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A B S T R A C T   

Machine learning has made rapid advances in safety-critical applications, such as traffic control, finance, and 
healthcare. With the criticality of decisions they support and the potential consequences of following their 
recommendations, it also became critical to provide users with explanations to interpret machine learning 
models in general, and black-box models in particular. However, despite the agreement on explainability as a 
necessity, there is little evidence on how recent advances in eXplainable Artificial Intelligence literature (XAI) 
can be applied in collaborative decision-making tasks, i.e., human decision-maker and an AI system working 
together, to contribute to the process of trust calibration effectively. This research conducts an empirical study to 
evaluate four XAI classes for their impact on trust calibration. We take clinical decision support systems as a case 
study and adopt a within-subject design followed by semi-structured interviews. We gave participants clinical 
scenarios and XAI interfaces as a basis for decision-making and rating tasks. Our study involved 41 medical 
practitioners who use clinical decision support systems frequently. We found that users perceive the contribution 
of explanations to trust calibration differently according to the XAI class and to whether XAI interface design fits 
their job constraints and scope. We revealed additional requirements on how explanations shall be instantiated 
and designed to help a better trust calibration. Finally, we build on our findings and present guidelines for 
designing XAI interfaces.   

1. Introduction 

Recent advances in machine learning have increased the adoption of 
human-AI collaborative decision-making tools in safety-critical appli-
cations such as healthcare systems (Bayati et al., 2014; Caruana et al., 
2015) and criminal justice systems (Flores et al., 2016). Combining 
humans and AI in a collaborative decision-making task is expected to 
increase the quality of the decision-making (Green and Chen, 2019; 
Jacobs et al., 2021). However, recent studies showed that humans 
frequently make trust calibration mistakes by following incorrect rec-
ommendations or rejecting correct ones (Jacobs et al., 2021; Bussone 
et al., 2015; Zhang et al., 2020). In the context of Human-AI environ-
ments, trust calibration is defined as an appropriate trust judgement 
made by humans regarding the current state of AI capabilities and as a 
successful assessment of whether to follow or reject AI recommendations 
(Lee and See, 2004; Buçinca et al., 2021). It has been identified as a key 
design goal for safe and effective Human-AI collaboration (Amershi 

et al., 2019). 
One approach to successful trust calibration is eXplainable AI (XAI) 

which refers to an AI component that explains AI recommendations to 
humans receiving them (Naiseh et al., 2021c). Explainability has been 
identified as a requirement to promote reliability and trust in the AI 
output and also to ensure humans remain in control (Holzinger, 2021). 
Explanations can help a human operator understand the AI rationale and 
reasoning as well as decide when to accept an AI-based recommendation 
or reject it (Yang et al., 2020; Lai and Tan, 2019; Cai et al., 2019). Ex-
planations are also a critical factor when establishing liability and 
accountability for the final decisions (Hagras, 2018; Dazeley et al., 
2021). Two main streams emerged in the fast-growing XAI research. The 
first suggests new interpretable machine learning models that are 
mathematically explainable and transparent, which can compete with 
black-box models’ performance (Arrieta et al., 2020). On the other hand, 
model-agnostic approaches suggest interpreting any machine learning 
model, whether interpretable or black-box models, by analysing the 
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model and uncovering its decision rationale (Hohman et al., 2019). 
Examples of approaches utilising model-agnostic techniques are Inter-
pretable Local Surrogates, Occlusion Analysis, Integrated Gradients and 
Layerwise Relevance Propagation (Samek et al., 2021). A 
model-agnostic approach is motivated by preserving the models’ 
confidentiality, increasing the cost-efficiency of generating the expla-
nation, and increasing its usability (Feng and Boyd-Graber, 2019; Zhang 
et al., 2020; Sokol and Flach, 2019). Different model-agnostic methods 
may generate explanations with distinct explanation outputs, but they 
may vary in their performance, fidelity and completeness of the un-
derlying AI model (Arrieta et al., 2020). This paper refers to the family of 
model agnostic methods that generate distinct explanation output as an 
XAI class. XAI class can provide answers to similar users’ questions 
(Carvalho et al., 2019; Liao et al., 2020). 

While many studies emphasised the requisite of explainability to 
support trust calibration (Lai and Tan, 2019; Naiseh et al., 2021c; Zhang 
et al., 2020), several recent studies found little evidence that the XAI 
class has a significant impact on trust calibration (Jacobs et al., 2021). 
Many reasons could have contributed to this effect. One is the complex 
nature of trust. According to the human-computer trust (HCT) model 
(Madsen and Gregor, 2000), trust is formed in two dimensions: 
cognition-based trust and affect-based trust. Cognition-based trust is 
based on humans’ intellectual perceptions of AI reasoning, whereas 
affect-based trust is based on humans’ emotional responses to AI sys-
tems. In fact, several studies suggest that XAI class output (Wang et al., 
2019), its level of transparency (Kulesza et al., 2013; Guesmi et al., 
2021) and framing (Narayanan et al., 2018) are all factors that can affect 
both humans’ cognition and affect. Another reason for the effect of XAI 
class on trust calibration is the nature of humans’ cognitive biases 
(Naiseh et al., 2021c). For instance, under-trust may be resulted from 
anchoring bias when humans look at only salient features of XAI class 
and thus judge the quality of the XAI class to be untrustworthy. Simi-
larly, over-trust may result from confirmation bias when humans favour 
XAI class that is consistent in its output with their beliefs and initial 
hypothesis. 

Although, recent empirical studies have examined the role of XAI 
class in calibrating users’ trust during Human-AI collaborative decision- 
making tasks (Jacobs et al., 2021; Zhang et al., 2020). The literature is 
still missing empirical studies including recent advances in XAI litera-
ture. In one related research, Dodge et al. (2019) examined the impact of 
different XAI classes on calibrating the percivied fairness of AI systems. 
They aimed to determine which XAI class can help participants identify 
fair AI decisions. They found that Local explanations seem to be more 
useful than Global explanations when used to explain an unfair model’s 
decisions, thus more effectively calibrating people’s fairness judgement. 
Another study by Zhang et al. (2020) also studied the effect of presenting 
AI confidence scores and local explanations on users’ trust calibration. 
They found that presenting confidence score to end-users can enhance 
trust calibration. Another limitation of recent studies that explored the 
impact of XAI class on trust calibration is that they frequently limited 
their studies to approaching participants that are unfamiliar with the 
Human-AI task. Although they boosted participants’ knowledge and 
familiarity of the Human-AI task by introducing a training task, we 
argue that measuring trust calibration and its relation to XAI class may 
require expert users with the task to observe the effect during a lived 
experience and on a fine-grained level. Different from earlier work, we 
explore the impact of four XAI classes (Local, Example-based, Counter-
factual, and Global explanations) on trust calibration during Human-AI 
collaborative decision-making tasks. We study this effect using a clinical 
decision support system with experts from the medical domain 

In this paper, we endorse the same postulate in Zhang et al. (2020) 
that calibrating user trust requires different research from the one 
focusing on increasing users’ trust in AI. Inspiring trust can be done 
without necessarily improving users’ mental models and beliefs of the 
true AI capability and limitations. On the other hand, calibrated trust 
may need more engagement from end-users to understand the AI 

system’s reasoning (Naiseh et al., 2021c). We study the effect of four 
distinct XAI classes (Local, Example-based, Counterfactual, and Global 
explanations) on trust calibration during a collaborative Human-AI task. 
We hypothesise that different XAI classes can affect trust calibration 
differently when using an AI-based decision support system. Our 
research method is based on a within-subject study followed by 
semi-structured interviews. We developed a classification tool that helps 
medical practitioners in screening chemotherapy prescriptions, i.e., an 
AI provides recommendations to either accept the prescription or reject 
it, representing a high-stakes application domain. Taking clinical deci-
sion support systems as an exemplar and focusing on the four 
state-of-the-art model-agnostic XAI classes, our contribution has two 
parts:  

• A quantitative evaluation of how explanations belonging to the 
different XAI classes affect users’ trust calibration during Human-AI 
collaborative decision-making tasks.  

• Recommendations for XAI interface design to help improve trust 
calibration using data collected from interviewing medical 
practitioners. 

The findings of our study are intended to provide a richer under-
standing of the main needs of users from explanations of their different 
classes. We also aim at broadening discussions on explainable AI for 
collaborative decision-making and paving the way for more research on 
how to customise and contextualise explanations so that they fit users’ 
needs and expectations of each of their different classes. Compared to 
our previous work (Naiseh et al., 2021a; Naiseh et al., 2021b), this study 
adds a quantitative evaluation of different XAI classes and their effect on 
users’ trust calibration. It also elicits XAI interface requirements corre-
lated with particular XAI classes. In our previous work, we took a broad 
view of XAI without focusing on the differences between XAI classes. We 
first explored what errors users make while interacting with XAI in-
terfaces (Naiseh et al., 2021b). We then conducted an explanatory study 
to discover potential design solutions to mitigate users’ errors (Naiseh 
et al., 2021a). 

The paper is structured as follows. Section 2 describes the research 
method, including the sample, material, and instruments used in our 
study. In Section 3, we present our analysis results and findings. Finally, 
in Section 4, we discuss the implications of the findings on future 
research and development in the field and conclude the paper. 

2. Research method 

Our study investigates the effect of XAI class on trust calibration 
during a Human-AI collaborative decision-making task. Through both 
quantitative and qualitative research, we aim to answer the following 
questions:  

• RQ1. How do different XAI classes affect users’ trust calibration?  
○ RQ1.1 Do XAI classes affect users’ judgments of trust (increase or 

decrease)? 
○ RQ1.2 Are XAI classes seen differently in enabling trust calibra-

tion? i.e., Are different XAI classes seen differently in affecting the 
performance of the Human-AI team?  

• RQ2. What are the users’ requirements for interfaces used for 
delivering explanations of different XAI classes? 

2.1. Human-AI task description 

Chemotherapy screening prescription is a process that practitioners 
in a clinic follow to ensure that a prescription is prescribed for its clinical 
purpose and fits the patient’s profile and history. We chose the use case 
of screening prescription as it reflects an everyday decision-making task 
performed collaboratively between humans and the AI. The main 
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workflow of the AI-based prescribing system is shown in Fig. 1. 
To help our investigation, we designed an AI-supported decision- 

making mock-up that classifies prescriptions into confirmed or rejected. 
We designed the mock-up based on templates and interfaces familiar to 
our participants in their everyday decision-making tasks (See Fig. 2). 

Our mock-ups mimic a web-based tool and are meant to simulate 
user experience when working on an actual system. As the practitioner 
clicks on a prescription, the tool shows the patient profile, the recom-
mendation from the AI-supported decision-making tool (accepted or 
rejected), and an explanation. The explanation can help the practitioner 
understand the AI rationale of why the prescription should be accepted 
or rejected. The full material used in our study can be found in 

Appendix A, B and C. 

2.2. Explanation classes 

The taxonomy of XAI classes has been adopted from a recent XAI 
survey (Liao et al., 2020). We choose this classification as it classifies 
XAI algorithms based on their output in which end-users can recognise 
the difference between them. A sample of the interfaces representing 
each of XAI classes, that we showed to our experiment participants, can 
be found in Appendix B. These XAI classes were used in our mock-up 
tool. 

Fig. 1. Workflow for prescription screening aided by AI-based decision-making tool.  

Fig. 2. A sample of prescribing system interface supported with AI recommendations.  
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1 Local explanations: The explanation justifies the AI reasoning at the 
recommendation level; this can be done either by quantifying the 
contribution value for each input data feature to the recommenda-
tion (Ribeiro et al., 2016) or generating local rules or decision trees 
of a recommendation (Guidotti et al., 2018). We restricted our study 
to one type of local explanation which quantifies the importance of 
each input data feature.  

2 Example-based: Given the AI-based recommendation, the AI justifies 
its decision by providing examples from that dataset with similar 
characteristics (Cai et al., 2019). For example, AI suggests rejecting 
this prescription because patient A history was similar to patient B.  

3 Counterfactual: Given the AI-based recommendation, the AI answers 
the users’ questions “what-if” to observe the effect of a modified data 
feature on the recommendation (Sokol and Flach, 2019). For 
instance, the AI suggests rejecting the prescription because Platelet 
Count= 60; however, if the Platelet Count were >= 75, the pre-
scription would have been confirmed.  

4 Global explanations: The explanation of an AI-based recommendation 
attempts at explaining the overall logic of the black-box model 
(Henelius et al., 2014; Wu et al., 2020). This includes presenting the 
weights of different data features as decision trees, rules, or ranking 
styles. Our study setting included only ranking styles of presenting 
the weights of data features. 

2.3. Study design 

The study was a within-subject design followed by follow-up in-
terviews. We manipulated the XAI class (No explanation, Local, 
Example-based, Counterfactual, Global explanations) and the recom-
mendation outcome (correct and incorrect recommendations). As a 
result, we had ten different conditions. Each XAI class appeared in two 
conditions: correct AI-based recommendations and incorrect ones. We 
developed ten patient scenarios and interfaces to cover the study con-
ditions. Examples of AI recommendations and explanations of different 
classes can be found in Appendix B. XAI classes were randomly assigned 
to patient scenarios to eliminate the carryover effect (Louthrenoo et al., 
2007) and the potential effect of accidental bias, i.e., having an XAI class 
with a specific patient scenario. When designing the scenarios, we 
choose to manipulate the recommendation outcome to simulate a di-
versity of conditions that the practitioners could face in real-world 
scenarios where trust calibration errors could happen, e.g., imperfect 
AI due to the low sample size or recent data. Each participant completed 
ten different Human-AI tasks. For each participant, we used a random 
sequence of ten human-AI tasks, i.e. a scenario followed up by questions. 
The scenarios were diverse and the participants were presented with 
correct and incorrect recommendations. This has helped eliminate the 
learning effect on the participants. We chose the first Human-AI task that 
included a correct recommendation to help the participants gain confi-
dence and engage more with the study (Lee and See, 2004; Marshall, 

2003). 
The patient scenarios presented to our participants were hypotheti-

cal scenarios designed in collaboration with a medical oncologist, i.e., 
there was no actual AI model. We designed the scenarios to be clear and 
challenging, and not trivial so that recommendations, explanations, and 
trust calibration were all substantial processes. This ultimately helped to 
put our participants in a realistic setting: exposing them to an imperfect 
AI-based recommendation and its explanations where trust calibration is 
critical to the task and where errors in that process are possible. We 
validated the material with a medical oncologist focusing on the border 
cases that need an investigation from the participants in the actual 
study. We tested the material and activities with two participants and 
refined them to optimise their fulfilment of these criteria. Although our 
scenarios and explanations were not generated via an AI-based model, 
participants were informed that they are receiving recommendations 
from an AI-based model and asked to either follow or reject AI 
recommendations. 

2.4. Study procedure and data collection 

To answer our research questions, we conducted a study of two 
phases (Quantitative and Qualitative). We provide an overview of the 
study phases in Fig. 3. 

2.4.1. Quantitative phase 
This phase was meant to answer RQ1. The phase involved 41 medical 

practitioners who have experience in screening prescriptions (Doctors 
and pharmacists). First, the participants were briefed about the study 
through a participant information sheet. They were then asked to sign a 
contest form. Participants were also asked several questions about 
themselves, such as their experience in chemotherapy prescribing 
(Appendix A). Personal attributes, including skills and years of experi-
ence diversity, should help in covering different types of issues. For 
example, novice medical experts might raise more questions than those 
who have more experience in the task since they faced similar cases in 
the past and can cross-check with other sources. Although we recognise 
that personal differences, e.g. in agreeableness and conscientiousness 
(Barrick and Mount, 1991), can play a role, this was beyond the scope of 
our study. Then, each participant had to complete ten different 
screening prescription Human-AI tasks. Participants were asked to make 
decisions considering the patient profile, the recommendation and the 
explanations and whether to follow the AI-based recommendation if 
they see it as correct or reject it if they see it as incorrect. Each partic-
ipant spent 15–20 min completing this stage. The study workflow is 
described in Fig. 3. After completing a Human-AI task, participants were 
asked to complete cognitive-based trust scale (Madsen and Gregor, 
2000). Each of the participants completed ten Human-AI tasks, which 
resulted in 410 completed tasks. The following sections describe our 
measures to answer RQ1. 

Fig. 3. Study workflow.  
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2.4.2.1. Trust calibration measurements. Trust calibration in automation 
is defined as the individuals’ adjustment of the level of trust they put 
into the objective automation capabilities and performance with the aim 
of avoiding under-trusting and over-trusting it (Lee and See, 2004). 
Considering the challenge of measuring trust calibration, which is a 
complex psychological construct (Lee and See, 2004), our study focuses 
on trust calibration by observing the outcome of the interaction between 
the Human and AI. For the scope of this study, we measure the contri-
bution of an XAI class on trust calibration in two ways: subjective and 
objective. First, subjective measurements were used by following the 
cognitive-based trust scale proposed in (Madsen and Gregor, 2000) 
which quantifies the extent to which the XAI interface helps users to 
understand, rely on and perceive the technical competency of the AI. 
Specifically, self-reporting cognitive-based trust measures were used in 
this study to observe whether an XAI class helped in increasing or 
decreasing trust during the sessions (RQ1.1). We then look at behav-
ioural indicators of trust calibration as an objective measurement 
(Wang et al. 2016) based on whether the participants made the right 
decision. This seems as an indicator of whether an XAI class helped in 
trust calibration(RQ1.2). This approach to measuring trust calibration 
was proposed in earlier studies, e.g., (Zhang et al., 2020; Wang et al., 
2016; Bussone et al., 2015; Dikmen and Burns, 2022). We further 
elaborate on our measurements and the rationale behind using them in 
the following sections. 

Self-reporting measures. To understand the contribution of XAI class in 
affecting (increasing or decreasing) trust during the study, we followed 
Madsen and Gregor (2000) conceptualisation of human-computer trust 
which included two main components: cognition-based components and 
affect-based components. The main difference in their effect is that 
cognition-based trust is based on human cognitive reasoning to trust 
another entity and is crucial for maintaining trust calibration, whereas 
affect-based trust is developed as the relation continues (Nah and Davis, 
2002). Furthermore, previous research showed that in critical 
decision-making scenarios, it is highly likely that cognition-based trust 
components significantly impact trust calibration in comparison to 
affect-based ones (McAllister, 1995; Ng and Chua, 2006). Therefore, 
cognition-based trust was useful to use in our study settings to help us 
understand whether an XAI class contributed to the increase or decrease 
of cognitive reasoning to trust when participants interact with the AI. 
Further, measuring affect-based components was not relevant during 
our study. It also needs more longitudinal and observational studies, 
since emotions with an AI need a longer time to be developed. As 
mentioned earlier, we used the Human-Computer Trust (HCT) scale 
proposed by Madsen and Gregor (2000) to measure the impact of XAI 
class on each of the cognition-based trust components. HCT scale has 
been relatively stable, tested and used in several relevant studies (Yang 
et al., 2020; Schraagen et al., 2020; Larasati et al., 2020). The scale 
measures perceived cognition trust based on three main components 
(perceived understandability perceived reliability, and perceived technical 
competence). The scale has 15 items (5 items for each cognition-based 
trust component). 

Behavioural indicators. We also collected trust calibration behavioural 
indicators for each XAI class condition so that we also answer RQ1.2. We 
utilised three trust calibration behavioural indicators introduced in 
similar studies (Zhang et al., 2020; Wang et al., 2016; Bussone et al., 
2015): 

1 Agreement. This is a binary variable that indicates whether partici-
pants agreed with AI recommendations.  

2 Switch. This is a binary variable that indicates whether a participant 
decided to switch from the AI recommendation.  

3 Human-AI performance. This is a binary variable that indicates 
whether the collaborative Human-AI task led to a successful decision. 
i.e., participants agreed with correct recommendations or disagreed 
with correct ones. 

2.4.2. Qualitative phase 
The second phase of our study was to answer RQ2. We conducted 

semi-structured interviews following the guidelines stated in (Oates, 
2005). We used interviews as a data collection method to delve into the 
details and understand the reasoning process and issues faced during the 
Human-AI collaborative decision-making process (Ericsson and Simon, 
1984). We asked our practitioners to elaborate on their experience 
during their interaction with our mock-up tool to gain as many insights 
as possible. The interviewer discussed the benefits and the drawbacks of 
each XAI class in calibrating their trust and experience during the 
decision-making process. Also, the interviewer asked the participants to 
express their concerns and difficulties to make an informed decision, 
given explanations belonging to four XAI classes. Our interview ques-
tions were based on three dimensions of cognitive-based trust (Under-
standability, reliability and technical competence). The full list of 
questions can be found in Appendix C. After the end of each quantitative 
phase, participants were asked if they would like to take part in a short 
interview to discuss their experience. We interviewed 16 participants 
and analysed their interviews. We did not approach and interview more 
participants since themes and codes resulting from the analysis became 
eventually repetitive. This practice is aligned with the principles of 
reaching the saturation point in qualitative data collection (Faulkner 
and Trotter, 2017). That means that interviewing more participants will 
unlikely generate new results. This was a reasonable assurance that 
further qualitative data collection would introduce similar results and 
would confirm the existing themes. 

2.5. Participants 

Ethical approval was obtained through Bournemouth University 
Ethics Committee. Our sample consisted of 41 medical practitioners 
coming from three different organisations in the UK. All participants 
were medical experts recruited through email based on their experience 
in the case study. We recruited participants who had previous experi-
ence in the prescription screening task and used clinical decision support 
systems before. We choose these inclusion criteria to ensure that trust 
calibration is observed and measured under realistic settings. Further, 
we have not designed our study to explore whether differences in the 
participants’ profiles and psychometrics matter concerning the effect of 
XAI classes on trust calibration. To do this we will need to recruit par-
ticipants in a planned manner so that we ensure we have representatives 
from each stratum. In our study, we strived to ensure the fitness of the 
participants for the task they were asked to go through and their simi-
larity in that sense. The purpose of the study did not primarily relate to 
the level of experience in the domain (medical/pharmaceutical in our 
case) and we ensure all had enough so we do not end up with a rejection 
of explanations due to unfamiliarity with the domain of the explanation. 
All our participants had a similar level of experience in the study task 
itself, i.e. interacting with XAI interfaces, and none of them was more or 
less familiar with XAI in general. Details about the population are pro-
vided in Table 1. 

Table 1 
Population details.  

Variable Value N = 41 % 

Age 20–30 22 54% 
30–40 11 28% 
40–50 8 18% 

Gender Male 26 65% 
Female 15 35% 

Role Doctors 26 62% 
Pharmacists 15 38% 

Prescription Screening Experience <5 15 35% 
5–10 12 30% 
10–15 9 21% 
>15 5 14%  
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2.6. Data analysis 

Two sets of data were collected and used to answer our research 
questions in this study. The first reflected the trust measurements (self- 
reporting and behavioural indicators). The second consisted of tran-
scripts of the audio files of the follow-up interviews. We used several 
statistical tests such as repeated One-way ANOVA to answer our first 
research question. For qualitative data, we followed the content analysis 
method with the support of the NVivo1 tool. To increase the trustwor-
thiness of our qualitative analysis, we applied a member-checking 
approach and reviewed the analysis of their interviews with them. 
Member-checking aims to review the analysis report by study partici-
pants to ensure that data, interpretations and themes are valid and 
applicable (Birt et al., 2016). Member checking technique was applied 
with three participants to validate the analysis and clarify the analysed 
data where clarification was needed. We used the member-checking 
method to increase the credibility of our qualitative data and mini-
mise its subjectiveness. Each step of the analysis included several 
meetings amongst the authors to ensure the correct interpretation of 
each category and the evidence that supports them. These meetings led 
to splitting, modifying, discarding or adding categories to ensure that all 
responses and their contexts were well represented. 

3. Findings: explanation classes and trust calibration 

In this section, we report on our analysis results answering RQ1 
which concerns whether XAI class differs in influencing user trust and 
trust calibration during a Human-AI collaborative decision-making task. 
In total, 41 medical experts completed 410 Human-AI tasks. 

3.1. Explanation classes impact on user trust (RQ1.1) 

Each participant rated their trust (perceived understandability, 
perceived reliability, and perceived technical competence) during the 
interaction with different XAI classes. The descriptive statistics of par-
ticipants’ ratings are shown in Fig. 4. As a general observation, three 
trust components were seen differently by our participants, i.e., they 
were not mutually dependant. For instance, No explanation scenarios 
were not perceived to be understandable but it has a higher rating in 
terms of perceived reliability and perceived technical competence. This 

means that trust indeed is not only about one dimension, and XAI 
interface design may need to consider each of its components when 
supporting appropriate trust of the AI. In the following section, we 
present our results based on each dimension of trust. 

3.1.1. Perceived understandability 
We applied a repeated measure ANOVA to compare the mean of 

participants’ understandability of the AI between different XAI class 
conditions (No explanation, Global, Local, Counterfactual and Example- 
based). Our results show that participants rated how they perceive un-
derstandability significantly different between the XAI class conditions 
[F (4324) =63.483, p<0.001]. Post hoc comparisons using the Tukey 
honestly significant difference (HSD) test indicated that the mean 
perceived understandability score in Example-based scenarios (M =
3.383, SD = 0.830) and Counterfactual scenarios (M = 3.646, SD =
0.935) was significantly higher than in No explanation (M = 1.988, SD 
= 0.868) Local (M = 2.357, SD = 0.873) and Global (M = 2.150, SD =
0.901) scenarios. 

3.1.2. Perceived reliability 
As shown in Fig. 4, clearly, participants rating of how they perceive 

reliability was steady across multiple XAI classes conditions [No 
explanation (M = 2.646, SD = 0.880), Global (M = 2.537, SD = 0.804), 
Local (M = 2.890, SD = 1.054) Example-based scenarios (M = 2.805, SD 
= 0.987) and Counterfactual scenarios (M = 2.951, SD =1.041)]. 
Repeated measures ANOVA confirmed this observation and showed no 
significant difference in participants’ perceived reliability of the AI be-
tween different XAI class scenarios. We further elaborate on the poten-
tial reasons for these indifferences in Section 4, where we report on the 
issues and needs expressed by the participants considering how they 
perceived the reliability of the AI. We also discuss the implications of 
this finding in Section 5. 

3.1.3. Perceived technical competence 
Results show that the XAI has a significant effect on the users’ 

perceived technical competence of the AI [F (4324) =4.815, p<0.001]. 
Post hoc comparisons using the Tukey honestly significant difference 
(HSD) test indicated that the mean perceived technical competency 
score in Counterfactual scenarios (M = 3.463, SD = 0.1.102) was 
significantly higher than in No explanation (M = 2.890, SD = 1.054) 
Local (M = 3.00, SD = 1.176), Global (M = 2.805, SD = 0.974) and 
Example-based scenarios (M = 2.890, SD = 1.030). Our analysis of 
interview data provided an explanation of that findings when partici-
pants mentioned that Counterfactual explanations provided meaningful 

Fig. 4. Mean cognition-based trust components rating per explanation class. Explanation cognition-based trust ratings range from Strongly Disagree (a rating of 1) to 
Strongly Agree (a rating of 5). 

1 https://www.qsrinternational.com/nvivo-qualitative-data-analysis-softwa 
re/home 
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knowledge for them to conclude “Well, I can see how the AI is reasoning 
about this case, I would say yes the AI is reasonable” [P12]. Although 
participants perceived Example-based explanations as an understand-
able explanation, they did not rate Example-based explanations as 
significantly competent. P5 commented in that context, “Examples are 
beneficial and similar of what we do in the clinic, but it is not a proper 
explanation … I mean it could be supportive to other explanations … I would 
expect more casual or correlation relationship between the patient and the AI 
decision”. In summary, participants considered explanations as compe-
tent when the explanation was understandable and showed the rationale 
behind the specific recommendation and those providing casual patterns 
at the recommendation level. 

3.2. Explanation classes impact on trust calibration process (RQ1.2) 

To answer RQ1.2, we looked at three behavioural indicators to 
examine the effect of XAI class on trust calibration, i.e., whether 
different XAI classes affected participants’ collaborative decision- 
making. 

XAI classes improved the overall Human-AI performance. We plot the 
comparison of participants’ overall performance, average agreement 
and average switch between XAI class conditions in Fig. 5. Visually, it is 
clear that when participants were not provided with an explanation, 
they were more likely to make mistakes and explanations slightly 
improved the overall collaborative decision-making task. Friedman test 
confirmed this observation and shows that XAI class significantly affects 

Fig. 5. Three trust collaboration behavioural indicators mean percentage (X-axis represents five XAI classes conditions).  

Fig. 6. Switch percentage and agreement percentage for incorrect recommendations across different XAI classes.  
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Human-AI performance [χ2(4) = 19.524, p = 0.001]. Post hoc com-
parisons using the Wilcoxon signed-rank test indicated that Human-AI 
performance in Counterfactual (M = 0.732, SD = 0.446) Example- 
based (M = 0.720, SD = 0.452), Local explanations. (M = 0.707, SD 
= 0.458) and Global (M = 0.720, SD = 0.452) were significantly 
different than No explanation (M = 0.598, SD = 0.793) scenarios. Our 
results appeared to be consistent with Lai and Tan’s (2019) conclusions, 
which showed that pairing AI recommendations with explanations can 
improve the Human-AI team. 

XAI classes increased participants’ agreement with AI recommendations. 
It is clear from Fig. 5 that participants agreed more with the AI recom-
mendations when explanations of their different classes were provided. 
Friedman test confirmed this observation and show that XAI class has a 
significant effect on Human-AI performance [χ2(4) = 57.444, p =
0.001]. Post hoc comparisons using the Wilcoxon signed-rank test 
indicated that Agreement percentage in Counterfactual (M = 0.695, SD 
= 0.463) Example-based (M = 0.683, SD = 0.468) Local (M = 0.695, SD 
= 0.463) and Global (M = 0.707, SD = 0.458) were significantly 
different than No explanation (M = 0.50, SD = 0.503) scenarios. We also 
note that agreement and switch measures are complementary and their 
sum is 100%. That means a significant increase in an agreement between 
No explanation condition and the four explanations and also means a 
significant decrease in switch percentenge between No explanation and 
other the four explanations. Our findings seem to contradict Zhang et al. 
(2020) findings when they found that there is no significant effect be-
tween users’ agreement in three conditions: No explanation, Uncertainty 
score and Local explanation. However, a closer look at their findings 
shows that presenting uncertainty scores to participants in their settings 
could interpret such differences. In other words, the explanation alone 
with its different classes could have increased our participants’ reliance 
on AI, and the uncertainty score could moderate the over-reliance effect. 
Our results are consistent with previous research (Bussone et al., 2015), 
which showed that presenting explanations to end-users could increase 
participants’ over-reliance and facilitate confirmation bias. 

XAI classes did not help participants recognise incorrect recommenda-
tions. Although XAI classes significantly improved the overall Human-AI 
team performance, the data suggests that XAI classes did not help par-
ticipants recognise the incorrect recommendations compared to No 
explanation scenarios. The average of mistakes during the incorrect 
recommendation scenarios, i.e., agree with incorrect recommendations, 
made by participants during XAI classes conditions and No explanation 
condition was not significantly different [χ2(4) = 5.640, p = 0.231]. 
Fig. 6 compares participants’ responses during incorrect recommenda-
tions scenarios (Agreeing and switching from incorrect recommenda-
tions). It is clear that when the AI recommendation was incorrect 
participants struggled to decide whether to follow or reject the AI 
recommendation across all XAI conditions. 

We summarise the results from the quantitative analysis in three 
main points.  

• Example-based and Counterfactual explanations had a higher users’ 
perceived understandability than Global, Local and No explanations 
scenarios and helped our participants to reason about the AI 
recommendation.  

• Users perceived technical competence seemed to be affected by 
explanation understandability and provide casual patterns at the 
recommendation level. 

• Explanations of its different classes increased the overall perfor-
mance of the Human-AI team, however, we did not find a significant 
difference in Human-AI performance when facing incorrect 
recommendations. 

4. Findings: user requirements from xai interfaces 

In this section, we discuss our analysis results answering RQ2 con-
cerning the user requirements for better utilisation of interfaces 
belonging to each XAI class during the Human-AI task. Upon completing 
the cognitive-based trust scale, participants were interviewed to discuss 
the main issues they faced during their interaction with the XAI interface 
and the reasons behind their ratings. Table 2 summarises our interview 
analysis results. 

4.1. Guidance 

Participants commented that they needed guidance to interpret Local 
and Global XAI classes. For instance, P9 mentioned, “I think it is unfair for 
AI to explain this way because it just does whatever it was designed to explain 
for, so it does not give us to see the big picture … I would like to know what it 
means to have a patient age with 35% influence on the AI decision? and how 
this could be interpreted for this patient?”. One interpretation of such 
comments is that Local and Global explanations may require previous 
technical knowledge to interpret them (Kaur et al., 2020). Our results 
also revealed that participants misinterpreted these explanations when 
the interviewer reviewed the explanations with them. For example, P8 
commented on the Global explanation encountered during the study, “I 
saw that blood test is the influential factor, and I was wondering we should 
screen prescriptions on that factor only?”. Also, P12 commented on the 
Local explanation presented during the study: “I feel this could be biased in 
some way, so that means the majority of the decisions will be made based on 
the tumour size”. Participants’ interpretations of the potential bias and 
selectiveness in the explanation could be justified because of partici-
pants’ unfamiliarity with AI explanations even though they were given a 
presentation and examples before the study. Furthermore, our results 
showed that participants who gave low understandability and reliability 
ratings to Local and Global XAI classes mentioned that the design might 
need more attention and guidance to help them in interpreting the ex-
planations, e.g., P3 responded, “I think a tutorial on how to use these ex-
planations would be beneficial”. The previous comments signify that 
unfamiliarity with some XAI classes can be a significant issue that may 
decrease users’ trust in the AI and potentially lead to trust calibration 
mistakes. Our results are consistent with previous research that showed 
XAI methods are mainly designed and used by data scientists and pro-
vide little value to other end-users (Kaur et al., 2020; Ras et al., 2018). 

4.2. Usability 

Although participants identified the usefulness of the explanations to 
understand the AI rationale, some mentioned that they would not use 
these explanations in everyday scenarios. One reason for that was 
related to their concerns of fitting explanations in their workflow, 
mainly due to the need to process too much information, e.g., P6 stated, 
“…. sometimes we are so busy; I won’t have that time to validate the AI 
through its explanation; in my opinion, a simple explanation targeting main 
patient issues would be enough with an option to investigate more when 
needed”. In addition, participants felt that explanations could be a 
burden in their workflow and might cost extra cognitive efforts, e.g., P12 
mentioned, “Does this mean that I have to look at all these factors each time I 
make a decision?”. Participants suggested that explanations could be 
better fitted when presented in textual formats as narratives or templates 
to reduce such a cognitive load and task impediment. For example, P13 

Table 2 
Issues and needs applicability to explanation classes; (x) applies (-) does not 
apply.  

Issues and needs Local Example Counterfactual Global 

Task-centred explanation x x x x 
Usability x x x x 
Assurances – – – – 
Guidance x – – x 
Tailoring x x x x 
Multi-step explainability x x x x  
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wanted to have a generated narrative that summarises multiple XAI 
classes. In HCI, this happens when the tool’s design leads to a mismatch 
between the user mental model and the conceptual mental model of the 
system (Carroll and Olson, 1988). Participants also mentioned that ex-
planations sometimes contained redundant information, and they rec-
ommended different ways to make their trust calibration require fewer 
efforts. For instance, P9 asked to customise the number of data features 
in Local explanations, “The average pharmacist does not need to see all these 
factors that the AI is considering, some of them are just simple rules”. Our 
observations are aligned with recent studies that showed that long and 
redundant explanations made participants skip them (Naiseh et al., 
2021c) and decreased participants’ satisfaction with the explanation 
(Narayanan et al., 2018). In summary, explanations easiness of use and 
their modalities could be critical to engaging users with them when 
participants’ time constraints and the difficulty of the task are primary 
issues. Also, limited time and an unaffordable need for cognition (Petty 
and Cacioppo, 1986) can be both seen as a contextual disabilities for 
people who work on pressuring domains. Future work needs to consider 
the trade-off between effectiveness and usability of the explanation to 
optimise the Human-AI team performance, e.g., adaptive and person-
alised user interfaces could be a potential solution direction (Naiseh 
et al., 2020). 

4.3. Task-centred explanation needs 

Participants described that all XAI classes did not consider the task 
needs and constraints, and they were expecting an explanation of the 
context prior to being presented with the explanation itself. Participants 
who identified these needs provided low technical competency and 
reliability rates. One example of task constraint needs was encountered 
in the Counterfactual explanation scenarios, where the explanation only 
provided information about changes that could be made to an AI 
recommendation to change the decision. In our case study, Counter-
factual explanation scenario explained the recommendation by modi-
fying the value of the patient blood test but also failed to specify that this 
modification could trigger risk or require another change in another 
data feature. Participants raised a concern regarding potential risks 
behind the explanation as it did not meet their task constraints. For 
example, in Counterfactual explanation scenarios, explaining the 
recommendation through a change in a data feature value without 
identifying the correlation with other data features was perceived as a 
risky explanation in their decision-making process. This means that 
making hypothetical scenarios without considering the domain and task 
constraints, such as the medical domain and patient cases, can result in 
unrealistic cases; cases that can be incoherent in the values of their 
variables and lead to additional explanation needs beyond the explain-
ing recommended decision. The main reason for this drawback could be 

Fig. 7. Local Feature explanation example.  
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that the development of such an explanation method is to help data 
scientists debug the ML model (Kaur et al., 2020; Ras et al., 2018), where 
the context of the task for such explanations in real-world scenarios is 
still a new area to discover. In psychology, such explanations with a lack 
of consistency and context are usually ignored by people (Keil, 2006). 
Further, recent research showed that explainability shall be designed 
and presented to support human decision-making strategy (Simkute 
et al., 2021). Overall, participants wanted explanations that are reflec-
tive of their task, i.e., task-centred explanations, for these explanations 
to be meaningful and reliable. In other words, explaining the logic of the 
algorithm shall be done in a way that is tightly coupled with the subject, 
i.e., the task for which the recommendation and the explanation are 
given. We recognise here that this can pose much more effort to systems 
engineers. Approaches to auto-generate and instantiate the 
algorithm-level explanation to a version that is also task-specific are still 
needed. 

4.4. Assurances needs 

Assurances in HCI literature are a design property that also applies to 
the intelligent tool so that they help users trust calibration (Israelsen and 
Ahmed, 2019). Assurances are indicators and performance metrics to 
indicate the actual capabilities of the intelligent tool. Interestingly, 
participants described assurances in terms of the XAI class. They also 
discussed how such assurances could support their intention to engage 

with AI explanations. Our data revealed two categories of assurances: 
XAI class validity and XAI class capability. Regarding the XAI class validity, 
participants described that they were unable to have guidance about 
trusting the provided explanation validity and correctness. Some sug-
gested knowing the source of the data to assess the credibility of the 
explanation, with mentioning that it would also need to be up to date 
with the current changes in the task domain. P7 stated, “As far as that is 
concerned, I cannot tell whether this explanation is right or wrong without 
knowing it is up to date” and P13 added, “from time to time we get emails to 
tell us the treatment x got recognised for diagnosing breast cancer. We need to 
ensure that the system knows this information”. Others also asked whether 
the explanation is generated based on training the AI on multiple data 
sources and references. P2 declared, “reliable explanation should cover 
multiple medical sources and knowledge”. On the other hand, XAI class 
capability was related to the metrics used to evaluate the explanation in 
both AI and task domains. Participants argued that explanation verifi-
cation with a medical expert should be performed according to accepted 
standards, incorporating best practices related to expert selection, elic-
itation protocols, bias avoidance, documentation and peer review. 
Moreover, participants raised questions that could be answered through 
clarity about the evaluation metrics used in the XAI models as intro-
duced in a previous survey on interpretable machine learning models 
(Carvalho et al., 2019). Participants demanded information about the 
XAI class itself such as a) accuracy of an explanation on unseen cases, b) 
fidelity that shows how well the explanation is consistent with the 

Fig. 8. Global Feature Importance explanation example.  
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underlying AI model, c) stability that represent how similar are the 
explanation for similar cases d) representativeness that describes how 
many cases could be covered by given explanation. For example, P1 
mentioned, “I was wondering if this explanation could be generalised for 
another patient”. We also argue that such assurances can be essential to 
repair user trust in an XAI class when the explanation generated from the 
XAI model is incomplete. Incomplete explanation refers to failure in the 
explainable model to generate complete meaningful information (Malhi 
et al., 2020). 

4.5. Tailoring needs 

Participants sought to tailor and customise the explanation output 
and its presentation to help them in contextualising and interpret the 
XAI explanation. This was also to meet their decision-making behaviour. 
For instance, participants were asked to set thresholds for similarity 
parameters in Example-based explanations. Participants identified 
Example-based explanations as a useful XAI class for their decision- 
making process and a way to calibrate their trust. P1 commented, “I 
think this is crucial when I am sitting in the clinic and I need to make a de-
cision, examples allow me to ask a whole range of questions even if it is one 
that what will your prognosis be what will the outcome be what how should I 
treat the patient how can I tell what events would be”. However, providing 
examples of similar cases confused participants in terms of the similarity 
definition, “similarity is very hard to determine I am curious how the ma-
chine defines similarities” [P5]. Similarity definition is a conflicting and 
complex problem in AI and XAI literature (Thrun, 2021). For this pur-
pose, Wang et al. (2019) suggest several guidelines to support XAI de-
velopers to select context-based similarity methods based on how 
humans reason about explanations (Wang et al., 2019). For instance, 

explanations generated from distance-based methods, e.g., case-based 
reasoning (Aamodt and Plaza, 1994) and clustering models (Jain 
et al., 1999), are driven by inductive and analogical reasoning to un-
derstand why a certain case is considered similar or different. Our par-
ticipants in this context wanted to control the explanation output by 
defining their own similarity metrics, “I would like to ask for examples 
based on all the features in the system or subset features of the system find the 
similar patient for this recommendation” [P14]. Another example of 
tailoring was encountered in Local and Global explanations when par-
ticipants wanted to group a set of features to generate a group feature 
importance value. P8 described “I think it was easier to read and recognise 
when this explanation [Local] groups patient history information in one 
value”. Rather than providing a static explanation, our findings suggest 
integrating a possibility to configure and tailor explanations and what 
they shall contain and how they are computed. This requirement could 
also be due to the need to fit the explanation into task workflow by 
finding, accessing, and focusing on intended information while mini-
mising unrelated information (Petty and Cacioppo, 1986). 

4.6. Multi-step explainability 

It refers to users’ explainability needs after utilising the main pre-
sented explanation. During our interviews, participants discussed that 
they had follow-up questions after reading AI explanations. They 
mentioned that such information would support them in validating the 
AI recommendation. For instance, participants figured out potential 
correlations between different features in the Global explanation in 
which they could not be able to validate their hypothesis, e.g., P2 
commented, “There is a lot of correlation between the treatment cycle and 
the patient history when you are aware that the system considering this 

Fig. 9. Example-based explanation example.  
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correlation, I will be able to tell if the explanation is accurate”. Another 
example encountered in Counterfactual explanations scenarios when 
participants wanted to explore the effect of a specific patient feature on 
the recommendation. P4 commented, “for this patient scenario, I wanted 
to observe the AI decision if other toxicities have Grade 4′′. A potential 
interpretation for a multi-step pattern in our data could be linked to 
previous learning and cognitive development literature (Kurkul and 
Corriveau, 2018). Humans are likely to ask follow-up questions when 
they did not receive a casual response to the explanation. This theory 
provides an interpretation of our participants’ needs during the study for 
further information. Overall, explainability is a social and interactive 
process between the explainer and the explainee (Miller, 2019), and this 
may need to follow a multi-step interaction approach between the 
Human and the XAI interface. P3 commented in that context, “I would 
have more accurate judgement if the AI … if a maybe I always can ask for an 
explanation about explanation". As multi-step explainability interaction 
can provide more transparency about the XAI class and the AI model, it 
can support moving from explainability to causality. Causality is 
measured in terms of effectiveness, efficiency, and satisfaction related to 
the causal understanding of the human-understandable model (Hol-
zinger et al., 2019). Developers of such explainable interfaces may need 
to collect data from end-users regarding the users’ information needs 
after presenting the main explanations. Design considerations for the 
modalities of such multi-step explainability are also required to balance 

explainability and usability, e.g., chatbots. 

5. Discussion 

Consistent with previous research (Lundberg et al., 2018; Cai et al., 
2019; Lai and Tan, 2019; Yang et al., 2020), we found that AI expla-
nations with their different classes improved the overall performance of 
the Human-AI team. In this study, 41 medical practitioners performed 
410 Human-AI tasks where these tasks were diverse in their XAI classes 
and the AI recommendation accuracy, i.e., we included correct and 
incorrect recommendations. While this work reports on results from a 
study in the medical domain, our findings are likely applicable to other 
contexts in collaborative Human-AI decision-making applications for 
expert users, primarily when high-stakes decisions are implemented. In 
this section, we provide a discussion of the potential implications of our 
results and design guidelines for enhancing trust calibration. We also 
discuss the limitations of our work. 

5.1. Perceived understandability of an xai class can contribute to 
increasing or decreasing users’ engagement with the xai interface 

Across different XAI class conditions, XAI class was seen differently 
by our participants to affect their trust (increase or decrease) based on 
how they perceive understandability. Our results showed that Example- 

Fig. 10. Counterfactual exaplanation example.  
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based and Counterfactual explanations were more understandable to 
our participants than Local, Global, and No explanation conditions. The 
primary reason might be that these explanations are easy to understand 
by humans than local and Global explanations that require technical 
knowledge. According to psychological research, humans are more 
willing to engage with explanations when they are familiar, simple, and 
casually relevant (Colombo et al., 2017; Keil, 2006). This means that 
participants’ willingness to engage with AI explanations may have 
correlated with how they perceived the understandability of the expla-
nation during the study. Many participants discussed during the 
follow-up interviews that they skipped explanations when they could 
not interpret these explanations in their domain task. During the 
follow-up interviews, these observations were also confirmed when 
participants clearly suggested ways of making Local and Global expla-
nations interpretable. For instance, participants discussed providing 
tools and modalities, e.g., interactive and dialogue explanations, to 
end-users to understand and contextualise explanations that they could 
not interpret. We argue that perceiving an explanation to be understood 
is crucial to increasing participants’ engagement with AI explanations 
and therefore supporting appropriate trust judgement. A previous study 
by Cai et al. (2019) used an onboarding technique to guide users’ un-
derstanding of the actual AI capabilities and limitations and ways of 
using it. They aimed to familiarise AI-based decision-making tool users 
with the AI and help users build appropriate trust. Our results extend 
their view and argue that users of XAI systems shall be familiarised with 
its explanations, e.g., usage scenarios or tutorials, to avoid potential 
misinterpretability and avoidance behaviour. Future work could explore 
how guiding users’ understandability and interpretability of AI expla-
nations could help calibrated trust. Also, approaches like Participatory 
Design (Schuler and Namioka, 1993) and Co-Design (Sanders and 
Stappers, 2008) that involve users early in the process will lead to more 
acceptable and interpretable explanations that fit their target groups. 

5.2. Users’ perceived reliability of the ai does not seem to be correlated 
with ai explainability 

Importantly, we identified no significant change in the reliability of 
the AI between the baseline conditions and different XAI classes. The 
lack of difference in reliability scores suggests that participants’ 
perceived reliability might not be related to showing explanations, 
which could be aligned with other AI components such as overall per-
formance. For instance, Dietvorst et al. (2015) found that people are 
more likely to rely on AI when they can control the algorithmic output. 
The reliability dimension of trust could be related to another line of 
research that aims to increase trust with the AI not calibrate users’ trust 
(Yin et al., 2019; Yu et al., 2019). 

5.3. Human cognitive biases could have triggered overreliance during the 
study 

Explanations are a common approach for supporting trust calibration 
in a Human-AI environment. Despite their benefits, recent studies 
showed that explanations could also be misused by participants (Naiseh 
et al., 2021c). Our research helps to unpack the complicated influence of 
explanation on behaviour, demonstrating how different XAI classes can 
affect human behaviour during Human-AI collaborative 
decision-making tasks. Consistent with prior research, explanations with 
their various classes (Example-based, Counterfactual, Local and Global 
explanation) improved the accuracy of the Human-AI task compared to 
No explanation conditions. However, our results showed that when the 
AI was not accurate and provided incorrect recommendations, expla-
nations with its different classes did not help our participants recognise 
incorrect recommendations. Furthermore, our results showed that par-
ticipants agreed more with the AI across all XAI classes than the No 
explanation scenario. These observations could be interpreted as par-
ticipants over-relied on the AI when explanations were provided. Similar 

to Buçinca et al. (2021), we argue that the dual-process theory offers 
valuable insights to understand why the explanations may contribute to 
over-reliance. According to dual-process theory (Groves and Thompson, 
1970), humans regularly operate on System 1 thinking, which follows 
heuristics and shortcuts when making decisions. The settings of our 
study were under an everyday human-AI collaborative decision-making 
task which might make our participants follow system 1. On the other 
hand, System 2 was infrequently triggered as it is slower and more 
effortful. System 1 might make our participants vulnerable to cognitive 
biases during the study, which results in their inability to recognise 
incorrect recommendations. These results are aligned with previous 
research (Buçinca et al., 2021; Naiseh et al., 2021c), which showed that 
designers of the XAI interface often assumed that users would engage 
cognitively with AI explanations and use them to calibrate their trust. 
Also, some studies showed that XAI users perceive explanations as a 
competency feature rather than applying analytical thinking to assess 
the AI output (Bansal et al., 2021). We argue that calibrating users’ trust 
would require extra effort from both the XAI interface designers and XAI 
users. XAI designers to debiasing users’ behaviour and XAI users to read 
and engage cognitively with AI explanations. An example of how such 
an XAI human-AI interface looks like has been introduced in recent 
publication (Holzinger and Muller, 2021). Finally, although we followed 
best practice to present explanations to end-users proposed in Laato 
et al. (2022), we also acknowledge that it is possible that trust calibra-
tion errors may have occurred due to the visual design that we used, 
specifically, the Local and Global explanations where participants 
perceived them to be less understandable. Nonetheless, our results 
highlight the importance of considering cognitive biases when designing 
the XAI interface for the trust calibration goal. 

5.4. One explanation does not fit all users’ needs during human-ai 
collaborative decision-making tasks 

One explanation does not fit all users’ needs during Human-AI 
collaborative decision-making tasks (Sokol and Flach, 2020). Our 
qualitative phase showed that users require XAI modalities and inter-
action techniques to help trust calibration. Participants viewed the XAI 
interface as a new interactive system that needs to be customisable to 
their needs and task requirements. An effective XAI interface needs to 
answer multiple users’ questions and help users adjust the explanation 
accordingly. Participants posed several requirements while interacting 
with the XAI interface, such as tailoring, and multi-step explainability. 
This aligns with learning literature that shows that the learning process 
is personalised and is achieved via an explanatory dialogue (Jéirveléi’k, 
2006). Following this dialogue process in XAI would make the interface 
engaging and acceptable to a wider range of users. Furthermore, 
allowing the user to customise explanations extends their utility beyond 
AI transparency (Sokol and Flach, 2020). For instance, the explainee can 
steer the explainability process to inspect errors, e.g., identify biases, 
and validate a hypothesis, e.g., for counterfactual explanations, users 
defined constraints on the number and type of features that may or may 
not appear in the explanation. We also note that the XAI literature may 
benefit from advances in visual analytics (VA). VA has been often used in 
providing interpretable ML models by underlying data understanding 
through an interactive visual interface (Kahng et al., 2017). Combining 
the techniques of VA with XAI algorithms would present a solution to 
‘one explanation does not fill all’ problem. Finally, we argue that the 
case of calibrating users trust may require presenting multiple XAI 
classes in the XAI interface. Recent studies showed that different XAI 
classes could be useful to support various human reasoning methods and 
mitigate potential cognitive biases (Lim and Dey, 2010; Wang et al., 
2019). For instance, Wang et al. (2019) discussed that counterfactual 
explanation is useful to mitigate anchoring bias which occurs when 
humans form a skewed perception and limit the possibility of exploring 
alternative options. Counterfactual explanations by its design determine 
what input features could change the AI recommendation and help 
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humans expose to alternative decisions and scenarios. 

5.6. Limitations 

We note several limitations to our work that warrant caution in 
generalising the results to other use cases or the field of XAI in general. 
The first limitation is related to the selected use case of the clinical de-
cision support system. Although our use case is realistic and conducted 
with users who are experts in the task, participants’ responses could 
introduce domain bias when evaluating XAI classes. Further, the study 
was conducted online, due to COVID-19 restrictions on social gather-
ings, and used hypothetical patient scenarios that focused on screening 
prescription as an ML classification problem. Our future work will focus 
on conducting the study settings in different use cases, e.g. human- 
swarm interaction and self-driving cars. Also, trust calibration is a pro-
cess that is based on multi-criteria decision-making. In this paper, we 
study the outcome of this process through the decision made and self- 
reported measures of it. We do not study how trust is calibrated dur-
ing the interaction between the AI and humans and this would require a 
different research design, perhaps based on non-intrusive measures, e.g., 
eye tracking can serve this purpose (Lu and Sarter, 2019). Furthermore, 
our study has not looked at the behaviour beyond one interaction with 
participants and more longitudinal studies are required to observe trust 
calibration in a long-term interaction. 

Although our sample size met the requirements of a power analysis, a 
larger sample size for the quantitative phase would have made more 
conclusive results and enabled further analysis, e.g. linear regression. 
Another limitation of our work is that the sample was recruited from a 
mailing list containing three organisations. Those who volunteered to 
take part in the study may exhibit a different attitude than those who did 
not respond to our invitation in the sense of being interested in the 
subject. More research is needed to examine whether the different ex-
periences of the participants in the task may have a possible effect on 
their requirements for an XAI class and impact their trust calibration. 
For example, novice users who are learning the task may be differently 
affected compared to expert users and may, similarly, have different 
requirements from the XAI interface. Finally, our qualitative data are 
only meant to raise questions for further investigation. We recommend 
further experimental research to quantitively evaluate solutions dis-
cussed in the qualitative section. For instance, we encourage experi-
ments to examine whether multi-step explainability can indeed improve 
participants’ overall performance during Human-AI collaborative 
decision-making tasks. 

6. Conclusion 

Explainablity is part of the overall knowledge discovery process and 

should be extended beyond the meaning of the discovered knowledge to 
cover meta-data about it including trust level. This is even more 
important when dealing with black-box algorithms and explaining the 
knowledge without revealing the underlying algorithms introduces a 
new set of challenges. In this paper, we studied the effect of four 
different explanation classes on trust calibration during Human-AI 
collaborative decision-making task. Our results indicated that 
Example-based and Counterfactual explanations were perceived as 
significantly understandable by participants in our experimental set-
tings. On the other hand, interpreting Local and Global explanations 
required additional design considerations and interactive approaches to 
operationalise these explanations for end-users. Furthermore, our results 
showed that the presence of explanation with its different classes could 
introduce over-reliance on the AI, i.e., participants were more likely to 
follow AI recommendations when explanations were presented. These 
results pose future challenges for future work to explore XAI design 
modalities and principles to mitigate potential over-reliance risk when 
explanations are provided. 
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Appendix A 

Demographic and profile questionnaire  

1 Please provide your age category.  
○ 20–30  
○ 30–40  
○ 40–50  
○ 50–60  

2 Please provide your gender.  
○ Male  
○ Female  

3 Approximately how long have you been practising clinically?  
4 Please check all statements that apply regarding your level of experience screening chemotherapy prescriptions.  

○ I know what screening prescription is.  
○ I have used screening prescription software in practice. 
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5 Please indicate your level of agreement with the following statements.    

Strongly Disagree Disagree Neutral Agree Agree Strongly 

Artificial Intelligence will play an important role in the future of medicine       

There are too many complexities and barriers in medicine for AI to help in clinical settings.       

I have reservations about using AI in clinical settings.        

Appendix B 

We aim to provide explanatory information that helps medical practitioners to calibrate their trust in Collaborative Human-AI decision-making 
tools. We consulted with two AI experts and one medical expert, presenting them with the explainable interface and asked them for their expert 
opinion regarding the relevance of the explanations. We used these opinions as well as the results from our pilot study to refine the interface design. 
We presented ten individual patient scenarios to every participant. They have been initialised with fictional names and profiles to make them more 
realistic to our practitioners. Each scenario was accompanied by one different explanation class and was meant to be either a correct recommendation 
or an incorrect recommendation. We asked our participants to self-report their cognition-based trust components in each explanation class using 5 
Likert Scale questions. Examples of mock-up interfaces are shown in Figs. 7– 10. 

Perceived Reliability 

R1 - The system always provides the advice I require to make my decision. 
R2 - The system performs reliably. 
R3 - The system responds the same way under the same conditions at different times. 
R4 - I can rely on the system to function properly. 
R5 - The system analyses problems consistently. 

Perceived Technical Competence 

T1 - The system uses appropriate methods to reach decisions. 
T2 - The system has sound knowledge about this type of problem built into it. 
T3 - The advice the system produces is as good as that which a highly competent person 
could produce. 
T4 - The system correctly uses the information I enter. 
T5 - The system makes use of all the knowledge and information available to it to produce its solution to the problem. 

Perceived Understandability 

U1 - I know what will happen the next time I use the system because I understand how it behaves. 
U2 - I understand how the system will assist me with the decisions I have to make. 
U3 - Although I may not know exactly how the system works, I know how to use it to 
make decisions about the problem. 
U4 - It is easy to follow what the system does. 
U5 - I recognize what I should do to get the advice I need from the system the next time I use it. 

Appendix C 

follow-up interview questions.  

1 How would you summarise why the AI-supported decision tool made the recommendations?  
2 What do you think about this explanation and how do you evaluate it in helping you to understand the AI recommendation?  
3 How do you assess it in helping you to rely on the AI recommendation?  
4 How do you assess it in helping you to identify the correctness of the AI recommendation?  
5 Why might you be agreeing or disagree on [understandability, reliability and technical competence] of the recommendation and the explanation 

presented in this way?  
6 What information led you to agree or disagree with the [understandability, reliability and technical competence] of the recommendation and its 

explanation?  
7 What information is missing that might help you to assess the [understandability, reliability and technical competence] confidently or effectively?  
8 What would you like to change about this explanation to help the assessment of the [understandability, reliability and technical competence]? 
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