless incorporation of any machine learning

algorithm. As discussed in Section 2.2.2 and shown in Appendix B, there is no clear

performance benefit of one algorithm compared to the others and some algorithms might

work well in some datasets while fail in others. Thus, for our experiments we selected the

most popular classification algorithms in this domain (as most works prefer classification

over clustering). Specifically, we incorporated (i) the SVM, (ii) the Random Forest, (iii)

the Adaboost, and (iv) the MLP Classifier. Furthermore, following the work of Sisodia

et al. (2015), we added an ensemble classifier, which we call the Voting classifier, that

performs a class probability averaging of all the available classifiers. We did not use Naive
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Bayes (even though being one of the most popular ones), because it achieved very low

performance in some works such as Stevanovic et al. (2012) and Sisodia et al. (2015) to

avoid having a similar behaviour in our dataset.

Please note that even though the specific algorithms might slightly affect the per-

formance of our framework (as shown in Appendix B for other works in literature), the

main aim of this research is to examine the performance difference when trying to detect

simple vs advanced web bots. Thus, the specific algorithms used should not play a very

important role for our purpose, as long as they achieve similar performances to the ones

presented in literature.

The parameters for each classifier are shown in Table 3.3. We performed an exhaus-

tive search over specified parameter values for each classifier and chose the ones which

have the highest balanced accuracy using a 2-fold cross validation on the training data.

Furthermore, in the case of SVM and MLP Classifier, the data were scaled to avoid the

problem of domination of some features over the others. To scale the data, we followed

the same scaling technique that we used in the PCA (Section 3.1.2).

For the implementation of these algorithms the scikit-learn5 Python library was used.

Furthermore, all the experiments were performed on an Intel processor at 3.4GHz and

32GB RAM for loading large datasets during the experiments.

3.1.3 Results

In this section we present the results of the evaluation of our framework in regards to

detecting simple and advanced web bots. First, we analyse and select the most impor-

tant features for each classification algorithm. Subsequently, we evaluate the general

performance of our framework, and the performance of our framework in a false positive

intolerant server.

Feature Analysis and Selection

Feature Analysis: Figure 3.3 presents the cumulative variance of the data by adding

the PCA’s principal components one at a time ordered by descending eigenvalues for

the simple (D1) as well as the advanced (D2) web bots. As we can see, the principal

components generated from D1 and D2 have similar variance. Moreover, the number

of principal components which are essential to maintain at least 90% and 95% of the

variance for simple and advanced web bots is 14 and 16, respectively.
5http://scikit-learn.org/stable/
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Table 3.3: The parameters used on the classification algorithms.

Classification

Algorithm
D1 - Simple Web bots D2 - Advanced Web bots

SVC

RBF kernel, C=16384,

gamma = 1.22 * 10−4,

tol=0.001

RBF kernel, C=64,

gamma=2, tol=0.001

MLP Classifier

tanh activation, adam solver,

a=0.1, b1=0.9, b2=0.9, e=10−5,

hidden layer sizes: (100, 50),

constant learning rate

tanh activation, sgd solver,

a=1, b1=0.1, b2=0.1, e=10−8,

hidden layer sizes: (400),

invscaling learning rate

Random Forest

Estimators=200, Gini crit.,

max features=
√
no features,

min samples per leaf = 4,

min samples split 10,

max depth=70

Estimators = 1000, Gini crit.,

max features=
√
no features,

min samples per leaf = 4,

min samples split 2,

max depth=10,

out-of-bag samples

Adaboost

Decision Tree Classifier as

base estimator, estimators=450,

decision entropy criterion,

no max depth,

max features =
√
no features,

“best” split strategy,

learning rate=1

Decision Tree Classifier as

base estimator, estimators=50,

decision entropy criterion,

no max depth,

max features=
√
no features,

“best” split strategy,

learning rate=1

Furthermore, we calculated the absolute value of the mean values of each feature

“contribution” to all the components for the simple (D1) and advanced (D2) web bots

(Figures 3.4).

In general, the higher the mean value of the features’ contribution to the principal

components, the more important the feature can be considered. However, this is not

always the case; some of these features might not contribute to the problem. Thus, to

decide which features are the most important, we also calculated the respective x2 scores

for the simple (D1) as well as the advanced (D2) web bots (Table 3.4).

In both cases (PCA and x2), the importance of the features differs when using the D1

Bournemouth University, Department of Computing and Informatics, Dissertation



CHAPTER 3. BEHAVIOUR BASED WEB BOT DETECTION 55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
principal components

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cu
m

ul
at

iv
e 

ex
pl

ai
ne

d 
va

ria
nc

e 
(%

)

>90%
>95%

D1 - Simple Web bots
D2 - Advanced Web bots

Figure 3.3: Cumulative variance of PCA’s components for simple (D1) and advanced (D2)

web bots

Table 3.4: Ranked features using x2 for simple (D1) and advanced (D2) web bots

Dataset Ranked features using x2

D1 - Simple Web bots
13, 21, 23, 9, 15, 5, 10, 11, 8, 14, 7,

22, 16, 4, 6, 17, 12, 18, 19, 3, 20, 2, 1

D2 - Advanced Web bots
17, 4, 21, 12, 18, 1, 6, 3, 22, 23, 8, 9,

16, 11, 7, 13, 10, 5, 14, 2, 20, 15, 19

dataset (simple web bots) and when using the D2 (advanced web bots). Furthermore, the

features that have both the highest contribution to the PCA and a high x2 score are 21 and

23 for simple web bots (D1) and 17 and 18 for advanced web bots (D2). Features 21 and

23 have to do with time-related aspects of the browsing behaviour of the visitor. Simple

web bots, usually, have a predefined and therefore predictable behaviour regarding time,

which is why they can be detected this way. On the other hand, advanced web bots use

a more unpredictable browsing behaviour, so the characteristic that gives them away is

the unique content they try to access (features 17 and 18).

Feature Selection: Each feature might contribute differently in the performance of differ-

ent classification algorithms. Thus, we performed the greedy SFS technique to pick the

features that give the highest score (in our case balanced accuracy) for each classifier in

the case of simple (D1) as well as advanced (D2) web bots. We decided to keep as many
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Figure 3.4: The absolute mean value of each feature contribution to PCA components for

the simple (D1) and advanced (D2) web bots

features as possible as long as they do not noticeably decrease the balanced accuracy

in training. The selected features for each classifier and dataset are shown in Table 3.5.

The SFS results show that each feature contributes differently in each classifier.

Furthermore, the initial features selected by the PCA in combination with the x2 were

selected and highly ranked in some classifiers and rejected in other classifiers. Such an

example is feature 17, which was initially selected and is highly ranked in the case of

SVM and MLP Classifier, but rejected in the case of Random Forest and Adaboost.

For this reason, depending on the size of the dataset and the processing power

we have, we can either select the most promising features according to the combination

of the PCA with the x2 technique or perform the greedy SFS over all the features and

pick the ones that perform better on the training set. In our case, since the dataset was

relatively small, we followed the latter.

Additionally, we see that the most promising features in our work may differ from

the ones proposed in literature, something that is also discussed in Hamidzadeh et al.

(2018). For example, for the simple web bots, we see that the best performing feature

had to do with the requests with unsigned refer (feature 13). As discussed in Hamidzadeh

et al. (2018), this feature is very popular in literature, but they found it not to be the most

representative one in most of their datasets. This can be attributed to the fact that different
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Table 3.5: Ranked and selected (bold and in brackets) features using SFS for simple (D1)

and advanced (D2) web bots for each classification algorithm

Classification

Algorithm
D1 - Simple Web bots D2 - Advanced Web bots

SVM

{13, 4, 20, 8, 22, 14, 18, 21,

16, 1, 11, 19, 10, 17, 23, 5,

9, 12, 3, 6, 2, 7, 15}

{17, 9, 20, 7}, 5, 2, 14, 22,

6, 4, 11, 10, 8, 23, 3, 1, 16,

12, 19, 13, 15, 21, 18

MLP Classifier

{13, 15, 4, 14, 23, 20, 18, 5,

2, 21, 17, 12, 7, 6, 22, 9, 1,

8, 3, 10, 16, 11}, 19

{17, 21, 23, 6, 12, 9, 19, 5,

22, 14, 18, 16, 20, 10, 1, 8,

11, 15, 2, 3, 7, 13, 4}

Random Forest

{13, 4, 11, 19, 14, 20, 6, 17,

23, 5, 9, 12, 10 10, 8, 21, 18,

1, 16}, 22, 7, 2, 15, 3

{11, 14, 12, 20, 10, 5, 21, 7},

9, 6, 8, 4, 2, 17, 22, 23, 1, 15,

3, 16, 18, 19, 13

Adaboost

{13, 4, 19, 14, 20, 15, 5, 9,

10, 8, 11, 7, 17, 18, 12, 3, 6,

16, 1}, 21, 23, 2, 22

{11, 8, 14, 20, 10, 5, 9}, 2, 22,

7, 6, 4, 12, 1, 3, 17, 18, 21, 23,

19, 15, 13, 16

works in literature used datasets collected from different web servers. Each server having

its own structure and content can attract different types of bots, therefore some features

are more useful than others to separate web bots from human visitors.

General Performance

To evaluate the general performance of our framework, we plotted the ROC curve of

the Voting classifier when the framework was tested on simple and advanced web bots

(Figure 3.5). We also marked a few working points (i.e., classification thresholds) based

on the respective False Positive Rate (FPR). We opted to do this because in a real-world

scenario a web bot detection framework must be false-positive intolerant to avoid affecting

the visitors’ experience, even though usually literature does not consider that, and uses

a default threshold of 0.5.

The performance of our classifiers shows that detecting simple web bots is a trivial

task. The framework is able to effectively detect the simple web bots (D1 dataset) with an

AUC=1.00. This is in line with the results of the literature, as shown in Appendix B. How-

ever, detecting advanced web bots (D2 dataset) is not that simple. The framework per-

forms poorly and, if a low FPR is required, the framework detects very few web bots. This
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Figure 3.5: ROC curve of the Voting classifier for the simple (D1) and advanced (D2) web

bots

outlines the fact that, even though the techniques proposed in literature for the detection

of web bots based on the web logs that they generate achieved very high performance

in detecting simple web bots, their performance considerably decreases when detecting

advanced web bots, making them ineffective.

To further analyse the behaviour of our framework on the selected working points

in the case of advanced web bots (D2), we calculated the confusion matrix of the Voting

classifier on the two working points selected in Figure 3.5 (Table 3.6 and Table 3.7).

Table 3.6: Confusion matrix for advanced web bots (FPR=0.4, t=0.17)

Predicted Values

Bot Human Total

Actual Values
Bot 82 41 123

Human 3661 2534 6195

Total 3743 2575

The choice of a working point depends on how strict we want our detection frame-

work to be in each case. For example, choosing a working point with FPR=0.4, we would

correctly identify 2 out of 3 advanced web bots, but most humans would be misclassified

(Table 3.6). Choosing a higher threshold (lower FPR) results in fewer misclassified human
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Table 3.7: Confusion matrix for advanced web bots (FPR=0.01, t=0.31)

Predicted Values

Bot Human Total

Actual Values
Bot 18 105 123

Human 417 5778 6195

Total 435 5883

visitors, but the framework’s effectiveness in detecting advanced web bots is decreased.

Performance on a False Positive Intolerant Web Server

To assess the framework’s performance on a false-positive intolerant web server, we cal-

culated the precision, recall, and F-measure in the working point of FPR=0.01 for all em-

ployed classifiers. Furthermore, we calculated the balanced accuracy, which represents

more accurately the performance of the framework in the case of unbalanced datasets.

The results are shown in Figure 3.6.
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Figure 3.6: Comparison of the effectiveness of the classification algorithms for humans

(class 0) and web bots (class 1) for the D1 (simple web bots) and D2 (advanced web

bots) datasets in the working point with FPR=0.01

The performance of the classifiers shows that identifying advanced web bots is more

challenging than identifying simple web bots. When choosing a working point with a low

FPR, simple bots are detected with very high precision (∼95%) and recall (∼97%) which

makes an F-measure higher than 96%. Furthermore, in the case of detecting human

visitors (class 0), we achieved a precision and recall of more than 99% each. This comes
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in line with the performance of literature, where, as presented in Appendix B, most works

that detect simple web bots (both the ones that use classification and clustering) achieve

a performance of more than 90% to several evaluation metrics, with some of them such

as Rovetta et al. (2020) achieving F-measure and accuracy of more than 98.5%.

On the other hand, the framework achieves low precision and recall in the case of

advanced web bots which results in a low balanced accuracy (∼55%). Since current

literature approaches that detect web bots based on their web logs have not been tested

against advanced web bots, we cannot compare our results with what other researchers

have observed.

Moreover, we see that the performance of different classifiers varies, something that

is also common in literature (see Appendix B). To achieve a more balanced behaviour we

chose the Voting classifier to be the main classifier. Generally, voting classifiers are not

always guaranteed to have a better performance. However, they can be more “stable”,

since, if one of the employed classifiers underperforms, its behaviour will be masked

by the other classifiers. For example, Random Forest achieves the highest balanced

accuracy in the case of advanced web bots (D2) but, at the same time, very low recall of

the human class (see Figure 3.6).

3.1.4 Discussion

As discussed in Chapter 2, there is a huge incentive for individuals and companies alike

to create web bots that can bypass web bot detection techniques. This has led to the

introduction of advanced web bots that try to evade detection. In the experiments con-

ducted in Section 3.1, we used a dataset which comprises the logs from a public web

server, containing several sessions from such bots. We used these logs to determine

the effectiveness of state-of-the-art web bot detection techniques against advanced web

bots.

The results have shown that, although detecting simple bots is relatively easy (some-

thing expected from the works proposed in literature as well), detecting advanced web

bots that present a browser fingerprint and, in some cases, a humanlike behaviour is

much more difficult. Furthermore, if we try to detect such bots with current detection

techniques, we will end up misclassifying benign visitors, which is a non-desirable be-

haviour in a real-world case scenario.

Additionally, we show that the ineffectiveness of the state-of-the-art approaches pro-

posed in literature at the beginning of this research (i.e., before 2018) was not evident,
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because either advanced web bots were annotated as humans (based on the current

annotation methods that examine visitors fingerprint) or literature focused on identifying

all kinds of web bots, treating web bots of different sophistication level as one group of

visitors. Concerning the latter, since advanced web bots can be considerably fewer than

simple bots (as discussed in Section 3.1.2), the aforementioned technique will present

biased results masking its ability or lack thereof to detect advanced bots.

This ineffectiveness of those approaches against advanced web bots indicate the

need for additional features and techniques for the detection of advanced web bots. This

is also evident in literature, where the researchers changed direction towards using the

visitor mouse movements for the detection of more advanced web bots (as discussed in

Section 2.2.2). Additionally, as discussed in Chapter 2, since creating advanced malicious

web bots requires considerably more effort by malicious actors, such bots will probably

be used for attacks with high Return on Investment (ROI), which makes them particularly

dangerous.

Thus, there is a need to apply more advanced security measures to protect such

services. Such techniques may consider additional features that can be extracted from

web logs to better distinguish web bots from humans, or different algorithms that have

not currently been tested on this domain (such as recent advances in machine learning

that utilise deep neural networks), or additional input data can be considered to make the

generation of a humanlike behaviour from web bots harder (such as the use of mouse

trajectories). Since the detection of web bots using web logs was a relatively well stud-

ied area with several works being published on that, we opted to investigate the latter

approach in the following section (i.e., using additional input data, and more specifically,

mouse movements) for the detection of more advanced web bots, something that, as dis-

cussed in Section 2.2.2, has also been followed and published by other researchers (at

the same time as us). This does not mean that the former two approaches (i.e., adding

more features or using more recent deep learning techniques would not increase the ef-

fectiveness of the detection frameworks). For example, one could model the requests

as a sequence and use deep learning architectures such as RNNs, something that has

shown very promising results in different areas.
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3.2 Machine Learning Based Detection by Combining Web Logs

with Mouse Behavioural Biometrics

In the previous section we have shown that current state-of-the-art web bot detection ap-

proaches that utilise web logs are not very effective against advanced web logs. Even

though additional techniques could be tested on detection using web logs (such as the

use of additional features or more advanced deep learning techniques that), since this

area is relatively well investigated, we decided to follow a novel approach of including

additional input data for the detection of web bots, and, more specifically, the mouse

movements that they perform. Mouse movements are a good candidate since it is much

harder to generate behaviours that simulate humanlike mouse movements compared to

web logs, as humanlike mouse movements can become very complex in specific web

pages to simulate. Furthermore, since web logs can be effective in detecting web bots

of specific behaviours, we decided to propose a novel method that fusions the two in-

dividual approaches (i.e. the detection using web logs, and the detection using mouse

movements) to get the benefits of both approaches.

Specifically, this novel framework uses as a base the web bot detection framework

that was presented in Section 3.1, and advances it by introducing an additional module

that uses mouse trajectories for the detection of web bots. Furthermore, the proposed

novel detection framework comprising the two detection modules in a unique way to cap-

ture the different temporal and spatial characteristics that they provide. This results in a

more robust detection framework able to detect web bots even in cases where one of the

individual detection modules fail. This work was published in Iliou et al. (2021a).

Next, in Section 3.2.1 we present the detection framework, and in Section 3.2.2 we

detail the classification methods used by each of the detection modules. In Section 3.2.3

we outline the evaluation process of the framework, and in Section 3.2.4 we include the

results of the evaluation.

3.2.1 Web Bot Detection Framework

As discussed before, the detection framework fusions two detection modules, one that

uses web logs and one that uses mouse movements. Since the two input data have

different temporal and spatial characteristics, the proposed framework fusions the two

detection modules in a way to preserve those. Thus, instead of doing a feature based
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fusion, each of the modules builds its own classifier.

The first module (i.e., the one that uses web logs) is based on the web bot detection

framework presented in Section 3.1 and builds a classifier that aims to identify whether a

visitor corresponds to a bot or a human based on features such as the access frequency

of web pages, the type of web content accessed, the access patterns, and the HTTP

errors produced. The second module takes advantage of the difficulty in simulating hu-

manlike mouse movements and utilises features that can be extracted from the visitors’

mouse movements to detect web bots. For the latter, we process the mouse trajectories

as images and use them as input to CNNs to take advantage of the exceptional per-

formance of the CNNs in identifying patterns in images. This technique has also been

followed by Wei et al. (2019), a research that was done and published in parallel with our

work.

One of the reasons behind using two different detection modules (and thus two

different classifiers) instead of performing a feature level fusion is the complementarity

between the two modules based on the different levels of granularity that they provide.

This allows us to model the different temporal and spatial characteristics of the visitors’

browsing behaviour, including their behaviour regarding the web pages visited, as well as

the mouse movements performed in each page.

The general architecture of the framework is presented in Figure 3.7. The framework

uses a database that contains the web logs of each user, as well as the respective mouse

movements of each user on each web page. The web logs are used as input to the “web

log” detection module, while the mouse movements are used as input to the “mouse

movements” detection module. Each module assigns a score ranging from 0 to 1 to each

visitor. A high score means that a visitor is very likely to be a bot and a low score means

that the visitor is very likely to be a human. The respective scores from the two modules

are combined to decide whether the session is performed by a bot or a human, depending

on whether the resulting score is above a threshold value.

Figure 3.7: Web bot detection framework architecture
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Next, we describe in detail the detection module that uses web logs, the detection

module that uses mouse movements, and the fusion process.

Detection from Web Logs

The module that uses web logs to detect web bots is based on the one presented in

Section 3.1 and is derived from the most prevalent relevant techniques that have been

proposed in literature in the beginning of the research (i.e., before 2018). The architecture

of this module is shown in Figure 3.8. The framework uses a regular expression to parse

the web server logs. This allows the trivial application of the framework to any web server

logs, provided that they contain all the necessary information.

Figure 3.8: Web bot detection module that uses web logs

Similarly to Section 3.1, after the successful connection of the framework with the

web server logs, the session extraction procedure takes place where the data are split into

sessions based on some visitors’ unique characteristics (to separate the data of different

users) and based on a session timeout (to split the data of the same user into different

sessions). For each session, several measurable properties/characteristics (features)

of the visitors’ behaviour are calculated. Subsequently, the most effective features are

selected. The final feature vectors are used to create the classification models. During

the testing phase, we feed new data to these classification models to assess their ability

to identify web bots. To do that, we initially extract the sessions and feature values from

the test data. After that, the most effective features found in the training process are

selected. These data are used as input to the (already) trained classifiers to label the

new visitors as web bots or humans. Next, we present the details of the aforementioned

process. We present these steps in detail below.

Session Extraction: The first step in identifying whether a visitor is a human or a web

bot is the extraction of the visitor’s session(s) from the log files. Differentiating from what

we did in Section 3.1 which is the most prevalent approach in literature (as discussed

Bournemouth University, Department of Computing and Informatics, Dissertation



CHAPTER 3. BEHAVIOUR BASED WEB BOT DETECTION 65

Section 3.1) where we combine the IP with the browser agent name for the creation of

a unique identifier per visitor, in this section we use the PHP session ID along with the

HTTP log data. As discussed in Section 2.2.2, the combination of IP with the browser

agent name for user identification has flaws and is followed primarily when no additional

information exists or is logged. However, in our case, we consider that the logging pro-

cess of the web server is able to store the PHP session ID along with the HTTP log data.

Thus, we extracted the visitor sessions from the web log files based on their PHP ses-

sion ID. We consider that a session has been completed when more than 30 minutes

have passed and no new requests with its ID have been performed, similarly to Ste-

vanovic et al. (2012 2013), Sisodia et al. (2015), Bhargav and Bhargav (2014), Zabihi

et al. (2014), Rude and Doran (2015), Doran and Gokhale (2016), Hamidzadeh et al.

(2018), Rovetta et al. (2017 2020) and Suchacka et al. (2021).

Feature Extraction: Similarly to Section 3.1.1, the information included in each session

is encoded into measurable values, which are meant to represent the various properties

(features) that can be found in (or deduced from) the web logs. These features are related

to the method/response code of the HTTP request, the type of file(s) requested, and the

browsing behaviour. These features are used as input to train the classification models.

The specific features used by our framework are presented in Section 3.2.2.

Feature Selection: As discussed in Section 3.1.1, in machine learning, some of the

available features might negatively affect the effectiveness of the classification models.

However, feature selection is not very commonly used in the web bot detection domain,

with Haidar and Elbassuoni (2017) and Suchacka et al. (2021) performing feature selec-

tion manually based on performance, Zabihi et al. (2014) performed a significance test for

each feature, and Hamidzadeh et al. (2018) and Zabihimayvan et al. (2017) used FRS for

dynamic feature selection. The proposed framework can be combined with any feature

selection algorithm to accommodate different types and volumes of data. The specific

details of the feature selection process that has been selected for the evaluation of this

framework are presented in the evaluation section (Section 3.2.3).

Classification: The final feature vectors are used as input to train the classifiers. As dis-

cussed in Section 3.1.1, the framework supports the construction of an ensemble from

several classifiers (i.e., it performs a class probability averaging of all the available clas-

sifiers). The classification algorithms selected were the same as the ones used in Sec-

tion 3.1, and were selected based on their popularity and effectiveness. Details of those

classifiers are presented in Section 3.2.2. In the testing phase, the ensemble is used to
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identify whether new web sessions are from web bots or humans.

Detection from Mouse Movements

The second module of our framework uses mouse movements to identify whether the

visitor is a bot or a human, a technique that, as discussed before, is very promising in

detecting (advanced) web bots. The framework constantly collects the mouse movements

of each visitor along with the respective timestamps. This information is then processed

and used to train classification models for the detection of web bots based on their mouse

movements. The architecture of this module is presented in Figure 3.9.

Figure 3.9: Web bot detection module that uses mouse movements

Mouse Movement Collection Architecture: The first step is to collect the mouse move-

ments of each visitor on each web page. These data are stored as a sequence and

include all the points that the visitor performed mouse movements on, along with the re-

spective timestamps. The data are collected in the form of {(x1, y1, t1), (x2, y2, t2), ...,

(xn, yn, tn)}, where xi and yi are the coordinates of the current mouse point, ti is the

timestamp of when the mouse move was performed, and n is the total number of points

over which the mouse hovered in each web page.

The process for the collection of mouse movements is presented in Figure 3.10.

To enable our framework to collect such data, a JavaScript file is embedded in each

web page.6 This JavaScript file constantly locally stores the mouse movements of the

browser along with the respective timestamps and sends them back to the server when

the visitor performs a mouse click (left/right/middle), or periodically, every few seconds.

The main idea behind this is to track the mouse movements in every web page that has
6Please note that alternative approaches for the collection of mouse movements can be followed (such

as the use of HTML div tags that utilise CSS hover selectors to request a new background image when

visitors move their mouse over a box on the grid) if we want to avoid using JavaScript on the client side for

the collection of mouse movements. This should not affect the detection flow of the framework.
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been visited. There are two main ways that a visitor can visit a web page in our setting:

(i) either by clicking on a hyperlink in the web page or (ii) by using the browser’s general

functionality, i.e. writing the URI of the web page or clicking the browser ‘back’ button.

In the first case, a mouse click event is triggered, allowing us to get all the currently

collected mouse movements. In the second case, to the best of our knowledge, the best

(and most browser-software independent) approach is to periodically collect the current

mouse movements.

Figure 3.10: Mouse movement collection process

Classification: Since we aim to train our models to identify patterns in the visitors’ mouse

movements, the mouse movements that each visitor performed on each web page are

grouped together to form sequences. More specifically, the format of the sequences is

{(x1, y1, dt1), (x2, y2, dt2), ..., (xn−1, yn−1, dtn−1)}, where xi and yi are the coordinates of

the current mouse point, dti = ti+1 − ti is the difference between the timestamps of

when the mouse move was performed on the points i and i + 1 (i.e., the total time the

mouse stayed on the corresponding point) and n is the total number of points over which

the mouse hovered in each web page. Since tn is the current time (and thus tn+1 is

unknown), the last point in the sequence is (xn, yn, 0).

Instead of extracting features from those sequences (such as duration, distance,

mean velocity, move efficiency, etc.) as Chu et al. (2018) did, we decided to take ad-

vantage of the exceptional performance of the CNNs in detecting patterns in images and

process the mouse trajectories as images (i.e., 2-dimensional matrices). Thus, each

sequence of mouse points is presented as a 2-dimensional matrix where xi and yi corre-

spond to the indexes of each element in the matrix and dti corresponds to its value. This

technique was also proposed in Wei et al. (2019), a research that was done in parallel
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with us. Details of the classifier are presented in Section 3.2.2.

In the testing phase, since several matrices correspond to the same visitor, we pre-

dicted the class for each matrix separately and then performed a majority voting over all

matrices in each session to identify whether they are a bot or a human. Specifically, we

calculated the total number of matrices that would be individually classified as matrices

generated from web bots and from humans, and labeled the session as a bot session, if

the number of bot matrices exceeded the number of human matrices.

Fusion of Detection Models

As discussed before, the framework performs a decision level fusion to leverage the com-

plementarity between the two modules (i.e., the module that uses web logs and the mod-

ule that uses mouse movements) based on the different levels of granularity that they pro-

vide which enables the modelling of the different temporal characteristics of the browsing

behaviour and mouse movements. At the end of each session, the scores of the two

detection modules are combined to decide whether the session is from a bot or a human.

Due to the complexity of human visitor mouse movements and thus the difficulty

in simulating them, we argue that detection based on mouse movements can be less

susceptible to evasion. Furthermore, in Section 3.1 we have shown that web log based

detection is not very effective in the case of advanced web bots.

For this reason, when the score of the detection module that uses mouse move-

ments is either very high or very low (indicating, with high probability, that the visitor is

a web bot or a human, respectively) we only take the score from the mouse movement

detection module into account. Otherwise, the scores of the two detection modules are

combined. The equation to calculate the final score is presented below

scoretot =


scoremv , if scoremv ≥ thresh or scoremv ≤ thresl

wmv ∗ scoremv + wwl ∗ scorewl , otherwise
(3.1)

where scoretot is the final score, and scoremv and scorewl are the classification scores

for the detection modules that use mouse moves and web logs, respectively. The wmv

and wwl represent the weights of the score outputs of the two detection modules with

wmv +wwl = 1 and the thresh and thresl are the threshold values which indicate when the

detection using mouse movements is reliable enough to be used on its own. The final
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decision score, scoretot , is compared to a predefined threshold to determine whether a

visitor is a human or a bot.

3.2.2 Classification Methods for Web Bot Detection

This section presents the classification methods employed by the two web bot detection

modules utilised in this framework. More specifically, we present the features and the

machine learning algorithms utilised by the log-based web bot detection module, as well

as the deep learning architecture employed by the detection module that uses mouse

movements.

Detection Module That Uses Web Logs

The module that uses web logs for the detection of web bots first extracts the features

to be used by the classifiers. The features used were the ones presented in Section 3.1

and include the most promising ones that have been proposed in literature from 2012

to 2017, and are also applicable to our setting. More specifically, the full list is the one

presented in Appendix C, without features 9, and 13-15. Feature 9 was not calculated,

since the web server that we performed the experiments on did not contain any PDF files.

Features 13-15 were not calculated, since the experiments were conducted in such a way

that users access the server directly - thus all sessions (both human and bot ones) had

the same values in those features.

The next step concerns the selection of the classifiers to be employed in our vot-

ing scheme. As discussed in Section 3.1 there is no clear performance benefit of one

algorithm over the others, thus the most popular classification algorithms were selected,

which are the SVM, the Random Forest, the Adaboost, and the MLP classifiers. Addi-

tionally, these classifiers construct an ensemble classifier (Voting classifier) that performs

a class probability averaging of all the available classifiers. We decided to follow this

approach, instead of simply using one of the aforementioned approaches, to provide a

more robust detection framework so as to ensure that any shortcomings of an individual

classifier will not affect the detection performance (as discussed in Section 3.1). For the

implementation of these algorithms the scikit-learn7 Python library was used.
7https://scikit-learn.org/stable/
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Detection Module That Uses Mouse Movements

The module that uses mouse movements is based on CNNs, since they have proven to

work very well in identifying patterns, which is relevant to our problem. Similar research

that was done in parallel with us, such as Wei et al. (2019), has also used CNNs.

Inspired by the architecture used in Wei et al. (2019), as well as considering the

nature and complexity of our problem (i.e., detecting line patterns), we chose the ar-

chitecture presented in Table 3.8. For the implementation of the Deep Neural Network

(DNN), the Keras8 Python library was used.

Table 3.8: Architecture of the network for the detection of web bots from mouse move-

ments

Layer type Kernel size / stride Output Shape Activation

InputLayer – (480, 1320, 1) –

Conv 3x3 / 2 (239, 659, 64) ReLU

Conv 3x3 / 2 (119, 329, 64) ReLU

M-Pool 4x4 / 4 (29, 82, 64) –

Conv 3x3 / 2 (119, 329, 64) ReLU

M-Pool 4x4 / 4 (29, 82, 64) –

Flatten – (1920) –

Dense – (2) Softmax

3.2.3 Evaluation

To assess the effectiveness of the proposed web bot detection framework that combines

both web logs and mouse biometrics, a series of experiments was performed by consid-

ering web bots of different sophistication levels. This section describes the evaluation

methodology, the dataset, the evaluation metrics that we considered, the configuration of

the employed classification algorithms, and, finally, the configuration of the web bots that

we used for the experiments.

Evaluation Methodology

The purpose of this work is to examine the effectiveness of the web bot detection frame-

work when faced with malicious advanced web bots. For our experiments we consider a
8https://keras.io/
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very common category of advanced web bots that is presented in Chapter 2 which aims

to crawl a web server with the purpose of harvesting information of value from that server.

For that, we chose a web server that hosted static web pages to generate our dataset.

Had we decided on using dynamic and more complex web pages, it would have required

a much greater user base to generate a representative dataset. Since there were no re-

quirements regarding the content that the server should host, we decided to use content

crawled from Wikipedia.9

The evaluation of the framework was performed in two phases. Initially, the frame-

work was evaluated on a testbed web server where the sessions were created by a

closed set of participants, i.e. the authors of Iliou et al. (2021a). In the second phase, an

expanded version of the web server (including additional content) was visited by 28 addi-

tional users (different from the ones used in the first set of experiments). The purpose of

the first set of experiments was to evaluate our framework on its ability to detect web bots

of different levels of sophistication (i.e., moderate and advanced). The second phase of

experiments aimed to evaluate our framework in a more “real-world” scenario, where (i)

there is not always a way to isolate suspected web bots of different sophistication lev-

els before they are passed to the detection models, and (ii) the detection framework is

usually tested on new users with unseen behaviours. Thus, in the second phase of ex-

periments, we also evaluated our framework in the case where moderate and advanced

web bots are merged, and in a user-independent manner, where each user (and thus all

their sessions) are used exclusively for either training or testing.

First Phase of Experiments: In the first phase of the experiments, we considered two

cases for our evaluation, (i) testing the framework on moderate web bots (i.e., web bots

which have a browser fingerprint but do not exhibit a humanlike behaviour), and (ii) testing

the framework on advanced web bots (i.e., web bots that have a browser fingerprint and

exhibit a humanlike behaviour). We do not investigate the case of web bots that do not

have a browser fingerprint (i.e., simple bots) because they can trivially be detected using

simple rule-based techniques. The purpose of the first phase of experiments was to

examine the differences in the framework’s performance when web bots present more

evasive behaviour.

Furthermore, to gain a better understanding of our detection framework’s perfor-

mance, we evaluated each detection module separately and in combinations. More

specifically, besides the two modules and their fusion presented in Section 3.2.1, we
9https://www.wikipedia.org/
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also evaluated the detection modules in a joint OR statement and the detection modules

when we simply average their classification probabilities.

Moreover, to account for the fact that in a real-world case scenario we might want

to detect web bots as soon as possible (i.e., with a few requests), we examined the

performance of our framework over the number of requests as they happen (real-time).

For the classifier that uses mouse movements, the voting process considers the requests

one by one, as they arrive (see Section 3.2.1); thus, no retraining is required. On the

other hand, for the classifier that uses web logs, we have to retrain the classifiers in each

request with all the requests that are available at that time. This is because the classifier

that uses web logs considers the whole (available) session before identifying the web

bots.

Second Phase of Experiments: The second phase of experiments was performed on the

same web server, but with further content added. In this second phase of the experi-

ments, the evaluation process aims to reflect an even more realistic scenario. To this

end, we initially re-evaluated our framework using the advanced web bots tested before.

After that, to account for the fact that in a real-world scenario moderate web bots and ad-

vanced web bots would be mixed, we evaluated our framework on a dataset that contains

both moderate web bots and advanced web bots.

Dataset

The framework was evaluated on two different versions of the server, the second of which

had additional content. For the first phase of the experiments a closed set of participants

consisting of the authors of Iliou et al. (2021a) was used for the generation of the human

sessions, whereas in the second phase of the experiments, 28 additional human subjects

were used to create the human sessions for the evaluation of the framework. In both

cases, the human visitors were presented with web pages containing primarily text and,

in some cases, a few images, and they were asked to spend some time on that server,

reading part of the content. There were no strict instructions on how to read the content

or what content to read to simulate a more real world case scenario.

First Phase of the Experiments: For the first phase of the experiments, the web server

that was used to evaluate our framework hosted 61 web pages from 5 different cate-

gories/topics crawled from Wikipedia. The number of pages was heuristically chosen with

the objective of providing enough data for the visitors to read from. For the first phase of

experiments, 50 human sessions were generated by a closed set of participants, i.e. the
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authors of Iliou et al. (2021a); in each session we visited the web server for an adequate

(not predefined) period of time to generate sufficient data for our experiments. The result-

ing sessions had between 9-20 requests. There were no specific requirements regarding

the number of requests. The only goal was to spend sufficient time browsing the server

so that an adequate amount of data could be collected. Furthermore, since we evaluated

our framework over the number of requests, there was no need for the users to perform

a specific number of requests.

9 10 11 12 13 14 15 16 17 18 19 20
Total requests in session

0

2

4

6

8

10

Se
ss
io
ns

Figure 3.11: Distribution of total requests per session for the first phase of experiments

The distribution of the total number of requests of the human sessions for the first

phase of experiments is presented in Figure 3.11. Each session was identified based

on the PHP session ID. Furthermore, we created 50 moderate and 50 advanced web

bot sessions that performed a similar number of requests with humans (i.e., a random

number between 9 and 20 requests).

In the first phase of the experiments, the framework was evaluated on two datasets,

(i) the D3 which contains the human sessions and the moderate web bot sessions, and

(ii) the D4 which contains the human sessions and the advanced web bot sessions. Fur-

thermore, each dataset was split into 70% training and 30% testing for the evaluation of

the framework simulating a training and a testing period. The dataset details are pre-

sented in Table 3.9 in the format of x/y where x is the number of sessions and y is the

total number of requests during these sessions.
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Table 3.9: Human, moderate and advanced web bots sessions and total requests for all

sessions of the first phase of experiments (sessions/requests).

Humans
Bots D3

(Humans + Mod.)

D4

(Humans + Adv.)Moderate Advanced

Train 35 / 456 35 / 431 35 / 527 70 / 887 70 / 983

Test 15 / 172 15 / 196 15 / 239 30 / 368 30 / 411

Total 50 / 628 50 / 627 50 / 766 100 / 1,255 100 / 1,394

Second Phase of Experiments: For the second phase of experiments, an expanded ver-

sion of the same web server was used; this web server hosted a total of 110 web pages

from 11 categories/topics (including the content used in the first version of the web server)

crawled again from Wikipedia. Over the course of these experiments, 28 additional users

were asked to visit our web server, and to create 2 sessions each (thus, the total number

of human sessions were 56). We instructed each user to spend about 15-20 minutes per

session.

All sessions were anonymised and the only information collected was which ses-

sions were generated by the same user. Additionally, we followed the appropriate pro-

cedures for the collection of the data, where a research ethics checklist was created to

evaluate the risk of the research, and the human subjects were provided with a partici-

pant information sheet including several information about this research (e.g., what this

research is about, how their data will be used, etc.), and a participant information sheet

that each human subject had to sign before participating. These documents are included

in Appendix D.

The distribution of the total number of requests in the sessions of the additional 28

users is presented in Figure 3.12. Each session was identified based on the PHP session

ID. However, we also considered a session timeout of 30 minutes; if 30 minutes passed

after the last request with a particular session ID, any future requests with the same ID

would be considered as part of a new session.

In the second phase of the experiments, the framework was tested on two datasets,

(i) the D5 which contains the human sessions generated by the additional users and

the same number of sessions generated by the same advanced web bots used in the

first set of experiments, and (ii) the D6 which contains the human sessions generated

by the additional users and a mix of moderate and advanced web bot sessions. The

rationale behind the selection of the D6 was that in a real-world scenario, such web bots
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Figure 3.12: Distribution of the total requests per session for the second phase of exper-

iments

will not usually be isolated based on their evasiveness and thus it is of interest to see

how the framework performs under these circumstances. Thus, in D6 we considered 28

moderate and 28 advanced web bot sessions (which is in total equal to the number of

human sessions).

Additionally, the second phase of experiments were user-independent (i.e., different

users were used for training and for testing) to simulate a more real-world scenario, where

the framework will be required to identify new, unseen behaviours as bots or humans.

Furthermore, to account for the fact that the selection of which users will be considered

for testing may influence the results, we performed a 7-fold cross validation at user level.

More specifically, we split the dataset into 7 folds, each fold containing the sessions of four

users (thus, each fold containing 8 human sessions in total, as each human visitor made

2 sessions) and the same amount of web bot sessions. This enabled our experiments

to be user-independent. The final evaluation metrics were calculated as the average of

the results of all iterations. Finally, to account for the randomness introduced when the

models are trained on GPU (as mentioned in the documentation of the Keras library10),

the aforementioned process was repeated five times and the average of all runs was

considered. The dataset that was used for the second set of experiments is presented in

Table 3.10.

By comparing our datasets with those used in literature, we see that there are works

with a number of users that is close to ours, such as Wei et al. (2019) where they used 50

human subjects, while other works have considerably more human subjects, such as Chu

et al. (2018) with 1000 human subjects. However, getting that amount of users is not
10https://keras.io/getting started/faq/#how-can-i-obtain-reproducible-results-using-ker

as-during-development
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Table 3.10: Human, moderate and advanced web bots sessions and total requests for all

sessions of the second phase of experiments.

Humans
D5 D6

Adv. Hum.+Adv. Mod.+Adv. Hum.+Mod.+Adv.

sessions 56 56 112 56 112

requests 1211 754 1965 734 1945

easy. These datasets were not public and we were not able to get access to them. Since

the purpose of this chapter is to show the benefits of combining web logs with mouse

trajectories for the detection of web bots as opposed to using individual approaches (with

all those tested on the same dataset) and not to directly compare this approach with

others in literature, we argue that the differences in the size of the datasets do not play

a critical role in that. Had we wanted to compare the performance of our approach with

other approaches in literature, a bigger dataset should have been used.

Evaluation Metrics

The evaluation metrics that were used are similar to the ones presented in Section 3.1.2.

Specifically, following the works of Rude and Doran (2015), Stevanovic et al. (2012),

Wang et al. (2013), and Rovetta et al. (2017) we calculated the accuracy, a common met-

ric used in the web bot detection problem. Furthermore, to gain a better understanding

of our framework’s performance and by also following the works of Alam et al. (2014),

Wang et al. (2015a), Doran and Gokhale (2016), Sisodia et al. (2015), Stevanovic et al.

(2012), and Rovetta et al. (2017), we calculated the precision, recall, and F-score eval-

uation metrics, which are also commonly used for the evaluation of web bot detection

frameworks.

Classification

The framework combines two classification modules for the detection of web bots, (i) one

that uses web logs, and (ii) one that uses mouse movements; the parameters of these

classification modules are presented below.

Classifiers Using Web Logs: This module employs an ensemble of four well established

machine learning algorithms: SVM, RF, AdaBoost, and the MLP Classifier. These algo-

rithms have been selected, since they are the most common ones in web bot detection

literature, as discussed in Section 3.1.2. Naive Bayes is also very common, but we opted
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from using it because of its very low performance in some works such as Stevanovic et al.

(2012) and Sisodia et al. (2015).

For the selection of the parameters of these four classifiers, similarly to Section 3.1,

we performed an exhaustive search over specified parameter values (grid search) and

chose the ones with the highest accuracy using a 2-fold cross validation on the training

data. Furthermore, the data (both training and testing) are scaled when inserted to the

classification algorithms to avoid the domination of some features over the others. For

the scaling process, initially we calculated the mean and the standard deviation of the

training data for each feature in the training set. These values were used to scale the

data of each feature by subtracting the calculated mean value and then dividing by the

standard deviation. The final values of the parameters are presented in Table 3.11.

To select the best performing features for our voting (ensemble) classifier, similarly

to Section 3.1, we used the SFS technique, a greedy algorithm that can be used to

reduce the feature space presented in Pudil et al. (1994). More specifically, we used

the Sequential Forward Floating Selection (SFFS) technique presented in Pudil et al.

(1994), in which we start with no features and then add the most effective features by

testing them one by one on the training data. Furthermore, in each iteration there is an

extra exclusion step where features might be removed so that a larger number of feature

subset combinations can be sampled.

Figure 3.13: Sequential Forward Floating Selection for D3 (left) and D4 (right)
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The accuracy of the SFFS for both the D3 and D4 datasets is presented in Fig-

ure 3.13. Based on this, we selected the set of features that resulted in the highest

accuracy in the training set for both the D3 and D4. For both the D3 and D4 the number

of features that present the highest accuracy are 14. These selected feature indexes are

{0, 1, 3, 4, 6, 8, 11, 12, 20, 17, 18, 19, 21, 22} for D3 and {0, 2, 3, 4, 5, 6, 7, 8, 11, 12,
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Table 3.11: The parameters of classification algorithms that use web logs.

Classification

Algorithm

D3: Humans -

Moderate bots

D4: Humans -

Advanced bots

SVC
RBF kernel, C=1,

gamma=0.03125, tol=0.001

RBF kernel, C=16,

gamma=0.002, tol=0.001

MLP Classifier

ReLU activation, sgd solver,

a=10−3, b1=0.1, b2=0.1, e=10−8,

hidden layer sizes: (100, 50),

constant learning rate

ReLU activation, adam solver,

a=10−3, b1=0.9, b2=0.9, e=10−8,

hidden layer sizes: (100, 50),

constant learning rate

Random Forest

estimators=200, Gini crit.,

max features=
√
#features,

min samples per leaf = 1,

min samples split = 2,

max depth=10,

out-of-bag samples used

estimators = 200, Gini crit.,

max features=
√
#features,

min samples per leaf = 4,

min samples split = 10,

max depth=10,

out-of-bag samples used

Adaboost

Decision Tree Classifier

as base estimator,

estimators=1250,

decision entropy criterion,

no max depth,

max features=
√
#features,

“best” split strategy,

learning rate=0.5

Decision Tree Classifier

as base estimator,

estimators=1250,

decision gini criterion,

no max depth,

max features=
√
#features,

“best” split strategy,

learning rate=1

18, 19, 20, 22} for D4 (see Appendix C for the corresponding features).

Preliminary experiments in our datasets showed that the aforementioned classifiers

(both the individual ones and the ensemble one) were often able to achieve similar results.

However, there were cases in all datasets (i.e., specific numbers of requests) where

the performance of an individual classifier was worse than the combination using the

ensemble (voting method); the precise number of requests for which we observed this

performance varies for each classifier. This indicates the need to use the ensemble

classifier presented above in order to further increase the robustness of our approach.

Classification Using Mouse Movements: As discussed before, this module utilises a DNN
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architecture that utilises CNN layers for the detection of web bots based on their mouse

trajectories. After a manual inspection or our datasets, and to account for the high mem-

ory usage of the input matrices (1080× 1920), we took advantage of the fact that human

visitors did not perform mouse movements on the edges of the web pages by performing

a center cropping with 300 pixel offset.

Fusion: Each detection module produces a score between 0 and 1. A high score means

that a visitor is very likely to be a bot, and a low score means that the visitor is very

likely to be a human. The framework combines these scores as shown in Equation 3.1.

The values of the thresholds for which only the mouse movement detection module was

used were initially selected heuristically and then fine-tuned based on the accuracy of the

framework on the training data of D4. The final values that were selected are thresh=0.7

and thresl=0.3. Furthermore, when the two detection modules are combined, we take

the average of the detection scores, so wmv = wwl = 0.5. This was not fine-tuned, and

further optimisations could be performed. If the total score is greater than or equal to 0.5

we consider the session to be a bot. Otherwise we consider the session to be human.

These values were selected heuristically.

Web Bots and Their Configuration

The purpose of this research is to examine the effectiveness of the framework in detect-

ing malicious web bots of different sophistication levels. As discussed by Distil Networks

(2018), malicious web bots can vary from simple scripts to bots that automate browsers

and present a humanlike behaviour. Thus, in this research we evaluated our framework

based on its effectiveness in detecting web bots of two levels of sophistication: (i) the

moderate web bots that have a browser-like fingerprint, but exhibit no humanlike be-

haviour, and (ii) the advanced web bots that present both a browser fingerprint and a

humanlike behaviour. We did not evaluate the performance of our framework on simple

web bots (i.e., simple scripts), since they perform no mouse movements and thus they

will always be detected.

As there is neither a universal definition of how the moderate and advanced web

bots behave, nor are there any existing tools that we can use to generate them, we based

these behaviours on the information available in literature, such as the works of Iliou et al.

(2017), Campobasso et al. (2019) and Pastrana et al. (2018), as well as in reports of

web bot detection companies, such as Distil Networks (2019). More specifically, we con-

sider the moderate web bots to have no intelligence, meaning that they follow hyperlinks
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randomly and by performing direct mouse movements between those links. Advanced

web bots on the other hand exhibit some intelligence by performing a heuristic hyperlink

selection, as well as some more advanced mouse movements based on the web pages’

content. Table 3.12 summarises the behaviour of humans, moderate web bots, and ad-

vanced web bots, by visualising two example mouse movement matrices for each type of

visitor. The details of how these behaviours are generated are presented below.

Table 3.12: Browsing behaviour of human, moderate and advanced web bots.

Human Moderate bot Advanced bot

Characteristics
Sessions made

by human visitors

Random hyperlink

selection

Direct mouse

movements

Heuristic hyperlink

selection

Advanced mouse

movements

Example image 1

Example image 2

Moderate Web Bots: The moderate web bots were programmed to follow the same num-

ber of web pages as the humans visited, which is a random number between 9-20 (see

Section 3.2.3). They follow hyperlinks by extracting all the available hyperlinks from each

web page and randomly (with equal probability per page) choosing one. Additionally,

moderate web bots present mouse movements which directly connect their current posi-

tion with the position of the next hyperlink that they will follow. Furthermore, the mouse

move “step” (i.e., the distance between each point/pixel that the mouse, when controlled

by the web bot, hovers over) is 1, resulting in a continuous straight line, unlike advanced

web bots and human users.

Advanced Web Bots: The advanced web bots, similarly to moderate web bots, were

also programmed to follow the same number of web pages as the authors visited, which
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is a random number between 9-20 (see Section 3.2.3). However, instead of randomly

selecting the hyperlinks to follow like moderate bots, advanced web bots are more likely

to follow hyperlinks from within the same topic. This is also common to human users

when visiting websites such as Wikipedia. Additionally, advanced web bots can emulate

“reading” part of a web page by performing mouse movements in a left to right direction

and back, as if to follow the direction of the text (like humans sometimes do). As a result

and following the work of Campobasso et al. (2019), the time between requests is also

adjusted based on whether they are “reading” the web page or not, and based on the

content of the web page that is read.

To achieve the aforementioned behaviours, a number of heuristically selected pa-

rameters were used. Next, we present these specific configurations and parameters

regarding the hyperlink selection process and the performed mouse movements.

For the selection of which hyperlink to follow, advanced web bots initially select a

random hyperlink from all the available hyperlinks in each web page. Since the structure

of the web server is similar to the one of Wikipedia, the majority of the hyperlinks in a web

page are often on the same semantic topic as their parent page (i.e., the page including

those hyperlinks). Thus, even in a random hyperlink selection policy (like the one followed

by the moderate web bots), bots have a tendency of remaining on the same semantic

topic. To further increase the probability of staying on the same topic, when advanced

bots try to visit a new topic they have a 50% probability of being forced to choose again

(i.e., repeat the hyperlink selection process) instead of visiting the new topic.

Additionally, advanced web bots have an 80% probability of simulating a “reading” of

the web page (i.e., performing mouse movements hovering over the text as if the bots are

reading). The lines to be read are calculated based on the text size using the following

equation

lines to read =
content length − template length

length to lines
(3.2)

where the content length is the length of the web page when considered as a string

variable, the template length represents the length of the text which belongs to the part

of the web page that remains constant for all requests (i.e., the web page theme or

template), and the length to lines is a weighting factor that allows the transformation of

content length to lines based on the content size.

To achieve a mouse movement behaviour as the one presented in Table 3.12 for ad-

vanced web bots, we heuristically selected a set of parameters. This behaviour depends
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on three factors: (i) how many lines the web bot will “read” (i.e., hover across the page

from the left side to the right side in an approximately horizontal line, like human users

do), (ii) given a starting point, which will be the ending point of the line that represents

the “reading” function, and (iii) which will be the next point that the bot will go to after

finishing “reading” a line, i.e., the next line’s starting point. The first is calculated using

Equation 3.2. We selected content length = 1500 and length to lines = 500 based on

the structure of the web pages. For the second requirement, instead of allowing the bot

to hover over the line until its end, we deduct a random number between (0,200) from the

horizontal axis coordinate of the ending point to simulate the human trait of skipping the

end of a line. We also add a random number between (50,100) to the vertical axis coor-

dinate of the ending point, because humans do not move the mouse in an exact straight

line. After finishing a line, the web bot uses the starting point of the newly finished line

to calculate the coordinates of the next starting point. The next starting point will be the

old starting point with its coordinates incremented by a random number between (0,50)

for the abscissa (x-axis) and a random number between (50,100) for the ordinate (y-axis)

respectively.

Finally, the advanced web bots perform a “step” of 8 when going from the left to the

right of each line (simulating a “normal reading”) and a “step” of 18 when going back to

the start of the line (simulating a mouse move without reading). All the aforementioned

parameters were chosen heuristically with the purpose of presenting a more humanlike

mouse movement behaviour.

Software for Generating the Web Bots: For the purposes of this work, we generated the

web bots using the Selenium11 browser automation software in its default configuration

to present an approximate browser fingerprint, and to enable the creation of a humanlike

browsing behaviour (i.e., the generation of clicks, and mouse movements). However,

in a real world scenario, such software in its default configuration can be detected in

a deterministic way, using advanced fingerprinting techniques. Thus, in a real world

scenario, Azad et al. (2020) have shown that further configuration on those tools can

be applied to avoid detection based on their fingerprint. Additionally, Akrout et al. (2019)

proposed the use of real browsers instead of browsing automation software, resulting in

fingerprints that are indistinguishable.
11https://www.seleniumhq.org/
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3.2.4 Results

In this section we present the results of the evaluation of our framework. The framework

was tested in two phases: the first phase, where we evaluate the framework in its ability to

detect advanced web bots as opposed to moderate ones, and the second phase, where

the framework is evaluated in a more real-world scenario, where suspected moderate

and advanced web bots cannot always be isolated before being passed to the detection

models.

Regarding the first set of experiments, we initially present the overall performance of

our framework using the D3 dataset when the modules are used alone or in combinations.

After that, and since we want the servers to identify web bots with as few requests as

possible (i.e., online, before the session ends), we also examined the effectiveness of the

aforementioned classification models per request, i.e. initially considering only the first

request in each session and gradually increasing the number of requests considered.

Finally, in the second set of experiments, we evaluated our framework over time on the

sessions generated by the additional users.

First Phase of Experiments

In the first set, we performed a series of experiments to evaluate the performance of our

framework in total and over the number of requests. The datasets that were utilised for

that were the D3 and D4 (see Section 3.2.3). The results of our framework are presented

below.

Overall Performance: To evaluate the overall performance of our framework, we calcu-

lated the accuracy as well as the precision, recall, and F-score for both the web bot and

the human class. Furthermore, to better illustrate the performance of our framework, we

considered several combinations of our detection modules. More specifically, we con-

sidered (i) using only the module that uses web logs, (ii) using the module that uses

only mouse movements, (iii) combining the two detection modules in an OR statement

(i.e., a visitor is a bot when at least one module classifies them as a bot), (iv) averaging

the classification probability of the detection modules, and (v) fusing them based on the

Equation 3.1. The results are presented in Table 3.13.

As expected, detecting advanced web bots is more difficult than detecting moder-

ate web bots for all detection modules, since advanced web bots try to present a more

humanlike behaviour. Furthermore, the module that uses mouse movements achieves
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Table 3.13: Evaluation of the web bot detection framework per session for D3 and D4

web logs
mouse

traject.

web OR

mouse
average fusion

D3 / D4 D3 / D4 D3 / D4 D3 / D4 D3 / D4

Bot

class

Precision 0.93 / 0.92 1.00 / 0.88 0.94 / 0.83 1.00 / 1.00 1.00 / 1.00

Recall 0.87 / 0.80 1.00 / 1.00 1.00 / 1.00 1.00 / 0.93 1.00 / 1.00

F-score 0.90 / 0.86 1.00 / 0.94 0.97 / 0.91 1.00 / 0.97 1.00 / 1.00

Human

class

Precision 0.88 / 0.82 1.00 / 1.00 1.00 / 1.00 1.00 / 0.94 1.00 / 1.00

Recall 0.93 / 0.93 1.00 / 0.87 0.93 / 0.80 1.00 / 1.00 1.00 / 1.00

F-score 0.90 / 0.88 1.00 / 0.93 0.97 / 0.89 1.00 / 0.97 1.00 / 1.00

Accuracy 0.90 / 0.87 1.00 / 0.93 0.97 / 0.90 1.00 / 0.97 1.00 / 1.00

higher accuracy and F-score than the one that uses web logs. Concerning the precision

and recall (for the bot class), we see that in D3 the detection module that uses mouse

movements achieves 100% in both evaluation metrics while the detection module that

uses web logs has lower precision and recall (which indicates the effectiveness of the

mouse movements against moderate web bots). In D4 we see that the detection module

that uses mouse movements achieves higher recall but lower precision when compared

with the one using web logs. This indicates that mouse trajectories can be used to identify

all web bots, but may misclassify some humans as bots, while web logs are better at not

misclassifying humans as bots but fail to detect all bots.

Concerning the OR combination, if a module incorrectly classifies a user as a bot,

the error propagates to the result. For this reason, along with the fact that the web log

module performs worse than the mouse movement module, the OR combination of the

modules yields lower effectiveness than the mouse movement module. However, aver-

aging their classification probabilities hides these errors because the correct detection

module in each case exhibits either a very high or a very low classification probability

while the incorrect one does not. Finally, when fusing their results as presented in Equa-

tion 3.1, by using solely the mouse movement detection module when its classification

probability is either very high or very low, the framework classifies all visitors correctly in

our test dataset for both the moderate and the advanced web bots.

By comparing our results with literature, we see that the performance of our detec-

tion module that uses web logs is slightly worse than those presented in literature, while

the performance of the detection module that uses mouse trajectories is similar to those
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from literature. Specifically, the approaches that use web logs in literature and consider

simple and moderate web bots (there are no works in literature that consider only mod-

erate web bots) achieve an F-score and accuracy that goes up to 0.91 in Buehrer et al.

(2009), and 0.958 in Almahmoud et al. (2019), while Grzinic et al. (2015) achieved an F-

score that goes up to 0.997. These performances are higher compared to ours, which can

be attributed to the fact that literature uses both simple web bots and moderate web bots

(with simple web bots being more easily detected). Concerning the mouse trajectories,

we see that works in literature consider only moderate web bots, and our performance is

close to theirs. For example, Chu et al. (2018) achieved a recall higher than 0.996 and

an AUC more than 0.999. These are comparable with our F-score and accuracy when

detecting moderate web bots, which are 1.00 each. Thus, we see that our results are in

line with the ones from literature.

Performance over the Number of Requests: Next, we calculated the accuracy of the

framework over the number of requests. We used the same module combinations as in

the previous section, and performed an iterative process where we initially considered

only the first request in each session and gradually increased the number of requests

considered. When a session reached the maximum number of requests available, we

stopped increasing the number of requests considered for that session. The results are

presented in Figure 3.14.

Regarding the performance of the detection module that uses mouse movements

against moderate web bots (i.e., D3), as well as the average and fusion modes, we see

that it achieves a very high accuracy, precision, recall, and F-score making only a few

misclassifications in some of the first requests and making no misclassifications after

eight requests, showcasing the effectiveness of mouse movements against moderate

web bots (as also shown in Table B.2 from Appendix B, which presents the respective

performances from other works in literature). Concerning the detection module that uses

web logs as well as the OR combination of the two detection modules, we see that the

accuracy and F-score range between 0.8 and 1.0, with the OR combination being affected

by the performance of the web logs detection module (i.e., errors from the web log module

are propagated to the OR combination). Also, we see that the OR combination achieves a

very high recall of 100% (at the expense of the precision), which indicates that all the bots

were retrieved, but also some humans were misclassified (something that is unwanted in

a realistic scenario).

Also, as expected, we see generally a lower performance of the framework against
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Figure 3.14: Performance over requests for D3 (left) and D4 (right)
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advanced web bots (i.e., D4) compared to moderate ones (i.e., D3). In D4, we see gen-

erally a high performance in the first two and three requests (which is close to D3), which

decreases for a few requests and then increases again. The increase in performance in

the first requests and the following drop has also been observed in Cabri et al. (2018) as

well. This indicates that, while advanced web bots may present a long-term humanlike

behaviour, when tested on a few requests, their behaviour varies from the norm, which
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makes them easier to detect. Thus, detection approaches can only examine the first re-

quests in a session to identify web bots, instead of waiting for the session to finish, or

at least waiting a few requests before performing the model prediction. Even though the

framework manages again to achieve a high performance after a few more requests (e.g.,

after the 13th request), allowing bots to perform a few requests before detecting them (i)

is not very efficient, and (ii) can also be dangerous (depending on the bot type).

Concerning the individual performances of the different detection modules in D4, we

see that regarding accuracy, F-score, and recall, the module that uses web logs achieves

the lowest performance, affecting also the OR combination. The module that uses mouse

movements performs better compared to the one that uses web logs, and the weight and

fusion combinations achieve very high performance, with the latter achieving 100% to

all evaluation metrics after the 13th request. While the modules that combine web logs

and mouse movements (i.e., OR combination, average, and fusion) achieve a similar be-

haviour regarding the precision evaluation metric, we see that the web logs perform better.

This indicates that the detection module that uses web logs is better in not misclassifying

human sessions as bots, while the detection module that uses mouse movements is bet-

ter at detecting all bots (in the expense of misclassifying some human sessions). Thus,

even though the detection module that uses mouse movements performs generally better

than the one that uses web logs, the latter is useful when we do not want to misclassify

human sessions.

The aforementioned results outline the importance of combining the two detection

modules, as opposed to using each one of them individually. Since the two modules

model different temporal and spatial characteristics of the human behaviour, we see that

they misclassify different sessions. Thus, their combination results in a better overall

performance.

Also, there is no work in literature that considers moderate or advanced web bots

and calculates the performance metrics over the requests. Thus, we cannot compare

the results per request with other works. However, as discussed above, we see that the

overall performance of our framework is in line with the literature.

Finally, we tested the statistical significance of the difference in the performance of

each detection module and their combinations using a paired, one tail, t-test with a =

0.01. For the D1, the difference is statistically significant in all cases except from (i)

the “mouse movements”, “average”, and “fusion” in all evaluation metrics, and (ii) the

“web logs” and “OR” combination in precision and recall. For the D2, the performance
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difference is statistically significant in all cases except from (i) the “average” and “fusion”

(with a p-value very close to being statistically significant) in F-score, (ii) the “web logs”

and “mouse movements”, “web logs” and “OR” combination, and “average” and “fusion”

in precision, and (iii) the “mouse movements” when compared with the “OR” combination,

the “average”, and the “fusion” in recall.

Second Phase of Experiments

In the second phase of the experiments, the average accuracy, precision, recall, and F-

score were calculated per request across all iterations (see Section 3.2.3). In Figure 3.15

we present the results.

The results in the second phase of experiments indicate that both the detection

module that uses web logs and also the detection module that uses mouse movements

performed considerably better, with the latter achieving a very high performance even

from the very first requests compared to the ones of the first phase of experiments on

the same number of requests. In D5, we see that the detection module that uses mouse

movements as well as the “average” and “fusion” combinations achieve 100% to all eval-

uation metrics in the very first requests (but also do not drop, as they did in D4). The

detection module that uses web logs also achieves a higher performance in D5 com-

pared to D4 in all evaluation metrics except from the precision where in D4 it was slightly

better. Through a manual investigation of the two datasets used in the two phases of

the experiments, we observe that the new users exhibited a larger variety of behaviours.

This benefited our framework and made it easier to detect advanced web bots, as they

are more similar to each other than they are to human users. Also, we see that the recall

of the “OR” combination, in contrast to the other evaluation metrics of the “OR” combi-

nation, is very high, something that is expected since the OR module aims at classifying

visitors as bots if either of the modules detects them as bots, resulting in detecting as

many bots as possible.

The variety of the datasets is also evident in D6, where by mixing moderate with

advanced web bots, there is an increased heterogeneity in the possible behaviours of

web bots and this negatively affects the performance of the individual detection modules.

When comparing D5 with D6, we see that in D6 the performance of all detection modules

drops. For the detection module that uses mouse movements, as well as the “average”

and “fusion” modes, we see a drop in the first requests in all evaluation metrics. After

the first five requests, we see that the detection module that uses mouse movements,
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Figure 3.15: Performance over requests for D5 (left) and D6 (right)
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as well as the “average” and “fusion” modes manages to achieve 100% to all evaluation

metrics (similarly to D5). For the detection module that uses web logs as well as the “OR”

combination (in which errors from the web log module are propagated to) we see a similar

but also lower performance between D5 and D6. Specifically, we see that in the first eight

requests the performance is relatively low for all evaluation metrics, with the recall of OR

combination not being affected (for the same reasons as in D5).
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Furthermore, we see that the performance of the detection modules and their com-

binations stabilises after around 34 requests, which is why we opted to not show the

performance of the framework when additional requests were used (i.e., after the 34th

request).

Again, there is no work in literature that considers moderate or advanced web bots

and calculates the performance metrics over the requests. Thus, we cannot compare

the result of the second evaluation phase with other works. However, since the overall

performance of the two evaluation phases is similar, as discussed in the first evaluation

phase, our results are in line with the literature.

Finally, we tested the statistical significance of the difference in the performance of

each detection module and their combinations using a paired, one tail, t-test with a = 0.01.

For the D5, the performance difference is statistically significant in all cases except from

(i) the “mouse movements”, “average”, and “fusion” in all evaluation metrics, (ii) the “web

logs” and “OR” combination in accuracy, precision, and F-score, and (iii) the “mouse

movements” and “OR” combination in recall. For the D6, the performance differences

are statistically significant in all cases except from (i) the “mouse movements”, “average”,

and “fusion” in precision, recall, and f-score, (ii) the “web logs” and “OR combination” in

accuracy and precision, and (iii) the ”OR” combination and “average” in recall.

3.2.5 Discussion

In Section 3.1 we show that advanced web bots are utilised by malicious actors to evade

detection. At the same time, we also show that even though the web bot detection tech-

niques proposed in literature at that time were highly accurate for simple web bots, they

perform poorly when tested on advanced web bots. To address these problems, we pro-

posed a novel web bot detection framework in Section 3.2 which can accurately detect

advanced web bots. It is an amalgamation of two detection modules, one which extracts

information from web logs to determine if a visitor is a human or a web bot and one

which detects web bots based on their mouse movements. The framework combines the

results of each module in a novel way to capture the different temporal characteristics

of the web logs and the mouse movements, as well as the spatial characteristics of the

mouse movements.

When used individually, the detection module that uses mouse movements is more

effective than the web log detection module, because human mouse movements are

more difficult to simulate in comparison with human browsing behaviour (regarding the
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web pages visited). Furthermore, while some web bots were able to bypass at least one

module, none of the web bots we tested were able to bypass both of them. This means

that it is more difficult for web bots to present humanlike mouse movements and browsing

behaviour simultaneously. However, simply classifying any session as a bot if either of the

detection modules identifies it as a bot will not be sufficient since, based on our results,

it can lead to the misclassification of human sessions. Furthermore, we show that the

framework was able to detect web bots using only a few requests (i.e., not waiting for the

session to finish). This is very important since it is common in literature to wait for the

whole session (or at least allowing bots to make several requests before performing the

prediction) which is not very effective and it may even be dangerous depending on the

types of web bots considered.

Additionally, we examined the performance of the framework against web bots of dif-

ferent evasiveness levels. We show that the framework was able to detect advanced web

bots more effectively when a more broad dataset of users with different behaviours was

used. This indicates that advanced web bots should be modelled to present a broader

set of behaviours (i.e., simulating different types of users) to more effectively evade de-

tection. However, the creation of such web bots should be challenging, since the more

advanced a web bot is, the more complicated behaviour must be generated. Thus, this

work raises the question of whether it is possible to create a set of evasive behaviours for

advanced web bots effortlessly. This is something that is investigated in Chapter 4 of this

thesis.

Moreover, the current version of the framework can detect web bots only if they

allow the specific JavaScript file that tracks users mouse movements to run. Alterna-

tive approaches can be utilised to the collection of mouse movements that do not use

JavaScript. However, in both cases, a (malicious) actor could block such tracking tech-

niques. We believe that, depending on the application of the framework, such actors

could be categorised as potentially malicious and the web server could apply additional

bot detection techniques to them (e.g., techniques that require human interaction). Fur-

thermore, our framework has not been designed to protect against replay attacks, in

which human behaviour may be recorded and then repeated by a web bot. These at-

tacks are more time consuming, and they are specific to each web server and its web

pages’ structure.

Also, when applying the proposed web bot detection framework to a web server

with numerous visitors, its effect on the server’s efficiency needs to be considered. The
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collection of all the visitors’ mouse movements is a resource demanding process. Thus,

we believe that the aforementioned approaches should only be performed in the first few

requests of the visitors and not during the entire session. Our framework achieves high

accuracy with a small number of requests which makes it suitable for online detection.

To sum up, in this chapter we show the limitations of the state-of-the-art web bots

detection techniques against advanced web bots that try to evade detection and we

proposed a novel way to address this. The limitations of state-of-the-art detection ap-

proaches were not very evident because primarily of the datasets and annotation pro-

cess used in literature. This could have resulted in companies using such detection

approaches and considering that they are safe (because of the advertised effectiveness

of those approaches), while being vulnerable, especially to highly sophisticated web bots

that, as discussed in Chapter 2, are the most dangerous. Thus, it is very important to

show the limitations of state-of-the-art approaches and propose additional techniques or

improvement directions, since, especially in the area of cybersecurity, most organisations

consider that they are safe as long as they have put some security measures in place

(that are advertised to work very well), while usually those security measures fail. Show-

casing the limitations of such approaches motivates the organisations to further research

and employ protection mechanisms to increase their security instead of simply adapting

an approach that is advertised to work.
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4 Advanced Evasive Techniques for

Web Bots

Advanced web bots can evade detection by using a browser fingerprint, and exhibiting a

humanlike behaviour. For the latter, web bots can take advantage of the recent advances

in machine learning to achieve such a behaviour. Since state-of-the-art behaviour-based

web bot detection techniques (presented in Chapter 2 and Chapter 3) examine the web

pages that bots visit as well as the mouse movements that they perform, in this chapter

we investigate the performance of those detection methods when faced with advanced

web bots that use the recent advances in machine learning to evade detection. We opted

to do that since, as discussed in Chapter 2, there are several works that use heuristics or

distributions to model a humanlike behaviour, but only a few that use machine learning,

even though machine learning has several benefits over the other approaches and has

also shown very promising results. Additionally, there are recent advances in machine

learning that have not been tested on this topic yet.

Specifically, in this chapter we consider two approaches that web bots can use to

evade detection based on their behaviour: (i) to browse the server and update their

browsing behaviour based on whether they have been detected or not, and (ii) to train

models on human browsing data and use them to generate (synthetic) humanlike data.

We consider these to be the two main approaches that web bots can use when combined

with machine learning, since (i) bots can either know nothing about the behaviour of the

humans on a web server (and thus, bots have to find evasive behaviour through trial-and-

error), or (ii) they can have access to human data from the target web server and use

them to train machine learning models to generate humanlike behaviours.

The first approach has the benefit of not requiring any prior knowledge of the be-

haviour of humans on that server, since, as discussed in Chapter 2, it is not always easy

to have this knowledge. However, this approach may require several unsuccessful at-

tempts by the bots to find evasive behaviours. This approach has been proposed in a

similar context by Akrout et al. (2019), where web bots were trained using RL to generate

humanlike mouse movements to bypass Google reCAPTCHA v3. In a similar manner,
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we argue that web bots can use this approach to find evasive behaviours. The second

approach (i.e., using human data to generate synthetic humanlike data) is commonly

used in literature to generate evasive behaviours, but, as discussed in Chapter 2, usu-

ally is used for selecting the parameters of the distributions used to model a humanlike

behaviour. Thus, instead of selecting the distributions’ parameters, we can train models

to generate humanlike behaviours, similarly to Acien et al. (2020b 2021). The generated

synthetic data can be used by web bots to browse the web server in a humanlike manner.

However, to achieve that, we need a database of human data to train our models.

For the first case (i.e., web bots updating their behaviour by interacting with the web

server), web bots can use Reinforcement Learning (RL), which has shown exceptional

performance in different domains with similar characteristics, including defeating profes-

sional players in games, such as the board game Go as shown in Silver et al. (2016).

In RL, an agent (here, a web bot) performs some actions in an environment (e.g., vis-

iting specific web pages) in order to maximize the notion of cumulative reward (in our

case, to evade detection while browsing the web server). The web bots can update their

behaviour based on, among others, whether they are detected or not.

For the second case, one of the recent machine learning techniques that has shown

very promising results in generating new data with the same statistics as the ones used

for training are the Generative Adversarial Networks (GANs), proposed in Goodfellow

et al. (2014). GANs are architectures where two neural networks, the Generator and the

Discriminator, contest with each other and are trained simultaneously in an “adversarial”

setting. The Generator constantly tries to generate data that can fool the Discriminator

into thinking that those data are real (and not synthetically generated). During training,

the Generator progressively becomes better at creating data that look real, while the

Discriminator becomes better at finding them. Specifically, as shown in Radford et al.

(2016), GANs can be used for generation of very realistic images, which makes them

ideal for the generation of humanlike mouse and touchscreen trajectories. Web bots can

train GANs using mouse movements from human visitors, and then use these trained

GANs to generate synthetic humanlike data that share similar characteristics with the

ones used for training. Thus, in that setting, GANs are a very promising approach. Even

though GANs have been used in Acien et al. (2020b 2021) to generate evasive web

bot behaviours, they have only been used to generate mobile humanlike touchscreen

trajectories and also they process the data as sequences instead of images. Thus, our

approach is a novel one and utilises the capabilities of GANs to generate realistic images.
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The generated data can then be used by web bots to browse the web servers and evade

detection due to their humanlike behaviour.

In this chapter, we evaluate these two novel approaches for creating advanced web

bots against state-of-the-art web bot detection techniques. More specifically, in Sec-

tion 4.1 we present and evaluate the web bots that use RL to evade detection based

on their browsing behaviour (i.e., the web logs that they generate), and in Section 4.2

we present and evaluate the web bots that use GANs to evade detection based on their

mouse movements. RL and GANs are not the only options for the generation of evasive

behaviours, but are good candidates for our purposes based on the unique characteris-

tics of those methods and the nature of our problem (i.e., the generation of a humanlike

browsing behaviour, and the generation of humanlike mouse movements). The main aim

of this chapter is not to present the most effective and/or efficient approaches for generat-

ing evasive humanlike behaviours, but to show the possibility of using recent advances in

machine learning to do so, by evaluating two recent machine learning based techniques

that are well fitting for our settings.

4.1 Evasive Web Bots Using Deep Reinforcement Learning

Evasive web bots can be trained to evade detection, by trying different browsing be-

haviours and following the most promising ones. Specifically, they can start from a spe-

cific behaviour and try different approaches in regards to the web pages that they visit,

the time that they spend on each web page, the sequence of web pages that they should

follow, etc. in an attempt to avoid detection. After finding a behaviour that can be used to

remain undetected, web bots can use it until the web server updates its detection models

to include these new malicious behaviours to its detection models. This process can be

repeated several times, where both parties (i.e., the detection module, and the web bots)

update their methods. This approach has the benefit of not requiring any prior knowledge

of the human behaviours on the target server, something that, as discussed in Chapter 2,

can be problematic. However, several unsuccessful attempts might be required by the

bots to find such behaviours.

One of the most promising machine learning methods that can be used for this

type of problem (i.e., learning through trial-and-error) is Reinforcement Learning (RL).

As discussed in Kaelbling et al. (1996), in RL, an agent performs some actions in an

environment in order to maximize the notion of cumulative reward. Through interacting
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with the environment, the agent can find a policy (i.e., the way that it makes decisions on

what actions to perform) that results in a high reward.

In this thesis, we show that RL can be used by web bots for finding a policy (i.e.,

what web pages to follow and how much time to spend on each one of them) that allows

them to remain undetected. The web bots continuously interact with the web server and

update their behaviour based on, among others, whether they have been detected or not.

Even though RL has shown very promising results in different scenarios with similar

characteristics as the web bot detection/evasion problem, including defeating professional

players in games, such as the board game Go Silver et al. (2016), to the best of our

knowledge only one relevant work exists in literature. Specifically, Akrout et al. (2019)

proposed the use of RL to bypass Google reCAPTCHA v3 by training the web bot to

learn how to move the mouse and click on the reCAPTCHA button. Thus, to the best

of our knowledge, this is the first work that examines the case of web bots using RL to

evade detection from the web logs that they generate.

Next, we present a novel way that web bots can use RL to evade detection based on

web logs and examine the effectiveness of state-of-the-art web bot detection techniques

against those bots. For that, we initially present the mapping of the main RL concepts to

the web bot detection/evasion problem (Section 4.1.1). Then, we present the details of

the RL environment and the novel evasive web bots that use RL (Section 4.1.2). After

that, we present the evaluation methodology and the experimental setup (Section 4.1.3),

and the results of the evaluation (Section 4.1.4).

4.1.1 RL Main Concepts for the Web Bot Detection/Evasion Problem

As discussed before, in RL the agent performs actions in an environment in order to

maximise the notion of cumulative reward. There are five main “concepts” in RL that

should be mapped to the web bot detection/evasion problem: agent, environment, action,

state, and reward. Following an intuitive approach, we map those concepts to the web

bot detection/evasion problem, as presented in Figure 4.1.

Specifically, the web bots repeatedly browse the web server following different be-

haviours, while also examining whether they appear to have been detected. Based on

whether they have been detected or not, web bots update their browsing behaviour. Since

web bots are detected based on their browsing behaviour (i.e., the web pages that they

visit), we consider that they have full observability of the environment (i.e., they know the

exact states that they are in, which is calculated based on the web pages they have vis-
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Figure 4.1: RL concepts

ited). In Table 4.1 we summarise these main RL concepts and how we instantiated them

in the web bot detection/evasion problem.

Also, we assume that web bots can change their fingerprint when being detected,

thus starting in a clean-slate every time (as far as the web server is concerned). This is

not an unreasonable assumption, since, as discussed in Chapter 2 advanced web bots

may have several unique fingerprints in their possession allowing them to change their

fingerprint and be considered as new visitors by the web server if needed.

4.1.2 Evasive Web Bots Using RL

Web bots can take advantage of RL (which has shown very promising results in similar

domains) to find behaviours that can evade detection. For that, we initially have to define

(i) the appropriate environment (i.e., the web server with the bot detection framework),

and then model our evasive web bots by defining (ii) the possible actions that web bots

can perform, (iii) the states the web bots can be in, (iv) the rewards that the web bots will

receive, and (v) the model (i.e., “brain”) of the agent (i.e., the web bot), responsible for

deciding which action to perform at each state.

Environment

The environment consists of the web server along with the web bot detection framework.

The web server hosts several web pages, simulating a real one. The detection frame-

work. The detection framework follows state-of-the-art web bot detection approaches

that examine the visitors’ web logs, and is the one presented in Section 3.1. This frame-
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Table 4.1: RL concepts and instantiation into the web bot detection/evasion problem

RL concept Description Web bot detection/evasion

context

Agent The “thing” that senses the environ-

ment and performs some actions

Web bot

Environment The real or simulated “world” that

the agent can interact with

Web server and detection

framework

Action What an agent can do in its environ-

ment

Visiting of a website

State Different configurations of the envi-

ronment that the agent can sense

The web pages that the agent

has already visited

Reward A numerical value received by the

agent from the environment as a di-

rect response to the agent’s actions

Value that depends on the web

page visited and whether the

web bot is detected or not

work accesses the web logs of a web server, extracts the different sessions of users and

then calculates the values of several features to first train its models and then classifies

new visitors as humans or bots.

The general architecture of the web bot detection framework is presented in Fig-

ure 4.2, and is based on the one presented in Section 3.1. The detection framework

uses as input web logs and splits the data into sessions. As opposed to the detection

framework proposed in Section 3.1.1, in this case the PHP session ID is available and

can be used to split the web log data into sessions. Then, for each session, the values

of the features that are utilised by the framework are calculated, with the full list being

presented in Appendix C. From that list, we did not use the features 13-15, since the

experiments were conducted in such a way that users access the server directly - thus

all sessions (both human and bot ones) had the same values in those features. Finally,

the generated feature vectors are used as input to the (trained) classification module and

the classification score is retrieved, based on which the visitor is blocked or not. As pre-

sented in Section 3.1.2, the framework ensembles several classifiers (i.e., it performs a

class probability averaging all the available classifiers); the details of the classifiers are

presented in Section 4.1.3.
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Figure 4.2: Web bot detection framework

Actions

The actions that the bots will be able to do should depend on what features the state-

of-the-art web bot detection considers. As discussed in Section 3.1.1, these features

examine the method and response of the HTTP request, the type of file(s) requested,

and the browsing behaviour (including the pages visited and the respective time).

Thus, the different actions that are considered in this work have to do with (i) what

web pages the bot can visit/download, and (ii) how much time it spends on them. Based

on that and since web bots try to generate a behaviour similar to a human one, the

proposed advanced web bots support the following general types of actions:

• Simple download : The web bot downloads only the main web page content (e.g.,

the HTML code) and not the additional files included (e.g., images, CSS, JavaScript,

etc.).

• Full download : The web bot downloads the web page content and any additional

files included (e.g., images, CSS, JavaScript, etc.).

Additionally, web bots can wait some time at each web page to simulate a “reading”

functionality. We consider this waiting time to be between two values, the time min and

time max. Also, we consider those to be integers indicating the seconds that web bots

will wait, since the respective features used by the web bot detection framework round

the time in seconds, as shown in Appendix C.

Thus, the total number of different actions at each state is:

total number of actions = N · 2 · (dt+ 1) (4.1)

where N is the number of web pages of the web server, the ‘2’ indicates the two modes of

downloading (i.e., simple download, and full download), and dt = time max− time min

corresponds to the possible times that the web bot can “wait” on that web page (this is

why we add one to the difference dt when calculating the total number of actions).
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From Equation 4.1 we see that web bots can visit any web page when being on a

specific web page (and not only the ones included in this web page), reflecting a more

realistic scenario that does not limit the visitors to access only specific web pages. How-

ever, this assumes that web bots know all the URLs of the web pages of the web server.

Assuming that web bots will repeatedly visit different web pages of the web server and

based on the fact that the URLs of some web servers can be predicted or extracted using

different methods (such as using search engines to gather relevant URLs), this is not an

unreasonable assumption.

States

States are considered as the different configurations of the environment that the web

bot can sense, and, in our case, are calculated based on the web pages that the bots

download. Each action can result in changing the current state of the agent (i.e., web

bot).

There are two ways to calculate the state in our case: (i) considering only the first

time a web bot downloads a specific web page, or (ii) considering every time a web bot

downloads a specific web page. The first approach would limit the intelligence of the

agent by omitting information that has to do with going back and forth to the same web

pages (something that humans usually do). The second case could result in an infinite

number of possible states, since a web bot can visit a web page infinite times.

Thus, in our case we follow the second approach (i.e., considering every time a

web bot downloads a specific web page) by adding an upper limit in how many times we

consider downloads of the same web page. After that, we ignore any additional visits to

this page, which could have resulted in an infinite number of possible states.

Additionally, a web bot can simply download a web page (which is common for

simple scripts), or download also the additional sources included in this page (such as

JavaScript files, CSS files, images, etc.). In the case of human visitors (i.e., where a

browser is used), the latter (i.e., downloading additional sources included in the web

page) is usually done only the first time each file is encountered and the downloaded files

are cached on the browser.

Thus, in our setup we consider two separate states for each web page based on the

way the web page can be visited: (i) only the web page is downloaded, and (ii) the web

page is downloaded along with the additional files included in that page.
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We define the state vector for a web server with N web pages as:

state vec = [#page0, ...,#pageN−1,#pageN , ...,#page2N−1] (4.2)

where #pagei is an integer number indicating how many times the agent has downloaded

a specific web page pagei, with values between 0 and M , with M being the upper limit

for the number of times that we consider that the web bot can download the specific web

page. Additionally, web pages whose index differs by N (i.e., pagei and pageN+i, 0 ≤

i ≤ N − 1) correspond to the same web page, with the one with the low index indicating

that only the web page is downloaded while the one with the high index indicating that,

besides the web page, the additional files included in the web page (e.g., JavaScript,

CSS, etc.) are also downloaded.

Rewards

Web bots are trained to maximise a notion of cumulative reward, received by the envi-

ronment as a direct response to their actions. The selection of rewards is crucial since

they guide the bot in achieving the wanted behaviour. For example, simply giving positive

rewards to the web bot when it is not detected might result in the web bot staying in the

same web page, as long as it remains undetected.

In our case, the target goal of the web bots is twofold: (i) to generate a behaviour

that evades detection, and (ii) to explore the web server and visit new web pages. Thus,

we consider the following types of rewards:

• New web page reward: Web bot downloads a new web page and does not get

detected;

• New state reward: Web bot changes state (but does not download a web page that

it has not downloaded before) and does not get detected (as previously discussed,

a web bot can download the same web page up to M times resulting in another

state each time);

• Detection reward: Web bot tries to download any web page and gets detected; or

• Detection evasion reward: Web bot manages to download M web pages and does

not get detected.

Based on the above, the detection evasion reward should be the highest one, mo-

tivating web bots to follow behaviours that will allow it to evade detection. The new web
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page reward should come next, motivating web bots to explore the web server, instead

of staying at the same page as long as they remain undetected. The new state reward

should follow, since web bots might have to re-visit a specific web page to evade detec-

tion since this is also something that humans do. Finally, the detection reward should be

the lowest, and can also be negative, resulting in a “penalising” characteristic.

Agent

After having defined the environment, actions, states, and rewards, we have to choose

the algorithm that the agents (i.e., web bots) should follow to learn what action to perform

at each state.

We decided to base our model on the well-known Q-learning algorithm. Q-learning

generates a matrix containing all possible states and the respective actions and a value

for each state-action pair representing how useful a specific action is on a specific state

based on the future reward that the agent will receive. This is called the action-value

function, Q(s, a). Using Q-learning, the web bot can find a policy (i.e., the way it makes

decisions for what actions to perform at each state) to follow that maximises its future

reward.

The Q(s, a) is initialised randomly. Then, for each step t the agent takes an action

at on a state st resulting in changing its state to st+1 and receiving a reward rt. Based on

this transition, the Q(s, a) is updated using the following equation:

Qnew(st, at) = Q(st, at)︸ ︷︷ ︸
old value

+ a︸︷︷︸
learning

rate

·

Temporal Difference︷ ︸︸ ︷(
rt︸︷︷︸

reward

+ γ︸︷︷︸
discount

factor

·maxQ(st+1, a)︸ ︷︷ ︸
estimate of optimal

future value︸ ︷︷ ︸
target

−Q(st, at)︸ ︷︷ ︸
old value

)
(4.3)

where the a (i.e., learning rate) determines to what extent the newly acquired information

overrides old information, and the γ (i.e., discount factor) determines the importance of

future rewards. To this end, the Temporal Difference (TD) learning approach is followed,

where the agent tries an action (at) in a particular state (st), and evaluates its conse-

quences in terms of the immediate reward and its estimate of the future rewards it will

receive by moving to the next state, st+1.

As discussed above, to calculate Q(s, a), the agent (i.e., web bot) interacts with the

environment and updates Q(s, a) based on the states it has been in and the actions it

performs. However, by following only the most promising actions in a state, the agent

chooses only the actions that give the highest immediate reward, which might be far less
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than the future reward that it could have received by performing different actions (which

are currently unknown).

Thus, the agent should find a balance between “exploitation” (i.e., performing the

most promising action), and “exploration” (i.e taking a random action, hoping for a better

future reward). This is referred to as the “explore-exploit” dilemma, where the agent

has to decide when to explore and when to exploit (i.e., take the best action based on

the current knowledge of the environment). In principle, the agent could have always

performed random actions to find the best behaviour to follow, but this would take a lot of

time due to the agent following paths that are not very promising.

To calculate the Q(s, a), our agent uses the Epsilon-Greedy approach, where it per-

forms a random action or the most “promising” action on a current state based on a prob-

ability ε. Based on this probability, the agent either (i) follows the most promising states

(in regards of the future rewards that it will receive), or (ii) performs random actions that

may result in states with better future rewards.

To account for the fact that by following the Q-learning algorithm, the agent might

take a lot of time to train (since there is a large number of actions the agent can perform,

as shown in Equation 4.1), we used the Deep Q-Network (DQN) algorithm proposed by

DeepMind Mnih et al. (2013). DQN uses a Deep Neural Network (DNN) to calculate the

equivalent of the Q(s, a) used in Q-learning that allows us to train the web bots faster.

Thus, instead of calculating the Q(s, a), we calculate an approximation using DNNs.

Specifically, in DQN, we approximate the Q(s, a) by considering a network that takes

as input the current state vector and have multiple output nodes, each one representing

the value for each different action (i.e., the output layer of the neural network has the

same size as the number of possible actions). Additionally, we use the experience replay

technique, where we store all of the agent’s experiences and then randomly sample from

these experiences (i.e., get a random minibatch of the transitions) and use the samples

to perform a gradient descent to train the DQN.

As it is evident, the DQN architecture depends on the number of states (which de-

pends on the web pages considered, as shown in Equation 4.2), and the total number

of actions (which depends on the web pages and the waiting time, as shown in Equa-

tion 4.1). Since these depend on the experimental setup, the DQN architecture is pre-

sented in the next section.
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4.1.3 Evaluation

To assess the effectiveness of the web bots that use RL to evade detection, we consider

the case of scraping web bots that continuously visit a web server to harvest its content.

The web server uses a web bot detection framework that examines the visitors web logs

to identify and block bot visitors.

Evaluation Methodology

To simulate a more realistic scenario (where both the evasive web bots and the detection

framework continuously update their techniques to achieve their goals), the evaluation

takes place in two phases. In the first phase, we assume that the detection framework

knows nothing about the web bots that use RL, while in the second the detection frame-

work is trained on the behaviours of those bots.

In the first phase of the experiments, the same dataset used in Section 3.2 is reused

here. As discussed in Section 3.2.3 , this dataset includes both human and bot sessions,

with the latter being generated from bots that use heuristics to evade detection. We opted

to do that, to see how the web bots using RL can be trained to evade a bot detection

framework that was trained on different types of bots.

In the second phase, we use data collected during the first phase from the web bots

that used RL and successfully evaded detection to re-train the detection framework and

evaluate how well these web bots can still evade detection. Additionally, we examine

the case of web bots re-training their models to the re-trained detection framework. We

argue that this setup simulates a scenario closer to a real-world setting, where both the

defender (i.e., the web bot detection framework) and the attacker (i.e., the evasive web

bots) continuously update their models.

Moreover, since in a realistic scenario we want to detect web bots as soon as pos-

sible, the detection framework examines the behaviour of the web bots per-request, and

uses different classification models for each number of requests considered. Thus, to

train the detection framework, we performed an iterative process where we initially con-

sidered only the first request in each session and gradually increased the number of re-

quests considered. When a session reaches the maximum number of requests available,

we stop increasing the number of requests considered for that session.

In both phases of the experiments, we performed the same train-test split (with about

70% of the data considered as training and the rest as testing) on the visitors when
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evaluating the detection framework (i.e., we split the data based on the visitors to group

multiple sessions from the same visitor in the same set). Additionally, at each request

considered, we performed a grid search over several possible values of hyperparameters

on the (current) training set and select the best performing ones using a 2-fold cross

validation. Thus, each classifier uses a unique set of parameters for each number of

requests considered. This increases the training time considerably but usually increases

the performance.

Since in RL the agents (in our case the web bots) can be trained indefinitely, we

evaluated them at different training times (i.e., at different numbers of requests performed

cumulatively by all web bots). We opted to do that because when a bot is detected, it is

blocked and will not be able to re-visit the web server (at least temporarily). Thus, there

is a trade-off between how much training the web bots should do (in regards to the bots

required and the time) and the evasiveness of the behaviour generated.

Finally, besides the web bots that use RL to evade detection, we also tested other

types of web bots that use heuristics. We did that for comparison purposes and because

of different approaches proposed in literature on evasive web bots that also use heuristics

to evade detection, such as the works of Campobasso et al. (2019) and Iliou et al. (2017).

The details of the configurations of the web bots considered are presented later in this

section.

Dataset

As discussed before, for our evaluation, the same dataset used in Section 3.2.3 is re-

used. In short, a web server that contains a total of 110 web pages from 11 topics of

Wikipedia was used. Over the course of the experiments, 28 users were asked to visit

the web server and create two sessions each, with each session being between 15-20

minutes. Thus, the total sessions generated were 56.

Additionally, we used the 56 sessions generated from the advanced web bots that

were created for evaluation purposes in Section 3.2 for training. In short, those advanced

web bots try to avoid detection by (i) selecting the hyperlinks to follow in a heuristic way in

an attempt to make web bots stay at the same topic (i.e., follow web pages that belong to

the same category), and (ii) simulating a reading function, and so they spent an amount

of time at each web page based on the web page’s content.
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Bot and Environment Configurations

Web Bot Detection: The web bot detection framework from Section 3.1 follows state-

of-the-art approaches and ensembles the most popular classification algorithms in this

domain: SVM, RF, AdaBoost, and MLP. Also, it performs a class probability averaging of

all the above classifiers to increase its effectiveness.

As discussed before, each classifier is trained on each number of requests consid-

ered, with the total number of ensemble classifiers being equal to the total number of

requests considered. For each classifier, we re-calculate the set of hyperparameters that

achieve the highest accuracy using grid search with a 2-fold cross validation. This was

done to increase the general effectiveness.

Furthermore, we consider that the detection framework changes its response when

a visitor is detected as a bot in a way that is recognisable by the bot (such as blocking

any additional requests from that bot). However, this is not always the case, since some

web administrations might simply prefer to monitor all the actions of the bots instead of

blocking them or deliver custom content.

Bots Using Deep RL: As discussed in Section 4.1.2, to model the evasive web bots

that use RL, we need to define the possible actions that web bots can perform, the states

the web bots can be in, the respective rewards, and the model that the agent (i.e., web

bot) will use to decide the actions to perform. The respective configurations are presented

below:

Actions: For the actions, we heuristically selected the time min = 2 sec and the

time max = 10 sec so that web bots can perform relatively rapid actions (to scrape the

server within a short period of time), but not so rapid so as to risk detection.

States: As mentioned in Section 4.1.2, a maximum value of the times, M , that we

consider that a web page has been visited is calculated. Thus, we set M = 60, which is

the maximum number of web pages downloaded by the humans in our dataset.

Rewards: The rewards should motivate the web bot to (i) remain undetected, and

(ii) visit new states. Based on our preliminary experiments, we saw that, as long as the

reward values are in a specific order (with detection evasion reward being the highest

one followed by the new web page reward, etc.), the RL bots can be trained to evade

detection. The rewards in Table 4.2 were selected heuristically to focus on evasion, which

we found to be more effective.

Agent: As discussed in Section 4.1.2, we use the DQL algorithm, with the input
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Table 4.2: Rewards

Reward Value

New web page +1.0

New state +0.1

Reward Value

Detection 0.0

Detection evasion +100.0

layer size being equal to the the number of states (i.e., 2 ∗ N = 2 ∗ 110 = 220), and the

output layer size being equal to the number of possible actions (i.e., 2 ∗ N ∗ (dt + 1) =

2 ∗ 110 ∗ (8 + 1) = 1980). For the rest of the architecture (i.e., the hidden layers), seven

different (one- or two-) hidden layer architectures have been selected heuristically to see

how the different architectures affect the performance: N1 (128), N2 (256), N3 (512),

N4 (1024), N5 (128, 256), N6 (256, 512), N7 (512, 1024). Concerning the activation

functions of the layers, for the output layer, the linear activation function was used, and

for all hidden layers the ReLU.

For the implementation of the environment, the Gym1 Python library was used, that

allows comparing different RL algorithms by providing a standard API to communicate

between learning algorithms and environments, as well as a standard set of environments

compliant with that API. For the implementation of the DQN, the keras-rl22 python library

was used, which implements some state-of-the art deep RL algorithms and seamlessly

integrates with the Keras deep learning library. Furthermore, keras-rl2 works with OpenAI

Gym out of the box.

The hyperparameters for the DQN were selected heuristically and are presented

in Table 4.3. The value of ε was selected to focus on following behaviours that were

found to be evasive, but also, with a smaller probability, to try finding new promising

behaviours (i.e., exploring). The γ was selected to focus on future rewards. For the other

hyperparameters, commonly used values were selected.

Finally, since we want to evaluate how well the web bots perform when placed into

different web pages as a starting point in testing (and not choosing the most evasive

starting point each time), each bot performs a random step at the beginning3.

Bots Using Heuristics In addition to the web bots that use RL to evade detection, we
1https://github.com/openai/gym
2https://github.com/taylormcnally/keras-rl2
3This was not supported by the keras-rl2 library, so we had to update the source code of the library
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Table 4.3: Parameters and configurations

Parameter Value

Warm up steps 100

Learning rate 10−3

Epsilon greedy probability (ε) 0.2

Discount factor (γ) 0.9

Replay Memory size=50k, window=1

used some additional types of web bots that use heuristics to evade detection, mainly for

comparison purposes. These bots are detailed below:

• Simple download bot: Web bot that performs only simple download actions, i.e.

downloads only the web page content and not the additional files included in the

web page (e.g., CSS files, JavaScript files, images, etc.);

• Full download bot: Web bot that performs only full download actions, i.e. downloads

the web page content and additional files included (e.g., CSS files, JavaScript files,

images, etc.);

• Random bot: Web bot that downloads either only the web page or also the addi-

tional files included (i.e., it performs a random action from simple download or full

download);

• Heuristic bot #1: Web bot that performs a full download for the first request and

a simple download for the rest of the requests (thus simulating the behaviour of a

browser, where the additional content of web pages is cached); and

• Heuristic bot #2: Web bot similar to heuristic bot #1, but the web bot waits for a

time between 8∼10 seconds (instead of 2∼10, as discussed before in this section),

since humans usually spend more time on web pages.

Evaluation Metrics

To evaluate the web bot detection framework, the evaluation metrics used are similar to

the ones presented in Section 3.2.3. Specifically, we calculated the balanced accuracy,

and the precision and recall for both classes (i.e., web bots and humans). To evaluate
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how well the web bots evaded detection, we calculated the evasion percentage (i.e., how

many web bots evaded detection from the total web bots tested).

4.1.4 Results

As discussed previously, the evaluation takes place in two phases; in the first phase the

web bots that use RL are trained and evaluated on an already trained bot detection frame-

work, and in the second phase they are evaluated on a re-trained detection framework

based on the new bot behaviours collected in the first phase. In the second phase, (i) we

evaluate the bots trained in the first phase, and (ii) we examine the case of web bots also

re-training on the re-trained detection framework. Next, we present the results of the two

phases.

First Evaluation Phase

In the first evaluation phase, we initially re-evaluate the web bot detection framework

using the dataset from Section 3.2 (for completeness purposes), and then evaluate the

evasive bots against this framework.

Web Bot Detection Performance: The performance of the detection framework per

request considered is shown in Figure 4.3. In general, the framework can effectively de-

tect web bots, achieving 100% to all evaluation metrics at nine requests. However, since

web bots use heuristics to evade detection, for some specific requests (such as 20, 23,

etc.) some bots achieved a behaviour very close to humans, resulting in misclassifying

them. For most requests, we see that the precision for the human class was not affected,

meaning that there were no humans detected as bots.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
requests considered

0.86

0.88

0.90
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0.94
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1.00
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precision (human)
recall (human)
precision (bot)
recall (bot)

Figure 4.3: Performance of the web bot detection framework
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Evasive Web Bots: The evaluation of the bots that use heuristics and RL are pre-

sented in Table 4.4 and Table 4.5 respectively. At each case, 1000 bots were used. For

the RL bots, we tested different deep learning architectures (see Section 4.1.3), and we

consider them being initially trained on the pre-trained web bots detection framework, and

then using 1000 additional bots for testing.

Table 4.4: Performance of evasive web bots using heuristics

Bot type Evasion percentage

Simple download 0.7%

Full download 0.0%

Random 0.0%

Heuristic #1 0.1%

Heuristic #2 0.0%

Table 4.5: Evasion percentage (%) of RL bots with different deep learning architectures

Requests

(training)
N1 N2 N3 N4 N5 N6 N7

5k 5.0 1.3 1.1 0.0 0.0 0.0 0.0

10k 0.5 0.0 3.6 5.5 5.0 2.3 1.1

15k 0.0 1.8 0.9 10.9 1.4 6.8 3.4

20k 0.8 0.2 1.2 6.3 7.2 2.4 5.1

30k 7.7 0.9 7.5 38.5 5.8 18.3 11.0

40k 4.0 9.1 15.2 37.3 0.5 9.2 6.5

50k 10.6 10.9 27.6 36.2 15.2 3.7 9.2

100k 28.5 41.4 25.1 39.3 33.0 24.4 15.4

200k 32.4 20.7 30.7 22.6 30.7 34.5 37.1

300k 38.0 40.2 48.4 44.2 29.2 33.1 26.4

400k 46.0 48.2 44.2 31.9 46.9 37.4 32.4

500k 34.7 33.6 35.2 38.0 26.0 40.5 25.6

We see (Table 4.4) that the heuristic approaches tested can be easily detected. Only

a few web bots, following mainly the simple download approach, evaded detection. This
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can be attributed to the fact that the advanced web bots used for training the detection

framework performed a full download in their first request so as to exhibit a humanlike

behaviour.

On the contrary, web bots using RL were able to find behaviours that can evade

detection (Table 4.5). Generally, the more requests considered in training, the better the

evasive web bots perform, with some fluctuations. This can be attributed to (i) web bots

trying (“exploring”) new actions to specific states (instead of following the most promising

ones) which can result in the decrease of the reward values of those states (resulting in

web bots no longer selecting them), and (ii) the detection framework being very “sensitive”

to the behaviour of the visitor, meaning that small changes in their behaviour can reveal

their bot nature. We also see that architectures with a single hidden layer work better

(with N3 being the more evasive one), and the smallest of the two-layer architectures

(i.e., N5) also achieves a high evasion percentage. These can be attributed to the fact that

the evasive behaviour is not very complex, thus simpler neural networks with adequate

neurons work better.

We stopped the training at 500k requests since (i) the web bots of most architectures

had already achieved a very high evasion percentage (almost half the bots evade detec-

tion), and (ii) there is a trade-off between how many bots we use for training and what

evasion percentage is achieved. For the latter, we needed more than 24k and 40k bots

per architecture to train for 300k and 500k requests (respectively), with most of them re-

quiring different fingerprints in a realistic scenario where each bot getting detected should

change its fingerprint if it wants to revisit the web server shortly.

Second Evaluation Phase

In the second phase, we used the most evasive RL bots (i.e., the ones with the N3

architecture trained at 300k requests) to re-train the detection framework. Next, we first

present the performance of the re-trained web bot detection framework and then we re-

evaluate the web bots on the updated framework.

Web Bot Detection Performance: As shown in Figure 4.4, the re-trained web bot

detection framework achieves a better performance compared to the first phase making

very few mistakes on specific requests. This indicates that the web bots that use RL

generated a behaviour that, even though it evaded detection, can mostly be distinguished

from the human behaviour, when known.

Evasive Web Bots: As discussed above, in this evaluation phase we consider two
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Figure 4.4: Performance of the web bot detection framework

cases: (i) the first case where the web bots do not perform any additional training, and

(ii) the second case, where web bots re-train to evade the re-trained web bot detection

framework. Table 4.6 presents the results.

Table 4.6: Performance of evasive web bots on the re-trained detection server using the

N3 architecture

Requests Evasion % Requests Evasion %

Case #1: no additional training

300k 2.3%

Case #2: additional training

5k 1.1% 50k 1.2%

10k 6.7% 100k 4.9%

15k 1.7% 200k 3.3%

20k 0.5% 300k 5.9%

30k 5.2% 400k 1.2%

40k 2.7% 500k 57.3%

As expected, evading the re-trained web bot detection server is more challenging.

We see however that some of the pre-trained web bots from the first evaluation phase

manage to evade detection. This can be attributed to the fact that the web server used

only 56 bot sessions randomly selected for training which probably did not cover all pos-

sible behaviours that the web bots can generate.
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Additionally, we see that it is more difficult for web bots to evade the re-trained de-

tection framework. Compared to the first evaluation phase, where web bots managed

to achieve a high evasion percentage even from the 30k requests, in the second phase,

bots fail to do so until 500k requests. This can be attributed to the fact that the bots used

for the training of the detection framework in the first evaluation phase exhibited a more

generic behaviour as opposed to the ones from the second (which had to only evade

detection). Thus, by having found a behaviour that is closer to humans than the bots from

the first evaluation phase (at 500k requests), they were able to start evading detection

again and even achieving a higher evasion percentage.

4.2 Evasive Web Bots Using Generative Adversarial Networks

Web bots can generate artificially synthetic humanlike behaviours by utilising real human

data. As discussed in Chapter 2, using human data to generate synthetic humanlike

data is commonly used in literature to generate evasive behaviours. However, the current

approaches use human data primarily to select the parameters of the distributions used

to model a humanlike behaviour heuristically.

Thus, in this section, we examine the case of training machine learning models to

generate humanlike behaviours using human data. For that, one of the most well-fitted

methods that has shown very promising results in the last years is the use of GANs, pro-

posed in Goodfellow et al. (2014). GANs are architectures where two neural networks,

the Generator and the Discriminator, contest with each other and are trained simultane-

ously in an “adversarial” setting. The Generator constantly tries to generate data that can

fool the Discriminator into thinking that those data are real (and not synthetically gener-

ated). During training, the Generator progressively becomes better at creating data that

look real, while the Discriminator becomes better at finding them. As shown in Chapter 3,

web bot detection techniques that process and use mouse movements as images have

proven to be very effective. Additionally, as shown by Radford et al. (2016), GANs can

be used to generate realistic images based on the images they were trained on, which

makes them ideal for the generation of humanlike mouse and touchscreen trajectories.

Thus, in our setting, GANs are a very promising approach. Even though GANs have

been used in Acien et al. (2020b 2021) to generate evasive web bots, they have only

been used to generate mobile humanlike touchscreen trajectories and also they process

the data as sequences instead of images. Thus, our approach is a novel one and utilises
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the capabilities of GANs to generate realistic images. Specifically, in this section we pro-

pose a novel method of bots processing mouse trajectories as images and using GANs to

generate synthetic humanlike mouse trajectories is proposed. This work was published

in Iliou et al. (2021b).

In this section we consider two types of evasive web bots, the (i) scraping web bots

that generate humanlike mouse movements while scraping the web pages, and (ii) the

mobile web bots that generate humanlike touchscreen events to bypass challenges that

require the performance of specific touchscreen events. We follow a common technique

for both types of web bots in regards to the generation of the humanlike mouse trajecto-

ries and their detection. Specifically, we assume that web bots have already in their pos-

session several human mouse movements and touchscreen events, and can use them

to generate new humanlike behaviours. In both cases, the trained detection framework

uses as input those images and tries to detect whether those images created from a bot

or a human.

Next, we initially present the web bot detection framework used for the evaluation

of both types of evasive web bots (Section 4.2.1), and then we present the evasive web

bots (Section 4.2.2). After that, we present the experimental setup (Section 4.2.3) and

the results of the evaluation of the evasive web bot (Section 4.2.4).

4.2.1 Detection Framework

The web bot detection framework used for the evaluation of the web bots is based on the

detection framework presented in Section 3.2.1 that uses mouse trajectories of visitors.

Specifically, as shown by Wei et al. (2019) and in Section 3.2, a highly accurate method

for detecting web bots based on their mouse movements is to generate images depicting

the mouse movements that visitors perform on each web page and feed those into CNNs.

A similar approach can be used for mobile touchscreen trajectories, as they can also be

processed as images. The general architecture of this web bot detection framework is

presented in Figure 4.5.

The framework uses the same approaches presented in Section 3.2.1 for the de-

tection of web bots using mouse trajectories. Specifically, initially images of the mouse

movements that each visitor performed on each web page are generated. These images

include sequences of the coordinates of all pixels that the mouse passed at a specific

time. The data are collected as {(x1, y1, t1), ..., (xn, yn, tn)}, where xi and yi are the co-

ordinates of the current mouse point, ti is the respective timestamp, and n is the total
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Figure 4.5: Web bot detection framework

number of points over which the mouse hovered. These sequences are mapped into

2-dimensional matrices, where each (xi, yi) value pair corresponds to the index of an

element in the matrix and dti = ti+1 − ti to its value. The same approach is used for

touchscreen actions on mobile devices.

The extracted images of the visitors’ mouse movements are used as input into a

(trained) CNN and the classification result indicates whether the visitor is detected as

a bot or a human. In this work, a simple CNN architecture that combines a series of

Convolution and Max-pooling layers was used. The architecture is presented in Table 4.7.

Table 4.7: CNN architecture for web bot detection

Layer type Kernel size / stride Output Shape Activation

InputLayer – (56, 56, 1) –

Conv 3x3 / 1 (54, 54, 64) ReLU

M-Pool 2x2 / 2 (27, 27, 64) –

Conv 3x3 / 1 (25, 25, 64) ReLU

M-Pool 2x2 / 2 (12, 12, 64) –

Flatten – (9216) –

Dense – (2) Softmax

Additionally, images were normalised so that their values become between ‘0’ and

‘1’, a commonly used technique in CNNs. The CNN was implemented using Tensorflow4

and the Keras API5.
4https://www.tensorflow.org/
5https://keras.io/

Bournemouth University, Department of Computing and Informatics, Dissertation

https://www.tensorflow.org/
https://keras.io/


4.2. EVASIVE WEB BOTS USING GENERATIVE ADVERSARIAL NETWORKS 116

Figure 4.6: Evasive web bots

4.2.2 Evasive Web Bots Using GANs

The web bots evaluated in this chapter use GANs to evade detection based on their

mouse trajectories. As shown in Acien et al. (2020b), Wei et al. (2019), Chu et al. (2018),

and Section 3.2, detection based on mouse trajectories has shown to be very effective.

If the bots can generate humanlike trajectories, then these trajectories can be combined

with additional techniques, such as using a browser-like fingerprint and selecting web

pages to visit in a humanlike manner as shown in Iliou et al. (2017) and Section 3.2, to

enable a more evasive behaviour.

The general architecture of the proposed web bots is presented in Figure 4.6. More

specifically, the proposed web bots utilise GANs to generate humanlike mouse move-

ments based on real ones, since, as shown by Radford et al. (2016), GANs have proven

to generate realistic images based on the images they were trained on. GANs allow the

generation of several mouse trajectories with different starting and ending points each.

From the available trajectories, web bots can select the most appropriate ones based on

the actions that they want to perform.

GANs are architectures where two neural networks, the Generator and the Discrim-

inator, contest with each other and are trained simultaneously in an “adversarial” setting.
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The Generator constantly tries to generate images that can fool the Discriminator into

thinking that those images are real. The Generator is trained to take as input points from

a latent space (in our case, these points correspond to vectors with values drawn from

a Gaussian distribution) and map them into new images. Diversely, the Discriminator is

trained to distinguish fake images from real ones, using both images from human trajecto-

ries and images created by the Generator. During that process, the Generator becomes

better at generating images that look similar to the input images, while the Discriminator

becomes better at identifying which images are real.

In this work, a Deep Convolutional Generative Adversarial Network (DCGAN) ar-

chitecture is used for the generation of humanlike mouse and touchscreen trajectories

following the recommendations from Radford et al. (2016). Differentiating from Radford

et al. (2016), we used LeakyReLU for both the Generator and the Discriminator, instead

of only the Discriminator, because in our preliminary experiments it gererated slightly

better images. The architecture of the Generator is presented in Table 4.8 while the ar-

chitecture of the Discriminator is presented in Table 4.9. For the GAN implementation,

the Tensorflow6 and the Keras API7 were used.

4.2.3 Evaluation

To assess the effectiveness of the proposed approach, two types of web bots are con-

sidered: (i) the scraping web bots that crawl web servers to harvest their content, and (ii)

the mobile web bots that are requested to perform a specific task to prove that they are

humans, which in our case is to generate touchscreen trajectories of specific numbers.

Evaluation Methodology

To examine the evasiveness of web bots that utilise GANs for the generation of humanlike

mouse movements and touchscreen trajectories, we assume that web bots have already

in their possession several human mouse movements and touchscreen events. Bots can

then use these data as input to GANs to generate new humanlike behaviours with similar

characteristics as the ones they have previously seen.

Additionally, for simplicity, we consider that the web server also uses GANs to train

its detection models and that both GANs (the GAN used by the web bots and the GAN

used by the web server) have the same architecture and configurations (as presented in
6https://www.tensorflow.org/
7https://keras.io/
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Table 4.8: Generator Architecture

Layer type Configs Output Shape

InputLayer – (100)

Dense – (12544)

BatchNormalisation – (12544)

LeakyReLU alpha=0.3 (12544)

Reshape – (7, 7, 256)

Conv2DTranspose kernel=5x5, stride=1, padding=same (7, 7, 128)

BatchNormalisation – (7, 7, 128)

LeakyReLU alpha=0.3 (7, 7, 128)

Conv2DTranspose kernel=5x5, stride=1, padding=same (14, 14, 64)

BatchNormalisation – (14, 14, 64)

LeakyReLU alpha=0.3 (14, 14, 64)

Conv2DTranspose kernel=5x5, stride=1, padding=same (28, 28, 32)

BatchNormalisation – (28, 28, 32)

LeakyReLU alpha=0.3 (28, 28, 32)

Conv2DTranspose kernel=5x5, stride=1, padding=same (56, 56, 1)

Table 4.8 and Table 4.9) and were trained for 20k epochs. We argue that these similarities

in the aforementioned methods make the evasion process more difficult.

On the other hand, we consider that the human behaviours used by the web bots

to train their models should be different from the ones used by the web server. This

choice was made to present a more realistic scenario, where the web server should be

faced with new, unseen behaviours. Thus, in our experiments, different human images

are used by the web bot detection module and by the evasive web bots.

To evaluate how well the web bots can evade detection, we initially train and evaluate

the performance of the web bot detection framework. For that, the considered data sets

were split into 80% for the training and 20% for the testing, and the CNN was trained for

30 epochs. Then, this detection framework was used for evaluating the evasive web bots.

Finally, to account for the fact that the performance of both the detection module and

the web bots might be affected by the images selected as the training set in each case,

we repeated the experiments considering different combinations of the sets to be used
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Table 4.9: Discriminator Architecture

Layer type Configs Output Shape

InputLayer – (56, 56, 1)

Conv kernel=5x5, stride=2, padding=same (28, 28, 64)

LeakyReLU alpha=0.3 (28, 28, 64)

Dropout rate=0.2 (28, 28, 64)

Conv kernel=5x5, stride=2, padding=same (14, 14, 128)

LeakyReLU alpha=0.3 (14, 14, 128)

Dropout rate=0.2 (14, 14, 128)

Flatten – (25088)

Dense – (1)

by the web server and the web bots.

Datasets

The evasive web bots were evaluated on two datasets: (i) the Web dataset used in

Section 3.2 that was generated by humans while browsing a web server which hosted

content copied from Wikipedia8, and (ii) part of the HuMIdb dataset9, in which humans

were requested to “draw” digits on mobile devices, used in Acien et al. (2020a b).

Web: For this dataset, 27 human subjects were requested to browse a web server

that hosted 110 Wikipedia pages from 11 categories/topics. Each human subject was in-

structed to create two sessions, each session being between 15-20 minutes. All sessions

were anonymised and only information that indicates which sessions belong to the same

user has been kept.

HuMIdb: The second dataset is part of the HuMIdb dataset, a dataset that contains a

wide range of mobile sensors values acquired during a natural human-mobile interaction

performed by more than 600 users; this database is not public but available upon request.

To generate this dataset, users were requested to perform eight simple tasks between

one and five times (indicating different sessions). In this work, we utilised data from the

task where a user had to draw with their finger the digits ‘0’ to ‘9’ over the touchscreen.

The total number of users, sessions, and images for each dataset are presented
8https://www.wikipedia.org/
9https://github.com/BiDAlab/HuMIdb

Bournemouth University, Department of Computing and Informatics, Dissertation

https://www.wikipedia.org/
https://github.com/BiDAlab/HuMIdb


4.2. EVASIVE WEB BOTS USING GENERATIVE ADVERSARIAL NETWORKS 120

Table 4.10: Users, Sessions, and images for each dataset

Set 1 Set 2 Set 3 Total

Web

Users 9 9 9 27

Sessions 18 18 18 54

Images 367 369 561 1,297

HuMIdb

Users 200 200 200 600

Sessions 839 847 798 2,484

Images 8390 8470 7980 24,840

in Table 4.10. In both datasets, and to account for the fact that different visitors have

varying monitor resolutions, we re-scaled all images to the same dimensions with a lower

resolution. For that, we initially increased the size of each mouse move by 30, i.e., for

each pixel where a mouse move was performed (and thus has a non-zero value), its

neighbours within distance less or equal to 30 pixels were given the value of that pixel.

Then we re-scaled the images to 56x56 dimensions using the Pillow10 library and with the

“antialias” (high-quality downsampling filter) configuration. The 56x56 dimensions were

selected to account also for the fact that high resolution images consume a lot of memory

when used for training the networks.

Moreover, each dataset was split into three sets to facilitate the evaluation process

(see Table 4.10): two were used by the web detection server for training, and one was

used by the evasive web bots to generate a humanlike behaviour. To account for the

fact that different images of the same user should not be in different sets, the split was

performed on a per user basis.

Finally, to account for the randomness introduced when the models are trained on

GPU, the experiments were run five times and the average of all runs was considered.

Evaluation Metrics

To assess the effectiveness of web detection, we used the balanced accuracy evaluation

metric, which is used in the web bot detection problem when the datasets are unbalanced.

To evaluate the evasiveness of the web bots and since we have only one class (i.e., only

the bots class), we used recall, i.e., the percentage of the web bots that were correctly
10https://pillow.readthedocs.io/en/stable/
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identified (True Positive) divided by the total number of web bots used (True Positive +

False Negatives).

4.2.4 Results

Web Bot Detection Performance

The performance of the detection framework is presented in Table 4.11. Experiments are

performed on set X & set Y (denoted as X & Y ), where a random 80% of X and a random

80% of Y are used for training the CNN detection framework, and the remaining 20% of

X and Y are used for testing. Data from set X are considered as the ‘human’ class, while

set Y is used as input to the GAN of the bot detection; this GAN generates the same

number of images as the number of images in its input.

Table 4.11: Performance of the detection framework

Balanced accuracy

X & Y 1 & 2 2 & 1 2 & 3 3 & 2 1& 3 3 & 1 Avg

Web 0.986 1.000 0.970 0.988 0.974 0.994 0.985

HuMIdb 0.995 0.996 0.995 0.997 0.995 0.997 0.996

Recall

Web 1.000 1.000 0.996 1.000 1.000 1.000 0.999

HuMIdb 0.992 0.996 0.996 0.997 0.995 0.997 0.995

The detection framework manages to achieve a very high accuracy and recall in

both datasets. This performance was expected, since, as shown in Wei et al. (2019) and

Section 3.2, web bot detection frameworks that use mouse movements have shown very

good results. Since the same GAN was used to generate (different) images for training

and for testing, the CNN was able to identify this behaviour.

Web Bot Detection Against Evasive Web Bots

To evaluate the proposed web bots, the already trained detection framework that takes

advantage of CNNs was used. The evasive web bots train their GAN by using different

human images from the ones used by the detection framework. The results are presented

in Table 4.12 where the X & Y indicates the sets that were used for training the web bot

detection framework (i.e., Set X and Set Y), and the set Z indicates the set that was
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used for training the evasive web bots. In this case, the recall indicates the percentage

of images that were correctly identified as images generated by web bots divided by the

total generated images.

Table 4.12: Performance of evasive web bots

Recall

X & Y 1 & 2 2 & 1 2 & 3 3 & 2 1 & 3 3 & 1
Avg

Z 3 1 2

Web 0.531 0.648 0.693 0.437 0.263 0.139 0.452

HuMIdb 0.950 0.943 0.925 0.928 0.950 0.928 0.937

The drop in performance of the detection module when tested on the evasive web

bots shows that generating humanlike trajectories using GANs is very effective against

web bot detection techniques, even if the same architecture and configurations are used

by the detection module. This was expected, since the web server used the same GAN to

generate images for its training and validation, but was evaluated with images generated

from a different GAN used by the web bots. Additionally, the drop in performance is very

high in the case of the Web dataset as opposed to the HuMIdb. This is also something

to be expected, since mouse trajectories on a web server vary more between different

humans compared to “drawing” numbers on smartphones, making the “modeling” of this

behaviour more difficult.

Finally, to qualitatively evaluate the effectiveness of the use of GANs for the genera-

tion of humanlike trajectories, selected images are presented in Table 4.13. We observe

that web bots have a tendency to select simpler mouse movements to follow instead of

more complex ones. This could be attributed to the fact that it is difficult for the latter to

be modelled.
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Table 4.13: Selected images from humans and generated by GANs

Humans images Images from humans Images generated by GANs

Web dataset

HuMIdb
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5 Discussion and Reflection

5.1 Discussion

There is a huge incentive for individuals and companies alike to create web bots that

can bypass web bot detection techniques, since such web bots can be used for several

malicious purposes. This resulted in a continuous race between researchers on web bot

detection techniques and malicious users that try to evade those techniques.

Web servers can use and combine different bot detection methods, both signature-

based (e.g., browser fingerprinting), and behaviour-based. Behaviour-based detection

techniques can use and combine different machine learning algorithms, by examining

information about the web pages bots visit and the mouse movements that they perform.

At the same time, the advances in browsing automation enabled the malicious users to

effortlessly create evasive advanced web bots that have a browser-like fingerprint, which,

enhanced with a humanlike behaviour, can make their detection even harder. Concerning

their behaviour, web bots can also use machine learning based techniques to increase

the evasiveness.

The results of this research outlined the importance of considering web bots of dif-

ferent sophistication levels (i.e., simple vs moderate vs advanced) when evaluating the

web bot detection techniques. The behaviour and characteristics of web bots of different

sophistication levels can vary. Additionally, since generating advanced web bots requires

a considerable amount of time and effort (and thus malicious actors would probably use

them for higher impact attacks), focus should be given on those.

However, we show that several state-of-the-art approaches proposed in literature

perform inadequately when faced with advanced web bots. This was not evident in those

works most probably because of the lower number of advanced web bots as opposed

to simple web bots that masked the ability or lack thereof to detect them. To address

this, in this thesis we propose a novel web bot detection framework that combines web

logs and mouse movements generated by visitors. This approach results in a very high

performance against web bots of different sophistication levels.

Additionally, in this research we show that there are very few works in literature that
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examine techniques which can be used by advanced web bots to evade detection based

on their behaviour. Thus, we propose two novel evasive web bots that use machine

learning techniques to evade detection, (i) one in which web bots use RL to learn an

evasive bahaviour, and (ii) one in which web bots use GANs to train on human data and

generate new synthetic humanlike data. We show that such techniques can be used

by web bots to evade detection and that they should be considered by defenders when

proposing detection techniques.

The direction and outcome of this thesis goes hand in hand with the literature review.

During this thesis we outlined the limitations of web bot detection techniques that use

web logs and examined the use of mouse movements, while at the same time other

researchers have also started exploring alternatives that also use mouse movements.

We went one step further and combined both approaches showcasing that the traditional

web bot detection techniques that use web logs can increase the total performance when

combined with the ones that use mouse movements. Also, in accordance with relative

research on evasive web bots, we show that advanced bots can generate humanlike

behaviours that can evade detection. As opposed to current research focusing primarily

on using statistics and heuristics to generate such behaviour, we show two novel ways in

which the recent advances in machine learning can also be used for that purpose.

The outcomes of this research outline the need for continuous updates of the meth-

ods and techniques used by web bot detection frameworks to follow the latest advances

of the malicious evasive web bots. As we show, state-of-the-art web bot detection ap-

proaches may not be very effective against advanced malicious web bots. This means

that, if the detection frameworks do not follow the latest advances of malicious web bots,

then such bots may be able to perform several malicious actions that can have a high

impact on our society, since there are a lot of services that are accessed via the web.

For example, allowing web bots to perform malicious actions on web services may lead

to denying service to an actual visitor or to allowing bots unauthorised access to those

services and the respective data that they host. This can have devastating results for

society. Thus, it is important for detection frameworks to be updated continuously and to

use advanced and novel detection techniques (including those proposed in this work) to

protect web servers from malicious bots.

Even though novel techniques for both web bot detection and evasion have been

proposed in this thesis, the performance trade-offs limit such techniques, especially in the

case of the detection techniques. In a real-world web server, where millions of requests

Bournemouth University, Department of Computing and Informatics, Dissertation



5.2. EVALUATION OF AIMS AND OBJECTIVES 126

are performed every second, storing all those requests and users’ mouse movements

and processing them would require a huge amount of resources. Additionally, for the

generation of evasive web bots, an attacker would either require a huge amount of IPs

that the attacker can “burn” in order to identify an evasive behaviour, or data from several

humans which will also require a lot of effort to generate.

Thus, there is a trade-off in both the attacker and defender in regards to the ef-

fectiveness of their approaches and the effort required. Depending on the motivation of

each party (i.e., web bot creator and web server with web bot detection framework) more

weight shall be given to the effectiveness or the efficiency of the approaches.

5.2 Evaluation of Aims and Objectives

In this subsection we reiterate the aims and the objectives of this research, and examine

how well they have been fulfilled during this research.

The main research question of this research is to identify how (malicious) advanced

web bots can be detected (R). To answer this question, this research has three aims: (i)

to define advanced web bots by outlining the web bots’ landscape including categorising

web bots based on their functionality, and sophistication (A1), (ii) to evaluate the current

and propose novel behaviour-based web bot detection techniques focusing on advanced

web bots (A2), and (iii) to evaluate how well those detection techniques perform when

faced with web bots that use recent advanced in machine learning to evade detection

based on their behaviour (A3).

To fulfill the aforementioned aims, we initially presented the web bot landscape out-

lining and categorising the different types of web bots based on their functionality and

sophistication (O1.1, O1.2). This information was used to define the advanced web bots

that this research focused on.

Then, we showed the performance limitations of current state-of-the-art approaches

when faced with advanced web bots. For that, we used a real-world dataset collected

from a public web server (O2.1), and evaluated the most prominent (at that time) web

bot detection techniques against simple and advanced web bots (O2.2). We showed

that even though those techniques were very effective against simple web bots, their

effectiveness considerably reduced when faced with advanced web bots. This motivated

us to propose a novel web bot detection framework that combines both web logs and

visitors’ mouse movements for the effective detection of advanced web bots (O2.3). For
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the latter, we created a dataset using several human subjects because no such dataset

was available online (O2.1).

Finally, in the last part of this research, we evaluated how well the aforementioned

web bot detection techniques perform against advanced web bots that use recent ad-

vances in machine learning to evade detection. For that, we initially identified the most fit-

ted machine learning algorithms that can be used by web bots to evade detection (O3.1).

Then, we evaluated the aforementioned web bot detection techniques against the web

bots that use those machine learning algorithms to evade detection (O3.2).

In conclusion, in this research we:

• Outlined the web bots’ landscape, categorising the web bots based on their func-

tionality, and sophistication (A1)

• Evaluated the current web bot detection techniques and proposed novel web bot

detection techniques for advanced web bots (A2)

• Evaluated how these detection techniques perform when faced with advanced web

bots that use recent machine learning algorithms to evade detection (A3)
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Table 5.1: Mapping of the objectives to publications and chapters of this thesis

Objectives Chapters Publications

O1.1, O1.2 2 -

O2.1, O2.2 3 Iliou, C., Kostoulas, T., Tsikrika, T., Katos, V., Vrochidis, S.

and Kompatsiaris, Y., 2019. Towards a framework for

detecting advanced web bots. Proceedings of the 14th

International Conference on Availability, Reliability and

Security, ARES 2019, Canterbury, UK, August 26-29, 2019,

ACM, 18:1–18:10.

O2.3 3 Iliou, C., Kostoulas, T., Tsikrika, T., Katos, V., Vrochidis, S.

and Kompatsiaris, I., 2021. Detection of advanced web

bots by combining web logs with mouse behavioural

biometrics. Digital Threats: Research and Practice, 2 (3).

O3.1, O3.2 4 Iliou, C., Kostoulas, T., Tsikrika, T., Katos, V., Vrochidis, S.

and Kompatsiaris, I., 2021. Web bot detection evasion

using generative adversarial networks. IEEE International

Conference on Cyber Security and Resilience, CSR 2021,

Rhodes, Greece, July 26-28, 2021, IEEE, 115–120.

Iliou, C., Kostoulas, T., Tsikrika, T., Katos, V., Vrochidis, S.

and Kompatsiaris, I., Web bot detection evasion using

deep reinforcement learning. Proceedings of the 17th

International Conference on Availability, Reliability and

Security, ARES 2022, Vienna, Austria, August 23-26,

2022, ACM.
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6 Conclusions and Future Work

Web bots are an integral part of the web, since they allow the automation of several

vital tasks, some of which would have otherwise been impossible to perform. Some

of these tasks require web bots to perform highly complex actions, including specific

mouse movements, clicks, and keystrokes. Latest advances in browsing automation allow

web bots to support the majority of web browsers’ functionalities, have a browser-like

fingerprint, and perform such highly complex actions. The combination of a browser-like

fingerprint and a behaviour that can be configured to be humanlike led malicious actors

to use these web bots for malicious purposes, since they can perform complex tasks and,

at the same time, avoid detection.

This research aimed to identify techniques that can be used to detect malicious

advanced web bots. For that, we had to define the different types of web bots based

on their functionality and sophistication, and research techniques that can be used to

detect web bots based on their behaviour and investigate how effective those are against

advanced web bots that use sophisticated techniques to evade detection. We showed

that, even though state-of-the-art web bot detection techniques achieved a very high

performance in detecting web bots in general, they performed poorly when faced with

only advanced web bots. However, we show that we were able to detect such advanced

web bots by comprising two different bot detection modules, and more specifically, (i) a

detection module that utilises web logs, and (ii) a detection module that leverages mouse

movements. Additionally, we show that malicious web bots can use recent advances in

machine learning to evade detection. Specifically, we show that advanced web bots can

use (i) RL to evade detection by updating their browsing behaviour based on, among

others, whether they have been detected or not, and (ii) GANs to generate (synthetic)

images of mouse trajectories similar to those of humans that can be used for browsing.

In summary, in this research we showed that the web bot detection problem is a

dynamic one, where both the defenders (i.e., web servers that use web bot detection

technologies) as well as the attackers (i.e., the evasive web bots) can continuously up-

date their techniques and methods to achieve their goals. This is very important since it

indicates that web bot detection frameworks should be constantly updated to follow the
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latest advances of malicious web bots. Otherwise, web bots (especially advanced ones)

can bypass the detection techniques and perform malicious actions to web servers which

may have devastating results.

In this work, we only examined two machine learning based methods that web bots

can use to evade detection. Also, we have proposed a novel way that detection frame-

works can use to detect advanced web bots, which, as discussed above, should be con-

tinuously updated with new techniques, to follow future updates of malicious web bots.

Thus, the future direction of this research is to examine additional techniques that web

bots can use to evade detection, such as adversarial machine learning based techniques,

and how the existing web bot detection techniques can be enhanced to defend against

those. Additionally, new detection techniques tailored to the evasive techniques used by

web bots can be investigated. Also, since detection frameworks can use a combination

of detection methods, a future direction could be to investigate how different detection

methods could be combined together to increase their effectiveness against malicious

web bots. Finally, efficiency and optimisation techniques for the current web bot detec-

tion approaches proposed in this research should be examined, which will make those

techniques more efficient, so as to allow them to be integrated to web servers with lim-

ited resources. To summarise, as it is shown from this research, the web bot detection

problem is a dynamic one requiring continuous research and updates to make sure that

detection frameworks are ready to face malicious web bots and protect the web servers.
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Appendix A - Features Proposed in Lit-

erature for Web Logs

In this section we present the features that are extracted from web logs by different works

in literature to train machine learning models.

Category Feature Literature

Total requests Total HTTP requests Park et al. (2006), Stassopoulou

and Dikaiakos (2009), Buehrer

et al. (2009), Stevanovic et al.

(2012 2013), Alam et al. (2014),

Sisodia et al. (2015), Grzinic et al.

(2015), Hamidzadeh et al. (2018),

Rovetta et al. (2017 2020)

Number/Percentage of re-

quests with HTTP request

method GET, HEAD, POST,

etc. Usually several features

are created here, each one for

each request method

Park et al. (2006), Stevanovic et al.

(2012 2013), Sisodia et al. (2015),

Grzinic et al. (2015), Hamidzadeh

et al. (2018), Zabihimayvan et al.

(2017), Rovetta et al. (2017 2020),

Cabri et al. (2018), Suchacka et al.

(2021)

Number/Percentage of re-

quests with HTTP response

code 2xx, 3xx, 4xx. Usually

several features are created

here, each one for each re-

sponse code type (e.g., one for

all responses with code 2xx)

Park et al. (2006), Stassopoulou

and Dikaiakos (2009), Stevanovic

et al. (2012 2013), Zabihi et al.

(2014), Sisodia et al. (2015),

Hamidzadeh et al. (2018), Zabihi-

mayvan et al. (2017), Rovetta et al.

(2017 2020), Cabri et al. (2018),

Suchacka et al. (2021), Rahman

and Tomar (2021)

143
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Total Bytes downloaded Stevanovic et al. (2013), Sisodia

et al. (2015), Hamidzadeh et al.

(2018), Zabihimayvan et al. (2017),

Cabri et al. (2018), Rovetta et al.

(2020), Suchacka et al. (2021),

Rahman and Tomar (2021)

Standard deviation of the Bytes

of the pages downloaded

Alam et al. (2014), Rahman and

Tomar (2021)

Total Bytes uploaded Hamidzadeh et al. (2018), Zabihi-

mayvan et al. (2017)

File types Number/Percentage of re-

quests of specific type such

as JavaScript, CSS, images,

etc. Usually several features

are created here, each one for

each file type

Park et al. (2006), Stassopoulou

and Dikaiakos (2009), Stevanovic

et al. (2012 2013), Sisodia et al.

(2015), Doran and Gokhale (2016),

Hamidzadeh et al. (2018), Zabihi-

mayvan et al. (2017), Haidar and

Elbassuoni (2017), Cabri et al.

(2018), Suchacka et al. (2021)

Number/Percentage of re-

quests requests to favicon.ico

Park et al. (2006)

Max number/Percentage of re-

quests requests to embedded

objects in web page

Park et al. (2006), Zabihi et al.

(2014), Hamidzadeh et al. (2018),

Zabihimayvan et al. (2017), Cabri

et al. (2018)

HTML-to-image ratio Stevanovic et al. (2012 2013),

Hamidzadeh et al. (2018), Zabihi-

mayvan et al. (2017), Rovetta et al.

(2017)

image-to-page ratio Rovetta et al. (2020)
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Referrer field Number/Percentage of re-

quests with empty referrer

Stevanovic et al. (2012 2013), Siso-

dia et al. (2015), Hamidzadeh et al.

(2018), Rovetta et al. (2017 2020),

Zabihimayvan et al. (2017), Cabri

et al. (2018), Suchacka et al. (2021)

Number/Percentage of re-

quests with referrer

Park et al. (2006)

Percentage of requests with

unknown/unseen referrer

Park et al. (2006)

URL depth Standard deviation of depth Stevanovic et al. (2012 2013),

Hamidzadeh et al. (2018), Zabihi-

mayvan et al. (2017)

Maximum depth Hamidzadeh et al. (2018), Zabihi-

mayvan et al. (2017)

Width of HTTP request paths Hamidzadeh et al. (2018)

Maximum depth of HTTP re-

quest paths

Sisodia et al. (2015)

URL patterns Percentage of consecutive se-

quential HTTP requests

Stevanovic et al. (2012 2013),

Hamidzadeh et al. (2018), Zabihi-

mayvan et al. (2017)

Number of repeated requests Sisodia et al. (2015)

Penalty value for back-and-

forward navigation or loop

Zabihi et al. (2014), Hamidzadeh

et al. (2018), Zabihimayvan et al.

(2017)

Time Session duration (seconds) Stassopoulou and Dikaiakos

(2009), Alam et al. (2014), Sisodia

et al. (2015), Grzinic et al. (2015),

Hamidzadeh et al. (2018), Zabi-

himayvan et al. (2017), Rovetta

et al. (2017 2020), Suchacka et al.

(2021), Rahman and Tomar (2021)

Session duration (categorical:

small/medium/long)

Almahmoud et al. (2019)
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Browsing speed / request rate Buehrer et al. (2009)

Average time between succes-

sive requests

Sisodia et al. (2015), Haidar and El-

bassuoni (2017)

Standard deviation of inter-

request times

Grzinic et al. (2015), Zabihimayvan

et al. (2017), Cabri et al. (2018),

Rahman and Tomar (2021)

Mean time spend on each

page

Rovetta et al. (2017 2020)

Entropy of inter-request times Buehrer et al. (2009), Haidar and

Elbassuoni (2017), Rahman and

Tomar (2021)

Time taken to serve requests Hamidzadeh et al. (2018)

Specific

pages visited

Number of visits to home web

page

Rovetta et al. (2017 2020)

Vector showing which pages

are visited

Haidar and Elbassuoni (2017)

Vector showing the order of vis-

ited pages

Haidar and Elbassuoni (2017)

Vector showing how many

times each web page was vis-

ited

Haidar and Elbassuoni (2017)

Vector showing the time spend

on each web page

Haidar and Elbassuoni (2017)

Average requests par web

page

Haidar and Elbassuoni (2017)

Other generic

features

Number/Percentage of trap file

or hidden links requests, or bi-

nary value indicating if it was

accessed

Zabihi et al. (2014), Grzinic et al.

(2015), Hamidzadeh et al. (2018),

Zabihimayvan et al. (2017)

Number of robots.txt requests

or binary value indicating if it

was accessed

Stassopoulou and Dikaiakos

(2009), Stevanovic et al. (2012),

Sisodia et al. (2015), Grzinic et al.

(2015)
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Number/Percentage of night-

time requests

Sisodia et al. (2015), Hamidzadeh

et al. (2018), Zabihimayvan et al.

(2017)

Binary indicating if multiple IPs

have been used

Hamidzadeh et al. (2018), Zabihi-

mayvan et al. (2017)

Binary indicating if multiple

agent names have been used

Hamidzadeh et al. (2018), Zabihi-

mayvan et al. (2017)

Binary indicating if session ID

has been changed

Grzinic et al. (2015)

Average value of page popular-

ity index of visited web pages

Stevanovic et al. (2013),

Hamidzadeh et al. (2018), Zabihi-

mayvan et al. (2017)

IP reputation Buehrer et al. (2009)

Clicks performed in session Almahmoud et al. (2019)

Number of IPs/cities generated

from the same user ID

Buehrer et al. (2009)

Domain

specific fea-

tures (e.g.,

e-commerce,

search en-

gines)

Whether the session ended

with a purchase

Rovetta et al. (2017 2020)

Whether the session was per-

formed by the site administra-

tor

Rovetta et al. (2017)

Number of login operations Rovetta et al. (2017 2020)

Number of views of the page

with shipping terms and condi-

tions

Rovetta et al. (2017 2020)

Number of searches using the

internal search engine

Rovetta et al. (2017 2020)

The number of pages of type

“Browse”

Rovetta et al. (2017)
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Number of views of product de-

scription pages

Rovetta et al. (2017 2020)

Number of operations of

adding a product to the shop-

ping cart

Rovetta et al. (2017 2020)

Number of views of pages in-

forming about the store and the

trading company

Rovetta et al. (2017 2020)

Number of views of pages with

entertainment contents

Rovetta et al. (2017 2020)

Number of other page views Rovetta et al. (2020)

Whether a “source” of the ses-

sion is specified

Rovetta et al. (2020)

Query associated to a specific

category (e.g., have keywords

related to adult content, etc.)

Buehrer et al. (2009)

Query that have keywords

used usually in spam

Buehrer et al. (2009)

Queries are performed in al-

phabetical or close to alphabet-

ical order

Buehrer et al. (2009)

Click-to-query ration (for

search engines)

Buehrer et al. (2009)

Query keyword entropy Buehrer et al. (2009)

Query keyword length entropy Buehrer et al. (2009)

Query keyword length entropy Buehrer et al. (2009)

Using search operators (such

as the inURL and intitle)

Buehrer et al. (2009)

Query category entropy Buehrer et al. (2009)
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Appendix B - Methods and Performance

of Literature

In this section we present the performance of the different methods proposed in literature

as well as a summary visualisation. S, M, and A correspond to the simple, moderate,

and advanced bots (respectively). Each set of algorithms under the same bot type for the

same work indicate different experimental setups or datasets used by this work.

Table B.1: Performance of behaviour-based web bot detection techniques that use web

logs. Red color is used to highlight very low performances

Literature Type Algorithm F-score Acc. AUC

Park et al. (2006) S+M AdaBoost – 0.95 –

Stassopoulou and Dikaiakos (2009) S Naive Bayes 0.855 – –

S Naive Bayes 0.866 – –

S Naive Bayes 0.903 – –

S Naive Bayes 0.866 – –

S Naive Bayes 0.863 – –

Buehrer et al. (2009) S+M AdaBoost 0.86 0.89 –

ADTree 0.87 0.90 –

BaggingTrees 0.91 0.93 –

Bayesian Net. 0.87 0.90 –

Logist. Regr. 0.89 0.91 –

Naive Bayes 0.87 0.90 –

PART 0.86 0.87 –

S+M AdaBoost – 0.76 –

BaggingTrees – 0.81 –

Bayesian Net. – 0.78 –

Logist. Regr. – 0.83 –

Naive Bayes – 0.71 –

PART – 0.82 –
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Rand. Forest – 0.82 –

Stevanovic et al. (2012) S C4.5 ∼0.71 ∼0.99 –

RIPPER ∼0.73 ∼0.99 –

kNN ∼0.68 ∼0.98 –

Naive Bayes ∼0.48 ∼0.96 –

Bayesian Net. ∼0.67 ∼0.98 –

SVM ∼0.69 ∼0.99 –

MLP ∼0.73 ∼0.99 –

S C4.5 ∼0.73 ∼0.99 –

RIPPER ∼0.71 ∼0.99 –

kNN ∼0.76 ∼0.99 –

Naive Bayes ∼0.44 ∼0.97 –

Bayesian Net. ∼0.67 ∼0.99 –

SVM ∼0.67 ∼0.99 –

MLP ∼0.81 ∼0.99 –

Sisodia et al. (2015) S AdaBoost ∼0.58 – –

Bagging ∼0.59 – –

Rand. Forest ∼0.59 – –

C4.5 ∼0.58 – –

Naive Bayes ∼0.24 – –

Grzinic et al. (2015) S+M C4.5 0.972 – 0.773

SVM 0.979 – 0.801

S+M C4.5 0.992 – 0.985

SVM 0.997 – 0.978

Doran and Gokhale (2016) S DTMC ∼0.73 – –

S DTMC ∼0.89 – –

S DTMC ∼0.91 – –

Rovetta et al. (2017) S MLP 0.94 0.96 –

SVM 0.98 0.98 –

k-means 0.98 0.98 –

GPCM 0.97 0.98 –

Haidar and Elbassuoni (2017) S SVM 0.770 0.790 0.852

MLP 0.774 0.793 0.876
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Naive Bayes 0.780 0.799 0.882

Rand. Forest 0.770 0.800 0.880

AdaBoost 0.780 0.801 0.884

S SVM 0.760 0.789 0.841

MLP 0.773 0.791 0.862

Naive Bayes 0.788 0.796 0.879

Rand. Forest 0.756 0.797 0.878

AdaBoost 0.780 0.800 0.881

Cabri et al. (2018) S MLP ∼0.98 ∼0.98 –

Loyola-González et al. (2018) S+M kNN – – 0.9988

Bagging – – 0.9864

Bayesian Net. – – 0.9999

C4.5 – – 0.9989

Logist. Regr. – – timeout

MLP – – timeout

Naive Bayes – – 0.9997

Rand. Forest – – 1.0000

SVM – – timeout

Miner (RF) – – 0.9773

Miner (Bagg.) – – 0.9366

LCMiner – – 0.9624

S+M kNN – – 0.9988

Bagging – – timeout

Bayesian Net. – – 0.9999

C4.5 – – 0.9955

Logist. Regr. – – timeout

MLP – – timeout

Naive Bayes – – 0.9999

Rand. Forest – – 1.0000

SVM – – timeout

Miner (RF) – – 0.9851

Miner (Bagg.) – – 0.9588

LCMiner – – 0.9652
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Suchacka et al. (2021) S NN-based 0.96 0.97 –

DTMC 0.89 0.89 –

S NN-based 0.96 0.96 –

DTMC 0.78 0.82 –

Rahman and Tomar (2021) S kNN ∼0.79 ∼0.79 –

Naive Bayes ∼0.86 ∼0.84 –

Decis. Tree ∼0.86 ∼0.85 –

SVM ∼0.86 ∼0.85 –

Cascade NN ∼0.92 ∼0.91 –

Rand. Forest ∼0.86 ∼0.87 –

Logist. Regr. ∼0.86 ∼0.86 –

Almahmoud et al. (2019) S+M SVM 0.886 – –

kNN 0.976 – –

AdaBoost 0.824 – –

Bagging (RF) 0.958 – –

Decis. Tree 0.941 – –

Rovetta et al. (2020) S MLP 0.985 0.986 –

SVM 0.991 0.992 –

k-means 0.991 0.992 –

GPCM 0.985 0.986 –

Precision

Alam et al. (2014) S HPSO 0.97

Jaccard RI

Zabihi et al. (2014) S DBSCAN 0.940 0.997

S DBSCAN 0.951 0.9805

Hamidzadeh et al. (2018) S SOM+FRS 0.96 –

SOM+ART2 0.84 –

DBSCAN 0.90 –

S SOM+FRS 0.81 –

SOM+ART2 0.73 –

DBSCAN 0.76 –

S SOM+FRS 0.88 –

SOM+ART2 0.79 –
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DBSCAN 0.84 –

Zabihimayvan et al. (2017) S FRS+MCL 0.8918 0.9319

SOM+ART2 0.8747 0.9193

DBSCAN 0.5718 0.5718

S FRS+MCL 0.4412 0.9103

SOM+ART2 0.3191 0.8891

DBSCAN 0.2248 0.8675
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Table B.2: Performance of behaviour-based web bot detection techniques that use mouse

trajectories of visitors

Literature Type Algorithm Prec. Rec. F-score Acc. AUC

Chu et al. (2018) M C4.5 – 0.9964 – – 0.9999

M1 C4.5 – 0.9660 – – 0.9997

M+A C4.5 – 0.9945 – – 0.9996

Wei et al. (2019) M GBDT – 0.9934 – – 0.9925

RNN – 0.9340 – – 0.9740

CNNs – 0.9981 – – 0.9984

M GBDT – – – – 0.0630

RNN – – – – 0.1720

CNNs – – – – 0.9240

Acien et al. (2021) M+A SVM 0.881 0.829 0.854 0.858 0.936

kNN 0.823 0.780 0.800 0.801 0.900

Rand. Forest 0.977 0.968 0.973 0.965 0.997

OneClassSVM – – – 0.571 –

M+A SVM 0.988 0.996 0.992 0.992 0.992

kNN 0.985 0.992 0.989 0.989 0.991

Rand. Forest 1.000 0.997 0.998 0.998 0.999

OneClassSVM – – – 0.805 –

M+A SVM 0.740 0.999 0.850 0.824 0.936

kNN 0.782 0.999 0.877 0.860 0.877

Rand. Forest 0.780 0.999 0.876 0.858 0.924

GANs 0.899 0.912 0.908 0.888 0.934

M+A SVM 0.620 0.988 0.762 0.688 0.886

kNN 0.600 0.986 0.647 0.601 0.812

Rand. Forest 0.532 0.998 0.669 0.544 0.992

GANs 0.773 0.755 0.764 0.744 0.811

1Bots that repeat human actions that are used as input to them, but do not exhibit any intelligence.
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Figure B.1: Classification of articles based on web bot sophistication and the detection

method followed
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Appendix C - Features for Web Logs

Used

In this Table we present the features that extracted from the web logs and used by our

proposed web bot detection frameworks.

Id Feature Short description

1 Total requests Total number of HTTP requests that the agent issued

during the session.

2 Total session Bytes The sum of all requested pages’ size (in Bytes) in a

session.

3 HTTP GET requests Total number of HTTP GET requests issued during

the session.

4 HTTP POST requests Total number of HTTP POST requests issued during

the session.

5 HTTP HEAD requests Total number of HTTP HEAD requests issued during

the session.

6 % HTTP 3xx requests The percentage of HTTP requests that led to an

HTTP 3xx code response.

7 % HTTP 4xx requests The percentage of HTTP requests that led to an

HTTP 4xx code response.

8 % image requests The percentage of HTTP requests that requested an

image. This feature searches for all known image for-

mats’ ending.

9 % PDF requests The percentage of HTTP requests that requested a

PDF file.

10 % CSS file requests The percentage of HTTP requests that requested a

CSS file.

11 % JS requests The percentage of HTTP requests that requested a

JavaScript file.
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12 HTML-to-image ratio The number of the requested HTML files divided by

the number of requested image files in a session.

13 % requests with un-

signed referrers

The percentage of total HTTP requests that had no

refer.

14 Search engine refer Binary. If a session has at least one request with a

known search engine refer.

15 Unknown refer Binary. Refer exists, but not from the aforementioned

search engines.

16 Depth SD Standard deviation of requested pages’ depth (i.e.

number of ’/’ in URL path).

17 Max requests per

page

The maximum number of requests to the same page

in a session.

18 Average requests per

page

The average number of requests per page in a ses-

sion.

19 Max number of con-

secutive sequential

HTTP requests

The maximum number of HTTP requested URLs that

contain the previously requested URL as a subpart

page.

20 % of consecutive

sequential HTTP

requests

The percentage of HTTP requested URLs that con-

tain the previously requested URL as a subpart.

21 Session time The total time (in seconds) between the first and the

last HTTP request of the session.

22 Browsing speed The ratio of the total number of requested pages over

time (in seconds).

23 SD of inter-request

times

Standard deviation of time between successive re-

quests.
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Appendix D - Ethics

In this Appendix, the following files related to the collection of data from human subjects

used in this research are attached:

• The ethics checklist for the collection of the data

• The participant information sheet given to the human subjects

• The participant agreement form that each human subject had to sign before partic-

ipating to the experiment

The risk of the part of this research that used human subjects was found to be low.
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Status Postgraduate Research (MRes, MPhil, PhD, DProf, EngD, EdD)

Course Postgraduate Research - FST

Have you received funding to support this
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Approver Marcin Budka

Summary - no more than 600 words (including detail on background methodology, sample, outcomes, etc.)

Automated programs (bots) are responsible for a large percentage of website traffic. These bots can be used for malicious purposes
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interactions on a testbed web server. During these interactions, several software and hardware characteristics of visitor’s machine as well
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human visitors from web bots.

Page 1 of 4 Printed On 10/12/2021 07:46:54



 
Filter Question: Does your study involve Human Participants?
 
Participants

Describe the number of participants and specify any inclusion/exclusion criteria to be used

We are looking for as many participants as possible. There are no special requirements for the selected participants. Any adult having
access to a computer and the Internet is eligible to participate.

Do your participants include minors (under 16)? No

Are your participants considered adults who are competent to give consent but considered vulnerable? No

Is a Disclosure and Barring Service (DBS) check required for the research activity? No

 
Recruitment

Please provide details on intended recruitment methods, include copies of any advertisements.

We will recruit students from the Department of Computing and Informatics at Bournemouth University by word of mouth.

Do you need a Gatekeeper to access your participants? No

 
Data Collection Activity
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questionnaire/survey or sample of questions. No
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Describe the process that you will be using to obtain valid consent for participation in the research activities. If consent is not
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We will give the participants a copy of the Participant information Sheet and the Participant Agreement Form prior to the experiments
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allowing them to read it carefully. We will be available to answer any questions for any potential participants.

Do your participants include adults who lack/may lack capacity to give consent (at any point in the study)? No

Will it be necessary for participants to take part in your study without their knowledge and consent? No

 
Participant Withdrawal

At what point and how will it be possible for participants to exercise their rights to withdraw from the study?

Participants can withdraw during the process of the experiment (i.e. browsing the website) at any time and without giving a reason. To be
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does not know how to find it, we will assist them.
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If a participant decides to withdraw, we will remove any data collected about him/her. Once the data has been collected and processed
participants can still withdraw their data up to the point where the data is analysed and incorporated into the research findings or outputs.
Withdrawing their data at this point may also adversely affect the validity and integrity of the research.

 
Participant Compensation

Will participants receive financial compensation (or course credits) for their participation? No
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Will research outputs include any identifiable personal information i.e. data at an individualised level in a form
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Final Review
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                             Participant Information Sheet  

The title of the research project 
 

Advanced web bots: Machine learning based detection and evasion techniques 

 

Invitation to take part 
 

You are being invited to take part in a research project. Before you decide it is important for you to 

understand why the research is being done and what it will involve. Please take time to read the 

following information carefully and discuss it with others if you wish. Ask us if there is anything that 

is not clear or if you would like more information. Take time to decide whether or not you wish to 

take part. 

 

Who is organising/funding the research? 
 

This research is a joined initiative between the Bournemouth University (BU -  

https://www.bournemouth.ac.uk/) and the Centre for Research & Technology Hellas (CERTH - 

https://www.certh.gr/root.en.aspx). The persons responsible are professor Vasilis Katos and Dr. 

Theodoros Kostoulas from BU, Dr. Ioannis Kompatsiaris and Dr. Stefanos Vrochidis from CERTH and 

Mr. Christos Iliou from both BU and CERTH. 

 

What is the purpose of the project? 
 

Automated programs (bots) are responsible for a large percentage of website traffic. These bots can 

be used for malicious purposes including, but not limited to, content scraping, vulnerability scanning, 

account takeover, distributed denial of service attacks, marketing fraud, carding and spam. Thus, 

web servers must be equipped with the tools to detect such web bots. 

The purpose of this research is to create a web bot detection framework. To achieve that, we are 

planning to monitor human and bot interactions on a testbed web server. During these interactions, 

several software and hardware characteristics of visitor’s machine as well as behavioural 

characteristics of visitors will be recorded and stored. Based on these interactions, we are planning 

to create machine learning based web bot detection models. The outcome of this research will be 

used as part of Christos Iliou’s PhD. 

 

Why have I been chosen? 
 

There are no special requirements for the selected participants. Anyone having access to a computer 

and the Internet is eligible to participate.  

 

Do I have to take part? 
 

It is up to you to decide whether or not to take part. If you do decide to take part, you will be given 

this information sheet to keep and be asked to sign a participant agreement form. You can withdraw 

from participation during the process of the experiment (i.e. browsing the website) at any time and 



Ethics ID: 22296 

Date: 19/06/2020  

 

 

without giving a reason. If you decide to withdraw, we will remove any data collected about you. To 

be able to remove your data, you have to send us the PHP session id that your browser had during 

the experiments. If you do not know how to find that, you can ask us to assist you. Upon request we 

will remove any collected information related to you within 3 days of your request.  

Once the data has been collected and processed you can still withdraw your data up to the point 

where the data is analysed and incorporated into the research findings or outputs. Withdrawing your 

data at this point may also adversely affect the validity and integrity of the research. Deciding to take 

part or not will not impact upon/adversely affect your education or studies at BU (or that of others). 

 

What would taking part involve?  
 

By taking part in this research you will have to visit a website that contains information about specific 

topics. You will have to browse this website like you would browse any other website. For example, 

you may move your mouse while reading the text of the website, you may click on any hyperlink that 

interests you. There are no limits or requirements in respect of how many webpages you will have to 

read/visit and how much time you will put in each webpage. However, it is highly recommended that 

you spend some time on the web server and visit several hyperlinks. It would be better if you are 

behaving in this site like you would behave if you were visiting, for example, wikipedia.org and 

reading about a topic (and several subtopics) that you are interested in. 

 

What are the advantages and possible disadvantages or risks of taking part? 
 

Whilst there are no immediate benefits for those people participating in the project, it is hoped that 

the outcome of this research will provide mechanisms for the protection of web servers from web 

bots. As web bots are an issue which affects most Internet activities, we believe that there is an 

indirect benefit for everyone who will take part in this research.  

To our knowledge, there are no possible disadvantages or risks associated with taking part in this 

research. 

 

What type of information will be sought from me and why is the collection of this 

information relevant for achieving the research project’s objectives? 
 

We are planning to collect hardware and software information about visitors’ devices. To be able to 

collect the aforementioned information a conventional browser software must be used with 

JavaScript and cookies enabled. Supported browsers are Firefox, Chrome, Edge and Opera, but we 

believe that any conventional browser can be used. Please do not use any anonymisation browsers 

(such as Tor browser), anonymisation software/plugins or proxies because we might not be able to 

collect all the information we need. If you have any doubt about the browser you are planning to use 

or its configuration, please feel free to contact us. 

 

Besides the software and hardware specifications of your machine, we will store all your interactions 

with the testbed web server. This monitoring includes all interactions, both from the keyboard and 

the mouse, on this web server.  

When you finish the experiments, you can simply remove all cookies from your browser that have 

been downloaded from our web server and all the information stored locally on your machine will be 
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removed. If you do not know how to do that, you let us know which browser software you used and 

we will tell you which steps to follow to clear all the cookies created from our web server. 

 

Will I be recorded, and how will the recorded media be used? 
 

The data will be made publicly available. No identifiable information will be included on these data. 

 

How will my information be kept? 
 

All the information we collect about you during the course of the research will be kept strictly in 

accordance with current data protection legislation. Research is a task that we perform in the public 

interest, as part of our core function as a university.  Bournemouth University (BU) is a Data 

Controller of your information which means that we are responsible for looking after your 

information and using it appropriately.  BU’s Research Participant Privacy Notice sets out more 

information about how we fulfil our responsibilities as a data controller and about your rights as an 

individual under the data protection legislation.  We ask you to read this Notice1 so that you can fully 

understand the basis on which we will process your information.   

 

Publication 

You will not be identifiable in any external reports or publications about the research. Research 

results will be published to reputable conferences and journals and will also be used in the 

dissertation of Christos Iliou’s PhD. 

 

Security and access controls 

The collected data will be stored temporarily in a password protected database that is only accessible 

through a whitelist of IPs. After the experiments are finished, we will export and delete the content 

of the online database and we will transfer them to an offline database to perform experiments on 

them. No identifiable information will be stored in the offline database. 

 

Sharing and further use of your personal information 

The dataset will be made public and will not include any identifiable information. 

 

Retention of your data 

We are planning to make the dataset public. The dataset will not include any identifiable 

information. 

 

Contact for further information  
 

If you have any questions or would like further information, please contact: 

 

Mr Christos Iliou 

Emails: ciliou@bournemouth.ac.uk 

iliouchristos@iti.gr  

 

 
1 https://intranetsp.bournemouth.ac.uk/documentsrep/Research%20Participant%20Privacy%20Notice.pdf 



Ethics ID: 22296 

Date: 19/06/2020  

 

 

Dr Theodoros Kostoulas 

Email: tkostoulas@bournemouth.ac.uk 

 

Professor Vasilis Katos 

Email: vkatos@bournemouth.ac.uk 

 

In case of complaints 

Any concerns about the study should be directed to Theodoros Kostoulas 

(tkostoulas@bournemouth.ac.uk) or Panos Amelidis (pamelidis@bournemouth.ac.uk). If you 

concerns have not been answered, you should contact Professor Tiantian Zhang, Deputy Dean for 

Research and Professional Practice at the Faculty of Science and Technology, Bournemouth 

University by email to researchgovernance@bournemouth.ac.uk . 

 
 

Finally 
 

If you decide to take part, you will be given a copy of the information sheet and a signed participant 

agreement form to keep. 

 

Thank you for considering taking part in this research project. 

 

 



Ethics ID number: 22296 
Date of approval: 19/06/2020 

                                    Participant Agreement Form  

Full title of project: (“the Project”) Advanced web bots: Machine learning based detection and evasion 
techniques 

Name, position and contact details of researcher: Christos Iliou, PhD candidate, iliouchristos@iti.gr or 
ciliou@bournemouth.ac.uk 

Name, position and contact details of supervisor: Vasilis Katos, Professor, vkatos@bournemouth.ac.uk 

 

Agreement to participate in the study 

You should only agree to participate in the study if you agree with all of the statements in this table 
and accept that participating will involve the listed activities.   
 

 Initial box to 
agree  

I consent to take part in the project on the basis set out above  

 

I have read and understood the Participant Information Sheet (PIS.docx) and have been given access to 
the BU Research Participant Privacy Notice which sets out how we collect and use personal  information 
(https://www1.bournemouth.ac.uk/about/governance/access-information/data-protection-privacy). 

I have had an opportunity to ask questions. 

I understand that my participation is voluntary.  I can stop participating in research activities at any time 
without giving a reason and I am free to decline to answer any particular question(s). 

I agree that BU researchers may access and/or process information about the device used to access the 
testbed webserver and my browsing activity on the webserver as described in the Participant Information 
Sheet. 

I understand that taking part in the research will include the following activity/activities as part of the 
research: 

• the collection of hardware and software information from my device. 

• being monitored while browsing the webserver. Monitoring includes all interactions on the 
webserver (both from keyboard and mouse). 

I understand that, if I withdraw from the study, I will also be able to withdraw my data from further use in 
the study except where it will be harmful to the project to have my data removed. 

I understand that my data will be published and/or archived at BU’s Online Research Data Repository.  No 
identifiable information will be included on these data. 

I understand that my data will be made publicly available for research purposes.  No identifiable 
information will be included on these data. 

I understand that my data may be used to support other research projects in the future, including future 
publications, reports, or presentations.  No identifiable information will be included on these data. 



 
 

I confirm my agreement to take part in the project on the basis set out above.   

 
 

     

Name of participant  
(BLOCK CAPITALS) 

 Date  
(dd/mm/yyyy) 

 Signature 

 
 
 

  
 
 

  

Name of researcher  
(BLOCK CAPITALS) 

 Date  
(dd/mm/yyyy) 

 
Signature 
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