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a b s t r a c t 

Generating the missing data of 3D object point clouds from partial observations is a challenging task. 

Existing state-of-the-art learning-based 3D point cloud completion methods tend to use a limited number 

of categories/classes of training data and regenerate the entire point cloud based on the training datasets. 

As a result, output 3D point clouds generated by such methods may lose details (i.e. sharp edges and 

topology changes) due to the lack of multi-class training. These methods also lose the structural and 

spatial details of partial inputs due to the models do not separate the reconstructed partial input from 

missing points in the output. 

In this paper, we propose a novel deep learning network - TreeNet for 3D point cloud completion. TreeNet 

has two networks in hierarchical tree-based structures: TreeNet-multiclass focuses on multi-class train- 

ing with a specific class of the completion task on each sub-tree to improve the quality of point cloud 

output; TreeNet-binary focuses on generating points in missing areas and fully preserving the original 

partial input. TreeNet-multiclass and TreeNet-binary are both network decoders and can be trained inde- 

pendently. TreeNet decoder is the combination of TreeNet-multiclass and TreeNet-binary and is trained 

with an encoder from existing methods (i.e. PointNet encoder). We compare the proposed TreeNet with 

five state-of-the-art learning-based methods on fifty classes of the public Shapenet dataset and unknown 

classes, which shows that TreeNet provides a significant improvement in the overall quality and exhibits 

strong generalization to unknown classes that are not trained. 

© 2023 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

3D point clouds, captured by various sensor technologies such 

s laser and RGB-D scanners and depth cameras, suffer from large 

issing data due to complicated occlusions, unreliable measure- 

ents, limited viewing angles and the resolution of various sen- 

ors in dealing with texture-less regions of the scene. Therefore, 

enerating a complete 3D point cloud (i.e. 3D point cloud comple- 

ion) from a captured incomplete point cloud is an essential task 

or a wide range of 3D vision applications from augmented real- 

ty [1] , robotics [2,3] to navigation and scene understanding [4,5] . 

ome previous learning-based methods [6,7] convert 3D datasets 

nto structured and ordered 3D voxel grids for network training. 

owever, these methods consume high computer memories, and 

utput qualities are limited by voxel grid resolutions. Recently pro- 
∗ Corresponding author. 

E-mail address: wtang@bournemouth.ac.uk (W. Tang) . 

d

t

c

m

ttps://doi.org/10.1016/j.patcog.2023.109476 
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osed PointNet [8] processes 3D point cloud dataset directly using 

ulti-layer perception (MLP) models without voxelization. Point- 

et has been adapted to many computer vision applications such 

s 3D point cloud classification [8,8,10] , object recognition [11] , ob- 

ect detection [12,13] , object segmentation [14,15] and registration 

asks [16–18] . 

For 3D point cloud completion, a recent deep learning-based 

pproach [19] adopts a PointNet-based encoder [8] to extract 3D 

oint cloud representation for a single class (e.g. airplane ob- 

ects) of the 3D point cloud completion task. FoldingNet [20] uses 

 PointNet-based encoder and proposes a folding operation in 

he decoder that deforms a 2D grid into a 3D point cloud. 

CN [21] combines features from the intermediate and the fi- 

al layer in the PointNet encoder and adopts the folding opera- 

ion in a decoder. The folding operation, however, specifically en- 

orces the decoder to generate a specific mapping of the input 

ata, which constrains the learning process by limiting the solu- 

ion search space. To avoid using the folding operation in a de- 

oder, TopNet [22] follows the structure of PointNet [8] , using MLP 

odels to extract features in intermediate layers and generating 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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he entire 3D point cloud as the output. PMPNet [23] moves each 

oint in the partial input to complete the point cloud instead of 

irectly generating the complete 3D point clouds. Disp3d [24] mis- 

atches the features between different classes, which results in 

oor generalization ability on unknown classes. There are two 

hared problems with these methods for 3D point cloud com- 

letion. First, these methods are sensitive to the geometric forms 

nd shapes of training datasets of 3D point clouds. Therefore, they 

annot handle multi-classes effectively, even a single class that 

ontains mostly different shapes. Training a class-invariant model 

ith multiple classes of training datasets is difficult with these 

ethods. When the number of classes increases in the training 

ataset, these methods produce low-quality 3D point cloud out- 

uts that lack structural and spatial details, such as sharp edges 

nd topology changes. Second, these methods lose original struc- 

ural and spatial details in the final output due to the fact that 

hey regenerate the entire 3D point cloud and do not separate the 

econstructed partial input from the missing points in the final 

utput. 

Here, we make an important observation that the partial input 

hould be fully preserved rather than regenerated. Based on this orig- 

nal idea, in this paper, we propose a novel deep learning-based 

etwork by devising hierarchical tree-based decoders to build a 

earning network-TreeNet for 3D point cloud completion. TreeNet 

ombines two networks. One (TreeNet-multiclass) is for multi-class 

raining and the other (TreeNet-binary) is for missing points gen- 

ration with original structure-preserving. More specifically, the 

reeNet-multiclass decoder assigns each class of a completion task 

o a specific sub-tree of the root node in the tree. The root node 

f the tree is a global feature vector generated from a Point- 

et [8] based encoder. The number of sub-trees to the root node 

s designed to be identical to the number of classes in the training 

ata. Each sub-tree of the root node is designed to generate 3D 

oint clouds from a specific class and maintains the quality of out- 

ut for each class of data when the number of classes increases, 

s shown in Fig. 2 . Most importantly, although each sub-tree is de- 

igned for a specific class during the training, this does not limit 

hese sub-trees to be used for unknown classes once the model 

as been trained. (Refer to Section 4.5 for more details.) TreeNet- 

inary generates points in missing areas and fully preserves the 

tructural and spatial details of partial input in the final output, 

s shown in Fig. 3 . TreeNet-binary is a binary tree structure that 

as a left leaf node and a right leaf node. The left leaf node gen-

rates the reconstruction of the partial input 3D point cloud, and 

he right leaf node aims to generate points in missing areas. Once 

he model has been trained, the final output is the combination 

f the missing data generated from the right leaf node and the 

riginal partial input 3D point cloud. TreeNet-binary can be con- 

idered a sub-tree of the root node in TreeNet-multiclass, and also 

e an individual decoder trained separately with a PointNet-based 

ncoder. 

We propose three novel forward propagation methods to train 

ur TreeNet-multiclass, TreeNet-binary and TreeNet, respectively. 

irst, to train the TreeNet-multiclass for multi-class 3D point cloud 

ompletion, we propose an activation gate for the standard forward 

ropagation to activate and deactivate sub-trees of the root node 

y assigning each class of a completion task to its corresponding 

ctivated sub-tree. Unlike the standard backward propagation, the 

radient of the loss function in TreeNet-multiclass is only calcu- 

ated on the activated sub-trees during each batch of the train- 

ng. Second, the forward propagation for TreeNet-binary splits fea- 

ures of the root node to a binary tree structure where the left leaf

ode reconstructs the partial input and the right leaf node gen- 

rates points in missing areas. Third, TreeNet is trained using the 

ombined forward propagation methods of TreeNet-multiclass and 

reeNet-binary. 
2 
The main contributions of this paper are: 

• A novel TreeNet-multiclass decoder is proposed for multi-class 

3D point cloud completion. We evaluate our model on 50 

classes of training datasets, whereas the majority of the state- 

of-the-art methods only use 8 classes. 
• A novel TreeNet-binary decoder is proposed, which focuses on 

generating points in missing areas and fully preserving the orig- 

inal partial input 3D point cloud. 
• A novel TreeNet decoder is proposed, which combines the ad- 

vantages of the TreeNet-multiclass and the TreeNet-binary for 

3D point cloud completion. 
• Three novel forward and backward propagation methods 

are proposed to train TreeNet-multiclass, TreeNet-binary and 

TreeNet decoders, respectively. 
• TreeNet-multiclass, TreeNet-binary and TreeNet exhibit strong 

generalization to unknown classes that are never trained. 

. Related work 

Research on 3D shape completion can be categorized into three 

lasses of approaches: geometry-based, data-driven based and 

earning-based methods. Geometry-based approaches [25,26] com- 

lete 3D shapes by using the symmetric information from the par- 

ial input, while the data-driven based method [27] relies on the 

ssumption that the database must include very similar shapes. 

ur work belongs to learning-based methods that can be further 

ategorized according to the forms of the input (i.e. 3D voxel grids 

r 3D point clouds). 

Volumetric 3D Shape Completion: Currently, one major 

romising progress for the 3D shape completion task is utilizing 

D learning-based neural networks that are successful at learn- 

ng 3D data representations and features automatically, reducing 

he incompleteness caused by designing features manually. 3D 

earning-based architecture largely depends on the representation 

f the 3D data, such as volumetric voxel grids or 3D point clouds. 

ince convolutional neural networks can process structured and 

rdered 3D datasets more effectively than unstructured datasets, 

ost previous 3D learning-based methods [6,7] used voxelized 

epresentations for 3D shape completions. However, voxelization 

auses high computational costs when the resolution increases 

ramatically, and low resolution results in low-quality output [28] . 

3D Point Cloud Completion: PointNet [8] and Point- 

et++ [9] operate directly on 3D point clouds without voxelization, 

nd several state-of-the-art approaches based on PointNet [8] are 

roposed for 3D point cloud completion. Achlioptas et al. [19] in- 

roduce an Auto Encoder [29] and a Generative Adversarial 

et (GAN) [30] to learn 3D point cloud representations by fo- 

using on a single class of 3D point cloud completion task. 

oldingNet [20] proposes a folding operation in the decoder 

hat deforms a 2D grid into a 3D point cloud and evaluates 

he different layers of the folding operations to tune the model. 

CN [21] evaluates the different number of PointNet layers and 

ully connected layers in the encoder and decoder to achieve the 

est performance. PCN also uses a folding operation to generate 

igher-resolution 3D point clouds from the coarse 3D point clouds 

n the final stage of the decoder. TopNet [22] first evaluates the 

ncoders in PointNet [8] , PointNet++ [9] and PCN [21] and finally 

hooses the encoder from PCN [21] . TopNet [22] then proposes a 

ecoder following tree structure and evaluates the number of MLP 

ayers with different f eature sizes in the decoder to achieve the 

ighest accuracy in the 8 classes of datasets. Specifically, the root 

ode in TopNet [22] is the global feature of the input data. The 

utput of each leaf node represents a single point in a 3D point 

loud, and all leaf nodes consist of a complete 3D point cloud. 

herefore, features of a partial input in the tree root pass through 
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Fig. 1. TreeNet architecture. TreeNet combines TreeNet-multiclass and TreeNet-binary. 

Fig. 2. TreeNet-multiclass architecture. Each sub-tree is designed to focus on a specific class of 3D point cloud completion tasks during the training. Once trained, these 

sub-trees can be used for unknown classes. (Refer to Section 4.5 for more details about unknown classes.) 
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ll nodes to regenerate an entire 3D point cloud. The architecture 

f the TopNet [22] is not designed for multi-class 3D point cloud 

ompletion, and it loses the structural and spatial details of partial 

nputs. In contrast, our TreeNet focuses on multi-class training 

nd missing points generation with original structural preserva- 

ion, and the architecture of our proposed TreeNet is completely 

ifferent to the tree in TopNet [22] . PMPNet [23] applies Point- 

et++ [9] encoder and generates translation matrices for each 

oint in the partial input in the decoder, which translates the in- 

omplete input to the nearest occluded regions. PMPNet [23] also 

nalyses the different recurrent units and the different searching 

adii in the proposed recurrent path aggregation module to tune 

he decoder. Disp3d [24] proposes a down-sampling operation, 

 neighbour pooling and an up-sampling operation to generate 

omplete 3D point clouds. 

. Methods 

Given a partial 3D point cloud input with N points where 

ach point is defined as P i = (x, y, z) , our novel tree-based decoder-

reeNet generates M missing points. Our TreeNet decoder, as 

hown in Fig. 1 , contains TreeNet-multiclass and TreeNet-binary. 

reeNet-multiclass ( Section 3.1 ) is for multi-class 3D point cloud 

ompletion, as shown in Fig. 2 . TreeNet-binary ( Section 3.2 ) gener- 

tes points in missing areas and preserves the original partial in- 

ut, as shown in Fig. 3 . Currently, we use TreeNet-binary as the 

ub-tree of the root node in TreeNet-multiclass and achieve our 

nal output of TreeNet. However, this does not limit the TreeNet- 
3 
ulticlass and TreeNet-binary to be used as individual decoders. 

reeNet-multiclass, TreeNet-binary and TreeNet are trained using 

heir own forward propagation methods ( Section 3.3 ) and a com- 

ined Chamfer distance [31] as loss ( Section 3.4 ) and within an 

uto-encoder framework that includes a PointNet [8] based en- 

oder as a first stage. 

.1. Multi-class point cloud completion 

To train a class-invariant model for multi-class 3D point cloud 

ompletion, TreeNet-multiclass assigns each class of the comple- 

ion task to a specific sub-tree of its root node, where each of the 

ub-tree is identical to others and designed to focus on generat- 

ng 3D point clouds from a specific class. To this end, The number 

f branches of the root node is identical to the number of classes 

n the training data. The architecture of our TreeNet-multiclass is 

hown in Fig. 2 . The root node contains common features of partial 

nputs generated from a PointNet-based encoder and each sub-tree 

ses these common features that are passed from the root node. 

he MLP is used for generating features at each level of the tree, 

nd the nodes at the same level of the tree are processed by the 

ame shared MLP. The root node is connected with D sub-trees 

hat correspond to D classes of data. To assign D classes of com- 

letion tasks to D corresponding sub-trees of the root, an activa- 

ion gate ( Eq. (2) ) is proposed for the forward propagation to ac- 

ivate and deactivate the sub-trees in our decoder, as illustrated 

n Section 3.3.1 . The feature only passes through its corresponding 

ctivated sub-tree, and other sub-trees will be temporarily deacti- 
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Fig. 3. TreeNet-binary architecture. The output 3D point cloud is divided into two segments (Output_L and Output_R). Output_L is the reconstruction of the partial input, 

and Output_R represents points in missing areas. Output_L and Output_R are used to calculate the combined loss during training. 
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ated. The deactivated sub-trees will be activated again when the 

orresponding features of input data pass through. The leaf node 

n each sub-tree represents a complete 3D point cloud. TreeNet- 

ulticlass is trained by using our novel forward and backward 

ethod described in Section 3.3 and the Chamfer distance loss as 

hown in Eq. 5 . 

Since the output of our TreeNet-multiclass decoder is a com- 

lete 3D point cloud by regenerating all points in the output, 

e further design our tree-based decoder to generate points in 

issing areas and preserve the original partial input structure 

 Section 3.2 ). 

.2. Missing points generation with original structure preserving 

To generate points in missing areas and fully preserve the struc- 

ure of the original partial input, we further propose a novel 

reeNet-binary decoder that follows a binary tree structure. The 

rchitecture of our TreeNet-binary is shown in Fig. 3 . The left leaf 

ode produces the reconstruction of the partial input, and the 

ight leaf node generates points in missing areas. The outputs from 

he left and the right leaf nodes are used to calculate the com- 

ined loss during training, as shown in Eq. (6) in Section 3.4 . Once

rained, the final output 3D point cloud is the combination of the 

utput of the right leaf node and the partial input. Therefore, the 

riginal partial input is fully preserved. 

Most importantly, there are two uses for our proposed TreeNet- 

inary. First, the TreeNet-binary can be considered an individual 

ecoder and trained with the novel forward propagation, as illus- 

rated in Eq. (3) in Section 3.3.1 . Second, we use the TreeNet-binary 

s the sub-tree of the root node in TreeNet-multiclass and achieve 

ur final TreeNet, as shown in Fig. 1 . 

.3. Forward and backward propagation in tree-based decoder 

In this section, we illustrate the forward and backward propa- 

ation methods for training TreeNet-multiclass, TreeNet-binary and 

reeNet, respectively. 

.3.1. Forward propagation 

Based on the design of our TreeNet-multiclass, we propose an 

ctivation gate to activate and deactivate sub-trees of the root 

ode for our novel forward propagation. The features pass through 

ll neurons in standard forward propagation ( Eq. (1) ), whereas 

he features only pass through their corresponding activated sub- 

ree in our proposed forward propagation for TreeNet-multiclass 
4 
 Eq. (2) ). 

z (l+1) 
i 

= w 

(l+1) 
i 

y (l) 
i 

+ b 

(l+1) 
i 

; y (l+1) 
i 

= f (z (l+1) 
i 

) (1) 

here i indexes the hidden neuron in each layer and l indexes the 

idden layer. w 

(l+1) 
i 

and b (l+1) 
i 

denote the i th weight and bias at 

ayer l + 1 . y (l) 
i 

is the i th features of inputs at the layer l. z (l+1) 
i 

is

he i th feature of inputs at the layer l + 1 . f (·) is any activation

unction, e.g. Tanh. 

Given D classes of training data, the number of sub-trees in our 

reeNet-multiclass is D . Let d ∈ { 0 , 1 , . . . , D } and defines the dth 

ub-tree from the left to the right. Assuming the feature size of the 

oot node is reshaped to [ B, D, m ] , where B is the batch size and

 D, m ] is the size of a feature vector F from a partial input 3D point

loud. Thus, there are B feature vectors in the root node preparing 

o pass through the tree. The purpose is to assign B feature vec- 

ors to their corresponding sub-trees during each batch of training. 

n activation gate ( Eq. (2) ) activates and deactivates sub-trees of 

he root node, and the size of the activation gate is [ B, D, m ] which

s as same as the feature size of the root node. Thus, there are 

 inner gates in the activation gate, where each inner gate g d is 

 vector with the size of m × 1 and all values in each g d are the

ame, either all 0 or all 1. Each inner gate corresponds to a sub- 

ree and decides whether the corresponding sub-tree is activated 

r deactivated. For the sub-trees with the corresponding features 

 coming through, all values in g d become 1, and sub-trees with- 

ut the corresponding F values in g d become 0. Act i v at ion _ Gate is

n element-wise product with B feature vectors in the root node 

o activate and deactivate sub-trees. Thus, the forward propagation 

or TreeNet-multiclass is defined by Eq. (2) . 

Act i v at ion _ Gate = [ g 1 , g 2 , g 3 , . . . , g D ] 

˜ y subtree _ Root = Act i v at ion _ Gate ∗ y Root 

z d 
(l+1) 

i 
= w 

d (l+1) 

i 
˜ y 

d (l) 

subt ree _ Root i + b 

d (l+1) 

i (d ∈ { 0 , 1 , . . . , D } ) 
y d 

(l+1) 

i 
= f (z d 

(l+1) 

i 
) 

(2) 

here ∗ denotes an element-wise product. y Root denotes the fea- 

ures in the root node of the tree. ˜ y subtree _ Root denotes features in 

he root of each sub-tree. d defines the dth sub-tree from the left 

o the right. l indexes the hidden layer and i indexes the hidden 

euron in each layer. ˜ y 
d (l) 

subt ree _ Root i denotes the i th activated or de- 

ctivate neuron in dth sub-tree at the layer l. w 

d (l+1) 

i 
and b d 

(l+1) 

i 

enote the i th weight and bias in dth sub-tree at layer l + 1 . z d 
(l+1) 

i 
enotes the i th feature vector in dth sub-tree at the layer l + 1 .
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Fig. 4. Forward propagation. The forward propagation only operates on the activated nodes in each batch of training. (a) One possible situation during a batch of training. 

(b) Another possible situation of another batch of training. 
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d (l+1) 

i 
denotes the i th feature vector in dth sub-tree at the layer 

 + 1 . f (·) is a Tanh activation function. 

The forward propagation for TreeNet-binary, as defined by 

q. (3) , is proposed to train TreeNet-binary. 

y RST = y Root idx 
(idx = 0 , . . . , m − 1) 

y LST = y Root idx 
(idx = m, . . . , 2 m ) 

z (l+1) 

RST (i ) = w 

(l+1) 

RST (i ) y 
(l) 

RST (i ) + b 

(l+1) 

RST (i ) ; y (l+1) 

RST (i ) = f (z (l+1) 

RST (i ) ) 

z (l+1) 

LST (i ) = w 

(l+1) 

LST (i ) y 
(l) 

LST (i ) + b 

(l+1) 

LST (i ) ; y (l+1) 

LST (i ) = f (z (l+1) 

LST (i ) ) 

(3) 

here y Root idx 
denotes the feature vector in the root node of the 

ree. y RST and y LST denote features for the right and left sub-trees, 

espectively. m is the feature size of the left and right sub-trees. 

 

(l) 

RST (i ) 
and y (l) 

LST (i ) 
denote the i th neuron in the right and left sub- 

rees at the layer l, respectively. w 

(l+1) 

RST (i ) 
and b (l+1) 

RST (i ) 
denote the i th 

eight and bias for right sub-tree at layer l + 1 . w 

(l+1) 

LST (i ) 
and b (l+1) 

LST (i ) 

enote the i th weight and bias for left sub-tree at layer l + 1 . z (l+1) 

RST (i ) 

nd z (l+1) 

LST (i ) 
denote the i th feature vector in right and left sub-trees 

t layer l + 1 , respectively. y (l+1) 

RST (i ) 
and y (l+1) 

LST (i ) 
denote the i th feature 

ector after an activation function f (·) in right and left sub-trees 

t layer l + 1 , respectively. 

The TreeNet combines TreeNet-multiclass and TreeNet-binary 

nd is trained using the combined forward propagation of TreeNet- 

ulticlass and TreeNet-binary, as defined by Eq. (4) . 

Act i v at ion _ Gate = [ g 1 , g 2 , g 3 , . . . , g D ] 

˜ y subtree _ Root = Act i v at ion _ Gate ∗ y Root 

˜ y 
d (l) 

RST = 

˜ y 
d (l) 

subtree _ Root idx 
(d ∈ { 0 , 1 , . . . , D } ) 

(idx = 2 d × m, . . . , (2 d + 1) × m − 1) ;

˜ y 
d (l) 

LST = 

˜ y 
d (l) 

subtree _ Root idx 
(d ∈ { 0 , 1 , . . . , D } ) 

(idx = (2 d + 1) × m, . . . , (d + 1) × 2 m − 1) 

z d 
(l+1) 

RST (i ) = w 

d (l+1) 

RST (i ) y 
d (l) 

RST (i ) + b 

d (l+1) 

RST (i ) ; y d 
(l+1) 

RST (i ) = f (z d 
(l+1) 

RST (i ) ) 

z d 
(l+1) 

LST (i ) = w 

d (l+1) 

LST (i ) y 
d (l) 

LST (i ) + b 

d (l+1) 

LST (i ) ; y d 
(l+1) 

LST (i ) = f (z d 
(l+1) 

LST (i ) ) 

(4) 

here ˜ y 
d (l) 

RST and 

˜ y 
d (l) 

LST denote the dth right and left sub-trees at layer 

, respectively. m is the feature size of each sub-tree root node and 

s also the size of each inner gate g d . w 

d (l+1) 

RST (i ) 
and b d 

(l+1) 

RST (i ) are the 
5 
 th weight and bias in dth right sub-tree at layer l + 1 . w 

d (l+1) 

LST (i ) 
and

 

d (l+1) 

LST (i ) are the i th weight and bias in dth left sub-tree at layer l + 1 .

 

d (l+1) 

RST (i ) 
and y d 

(l+1) 

LST (i ) 
denote the i th feature vector after an activation 

unction f (·) in dth right and left sub-trees at layer l + 1 , respec-

ively. 

Assuming there are T 3D point clouds in the training set, in- 

luding D classes of datasets. The B training point clouds in each 

atch of the training are randomly selected from the training set, 

nd the whole training set is trained with E epochs. Thus, there are 
T 
B × E different situations of the forward propagation during the 

reeNet training, and the values in the activation gate are automat- 

cally changed 

T 
B × E times based on the class of the randomly se- 

ected data. We show two possible situations of the forward propa- 

ation for TreeNet during two different batches of training in Fig. 4 . 

he second sub-tree from the left to the right is deactivated in (a) 

ut activated in (b). The first sub-tree from the left is deactivated 

n (b) but activated in (a). 

.3.2. Backward propagation 

Backward propagation (BP) is the major learning procedure that 

epeatedly adjusts the weights and biases of the connections in 

he network to minimize a measure of the difference between the 

utput and the ground truth. Since the values of nodes in de- 

ctivated sub-trees are zero, the gradient of the loss function in 

ur BP is only calculated on the activated sub-trees during each 

atch of training. Whereas the existing learning-based methods 

or 3D point cloud completion [19–24] need all neurons in the 

ecoder to participate in backward propagation during training. 

herefore, our TreeNet is more efficient and effective in training 

ulti-classes of data. Similarly to the forward propagation, we 

how two possible situations of the backward propagation dur- 

ng two different batches of training in Fig. 5 . The first sub-tree 

f the root node from the left to the right is deactivated in (a) 

ut activated in (b). The second sub-tree of the root node from 

he left to the right is activated in (a) but deactivated in (b). 

he last sub-trees to the right are all deactivated in both (a) 

nd (b). 

.4. Loss function 

The loss function for 3D point cloud completion measures the 

ifference between the output 3D point cloud S out put and the 

round truth point cloud S gt . The loss is defined to be invariant 

o any permutation of 3D point clouds in both S out put and S gt . 

imilarly to the state-of-the-art methods [20–24] , we also use the 



L. Xi, W. Tang and T. Wan Pattern Recognition 139 (2023) 109476 

Fig. 5. Backward propagation. The Backward propagation only operates on the activated nodes in each batch of training. (a) One possible situation during a batch of training. 

(b) Another possible situation of another batch of training. 

C

C

b

O

e

E

T

w  

i  

i  

t  

b  

g  

s

p

4

f

G

i

e

T

i

λ
T

t

(

n

S

t  

p

4

6

a

l

2

S

b

f

t

3

[  

i

u

N  

g

M

i  

n  

N

4

t

f

D

w

c

c

t

i

N

s

p

4

o

c

t

f

c

p

hamfer distance (CD) [31] in the loss function. 

D (S out put , S gt ) = 

1 

S out put 

∑ 

xεS out put 

min 

yεS gt 

|| x − y || 2 

+ 

1 

S gt 

∑ 

yεS gt 

min 

sεS out put 

|| y − x || 2 (5) 

Chamfer distance calculates the average nearest point distance 

etween S out put and S gt by finding the closest neighbour with 

 (nlogn ) complexity. In addition, S out put and S gt can be the differ- 

nt sizes of 3D point clouds. 

The loss function for TreeNet-multiclass is CD, as illustrated in 

q. (5) . Based on the Chamfer distance, the final loss functions for 

reeNet-binary and TreeNet are the same, as defined in Eq. (6) . 

Loss 1 = CD (S Out put _ L , S GT _ L ) 

Loss 2 = CD (S Out put _ R , S GT _ R ) 

Loss 3 = CD (S Out put _ L & R , S GT _ W hole ) 

Loss = (λ1 · Loss 1 + λ2 · Loss 2 ) + Loss 3 

(6) 

here Out put _ L is the output of the left leaf node, and GT _ L

s the ground truth corresponding to the Out put _ L . Out put _ R

s the output of the right leaf node, and GT _ R is the ground

ruth corresponding to the Out put _ R . Out put _ L & R is the com-

ination of the Out put _ L and Out put _ R , and GT _ W hole is the

round truth corresponding to the Out put _ L & R . λ is the corre-

ponding weight to balance the effect of gradients of the backward 

ropagation. 

. Experiments 

Our tree-based decoder is trained within an auto-encoder 

ramework that includes a PointNet-based encoder [21] . An Nvidia 

eforce 2080Ti GPU with 12G memory is used for network train- 

ng. We conduct three-stage experiments. First, we conduct a set of 

xperiments to decide the final design of our TreeNet-multiclass, 

reeNet-binary and TreeNet, including the effectiveness of the ex- 

sting point cloud encoders, depth of the trees and values of 

in the loss function ( Section 4.3 ). Second, we compare our 

reeNet-multiclass, TreeNet-binary and TreeNet with the state-of- 

he-art methods [20–24] on testing datasets from trained classes 

 Section 4.4 ). Third, we evaluate the generalization ability of each 

etwork on unknown classes that are never trained ( Section 4.5 ). 

imilar to the state-of-the-art methods [20–24] , the Chamfer dis- 

ance ( Eq. (5) ) is used as the evaluation metric to compare the out-

ut 3D point clouds with the corresponding ground truth. 
6 
.1. Implementation details 

We train TreeNet-multiclass, TreeNet-binary and TreeNet for 

00 epochs with a batch size of 32, a learning rate of 0.005, and 

n Adagrad optimizer. Our TreeNet-binary and TreeNet have L = 7 

evels for generating the output 3D point cloud with the size of 

048 × 3 , and TreeNet-multiclass has L = 3 levels, as illustrated in 

ection 4.3.2 . The weights defined in our total loss for TreeNet- 

inary and TreeNet are λ1 = 0 . 2 and λ2 = 0 . 8 ( Section 4.3.2 ). 

For TreeNet, the feature size for the tree root is 1024, and the 

eature size for each sub-tree root is 2048. The filter sizes for 

he left sub-tree in each level are [1024 , 1536 , 2048 , 2560 , 1024 ×
] . The filter sizes for the right sub-tree in each level are also 

1024 , 1536 , 2048 , 2560 , 1024 × 3] . The class label of each partial

nput 3D point cloud is automatically saved and decides the val- 

es in Act i v at ion _ Gate (l) ( Eqs. (2) and (4) ) during the training. 

As shown in Fig. 1 , TreeNet is trained with the input size of 

 × 3 and three ground truth sizes of N 1 × 3 , N 2 × 3 and N 3 × 3 ,

enerating the output 3D point cloud with the sizes of M 1 × 3 and 

 2 × 3 . Once trained, the size of the final output 3D point cloud 

s (N + M 1 ) × 3 . Note that N, N 1 , N 2 , N 3 , M 1 and M 2 can be any

umber. In our experiment, we set N = 1024 , N 1 = 512 , N 2 = 1024 ,

 3 = 2048 , M 1 = 1024 and M 2 = 1024 . 

.2. Datasets 

Training and Testing Datasets. For a fair comparison, we use 

he ShapeNetCore [32] dataset as the training and testing datasets 

ollowing FoldingNet [20] , PCN [21] , TopNet [22] , PMPNet [23] and 

isp3d [24] . ShapeNetCore [32] is composed of 55 object classes 

ith more than 50,0 0 0 3D point clouds, where each 3D point 

loud contains 2048 points. 

For the ShapeNetCore dataset of the 8 classes (29,774 point 

louds), the data used for training is 97%, and the data used for 

esting is 3%. We followed the percentage of dataset splitting used 

n the recent state-of-the-art methods PCN [21] , TopNet [22] , PMP- 

et [23] and Disp3d [24] , because, we have conducted comparative 

tudies with the results of these methods. This dataset includes air- 

lanes, cabinets, cars, chairs, lamps, sofas, tables and vessels. 

In addition to the 8 classes, we randomly select the further 

2 classes in ShapeNetCore and combine these with the 8 classes 

f ShapeNetCore. This dataset contains 50 classes (51,188 point 

louds), the data used for training is 90%, and the data used for 

esting is 10%. The testing dataset is not used for training and only 

or testing. This dataset includes airplanes, lamps, mugs, bowls, 

aps, laptops, buses, pillows, etc. 

Since all 3D point clouds in ShapeNetCore are complete 3D 

oint clouds, we create partial 3D point clouds from all training 
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Table 1 

Encoder analysis: Quantitative comparison of our approach against previous works 

using different encoders. E represents the encoder, and D is our TreeNet decoder. 

The encoders in TopNet [22] and PCN [21] are identical. The Chamfer distance is 

reported multiplied by ( 10 3 ). 

Methods CD 

PointNet [8] (E) + TreeNet(D) 1.002 

PointNet + [9] (E) + TreeNet(D) 7.284 

AE [19] (E) + TreeNet(D) 1.267 

PCN [21] /TopNet [22] (E) + TreeNet(D) 0.817 

Table 2 

Quantitative comparison between different levels of our networks tested on 8 

classes of testing data. The Chamfer distance is reported multiplied by ( 10 3 ). 

Level 3 4 5 6 7 8 

TreeNet-multiclass 1.31 1.37 1.38 1.37 1.47 1.45 

TreeNet-bianry 1.999 1.098 0.990 0.989 0 . 919 0.957 

TreeNet 1.065 0.853 0.853 0.853 0 . 817 0.828 
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Table 3 

Quantitative comparison between different weights for our final loss on 8 classes of 

ShapeNet. The Chamfer distance is reported multiplied by ( 10 3 ). 

λ1 , λ2 TreeNet-binary TreeNet 

λ1 = 0 . 1 , λ2 = 0 . 9 0.980 0.866 

λ1 = 0 . 2 , λ2 = 0 . 8 0 . 919 0 . 817 

λ1 = 0 . 3 , λ2 = 0 . 7 0.943 0.824 

λ1 = 0 . 4 , λ2 = 0 . 6 0.930 0.858 

λ1 = 0 . 5 , λ2 = 0 . 5 0.976 0.870 

λ1 = 0 . 6 , λ2 = 0 . 4 0.922 0.838 

λ1 = 0 . 7 , λ2 = 0 . 3 0.959 0.895 

λ1 = 0 . 8 , λ2 = 0 . 2 0.946 0.884 

λ1 = 0 . 9 , λ2 = 0 . 1 0.952 0.896 

Table 4 

Quantitative comparison of our approach against previous works tested on 8 and 

50 classes of testing data. The Chamfer distances are the average results on all 8 

and 50 classes and are reported multiplied by ( 10 3 ). Bold denotes the top three 

performing measures. 

Methods 8 Classes 50 Classes 

FoldingNet [20] 1.862 1.242 

PCN [21] 1.946 1.251 

TopNet [22] 1.378 1.079 

PMPNet [23] 1.911 1.081 

Disp3d [24] 1.880 1.649 

TreeNet-multiclass(Ours) 1 . 308 0 . 969 

TreeNet-binary(Ours) 0 . 926 0 . 757 

TreeNet(Ours) 0 . 823 0 . 596 
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nd testing sets. During each epoch of training, the partial 3D point 

louds are created from the training set with missing rates from 

0% to 50%. During the testing, the partial inputs are created from 

he testing set with missing rates from 20% to 50%. The removed 

reas are selected from k nearest points around a randomly se- 

ected point. 

Testing Dataset from Unknown Classes. To evaluate the ro- 

ustness and generalization ability of a network, we use the re- 

aining five classes of the ShapeNetCore dataset as the unknown 

lasses for the evaluation, including cameras, baskets, stoves, tow- 

rs and printers. These five unknown classes consist of 843 3D 

oint clouds that are not trained and strange to all networks. The 

esting partial point clouds are created with 50% of the missing 

ate. 

.3. Ablation studies 

In this section, we present the results of the ablation 

tudies to analyse the effectiveness of four state-of-the-art 

ointNet-based encoders for feature extraction modules in meth- 

ds [8,9,19,21,22] and our tree-based decoders. Following PCN [21] , 

opNet [22] , PMPNet [23] and Disp3d [24] , the model training 

nd testing are based on the same 8 classes of the ShapeNetCore 

atasets. 

.3.1. Encoder analysis 

We analyse the effectiveness of five state-of-the-art PointNet- 

ased encoders in PointNet [8] , PointNet++ [9] , AE [19] , 

CN [21] and TopNet [22] . 

In this experiment, to analyse the most effective encoder, we 

se the same TreeNet decoder as described in Section 4.3.2 but 

nly change the encoder. The results of this analysis are reported 

n Table 1 . As can be seen, the PCNs encoder shows a better per-

ormance than others. Thus, we choose PCNs encoder as our final 

ncoder. Note that compared across these methods using the same 

ncoder, our model outperforms the state-of-the-art methods (see 

ection 4.4.3 ). 

.3.2. Tree-based decoders analysis 

Tree-based decoders analysis is based on choosing the number 

f tree levels L in TreeNet-multiclass, TreeNet-binary and TreeNet, 

nd weights λ1 and λ2 in Eq. (6) . 

We choose the number of tree levels L in TreeNet-multiclass, 

reeNet-binary and TreeNet for an output point cloud size 2048 ×
 by varying L in 3 , 4 , 5 , 6 , 7 , 8 , respectively. The results on 8 

lasses of the ShapeNetCore dataset are reported in Table 2 . Based 
7 
n the results, we use 3 levels in TreeNet-multiclass and 7 lev- 

ls in TreeNet-binary and TreeNet. As shown in the table, one no- 

ices that after a certain level, the increase of the tree depth does 

ot necessarily increase the quality of the output, which is due to 

he fact that 3 levels in TreeNet-multiclass and 7 levels in TreeNet- 

inary and TreeNet already sufficiently include the majority of fea- 

ures in the output of 2048 points in this experiment. The results 

or different weights λ1 and λ2 are reported in Table 3 . We set 

1 = 0 . 2 and λ2 = 0 . 8 based on these results. In all experiments,

egardless of the value for L and λ above, our TreeNet-multiclass, 

reeNet-binary and TreeNet outperform the state-of-the-art meth- 

ds (see Table 4 in Section 4.4.3 ). 

.4. Evaluation of tree-based decoder 

In this section, we analyse the effectiveness of TreeNet- 

ulticlass, TreeNet-binary and TreeNet trained on 8 and 50 classes 

f training data by comparing our methods with state-of-the-art 

earning-based methods FoldingNet [20] , PCN [21] , TopNet [22] , 

MPNet [23] and Disp3d [24] . 

.4.1. Effectiveness of TreeNet-multiclass 

To analyse the effectiveness of the proposed TreeNet-multiclass 

or multi-class 3D point cloud completion, we train all networks 

ncluding FoldingNet [20] , PCN [21] , TopNet [22] , PMPNet [23] , 

isp3d [24] and our TreeNet-multiclass on the same 8 and 50 

lasses of training datasets, respectively. All networks are evaluated 

n the 8 and 50 classes of testing datasets ( Section 4.2 ), respec-

ively. 

Figure 6 shows the results of each trained model from the same 

artial input. The second row in Fig. 6 shows the results of each 

ethod based on 8 classes of training data, and the third row 

hows the results based on 50 classes of training data. Chamfer 

istance (CD) has been calculated between each result and ground 

ruth and shown at the bottom of each figure. Based on the Cham- 

er distances, the quality of output 3D point clouds from Fold- 

ngNet [20] , PCN [21] , TopNet [22] and PMPNet [23] decreases 

hen the number of classes increases from 8 to 50 in the train- 
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Fig. 6. Qualitative completion results from the same partial input based on 8 and 50 classes of training data. The second and third rows show the completion results of 

models trained on 8 and 50 classes of data, respectively. 

Table 5 

Evaluations of every class in 8 classes of testing datasets. The Chamfer distances reported are multiplied by ( 10 3 ). Bold denotes the top three performing 

measures. 

Methods plane cabinet car chair lamp sofa table vessel 

FoldingNet [20] 1.56 1.99 1.15 2.87 2.39 1.78 1.95 1.21 

PCN [21] 1.33 2.11 1.18 2.94 2.43 1.95 2.06 1.57 

TopNet [22] 0.89 1.57 1.02 1.99 1 . 70 1.48 1 . 35 1.03 

PMPNet [23] 1.18 2.65 1.53 2.46 2.27 1.75 2.50 0.95 

Disp3d [24] 0.95 1.51 0.92 2.73 3.73 1.46 2.42 1.32 

TreeNet-multiclass 0 . 75 1 . 40 0 . 91 1 . 97 1.75 1 . 38 1.48 0 . 82 

TreeNet-binary 0 . 53 1 . 17 0 . 60 1 . 30 1 . 37 0 . 82 1 . 00 0 . 62 

TreeNet 0 . 44 0 . 96 0 . 53 1 . 12 1 . 29 0 . 74 0 . 98 0 . 53 

Table 6 

Evaluations on the 50 classes of testing datasets. Nine classes of results are selected and displayed. The Chamfer distance is reported multiplied by ( 10 3 ). Bold 

denotes the top three performing measures. 

Methods table bench bus laptop pistol pot monitor bed mug 

FoldingNet [20] 1.98 1.42 0.60 1.40 1.21 1.44 1.16 1.98 1.85 

PCN [21] 1.96 1.14 0.63 1.01 1.07 1.49 1.15 2.23 1.92 

TopNet [22] 1.49 0.92 0.63 0.86 0.96 1.58 0.98 1.99 1.59 

PMPNet [23] 2.46 0.83 0.77 0.92 0 . 80 0 . 97 0 . 72 1 . 02 1.17 

Disp3d [24] 5.05 1.33 0 . 49 0 . 61 0.89 1.99 1.53 3.05 1.46 

TreeNet-multiclass 1 . 44 0 . 81 0.57 0.62 0.84 1.50 0.88 1 . 98 1 . 01 

TreeNet-binary 1 . 02 0 . 69 0 . 37 0 . 59 0 . 55 0 . 93 0 . 62 2.11 1 . 09 

TreeNet 0 . 87 0 . 48 0 . 30 0 . 38 0 . 48 0 . 87 0 . 50 1 . 15 0 . 78 
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ng data, whereas our TreeNet-multiclass model has shown stable 

esults when the number of classes increases. 

The average Chamfer distances of our TreeNet-multiclass 

gainst the state-of-the-art methods tested on 8 and 50 classes of 

he testing data are shown in Tables 4 , 5 and 6 with qualitative re-

ults in Fig. 7 . Our TreeNet-multiclass outperforms FoldingNet [20] , 

CN [21] , TopNet [22] , PMPNet [23] and Disp3d [24] across all 8

nd 50 classes of testing data. As shown in Fig. 7 , Disp3d [24] gen-

rates a car from a partial vessel as an input, which shows the 

oor ability on multi-classes training. The multi-classes training for 

ur TreeNet-multiclass solves this problem and distinguishes fea- 

ures between each class. Most noticeably, the result of TreeNet- 

ulticlass has shown a 5.08% improvement trained on 8 classes of 

ata over the next best method TopNet [22] , and a 10.19% improve- 

ent trained on 50 classes over TopNet [22] , demonstrating the 

apability of TreeNet-multiclass in handling multi-class 3D point 

loud completion tasks effectively. 

.4.2. Effectiveness of TreeNet-binary 

To analyse the effectiveness of our proposed TreeNet-binary, 

ll networks are trained on the same 8 and 50 classes of train- 

ng datasets and evaluated on the same 8 and 50 classes of test- 

ng datasets ( Section 4.2 ), respectively. Figure 8 illustrates the final 

utput (h) of the TreeNet-binary which is the combination of the 
8 
artial input (a) and the output of the right leaf node (g), which 

roves that TreeNet-binary is able to generate points in missing 

reas and fully preserve the original partial input. 

We show average Chamfer distances in Tables 4 , 5 and 6 with 

ualitative completion results in Fig. 9 . As can be seen that 

reeNet-binary also outperforms FoldingNet [20] , PCN [21] , Top- 

et [22] , PMPNet [23] and Disp3d [24] across 8 and 50 classes of 

esting data, respectively. The result of TreeNet-binary has shown 

 32.80% improvement trained on 8 classes of data over the next 

est method TopNet [22] and a 29.84% improvement trained on 50 

lasses of data over TopNet [22] . 

.4.3. Effectiveness of TreeNet 

To assess the effectiveness of TreeNet, we not only com- 

are TreeNet with FoldingNet [20] , PCN [21] , TopNet [22] , PMP- 

et [23] and Disp3d [24] but also with TreeNet-multiclass and 

reeNet-binary. 

The average Chamfer distances of our TreeNet against the state- 

f-the-art methods on 8 and 50 classes of the testing data are 

hown in Tables 4 , 5 and 6 , with qualitative results shown in

ig. 10 . TreeNet combines the advantages of TreeNet-multiclass and 

reeNet-binary and outperforms TreeNet-multiclass and TreeNet- 

inary on 8 and 50 classes of testing data. In addition, TreeNet 

ignificantly outperforms FoldingNet [20] , PCN [21] , TopNet [22] , 
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Fig. 7. Qualitative completion results of models trained on 8 (first and second row) and 50 (third and fourth row) classes of data, respectively. 

Fig. 8. Illustration of TreeNet-binary output. 

Fig. 9. Qualitative completion results of methods trained on 50 classes of data. 
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MPNet [23] and Disp3d [24] across 8 and 50 classes of test- 

ng data. The result of TreeNet has shown a 40.28% improve- 

ent on 8 classes over the next best method TopNet [22] , and 

 44.76% improvement on 50 classes over TopNet [22] . As shown 

n Fig. 10 , FoldingNet [20] , PCN [21] and TopNet [22] have failed

o recover structural and spatial details such as sharp edges of a 

ench (2nd column), a laptop (6th column) and a monitor (7th col- 

mn) and topology change of a jar (5th column). Disp3d [24] con- 

uses features between classes to some extent and generates a 

ot from a partial jar (5th column). In contrast, TreeNet has suc- 

essfully generated these details and never confuses features be- 

ween classes. Most importantly, FoldingNet [20] , PCN [21] , Top- 

et [22] and Disp3d [24] all lose the structural and spatial details 

f the original partial input. On the contrary, our TreeNet-binary 

nd TreeNet generate points in missing areas and preserve the par- 

ial input. 
9 
.5. Generalization on unknown classes 

We extensively conduct several comparison experiments to 

valuate the generalization capability of our networks. All learned 

odels including FoldingNet [20] , PCN [21] , TopNet [22] , PMP- 

et [23] , Disp3d [24] and ours are trained on the same 50 

lasses of training data and directly tested on the unknown classes 

 Section 4.2 ) that are never trained. These shape datasets in un- 

nown classes are different from the training datasets, which poses 

 significant challenge to the generalization of all learning-based 

ethods. 

A partial 3D point cloud from an unknown class can be passed 

hrough the encoder to all sub-trees in the decoder. The root nodes 

n TreeNet-multiclass and TreeNet contain common features ex- 

racted from the encoder, and each sub-tree in the decoder uses 

hese common features to generate a complete 3D point cloud. As 
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Fig. 10. Qualitative completion results of models trained on 50 classes of data. 
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Table 7 

Evaluations on unknown classes. The Chamfer distance is reported multiplied by 

( 10 3 ). Bold denotes the top three performing measures. 

Methods camera basket stove tower printer Avg. 

FoldingNet [20] 2.05 1.62 1.59 1.42 1.99 1.73 

PCN [21] 2.03 1.64 1.49 1.34 2.02 1.70 

TopNet [22] 2.09 1.67 1.49 1.34 1.81 1.68 

PMPNet [23] 1 . 73 2.34 1.75 1.63 1 . 47 1.78 

Disp3d [24] 5.58 2.71 2.76 5.47 3.93 4.09 

TreeNet-multiclass 1.88 1 . 33 1 . 20 1 . 13 1.57 1 . 42 

TreeNet-binary 1 . 73 1 . 11 1 . 34 1 . 02 1 . 39 1 . 32 

TreeNet 0 . 98 0 . 85 0 . 77 0 . 62 0 . 90 0 . 82 

t

t

t

w

w

D

hown in Fig. 11 , a partial 3D shape from an unknown class is

assed through the encoder to all sub-trees in the decoder and 

e show the generalization abilities from different sub-trees in 

reeNet-multiclass and TreeNet, respectively. The final output is 

he best completion result with the lowest Chamfer distance be- 

ween each output and the ground truth. 

The performance of each method on unknown classes is re- 

orted in Table 7 with qualitative completion results of each 

ethod in Fig. 12 . Our TreeNet ranks first and achieves the best 

ompletion results on all five unknown classes, which shows 

he strong generalization and robustness evaluated on unknown 

lasses and also proves that the sub-trees can share common fea- 

ures among different classes. Refer to Section 5 for more detailed 

iscussions and illustrations about unknown data. 

. Discussion and limitation 

In this section, we first discuss the performance of completion 

esults on unknown datasets and then discuss the limitations of 

ur proposed TreeNet. 
10 
To show the common features that can be shared among sub- 

rees, we tested six types of car models using a single sub-tree in 

he decoders of TreeNet-multiclass and TreeNet. The results show 

hat our networks can handle the six types of 3D car models 

ith better performance than the other five state-of-the-art net- 

orks (FoldingNet [20] , PCN [21] , TopNet [22] , PMPNet [23] and 

isp3d [24] ), as shown in Fig. 13 . This experiment indicates that 
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Fig. 11. Completion results from different sub-trees in the tree for data in unknown classes. 

Fig. 12. Qualitative completion results of models on unknown classes with unknown shapes. 

11 
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Fig. 13. Qualitative completion results tested on different types of car models. 
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Table 8 

The number of network parameters in each method. ‘-’ means the number of net- 

work parameters does not increase when the number of training classes increases. 

Methods 

Parameters (trained on 

8 classes) 

Parameters (trained on 

50 classes) 

FoldingNet [20] 2,402,054 - 

PCN [21] 5,286,659 - 

TopNet [22] 9,965,117 - 

PMPNet [23] 5,435,163 - 

Disp3d [24] 100,318,976 - 

TreeNet-multiclass 15,515,904 59,599,104 

TreeNet-binary 22,869,248 - 

TreeNet 30,216,448 74,299,648 

T  

l

6

m

3

a

l

r

m

t

 single sub-tree can share common features for different types of 

D models in one class. Also shown in our experimental results on 

nknown classes, the sub-trees can share common features among 

ifferent classes, as shown in Figs. 12 and 11 . 

For datasets from unknown classes with unknown shapes, all 

etworks have certain generalizations to generate complete shapes 

nder such challenging conditions. Although our TreeNet ranks 

rst and achieves the best completion results on all five un- 

nown classes, which shows the strong generalization and robust- 

ess evaluated on unknown classes, all networks fail to generate 

etailed information in missing areas, as shown in Fig. 12 and 

able 7 . One possible reason could be that the current loss function 

easures geometrical features based on the global shape informa- 

ion, which needs more local feature information, thus, resulting in 

nsufficient features for fine details locally. This limitation will be 

ddressed in our feature work. 

One limitation of our TreeNet-multiclass and TreeNet is that 

he model size is linearly correlated with the number of training 

lasses, as shown in Table 8 . However, the number of parameters 

s still much smaller than that of Disp3d [24] . It is worth not-

ng that the number of parameters in our TreeNet-binary does not 

ncrease when the number of training classes increases, which is 

imilar to the state-of-the-art networks (FoldingNet [20] , PCN [21] , 

opNet [22] , PMPNet [23] and Disp3d [24] ). Although the num- 

er of parameters of our TreeNet-multiclass and TreeNet is around 

 (8 classes) to 10 (50 classes) times bigger than that of Fold- 

ngNet [20] , PCN [21] , TopNet [22] and PMPNet [23] , the result of
reeNet is 40.28% better on 8 classes than the next best method p

12 
opNet [22] , and 44.76% better on 50 classes than TopNet [22] . This

imitation will be addressed in our feature work. 

. Conclusion 

In this paper, we show the proposed networks, TreeNet- 

ulticlass, TreeNet-binary and TreeNet, can produce high-quality 

D point clouds on multi-class datasets for point cloud completion, 

nd these novel network structures outperform the state-of-the-art 

earning-based methods in terms of the quality of the completion 

esults on trained and unknown classes. TreeNet-multiclass is for 

ulti-class training and assigns a specific class of the completion 

ask to each sub-tree, while TreeNet-binary preserves the original 

artial input and generates points in missing areas. We propose 
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hree forward propagation methods to train TreeNet-multiclass, 

reeNet-binary and TreeNet separately. Our models achieve high- 

uality completion results and show remarkable generalization and 

obustness to unknown classes that are not trained. 

In future work, we will set up the dataset data in each class 

ased on semantic information. Shapes with similar semantic fea- 

ures will pass through their corresponding sub-trees, which may 

astly reduce the number of sub-trees when the number of train- 

ng classes increases drastically. The loss function for calculating 

he semantic features can also generate detailed information on 

he missing areas locally. 
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