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a b s t r a c t

This paper proposes a real-time fluid rendering method based on the screen space rendering scheme
for particle-based fluid simulation. Our method applies anisotropic transformations to the point sprites
to stretch the point sprites along appropriate axes, obtaining smooth fluid surfaces based on the
weighted principal components analysis of the particle distribution. Then we combine the processed
anisotropic point sprite information with popular screen space filters like curvature flow and narrow-
range filters to process the depth information. Experiments show that the proposed method can
efficiently resolve the issues of jagged edges and unevenness on the surface that existed in previous
methods while preserving sharp high-frequency details.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The physics-based fluid simulation has great application value
n computer-aided Engineering (CAE) and Computer Graphics
CG) fields. Among all the simulation methods, the particle-based
pproaches like Smoothed Particle Hydrodynamics (SPH) have
eceived much attention for their algorithmic efficiency and ap-
lication flexibility [1]. However, for the visualization of particle-
ased simulation results, tracing surfaces for particle-represented
luid has been the computation bottleneck of the whole process.
ence, how to efficiently visualize the simulated fluid while
aintaining proper fidelity has become a hot research topic.
Instead of directly tracing the particle surface and constructing

he polygon mesh, the screen space rendering approach avoids
hese expensive processes by only generating the surface with
espect to the camera using the depth and thickness information.
his way, particles are handled as point sprites, 2D textures fac-
ng the camera (usually in a round shape). The edges between
extures are smoothed out to produce fluid surface effects for the
creen [2]. This approach avoids the expensive mesh construction
rocedure, making real-time fluid simulation viable for gaming
nd state-of-the-art virtual reality applications [3].
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X. Wang).
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nc-nd/4.0/).
However, several inherited artefacts of screen space rendering
hinder its further exploitation and integration into a broader
range of applications. For example, despite subsequent improve-
ments in the original method, surfaces extracted from parti-
cles are uneven and often too blurred, making it impossible
to distinguish a clear boundary between the foreground and
the background. Inspired by Yu and Turk [4], we propose an
anisotropic transformation scheme for point texture, which is ap-
plied before filtering the depth image to generate smooth surfaces
in discontinuous regions and, at the same time, preserve vivid
details.

2. Related work

Physics-based fluid simulation approaches can be mainly di-
vided into two categories: Eulerian methods [5], which utilize a
background grid to discretize space into cells, and meshless La-
grangian methods [6] using particles to represent fluid volumes.
For video games, virtual reality, and other real-time graphics
applications, particle-based simulation such as SPH [7–9] is often
the preferred approach due to its high efficiency and flexibil-
ity [10].

To visualize the Lagrangian simulation results, traditionally,
fluid surfaces are first traced and constructed as polygon meshes
using the marching cubes algorithm [11–13]. Meshes are then
rendered as fluid. The major drawback of this two-step scheme is
that the mesh generation process consumes considerable compu-

tational resources and can be pretty time-consuming for detailed
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Fig. 1. Schematic flow diagram of screen space rendering pipeline for fluid rendering: First, transform the fluid particles to the screen space and obtain the depth
information and thickness information. Second, post-process the depth image, reconstruct the normal on the depth image and render the fluid surface using normal
and thickness information.
I

results. Some researchers have improved the marching cubes
algorithm to achieve real-time mapping with a tiny number of
particles, but its quality is still unsatisfactory [14].

The screen space rendering technique is an alternative ap-
roach for visualizing fluid surfaces. It directly draws the fluid
urfaces without the need to produce a surface mesh, sacrificing
idelity for efficiency. Müller et al. [2] first applied this method
or fluid rendering. The choice of smoothing filter is the critical
actor in determining the rendering result. As shown in Fig. 1, the
agged depth information derived from fluid particles needs to be
moothed to get the fluid surface.
A simple Gaussian filter for surface smoothing [2] tends to

roduce unwanted blur effects and is often not ideal. The bilateral
aussian filter [3,15] preserves sharp fluid boundaries but leads
o excessive flattening of discontinuous regions. In addition, the
ilateral Gaussian filter is not separable, and an approximate
eparation can result in visual artefacts. Truong and Yuksel [16]
ntroduced a narrow-range filtering technique that smooths the
epth map by directly using a narrow range of depth values. This
ethod provides improved surface quality in surface smoothness
nd preserving boundaries near discontinuities. Recently, Oliveira
nd Paiva [17] solved the particle deficiency problem [16] by
erforming a particle classification mechanism. Liu et al. [18] pro-
osed a low-cost differentiable screen-space rendering algorithm
or augmented reality (AR).

However, we find that the unevenness of fluid surfaces caused
y the distribution of particles still needs to be appropriately
andled in screen space rendering. Inspired by work from Yu
nd Turk [4], we provide anisotropic transformation for particle
extures prior to the derivation of depth image to get a smoother
luid surface.

. Real-time screen space fluid rendering

Fluid rendering in the screen space is performed by draw-
ng the 3D fluid directly into the 2D screen without generating
urface meshes and is closely related to image processing algo-
ithms [3]. The schematic diagram describing the procedure of
he surface rendering algorithm is shown in Fig. 1 and is detailed
n the following.

.1. Depth information

eriving the Depth Information First, the distance zi between each
article and camera pixel i is calculated from the camera view-
oint [19]. To obtain the fluid surface from the camera point of
iew, the point sprite [20] method is used to render the particles
s spheres, which allows us to extract the depth values from the
ideo memory buffer directly.
119
Smoothing Depth Information Directly using spherical point sprites
as depth information usually produces uneven fluid surfaces. To
reduce the rugged effects, specific filters are applied to the depth
image, flattening the abrupt bumps of particles by averaging zi
for local pixels. One of the most common smoothing filters is a
Gaussian filter [21], with the formula:

G
(
pi, pj, σi

)
=

1
2πσ 2

i
e
−

∥pi−pj∥

2σ2
i , (1)

where j is the neighbour pixel of i, σ is the standard deviation
parameter determined by zi [16], and p describes the location
for each pixel in the screen space. The Gaussian convolution can
obtain smooth particle depth information. However, it can cause
over-smoothing, leading to some loss of edges. Therefore, variants
such as the bilateral Gaussian method are often used to obtain
better results.

3.2. Thickness information

Fluid distribution in the real world is not uniform, so it is
necessary to calculate the amount of fluid between the camera
and the nearest opaque object, called the thickness image. When
shading, the thickness image is used to calculate the colour and
transparency of the fluid [22]. The formula is given as follows:

T (pi) =

n∑
j=0

G
(pi − x̂j

)
, (2)

where n represents all fluid particles, x̂j corresponds to the pro-
jection position of particle xj in the screen space. This calculation
is correct when the particles do not overlap. Because of the
incompressibility of the SPH method (particles seldom overlap),
the thickness information can be calculated by Eq. (2).

3.3. Normal reconstruction and surface shading

After obtaining the vertex coordinates in camera space, the
normal needs to be reconstructed from the coordinates to handle
light reflection and refraction on the surface. The partial deriva-
tives are calculated according to the finite difference method.

Afterwards, the refraction of the fluid [23] and Blinn–Phong
illumination [24] are calculated. The relationship between the
transmittance of the fluid and the thickness of the fluid is ob-
tained according to the Beer–Lambert algorithm [25] I(d) =

0d−kd, where d is the thickness of the fluid, I0 is the value of light
intensity and k is the attenuation coefficient vector of the fluid.
Then the final fluid colouring result is obtained.
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Fig. 2. Comparison of isotropic and anisotropic fluid particles.
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. Anisotropic transformation of point sprites for fluid parti-
les

In fluid simulation, a finer-grained spatial discretization can
e achieved by increasing the simulation resolution by repre-
enting fluid using smaller particles, generating smoother edges
hen rendered. However, increasing the resolution for 3D fluid
imulation requires complex computations, which seriously af-
ects the performance in real-time. To combine both efficiency
nd quality, our approach is based on the weighted principal
omponents analysis (WPCA) of SPH fluid particles. We obtain
nisotropic kernel functions to obtain anisotropic fluid particles
ased on their distribution and use the eigenvalue magnitudes
n the eigenvectors as the basis for fluid particle deformation to
chieve efficient smoothing and detail preservation. The effects of
his anisotropic transformation on the screen space are presented
n Fig. 2.

.1. Tracing surface using smoothing kernel

In particle-based fluid simulation, fluid particles are repre-
ented as spheres, which are then used to perform screen space
rojection based on point sprites or surface reconstruction using
he marching cubes algorithm. Since the discrete fluid particles
re isotropic, for a fluid particle i whose centre is located at the

spatial coordinate xi, the approximated value φi of the colour
field at its location can be averaged and weighted by all its
neighbouring particles as:

φi =

∑
j

mj

ρj
W

(
∥xi − xj∥, h

)
, (3)

where mj and ρj are the volume and density of the neighbouring
fluid particle j, W is called the smoothing kernel or kernel func-
ion, which is a normalized Gaussian-like function [1], h is the
upport radius of the kernel function, beyond which W takes the
alue of 0. In this paper, we use an anisotropic smoothing kernel
(r,B) to replace the isotropic function W (r, h) by introducing

the anisotropy matrix B into the kernel function:

W (r,B) = β det(B)P(|rB|), (4)

where β is the scaling factor, P is a symmetric decaying spline
with finite support.

The anisotropy matrix B makes the smoothing kernel
anisotropic by stretching and rotating the relative position r
between particles. Fig. 2(a) shows the fluid particles in the normal
state, and Fig. 2(b) shows the fluid particles after anisotropic
processing. It can be easily observed that particles become more
compact and smooth at the edges of the fluid when using the
anisotropic representation.
120
4.2. Deriving anisotropy matrix

The anisotropic kernel function mentioned above can be con-
sidered a generalization of the isotropic kernel function. Let I
be a d-dimensional unit matrix. When B =

1
h I, W (r,B) re-

urns to W (r, h). To make the values of the kernel function
arger along the tangential direction of the fluid surface than
he normal direction, or to stretch the kernel along the edges of
he fluid, WPCA [26] is performed to find the eigenvalues and
igenvectors according to neighbouring fluid particles. Since the
agrangian simulation algorithm is naturally non-uniform in par-
icle distribution, the use of the WPCA method effectively avoids
he sensitivity to outliers in the traditional principal component
nalysis (PCA) method and enhances the efficiency of surface
moothing.
First, a weight value ωij is determined for each pair of fluid

articles. A weighted covariance matrix is then constructed using
he weight values, and singular value decomposition (SVD) is per-
ormed on the covariance matrix. The obtained matrix principal
xes, as well as the eigenvalues, are finally used to construct the
nisotropy matrix B. The weighted average position of the fluid
s given as x̄i =

∑
j ωijxj, where ωij is the weight of the fluid

eighbour particle j to particle i. In this paper we compute ωij
s:

ij =
W

(⏐⏐xi − xj
⏐⏐ , h)∑

j W
(⏐⏐xi − xj

⏐⏐ , h) . (5)

This results in a larger normalized weighting when the parti-
cles are closer. The displacement of the weighted average position
from the original position can indicate the distribution trend of
the fluid surface. Based on this trend, a covariance matrix Ci can
be constructed for the fluid particle i as:

Ci =

∑
j

ωij
(
xj − x̄i

) (
xj − x̄i

)T
. (6)

A singular value decomposition for the covariance matrix
yields Ci = WΣWT , where the diagonal matrix Σ = diag(σ1, σ2,
. . . , σd) contains all the eigenvalues from the largest to the
smallest. To obtain a stable anisotropic deformation effect, the
minimum of eigenvalues is restricted to a threshold with respect
to the largest eigenvalue. The value of σ r

k is chosen as σ r
k =

max(σ1/κ, σk) to adjust the smaller eigenvalues so that the ratio
of the largest eigenvalue to the smallest one is limited. In our ex-
periments, we choose κ = 4. Furthermore, no anisotropic kernel
function is used when the number of neighbouring particles is
less than or equal to 20, and a scale control factor s makes |sC| ≈

1 to keep the particle volume from changing significantly. We
select s = 1400 in our experiments. The regularized covariance
matrix can be expressed as:

Cr
= WΣrW T . (7)
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Fig. 3. The pipeline of rasterizing the fluid particle onto the screen space. For representing fluid particles using an isotropic sphere. The stretching effects from
the projection matrix P are negligible. So particles always have a round appearance at the clip space, and the radius rc can be measured from the bias between
he position of sphere centre x0c and any point on the sphere surface xc at the clip coordinate. To perform a more desirable fluid effect, we apply the anisotropic
ransformation for each particle at the parameter space (red box). Furthermore, the resulting shape on the clip space is elliptical. The boundary of the ellipse cannot
e derived using the traditional method because the point on the resulting surface may not lie on the projected plane (not having the same depth x0c .z ̸= xanic .z).
Fig. 4. Experimental comparison of isotropy and anisotropy in the dam break scenario.
.3. Transforming sphere particles onto the screen space

As shown in Fig. 3, the key implementation of the anisotropic
ransformation converting the spherical particle to an ellipsoid
n this paper is by applying a 4 × 4 homogeneous anisotropic
ransformation matrix Cr,h onto the sphere at the parameter
space, which takes the form:

Cr,h
=

⎡⎢⎣Cr 0
...

0 · · · 1

⎤⎥⎦ . (8)

To determine the size of the projected ellipse for an
anisotropic point sprite, we apply the method proposed by Sigg
et al. [27], where the positions (b−x, b−y) and (b+x, b+y) at the
clip coordinate can be computed by inversely transforming the
position back to the parameter space. For xc inside the point
sprite, nT

c xc ≤ 0 with nc = (1, 0, 0, bx)T must be satisfied. To
trace bx back to the parameter space, we have:

np =
(
P · M · T · Cr)T nc, (9)

where

T =

⎡⎢⎣rc 0 0 xo
0 rc 0 yo
0 0 rc zo
0 0 0 1

⎤⎥⎦ . (10)

s a scaling matrix to satisfy
xp.xyz = rc in Fig. 3. Here xo is

the x component of particle position at the object space. And the
notation .xyz in Fig. 3 denotes the vector consisting of the first
three elements in a four-dimensional position vector x.
121
5. Results and analysis

The experiments below are performed using a hardware plat-
form of AMD Ryzen 7 5800H @3.20 GHz, 32 GB memory, and
NVIDIA RTX 3060. The 3D graphics API OpenGL is used for particle
rendering, and C++ is used as the hardware graphics interac-
tive language to process logical operations. In addition, GLSL
colouring language is used to calculate the fluid optical effect in
GPU. The real-time performance of fluid is maintained during all
experiments.

5.1. Anisotropic processing results

In this subsection, the anisotropic algorithm is adopted to
process fluid particles to reduce the roughness of the fluid depth
map, which can improve the final rendering effect of the fluid
surface. As shown in Fig. 4,(a) and (b) respectively represent the
surface rendering results when two water blocks collide under
isotropic and anisotropic conditions. It can be observed that the
overall surface rendering results processed by the anisotropic
algorithm are smoother, and the illumination shading is more
realistic with fine highlights.

In addition, experimental verification is conducted for a fluid–
solid coupling scenario, as shown in Fig. 5. In the fluid–solid cou-
pling scenario, real-time fluid rendering based on the anisotropic
algorithm shows better surface results with smoother surfaces,

especially at the interface between the rigid body and liquid.
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Fig. 5. Experimental comparison of isotropy and anisotropy in the fluid–solid coupling scenario.
Fig. 6. Experimental comparison of isotropy and anisotropy in the dam break scenario. Columns 1–5 is the (a) part of this figure, demonstrating surface constructed
without anisotropic transformation; Columns 6–10 is the (b) part of this figure, showing how anisotropic transformation works with and without different smoothing
filters.
5.2. Combination with popular smoothing filters

In this subsection, the anisotropic algorithm is combined with
arious popular smoothing filters to verify the effectiveness and
racticability of the proposed scheme under actual application
cenarios. The Gaussian filter, the bilateral Gaussian filter and the
arrow-range filter use the same number of iterations (iter = 2).
he curvature flow filter uses more iterations (iter = 80) to
btain flat surface results at the cost of performance loss.
Fig. 6 demonstrates the scenario where a dam-break fluid

ollides with multiple differently shaped solid objects. Complex
oundary geometries can be observed in this case. We conducted
his experiments using various kinds of smoothing filters consid-
ring both isotropic and anisotropic conditions. Figs. 6(a) and 6(b)
how the surfaces constructed using isotropic and anisotropic
oint sprites respectively. It can be seen that the proposed
nisotropic transformation scheme can enhance surface perfor-
ance with almost every state-of-the-art smoothing filter. The
122
second to the third row of Fig. 6 exhibit how anisotropic trans-
formation reduces the unevenness of particle distribution on
the free surface and coupling boundaries. And the fourth row
shows our method can also help to gather the sparsely distributed
fluid particles representing splashes into more well-organized
structures.

Fig. 7 is another experiment that further shows the anisotropic
surface generation effects of the fluid under different filters with
a more complex fluid-rigid coupling boundary. The Gaussian filter
is a separable filter with high computational efficiency. However,
it still produces a large amount of noise on the surface, which is
far from the desired ideal result. Meanwhile, the boundary mor-
phed into particles due to a lack of neighbouring particles in the
splashing area (second row of Fig. 7). The Bilateral Gaussian filter
solved the boundary problem in the particle-deficiency areas and
reduced some noise on the surface. However, it produces an over-
flattening phenomenon in the discontinuous surface details, and
the edge information between particles is lost. After 80 iterations,
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Fig. 7. From left to right are Gaussian filter, bilateral Gaussian filter, curvature flow filter and narrow-range filter.
Fig. 8. From left to right are Gaussian filter, bilateral Gaussian filter, curvature flow filter and narrow-range filter.
the curvature flow filter produces a good surface effect in some
areas. However, this method is unstable and time-consuming.
The narrow-range filter method effectively solves these problems
with better surface effects and time efficiency.

Fig. 8 shows the influence of different filtering algorithms with
transparent fluids. It can be seen that compared with other algo-
rithms, the narrow-range filter algorithm can produce a smoother
fluid effect. Moreover, the overall highlight can form an obvious
bright area, which is more consistent with the water highlight
effect in the real world.

5.3. Performance analysis of the anisotropic transformation

To evaluate how the refined anisotropic transformation affects
the efficiency of the screen space rendering. We carried out the
experiment of Fig. 4 using multiple configurations with various
numbers of fluid particles, alternative smoothing filters, and the
on/off status of the anisotropic transformation.

The relationship between particle number and corresponding
frame rate under different methods is shown in Fig. 9. We can see
123
that the anisotropic transformation barely affects the efficiency
of the whole screen space rendering pipeline. And although the
curvature flow filter can achieve better surface effects with a
higher number of iterations, its rendering time also increases. In
contrast, the narrow-range filter method not only gives a better
surface effect but also keeps the rendering time almost linearly
increased with respect to the number of particles.

6. Conclusion

We propose an anisotropic real-time surface rendering scheme
based on the screen space approach. The method uses WPCA
to determine an anisotropic transform for particle point sprites,
solving the problem of jagged edges and uneven surfaces of
the fluid in traditional screen space rendering. We also compare
the rendering effect and efficiency of various popular smoothing
filters by experiments. It is concluded that the narrow-range filter
is the preferred method for screen space rendering because it can
obtain a better surface effect and maintain an acceptable frame
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Fig. 9. Frame rate comparison of different algorithms.
ate. In the future, we will study the screen-space rendering
f complex phenomena, such as the real-time visualization of
ultiphase fluid mixing, through the screen-space mapping of
aterial type information.
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