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Abstract 

To optimise the utilisation cost of cutting tools, it is imperative to develop an online system to 

efficiently and accurately predict tool wear conditions and remaining useful lives (RULs). With this 

aim, a novel system is proposed based on deep learning algorithms distributed over an edge-cloud 

computing architecture. The system is innovative in the following aspects: (i) a lightweight 

convolutional neural network-random forest (CNN-RF) model is designed to be executed on an edge 

device to assess tool wear conditions efficiently, which supports severe tool resilience and tool 

replacement when necessary; (ii) a convolutional neural network-long short-term memory (CNN-

LSTM) model is designed to be executed on a cloud to process long-term signals to predict the RUL of 

the cutting tool, which supports fine-tuning tool parameters dynamically; (iii) a signal compression 

mechanism is developed to condense the signals of tooling conditions into 2D images so the signal 

volumes transferred over the network are minimised and signal security is improved. Experiments were 

performed in a real-world machining workshop for research methodology validation. It showed that the 

prediction accuracies for tool wear and RUL achieved 90.6% and 93.2%, respectively, and the volume 

of signals transferred over the network was reduced by 89.0%. The experiments and benchmarks with 

comparative algorithms demonstrated that the system and its methodology exhibited great potential to 

reinforce cutting tool optimisation for real-world applications. 
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1.  Introduction 

Severe wear conditions of cutting tools will deteriorate product quality during machining processes. 

Effective prediction of the wear conditions and remaining useful lives (RULs) for cutting tools is a 

prominent requirement to achieve machining optimisation [1]. Tool condition monitoring, which could 

be conducted based on vibration, electrical, and/or acoustic emission signals from cutting tools collected 

on the fly, is a valuable enabler for developing such prediction functions. Commercial cloud-based tool 

condition monitoring systems have been provided on the market, including Montronix, Nordmann, 

Prometec, Marposs, Brankamp, Kistler, etc. In addition, various models for cutting tool condition 

predictions have been developed based on those cloud-based monitoring systems and machine learning 

algorithm-enabled data analytical approaches [2]. Nevertheless, surveys showed that over 74% of 

company executives and IT stakeholders did not prefer pure cloud computing solutions [3]. Major gaps 

between the developed systems/models and industrial requirements include the low efficiency/accuracy 

of tool wear condition predictions, and low efficiency and insecurity of data transfer in clouds. It is 

imperative to develop solutions to (i) improve prediction efficiency and accuracy in the wear conditions 

and RULs of cutting tools; (ii) minimise data volumes and ensure data security during sharing over 

industrial networks to support effective decision-making for severe tool resilience and tool replacement. 

To bridge the gaps, this paper presents an innovative system of incorporating deep learning 

algorithms and edge-cloud computing paradigms to realise efficient prediction of wear conditions of 

cutting tools and accurate prediction of RULs of the tools. The research exemplifies that an effective 

synergy of deep learning algorithms and a distributed computing architecture is beneficial to addressing 

the versatile requirements arising from manufacturing processes. Research innovations include the 

following aspects: 

• An edge-cloud computing system is designed as a “divide-and-conquer” infrastructure to support 

the prediction of cutting tools’ wear conditions and RULs. A novel encryption mechanism is realised 

to ensure the volume reduction and security assurance of tool condition monitoring signals 

exchanged over the industrial network; 



 

 

• A convolutional neural network-random forest (CNN-RF) model is designed to implement efficient 

tool wear condition prediction by leveraging the limited memory and computational capacities of 

edge devices in the infrastructure. A convolutional neural network-long short-term memory (CNN-

LSTM) model for the RUL predictions of cutting tools, which requires interpreting time-series 

information in longer-term accumulated signals, is designed to execute on a cloud server by taking 

more intensively computational powers; 

• Real-world experiments were conducted to validate the system and research methodology. 

Benchmarks with some typical intelligent algorithms were carried out to evidence the effectiveness 

and advantages of this research in terms of computational accuracy, computational efficiency and 

data reduction rate transferred over the network. 

2. Literature Review 

Edge computing (fog computing) has been designed to accelerate computational efficiency by 

processing data close to data originating sources. As a promising technology, edge computing has been 

adopted by a variety of applications. An intelligent factory management system was arranged on an 

edge service (e.g., Raspberry Pi) to optimise customised production lines [4]. An evolutional 

optimisation algorithm was executed on the edge service to efficiently pursuit a balanced optimisation 

between the energy consumption and the workload of production equipment during scheduling/re-

scheduling. A convolutional neural network (CNN)-based system to classify defective products on an 

assembly line was developed [5]. The CNN-based system was distributed into an edge-cloud 

architecture for system optimisation. In [6], the shallow layer of the CNN-based system was arranged 

on an edge device to pre-process product data in a more efficient means. The refined data was further 

dispatched to the deep layer of the CNN-based system at a cloud server to conduct detailed 

classifications of defective products. An edge gateway based on Raspberry Pi was installed in a 

workshop, and a Kalman filter was set up on the edge device to filter manufacturing resource signals. 

The research was validated using case studies from the workshop. Nevertheless, the relevant research 

is still preliminary, and it is imperative to develop more appropriate functions for edge/cloud computing 

infrastructures to accelerate the related decision-making processes. 



 

 

To predict the wear conditions and RULs of cutting tools, force signals, power signals, sound signals, 

vibration signals, and acoustic emission signals have been widely collected. Machine learning 

algorithms, in particular, deep learning algorithms, have been increasingly developed to support 

relevant decision-making based on the signals [7]. An approach for tool wear prediction was designed 

based on a genetic algorithm and a backpropagation (BP) neural network [8]. An approach integrating 

a CNN model and a stacked bi-directional/ unidirectional LSTM model was designed to predict the 

wear condition and RUL of a cutting tool [9]. In this approach, the CNN model was designed to extract 

features from monitoring signals for dimensionality reduction, and the LSTM model was applied to 

train these features to achieve tool wear and RUL prediction. A data-based approach to predict cutting 

tool wear and RUL for micro-milling was developed [10]. Manufacturing parameters and tool condition 

images captured during the process were used to support a deep belief network (DBN) model to perform 

prediction. A transfer learning strategy was designed to conduct cutting tool prognostics for customised 

machining processes [11]. In [12], the advantages, disadvantages, and prospects of using sensors, 

including force sensors, vibration sensors, acoustic emission sensors, current and power sensors, image 

sensors, and thermal sensors, for milling operations were discussed. Trends in the application of 

advanced sensor systems for milling was summarised. 

Though the aforementioned research has achieved some successes in tool wear condition and RUL 

prediction, there is great potential for further improvements. Based on the facts that multiple types of 

sensors for tool condition monitoring are increasingly adopted and a large volume of signals is generated 

for processing, the current research requirements include (i) designing a well-performed data processing 

mechanism to fuse multi-types of data to facilitate the predictions; (ii) developing appropriate intelligent 

algorithms that are executable on an edge-cloud computing architecture efficiently to enhance the 

performance of the predictions. 

3. Research Methodology 

3.1 System Functions 

The system consists of the following components (more technical details are given in sub-sections): 



 

 

(1) An edge-cloud computing infrastructure: the infrastructure consists of sensors, edge devices and a 

cloud server to support intelligent function implementation;  

(2) On CNC machines: power sensors, vibration sensors and edge devices are mounted in CNC 

machines to monitor and process the working conditions of cutting tools throughout the machining 

process lifecycle in a real-time means;  

(3) On the edge devices: (i) a CNN-RF model is designed to execute on the edge devices to predict 

tool wear conditions on the fly, which supports tool severity resilience and tool changes when necessary; 

(ii) a 2D image-based signal compression algorithm is devised to enhance the privacy of signals that 

are transferred to the cloud server for predicting the cutting tool’s RUL;  

(4) On the cloud server: a CNN-LSTM model is developed on the cloud to predict the cutting tool’s 

RUL to fine-tune machining parameters dynamically. 

The edge-cloud infrastructure is designed based on the infrastructure of our previous research, which 

effectiveness was proved in machining process lifecycle optimisation [4]. The effectiveness of the 

CNN-RF model and the CNN-LSTM model will be justified based on experiments and comparative 

algorithms presented in Section 4. 

3.2 Cutting Tool Wear Prediction on Edge Devices  

The CNN model is effective in extracting features autonomously [2], but its training process is 

computationally expensive. Instead, conventional machine learning models, such as the random forest 

(RF) model, can be more efficient in training but they need to take pre-extracted features. RF is a 

classifier that contains some decision trees trained using subsets of a given dataset and takes the average 

to enhance the predicted accuracy and training efficiency [13]. In this research, the strengths of the 

CNN model and the RF model are combined to design a new CNN-RF model to support cutting tool 

wear prediction on edge devices. The advantage of the CNN-RF model is that it is lightweight in 

structure and only a modest amount of training data is required to achieve high predictions.  

Two CNN models are used as the base models to process power and vibration signals for feature 

extraction, respectively. Among the developed CNN models, LeNet-5 is a lightweight model and can 

achieve a relatively accurate outcome [14]. In this research, LeNet-5 is adopted to design the base model. 



 

 

The RF model is then used to fuse the intermediate prediction results (features) extracted from the two 

base models to conduct cutting tool wear prediction. In the RF model, bagging and random selection 

mechanisms are developed to avoid the domination of a single decision tree to generate deviated 

prediction results. The designed RF model is illustrated in Fig. 1. Its detailed process is given below. 

 

Fig. 1: The flow chart of the RF model. 

Step 1: Intermediate features extracted by the two CNN models, i.e.,  S𝑎 = {𝑋𝑎1, 𝑋𝑎2,⋯𝑋𝑎𝑛} and 

S𝑏 = {𝑋𝑏1, 𝑋𝑏2, ⋯𝑋𝑏𝑛} that correspond to the power and vibration signals, are combined into a new 

set 𝑆 = {S𝑎,  𝑆𝑏} as the input of the RF model. The sample number of S is 2n. Here, 𝑋 denotes the 

probability of the correct prediction on tool wear, and 𝑛 denotes the number of the input signals; 

Step 2: Based on 𝑆, a bootstrapping method is adopted to randomly select a sample from S as an 

element of the sampling set. This sample is put back into S and the selection is performed again. After 

2n times of repeated random selection, a sampling set S’ containing 2n samples is obtained; 

Step 3: The sampling set obtained in Step 2 is used as the root node of a decision tree. To perform 

the sample classification, calculation on the information gain is conducted for node split. From the root 

node, m (m≪ 2n) samples are randomly selected as sample of the lower branch node. Information Gain 

(G) provides the entropy difference between the root node and branch node, thus judging an optimal 



 

 

sample that should be split as a branch node. Given there are two prediction labels (i.e., severe worn 

and unworn) in this research, the node split operation is executed twice. The entropy of the root node 

can be represented as: 

  𝐸(𝐴) = −∑ 𝑝𝑖 log2 𝑝𝑖
𝑚
𝑖=1  (1) 

where 𝑝𝑖 denotes the correct prediction probability of a sample. 

The entropy of the lower node can be represented as: 

 
 𝐸(𝐵) = −∑

𝐷𝑖

𝐷
∙ 𝑝𝑖 log2 𝑝𝑖

𝑣
𝑖=1  (2) 

where 𝐷 represents the number of samples in the training dataset; 𝐷𝑖 represent the number of 

samples that are separated in the training dataset.  

Based on the above formulas, Information Gain is calculated below: 

 𝐺 = 𝐸(𝐴) − 𝐸(𝐵) (3) 

Step 4: According to the evaluation of Information Gain, a decision tree with a labelled prediction 

capability can be established. For the purpose of sufficient robustness and generalisation of the results, 

Steps 2 and 3 are repeated 2n times to establish 2n decision trees to compose a RF; 

Step 5: Through the above-described steps, the desired RF model is established. The majority vote 

of all the decision trees can be used to represent the prediction result, which is defined as: 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =∑𝑝𝑖

𝑚

𝑖=1

∑𝑝𝑗

𝑚

𝑗≠𝑖

=∑𝑃𝑖(1 − 𝑝𝑖)

𝑚

𝑖=1

= 1 −∑𝑝𝑖
2

𝑚

𝑖=1

 (4) 

where ∑ 𝑝𝑖
𝑚
𝑖=1  and ∑ 𝑝𝑗

𝑚
𝑗≠𝑖  represent the probability of the correct and incorrect prediction 

respectively. 

3.3 Compression on Cutting Tools’ Signals  

For the purpose of signal security and reduction, it is necessary to convert the signals of cutting tool 

wear conditions into a 2D image form (the process is illustrated in Fig. 2).  



 

 

 

Fig. 2: Illustration of the signal compression process. 

The technical details are depicted below: 

Step 1: During a machining process, it is normal to record standby periods in signals that come from 

repositioning or resetting a cutting tool. For the purpose of optimisation, signals in those standby periods 

will be eliminated; 

Step 2: The optimised signals are equally segmented into 𝑁 sub-sessions. The lengths of the sub-

sessions are the same to ensure a packed matrix structure from those sub-sessions meeting the input 

structure requirement by intelligent algorithms developed in this research; 

Step 3: The above sub-sessions are organised as a 2D matrix in the dimension of 𝑁 × 𝑁. In the 

matrix, each element represents the pixel of the grey-level image. The process of establishing the matrix 

is illustrated in Fig. 3; 

 
Fig. 3: The illustration of the compression process of signals in a matrix. 
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Step 4: The matrix will be converted into greyscale pixels. The process is conducted through 

normalising values in the matrix so the pixel intensity ranges from 0 to 255. The normalisation process 

is carried out based on the following formula: 

𝑃(𝑖, 𝑗) = 𝑟𝑜𝑢𝑛𝑑 (
𝑆(𝑖,𝑗) 𝑀𝑖𝑛(𝑆)

𝑀𝑎𝑥(𝑆) 𝑀𝑖𝑛(𝑆)
× 255)                 (5) 

where 𝑖 = 1, 2,⋯𝑁, 𝑗 = 1, 2,⋯𝑁; 𝑆(𝑖, 𝑗) represents the values of the signals; 𝑃(𝑖, 𝑗) represents the 

pixel intensity; r𝑜𝑢𝑛𝑑(∙) represents a function of returning an integer as an input value.  

3.4 RUL Prediction of Cutting Tool on Cloud 

Prediction on a cutting tool’s RUL is a computationally intensive process. A cloud server has the 

capability to process the volume of signals so it is more appropriate to conduct the RUL prediction of a 

cutting tool. Two CNN models are adopted at the cloud side as base models to extract features from 

signals. Moreover, extracted features will be further considered as the input of a subsequent LSTM 

model for RUL prediction. LSTM is a special kind of the recurrent neural network (RNN) model that 

is capable of learning long-term dependencies in time-series data to conduct prediction tasks [2, 10]. 

The CNN-LSTM model benefits from the combined strengths of CNN and LSTM in feature extraction 

and time-series information learning to support the research for the RUL predictions of cutting tools. 

As a more powerful CNN architecture, AlexNet is capable of processing a large volume of signals 

and executing the process on a cloud server [15]. Thus, in this research, AlexNet is adopted as the base 

model. LSTM is superior in processing time-series data owing to a memory cell design to retain 

temporal features. The structure of the LSTM model in this research is shown in Fig. 4. 

The extracted feature array by the AlexNet model is represented as 𝑋𝑚 = [𝑥𝑚], where 𝑥 is for the 

feature value and 𝑚 is for the number of features. The array is used as the input of the LSTM model. 

In the LSTM model, the memory cell state of each unit in the hidden layer is used to recursively update 

the prediction result ℎ𝑡 of the current time-step 𝑡 based on ℎ𝑡 1 of the previous time-step 𝑡 − 1. In 

this process, the relevant information is filtered by the forget gate  𝑓𝑡  and combined with a new 

feature 𝑥𝑡. The intermediate result ℎ𝑡 at the time-step 𝑡 can be calculated under the control of the 

intermediate gate 𝑜𝑡  using the following formula: 



 

 

 ℎ𝑡 = 𝑜𝑡⊙ t nh 𝑐𝑡 (6) 

 
Fig. 4: The structure of the LSTM model. 

The fully-connected layer and linear regression layer in the LSTM model are connected with the 

output gate of each LSTM unit sequentially. Generated features are input into the fully-connected layer 

to produce the output vector 𝐻 = {ℎ1, ℎ2,⋯ ℎ𝑙}. That is, the output of the fully-connected layer is 

calculated below: 

 
𝐹 =∑ 𝑅𝑒𝐿𝑈(𝑤𝑖 ∙ ℎ𝑖 + 𝑏𝑖)

𝑖=1
 (7) 

where 𝑅𝑒𝐿𝑈 denotes the Rectified Linear Unit’s activation functions; 𝑤𝑖 is the weight; 𝑏𝑖 is the 

bias. 

The RUL prediction of a cutting tool is realised in the prediction layer below: 

             𝑃 = ∑ (𝑤𝑖 ∙ 𝐹𝑖)𝑖=1  (8) 

The mean absolute error (MAE) is designed to evaluate the predictive model [12]: 

 
𝑀𝐴𝐸 = 

1

𝑛
∑|𝑦̃ − 𝑦|

𝑛

𝑖=1

 (9) 

where 𝑛 is the number of the training dataset; 𝑦 ̃is the prediction value; 𝑦 is the ground-truth 

value. 

Prediction layer 

Fully-connected layer 

Intermediate layer 



 

 

4. Experiments and Analyses 

4.1 Experimental Configuration 

Experiments for research validation were carried out based on the teeth machining process of a ring 

synchroniser in a seven-speed dual-clutch transmission gearbox [16]. In the experiments, the JCMT 

JCS30 CNC machine and a cutting tool TNEX 1604 XF were utilised (the specifications of the machine, 

the machining parameters, and tooling are given in Tables 1-2, respectively). The material for the ring 

synchroniser is 16MnCr5 (EN 10084: 2008). The chemical composition and mechanical properties of 

the material are given in Table 3. The ring synchroniser and the insert of the cutting tool are illustrated 

in Fig. 5(a). Fig. 5(b) shows the deployment arrangement of the predictive system into the machine 

tooling system. Three YHDC SCT013 current sensors and an MMA7361 three-axis accelerometer were 

mounted on the three-phase power supply and the tool holder of the machine. Power and vibration 

signals during experimental machining processes were collected. 

Table 1: Specifications of the JCMT JCS30 CNC machine. 

Specifications 

Maximum 

machining 

diameter 

(mm) 

Maximum 

machining 

modulus 

(mm) 

Maximum 

tooth width 

(mm) 

Maximum 

speed of 

tool spindle 

(rpm) 

Maximum 

driving 

power of 

tool spindle 

(kw) 

Inclination 

angle of 

tool shaft 

(degree) 

Maximum 

speed of 

workpiece 

spindle 

(rpm) 

Values 300 3 100 6000 23.1 25 29.1 

Table 2: Tooling specifications and machining conditions. 

 

Machining conditions: continuous machining 

Work material for the ring synchroniser: 16MnCr5 (EN 10084: 2008) 

Hardness of the work material: HRC58-62 

Cutting tool: TNEX 1604 XF 

Cutting parameters: S=2400 rpm, F1=25 mm/min (roughing), F2=15 mm/min (semi-

finishing), F3=5 mm/min (finishing), Vc=170 mm/min (in this experiment, 

roughing machining was used) 

Cutting mode: dry cutting 

Table 3: The chemical composition and mechanical properties of the work material (ring synchroniser). 

Chemical 

composition 
C Si Mn S P Cr 

Values 0.14～0.19 ≤0.40 1.00～1.30 0.010～0.035 ≤0.035 0.80～1.10 

Mechanical 

property 

Tensile 

strength 

(MPa) 

Yield strength 

(MPa) 

Elongation 

(%) 

Reduction of 

area (%) 

Impact 

toughness 

value (J/cm2) 

Hardness 

(HB) 

Values 1373 1187 13 57 72 ≤297 



 

 

  

Fig. 5: (a) The ring synchroniser and the cutting tool’s insert; (b) The system deployed into the machine. 

To minimise the randomness of experimental results, three groups of machining processes were 

carried out using the same machining parameters (the parameters are given in Table 2). The number of 

machined components is 37, 29 and 39 in each group, respectively. A new cutting tool was used at the 

beginning of each machining group. Table 4 shows the total number of machined components and the 

component number machined by a worn cutting tool. 

Table 4: Information for machined components. 

The machining 

group number 

The quantity of 

machined components  

The machined components 

using a worn tool 

1 37 26 to 37 

2 29 14 to 29 

3 39 11 to 39 

To alleviate the negative impact of random factors, in the experiments, three groups of machining 

processes under the same machining parameters and settings were conducted. In each group, a brand-

TNEX 1604 XF insert 

Ring synchroniser 

Vibration sensor 

Router 

Current 

sensor 



 

 

new cutting tool was used so the experiments were arranged on the same basis. Tool wear measurements 

used the parameters specified in ISO 3685:1993, particularly the variables VB (average flank wear width) 

[12]. During the machining processes in the experiments, the flank wear conditions of the cutting tool 

insert were measured. Fig. 6 illustrates the wear conditions when the No. 30 component was machined 

in the machining group 1. The width of the tool wear is 0.357mm, which is greater than the threshold 

of VB (0.150mm) pre-set by the company. The EDS analysis data of the tool are given in Fig. 7 (the 

chemical composition of the surface for the cutting tool is: N-62.86%, Al-20.00%, Ti-17.14%). 

 

Fig. 6: The SEM (Scanning Electron Microscope) photographs of a tool’s flank wear condition. 

 

Fig. 7: The EDS analysis of the cutting tool. 

The acquisition frequencies of vibration and power signals during the machining processes were set 

at 4,000Hz and 20Hz, respectively. The set frequencies are sufficient to collect time-domain and 

frequency-domain changes in the machining conditions during the experiments. Some of the acquired 

power and vibration signals are illustrated in Fig. 8. 

Magnification = 9.2 

Magnification = 26.2 

Wear area: 

Length = 0.763 mm 

Width = 0.357 mm 



 

 

 

Fig. 8: Acquired power and vibration signals. 

4.2 Cutting Tool Wear Prediction 

Tool wear condition prediction using the CNN-RF model was executed on the edge device 

(Raspberry Pi). In the model, 2/3 experimental results were used for model training, and 1/3 

experimental results were used for validation. Fig. 9 shows the performance results of two CNNs in the 

CNN-RF model for processing power and vibration signals in terms of prediction accuracy and loss. In 

Fig. 9, the accuracies and losses are for the training and validation datasets, respectively. 

 

 

Fig. 9: Accuracies and losses of the CNNs for power and vibration signals. 

The accuracies of the cutting tool wear prediction for the power and vibration signals were 70.0% 

and 85.0%, respectively. The losses for the signals were 0.54 and 0.27, respectively. Considering that 

the power and vibration signals exhibited different effects on the prediction accuracy, extracted features 



 

 

from the signals using the two CNNs were fused to enhance the prediction performance. With the 

introduction of the RF model, the prediction accuracy was further improved to reach 90.6% (the 

performance of the RF model was indicated using accuracy, precision, recall and F1-score shown in 

Table 5). Industrial surveys conducted proved that the prediction accuracy of the CNN-RF model met 

the general requirement of industrial practices [16]. 

Table 5: The evaluation result of the RF model. 

Accuracy Precision Recall F1-score 

90.6% 94.7% 90.0% 92.3% 

The memory utilisation rate of the CNN-RF model was monitored. In the entire monitoring process, 

the maximum usage was 334.3MiB (0.55GB), which was within the capacity of Raspberry Pi. It showed 

that the CNN-RF model was executable and effective on the edge end. To further demonstrate the 

performance and superiority of the CNN-RF model, four mainstream machine learning models were 

used for benchmark, i.e., support vector machine (SVM), multilayered perceptron (MLP), k-nearest 

neighbours (KNN) and naive bayes (NB). Assessment results in terms of accuracy, precision, recall and 

F1-score are shown in Table 6. For accuracy, precision and F1-score, the CNN-RF model achieved the 

best results. For recall, the CNN-RF model achieved the second-best result. In summary, the CNN-RF 

model performed stably and its results were satisfactory in general. 

Table 6: Evaluation results of the machine learning algorithms. 

Model 
Evaluation criteria 

Accuracy Precision Recall F1-score 

CNN-RF 93.26% 94.74% 90.00% 92.31% 

SVM 87.50% 94.44% 85.00% 89.47% 

MLP 87.50% 86.36% 95.00% 90.48% 

KNN 84.38% 85.71% 90.00% 87.80% 

NB 81.25% 93.73% 75.00% 83.33% 

Moreover, the computational time for the above five models was monitored. The results are shown 

in Fig. 10. It showed that MLP took the longest time, i.e., 1.8s, while SVM, KNN and NB took 1.06s, 

0.6s and 0.5s, respectively. The computational time for the CNN-RF model was moderate. That is, 

CNN-RF was 15.5% faster than KNN, 29.5% faster than NB, but 60.6% less than MLP and 33.0% less 



 

 

than SVM. It can be concluded that the CNN-RF model presents a more balanced performance in 

prediction accuracy and computational efficiency. 

 
Fig. 10: The computational time by the models. 

4.3 Signal Compression 

To facilitate the processing of the system presented in this research, the continuously collected power 

and vibration signals were segmented according to the three groups of experiments. That is, 37 subsets 

for group 1, 29 subsets for group 2, and 39 subsets for group 3, were created. Segmented signals were 

normalised to the same size by removing invalid values in the signals, followed by the compression 

process of converting the signals into the image format. Statistically, the compression rate for the signals 

of the three groups via image compression process reached 89.0% on average. In Fig. 11, the 

comparative dataset sizes of the signals and the compressed images for the three groups are shown. The 

compression rates of the three groups are summarised in Table 7. 

 

Fig. 11: The dataset sizes of three groups before and after the image compression process. 



 

 

Table 7: The compression rates of the power and vibration signals. 

Signal Group 1 Group 2 Group 3 

Power signals 96.0% 97.0% 97.9% 

Vibration signals 69.8% 74.3% 64.3% 

The type of Raspberry Pi used in this system is Raspberry Pi zero, and its RAM capacity is 1.0G. 

To verify whether Raspberry Pi has an enough RAM to process data, the memory usage during the 

entire life of the experiments was recorded. The maximum RAMs required for processing the power 

and vibration signals were 0.27GB and 0.55GB, respectively, which were within the allowable capacity 

of the Raspberry Pi zero. 

4.4 Cutting Tool RUL Prediction 

The CNN-LSTM model was used to predict the RUL of a cutting tool on the cloud. In this research, 

three datasets were adopted to validate this research. Moreover, as the most ordinarily used tool life 

criteria, the flank wear is adopted to express the cutting tool RUL in this work. In general, the threshold 

of the cutting tool RUL should be determined by the actual application scenario and demand. Based on 

the dataset employed, the actual RUL of each cutting tool is defined as the remaining processable cycle, 

37, 29 and 39, respectively. Based on the predicted tool flank wear, the remaining processable cycle 

can be calculated below: 

 
RUL𝑝

𝑖 =
𝑤𝑝

𝑖 ∙ RUL𝑎
𝑖

𝑤𝑎
𝑖

 (10) 

where RUL𝑎  denotes the actual remaining processable cycle, which is {37, 36,⋯ ,1} for example, 

𝑤𝑝 denotes the predicted flank wear, 𝑤𝑎  denotes the actual measured flank wear, 𝑖 denotes the number 

of the cuts.   

In addition, to emphasise that the developed method is feasible to predict the RUL in a wide range 

of practical applications, a polynomial regression fitting model is constructed based on the remaining 

processable cycle obtained by Eq. (10) and the predicted flank wear. The regression function can be 

described below: 

 
𝐹 = 𝑏0 + 𝑏1 ∙ 𝑤1 + 𝑏2 ∙ 𝑤2

2 +⋯+ 𝑏𝑘 ∙ 𝑤𝑘
𝑘 =∑ 𝑏𝑗

𝑘

𝑗=0
∙ 𝑤𝑘 (11) 



 

 

where 𝐹 denotes the RUL of a cutting tool, 𝑤 denotes the predicted flank wear for the cutting tool, 

𝑏𝑗 denotes the regression coefficients, 𝑘 denotes the number of the cuts. 

The RUL prediction results for the three validation sets are shown in Fig. 12. It displays that the 

model fitted the flank wear and the RUL effectively. To evaluate the accuracy of the prediction, the 

mean absolute error (MAE) (MAE = 
1

𝑛
∑ |𝑦̃ − 𝑦|𝑛
𝑖=1 , where 𝑛 is the training sample size, 𝑦 ̃is the 

predicted RUL and 𝑦 is the actual RUL), was used to quantify the absolute error between prediction 

and actual values. MAEs of the three validation sets were 0.88, 0.89 and 0.90, respectively. As the 

values of the three 𝑅2 were close to 1, it demonstrates that the results generated by the CNN-LSTM 

model fitted the ground-truth RUL values well. Thus, it can conclude that the CNN-LSTM model has 

a good performance in predicting the RUL of a cutting tool. 

 

Fig. 12: The predicted RULs of cutting tools based on three validation datasets. 

5. Conclusions 

To minimise tooling waste and improve machining quality, it is paramount to carry out an efficient 

prediction of tool wear conditions and an accurate prediction of tool RUL during CNC machining 

processes. With this aim, in this research, a novel system for cutting tool wear and RUL prediction is 

developed. The major functions of the system and the system validation are from the following aspects: 

• A lightweight CNN-RF model is designed and deployed on an edge device to efficiently estimate 

cutting tool wear conditions to support tool severity resilience; 

• Furthermore, a CNN-LSTM model with a comprehensive analytic capability is designed and 

deployed at a cloud to estimate cutting tool’s RUL based on longer-term accumulated signals to 

optimise tool parameters on the fly; 



 

 

• This designed system was evaluated using real-world manufacturing experiments. Experimental 

results show that the accuracy of the tool wear prediction by the CNN-RF model was 90.6%, the 

accuracy of the cutting tool’s RUL prediction by the CNN-LSTM model was 93.2%, and the volume 

reduction of cutting tool condition signals by the signal compression mechanism achieved 89.0%; 

• Benchmarks on several mainstream machine learning algorithms were carried out to demonstrate 

the effectiveness and superiority of the developed research. 

In future, the approach developed in this research can be extended to provide a more comprehensive 

assessment and prediction of tool wear conditions (including flank face wear, rake face wear, etc.) based 

on more types of signals. 
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