
 

Entropy and a sub-group of geometric measures of paths predict the navigability of 

an environment 

 

Abstract  
 

Despite extensive research on navigation, it remains unclear which features of an environment 

predict how difficult it will be to navigate. We analysed 478,170 trajectories from 10,626 

participants who navigated 45 virtual environments in the research app-based game Sea Hero 

Quest. Levels were designed to vary in a range of properties such as their layout, number of goals, 

visibility (varying fog) and map condition. We calculated 58 spatial measures grouped into four 

families: task-specific metrics, space syntax configurational metrics, space syntax geometric 

metrics, and general geometric metrics. We used Lasso, a variable selection method, to select the 

most predictive measures of navigation difficulty. Geometric features such as entropy, area of 

navigable space, number of rings and closeness centrality of path networks were amongst the most 

significant factors determining the navigational difficulty. By contrast a range of other measures 

did not predict difficulty, including measures of intelligibility. Unsurprisingly, other task-specific 

features (e.g. number of destinations) and fog also predicted navigation difficulty. These findings 

have implications for the study of spatial behaviour in ecological settings, as well as predicting 

human movements in different settings, such as complex buildings and transport networks and may 

aid the design of more navigable environments.  
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1. Introduction 
 

Some environments are famously hard to navigate. Patients in Homey Hospital (USA) reportedly 

avoided leaving their rooms for fear of getting lost (Peponis et al., 1990). The Seattle Central 

Library, while being widely acclaimed for its aesthetics, is renowned for being difficult to navigate 

(Carlson et al., 2010; Kuliga et al., 2019). In a recent incident in Australia, a man died after getting 

lost in a rarely-used stairwell in a shopping mall, and he was only found three weeks later (Jeffrey, 

2019a). Poor building design has real-world consequences. But what factors make an environment 

hard to navigate? This is a key question in the study of human navigation, and yet so far, the 

existing work within the cognitive sciences has failed to provide a clear answer. 

  

The turn towards real-world approaches in the cognitive sciences has resulted in a renewed 

attention to the impact of environmental factors on spatial cognition. Wiener and Mallot (2003) 

found that region-connectivity influences navigation behaviour, in line with hierarchical theories 

of route planning. In their study of exploration patterns, Brunec et al. (2023) analysed integration, 

a space syntax measure of how well connected a path is, and found that those participants who 

spent more time in regions of high integration formed more accurate cognitive maps. However, 

most existing studies employ only a single or a few environmental metrics. This is a big setback 

because there is no consensus on which metrics impact navigation behaviour. Moreover, an 

important aspect in the study of navigation are computational models, which again often involve 

few environmental metrics (e.g. obstacles in Edvardsen et al., 2019, or information cost at decision 

points in Lancia et al., 2023). To evaluate whether computational models reproduce human 



 

navigational patterns in a given environment, we need to further our understanding of precisely 

how that environment affects human navigation, and this step requires advancing our knowledge 

of the impact of different environmental metrics. 

 

Previous research on the navigability of environments has come from a variety of disciplines 

ranging from psychology to architecture. To date, a series of environmental factors have been 

hypothesised to impact navigation behaviour, including: entropy of path orientations (Batty et al., 

2014), connectivity of paths (Li & Klippel, 2012, 2016), interconnection density (Slone et al., 

2016), visibility (He et al., 2019; Li & Klippel, 2012) and intelligibility of the paths/streets (Hillier 

1996, Barton et al., 2014). Farr et al (2012) reviewed existing research on environmental factors 

that affect navigation and listed city layout, colour and light, maps,signage, visibility, inter-

connection density and space syntax measures. Another research study included differentiation, 

visual access, layout complexity and signage as environmental factors that affect navigation 

performance (Montello, 2005). Another review article (Wolbers and Hegarty, 2010) identified the 

following environmental cues: discrete environmental objects, global orientation cues, geometric 

structure of the environment and symbolic representations were mentioned. Despite the large 

number of candidates, it is not clear yet which environmental factors help people more or make it 

harder to complete a navigation task.  

 

Four main approaches have been used to study how the environment impacts navigation and spatial 

behaviour. These are: a) examining GPS trajectory data in real-world environments collected as 

part of daily activities such as running (e.g. Bongiorno 2021), b) GPS trajectories from participants 

navigating real-world environments (e.g. Coutrot et al., 2019), c) testing navigation in the physical 

lab setting (e.g. Hamburger & Knauff, 2011), and d) testing with virtual reality (VR) environments 

(e.g. Slone et al. 2015;  Javadi et al., 2019a;  Brown et al., 2020; Ekstrom et al., 2018). A challenge 

with studying navigation in the real-world is that environmental features are hard to separate 

experimentally, and, as a result of their interaction, it is hard to deduce their impact on the difficulty 

of navigating an environment (Carlson et al., 2010; Montello 2007; Jeffery 2019b). A good 

example is Haq and Girotto’s (2003) Haq and Girotto’s (2003) study, in which they examined 

wayfinding in two separate hospital buildings in the U.S. to understand the relationship between 

wayfinding and intelligibility. While they found that intelligibility was a good predictor of success 

in mapsketching and pointing tasks, these results did not translate to wayfinding performance. The 

more intelligible environment was arranged around a very long corridor (with many decision 

points) along which most of the destinations were located. Small wayfinding errors would therefore 

result in participants having to retrace their steps, and thus incurring redundant decision point use 

(i.e. passing a decision point not required to complete the wayfinding task) and repeat decision 

point use (i.e. passing the same decision point twice). Also, when participants got lost, they 

wandered around, thus increasing the exposure to the environment which could have affected their 

performance in the mapsketching task (Haq & Girotto, 2003). Results of another wayfinding 

experiment highlighted that analysing performance in only two environments was a significant 

limitation, because a host of unaccounted factors (e.g. the rectilinearity of the street network) could 

account for the differences in the studied measures (Long and Baran, 2012). Recent research 

exploring when patients with dementia become lost in real-world situations helps to extend beyond 

two environments (Puthusseryppady et al., 2019; Puthusseryppady et al., 2020), but lacks the 

capacity for systematic comparison of variables that can be achieved in lab experiments. Previous 

studies in the lab and in virtual settings have compared a small number of environments while 



 

measuring a small number of environmental features. For instance, Slone et al. (2015) compared 

two virtual layouts systematically varying in one objective measure of plan complexity, the 

interconnection density (Li & Klippel, 2012; O’Neill, 1991; Slone et al., 2016). They found that 

more complex layouts were harder to navigate. The difficulty in assessing a given variable is that 

in the real-world it may interact with a plethora of other environmental features to determine the 

navigability of an environment. It is possible that when included with a range of other metrics 

across many environments the impact of a given metric becomes minimal.  

 

To study which environmental factors influence navigation (or wayfinding) performance, one 

would ideally test a large number of participants in a large number of spaces in which 

environmental factors are systematically varied. This approach is, of course, very time and resource 

consuming compared to most prior studies addressing this question. Here, we surmounted these 

challenges by calculating 58 spatial metrics to examine the trajectories of over 10,000 participants 

navigating 45 virtual environments in the mobile video game Sea Hero Quest (SHQ) (Coutrot et 

al., 2018; Spiers, Coutrot and Hornberger, 2021). The Gamification of experiments is a powerful 

tool for data acquisition. It has the potential to provide a large data sets especially if the 

game/experiment is designed to be fun and interactive (De Leeuw et al., 2020). Moreover, gamified 

studies  allows collecting data from large samples from different parts of the world, which is what 

SHQ was designed for (Morgan, 2016). Previous work has used SHQ to study the relationship 

between sleep duration and spatial navigation performance (Coutrot et al., 2022), the relationship 

between gender differences in navigation and countrywide gender inequality (Courtrot et al., 

2018), and age-related changes in spatial navigation strategies (Greg et al., 2022). The richness 

and volume of this data set allowed us to study different combinations of environmental features 

and their impact on wayfinding. Analysing the data with a variable selection method, we isolated 

eight spatial metrics that best explained navigability. 

 

2. Material and Methods 
 

2.1) Participants 

 

Between May 2016 and March 2019, 3,881,449 participants from every country downloaded and 

completed at least the first level of the game. 60.8% of the participants entered their demographics 

(age, gender, and nationality). The profile of the participants who played only the first levels of the 

game is likely quite different from the participants who completed all 45 wayfinding levels. To 

avoid selection biases and to be able to compare the levels with one another, we used the subsample 

of participants who completed all the levels in the game and provided demographics for the further 

analysis (to see the proportion of the total number of players per level, see Appendix B). As a result 

of this sampling process, 10,626 participants were included in the analysis. Among them, 5,219 

were male (age: M=41.89 years, SD=15.95 years) and 5,407 were female (age: 41.98 years, 

SD=16.32 years). 

 

2.2) Task 

 

In Sea Hero Quest, participants navigate a boat through a series of virtual environments (for an 

extensive description, see Coutrot et al., 2018; Spiers, Coutrot & Hornberger, 2021). The 

wayfinding task was designed with consideration of Wiener et al. 's taxonomy of human 



 

wayfinding tasks (2009) to involve wayfinding with path planning. The wayfinding performance 

in SHQ has been shown to be predictive of real-world navigation performance (Coutrot et al., 

2019). 

 

Participants navigated through 45 different levels. Level progression was linear, so participants 

needed to complete level N in order to access level N+1. At the beginning of each level, participants 

were presented a map showing a series of goal locations. They had to navigate to the goal locations 

in the indicated order (i.e., they needed to reach goal 1 first, then goal 2, etc). Participants could 

study the map and, after clicking the close button, the map disappeared and participants started to 

navigate (Figure 1). They used four commands during the game to move the boat: they tapped right 

to turn to the right, tapped left to turn to the left and swiped up to speed up, and swiped down to 

stop the boat. This was explained in the first levels of the game. If goals were not encountered in 

the required order, participants had to return from one goal to another in order to complete the task. 

The task was marked as complete once all goal locations had been visited in the appropriate order 

and the participant received between one and three stars depending on how quick they completed 

the level. If the participant took longer than a set time, an arrow indicated the direction to the goal 

along the Euclidean line to aid navigation. The results were uploaded on a server as soon as 

participants completed a level. If they were offline, then the data was stored on their device and 

sent when they were online again. 

 

2.3) Level design 

 

The levels were designed to vary in terms of spatial configuration, the number of goal locations, 

visibility conditions (i.e., fog versus clear environments), themes (e.g. arctic environment, swamps, 

etc), and landmark saliency (for more information about landmarks see Yesiltepe et al., 2021a, 

2021b;  Yesiltepe et al., 2020a, 2020b, 2020c). Some levels also used partially occluded maps (see 

Figure 1), such that participants did not have a full preview of the environment, just the start 

locations and the arrangement of goals. 



 

 
Figure 1. Navigation Task Sea Hero Quest. Top row: Example maps shown to participants at the start of 5 of the 45 

wayfinding levels tested. Each map is from a different themed region in the game.  Maps show starting location (blue 

arrow) and checkpoints  (red circles) to be navigated to in the order indicated by the numbers in the circles. Participants 

touched the close icon to close the map after studying the map (self-paced). Middle row: Views from the first-person 

view navigation period of the task. Tapping left or right of the boat allowed for steering. Stars at the top given an 

indication of time remaining to obtain 3, 2 or 1 star reward. Number of check-points reached is indicated top right. 

Middle map (level 38) shows an example of a map where the layout is obscured in the map image.Note: Levels with 



 

an obscured map layout were not consistently linked to levels with fog in the navigation phase. Bottom: Scaled 

difficulty of the levels is shown across time. The 45 wayfinding levels of the game were distributed across the 75 

levels of the game which included other features of the game (see Spiers, Coutrot and Hornberger, 2021). 
 

The levels were designed to have specific and controlled degrees of complexity that varied across 

levels. To this aim, we employed O’Neill’s ‘interconnection density’ measure (ICD). As we 

mentioned, ICD is  the average number of choices at decision points. In graph terms, ICD is the 

sum of the degrees of all decision points, divided by the total number of decision points in the 

graph. The reason we used ICD is that it has been found to be strongly correlated with the degree 

of perceived complexity of building layouts (r=0.78, p<0.01) (O’Neill, 1991). 

 

We generated layouts with a specific number of decision points and connections, resulting in a 

specific ICD measure for each layout. We produced a series of layouts varying in ICD values, and 

then analysed each potential layout to measure its intelligibility. Intelligibility is defined as the 

correlation between how well connected a space is (linked to the metric of degree centrality) and 

how accessible it is, which is expressed using a variation of the graph measure closeness centrality 

(Hillier et al., 1987). In this process, intelligibility served as a fitness function for inclusion in the 

game levels. We selected the final layouts so that they formed three groups varying in 

intelligibility: highly intelligible (0.8-0.85), averagely intelligible (0.5), and highly unintelligible 

(0.15-0.2). The game was designed such that levels with lower intelligibility values were generally 

encountered later in the game, and we expected these levels to be harder to complete and that they 

would result in higher difficulty scores1. The bottom part of Figure 1 includes the difficulty of each 

level, which shows that the later levels are on average harder to navigate compared to the first 

wayfinding levels.  

 

Once all the layouts were selected, they were transformed into the game levels by the game design 

company Glitchers Ltd. Another analysis was undertaken after the game design process to ensure 

that they retained the correct levels of intelligibility, post-transformation. At the final stage, each 

level was user-tested by the design team and the scientific and architectural team to ensure it was 

suitable. For example, if a level was too easy/hard to complete the navigation task, then the level 

was revised by adding/removing deadends, and simplifying/increasing what was estimated by the 

design team for complexity of the layout. All our environmental analyses for 58 metrics were 

completed only after the environment design was finalised and converted into game environments. 
 

 

2.4) Environment analysis 

 

To analyse the environmental configuration of each of the 45 levels, we employed 58 separate 

metrics (for a detailed description of each of the metrics, see Appendix A Table A1, and see 

Appendix A Table A.2. to see the results of our calculation for 58 metrics), which,  based on 

previous studies, were all potentially linked to navigation performance. The metrics fall into four 

families: task-specific metrics; space syntax relational metrics; space syntax geometric metrics; 

and general geometric metrics. 

 

 
1
 The term “difficulty” was used in a previous paper (Coutrot et al., 2019) and we continue to use the term for clarity 

and consistency. 



 

Task-specific measures correspond to those features that are not intrinsic to the spatial layout itself 

but that instead depend on the task that was set for participants to complete. These include: (a) the 

number of destinations (i.e. the number of goal locations the participant must reach before the task 

is marked as complete), (b) the weather (i.e. the presence or absence of fog within a level), map 

occlusion (i.e. whether or not the map is partially occluded) and the (c) shortest route (i.e. the 

shortest path passing all of the goal locations in the correct order from the starting point). In 

principle, tasks are made easier if goals are placed in a sequence that matches their ordering, while 

they are made more difficult if the shortest route between subsequent goals involves a lot of 

backtracking and crossing of previous routes. Other task related measures included map condition 

(occluded map vs clear map).  

 

Space syntax relational metrics and space syntax geometric metrics were developed using space 

syntax (see Appendix C.1-C.11. for the images we prepared to illustrate some of the space syntax 

metrics for each level), a set of techniques designed to measure the spatial configuration of built 

environments (Hillier & Hanson, 1984). These methods are based on the analysis of either lines of 

sight/movement (drawn according to inter-visibility between two points) or points/grids. This 

includes axial and segment analysis —which are line-based—, and visibility graph analysis (VGA) 

and isovist analysis —which are based on points/grids. Axial analysis is based on drawing lines of 

sight, which relate the visibility and movement through navigable spaces. A segment is a line that 

transects the space between two junctions/decision points (Al-Sayed et al., 2014; Hillier & Iida, 

2005). VGA is based on the visibility of each point (or grid) from the rest of the environment 

(Turner et al., 2001; Jiang & Claramunt, 2002). Isovists measure the set of visible sub-spaces from 

a specific point. 

 

The space syntax analysis of the levels followed several stages. First, the layouts of all 45 levels 

were collected as .png files, in the form of solid-void versions of the layouts: black for barriers to 

navigation and white for navigable space (Figure 2a). These were then converted to .dxf files to 

produce editable versions of the layouts. We used Depthmap X 0.50 to run the space syntax 

analysis (Varoudis, 2012). Axial maps were automatically generated with the software and the 

fewest-line layouts were used. In order to create segment maps of the layouts, the edges of 

navigable spaces were first defined with points in ArcMap, and Voronoi polygons were generated 

using those points. These Voronoi polygons were used to define segment maps, with the edges of 

the polygons shaping the segment lines. Once the segment maps and the axial maps had been 

created, we computed axial and segment analysis to generate the space syntax measures. VGA 

analysis was also automatically generated (Figure 2b). The resulting space syntax measures are 

either relational or geometric.  



 

 
Figure 2. a: The procedure to create segment maps. Images from left to right: screenshot of the map of level 46, black 

and white image showing navigable spaces (in white), and segment map created from the same file using voronoi 

polygons b: Illustrations of 3 space syntax analyses. Left and in middle: line-based maps; right: point/grid based 

analysis, see text for more details c: Simplified segment map and a rose plot of the segments’ bearings. The rose plots 

are used to calculate street network entropy.  

All the figures are produced from the layout of level 46.  

 

Geometric space syntax measures are axial number of lines, axial line length and the ratio of the 

isovist view area (from the start point) to the total area. These measures focus on geometric 

characteristics of the defined spaces. Relational metrics, on the other hand, include all syntactic 

measures that analyse the relationship between each space and all others, and they rely on an 

underlying graph-representation (decision points and edges) for their calculation. In brief, each of 

the space syntax relational measures are as follows: Connectivity measures the number of other 

lines that each line is connected to (Hillier & Hanson, 1984). Integration is a measure of centrality 

which calculates how accessible each segment is from the rest of the system in terms of the number 

of direction changes (which is strongly related to closeness centrality). Integration can be 

calculated at different radii from the centre of the environment, with the largest radius  

corresponding to a measure of global integration. Intelligibility is the correlation between global 

integration and connectivity, and it is generally understood to indicate how easy it is to comprehend 

the layout (Hillier, 1996; Hillier et al., 1987). Separate measures of integration, connectivity and 

intelligibility were produced using both line-based analysis (e.g. Seg_Connectivity)  and VGA 

analysis (e.g. VGA_Connectivity). Metric choice measures the possibility for each segment to be 

selected as a part of the shortest route between origin and destination (Al-Sayed et al., 2014; Hillier 

& Hanson, 1984). Here, we used both choice and normalised choice, which adjusts choice values 

according to the depth of each segment in the system so that different environments can be 



 

compared (Hillier et al., 2012). Finally, metric reach measures the total street length that can be 

reached from an origin to all possible directions up to a certain distance threshold (Peponis et al., 

2008), and directional reach measures the total street length captured with a specific number of 

direction changes (Ozbil & Peponis, 2007). 

      

In addition to space syntax measures, we employed the following general geometric measures, 

which were calculated employing methods outside of space syntax techniques:  number of decision 

points (# of decisionpoint), the area of navigable spaces (area_moveable spaces), the number of 

dead ends for both axial (# of_deadends axial map) and segment maps (# of deadends_seg-map), 

the number of rings (# of rings), average segment length (avrg_segmnt_length), maximum segment 

length (max_sgmnt_length), total segment length (total segment length), and entropy. Here, we 

included segment length as an equivalent to street length, which, as mentioned in the background 

section, was hypothesised to be important for environmental layout complexity (Boeing, 2018). 

Number of rings corresponds to the number of rings in the environment, where circularity relates 

to a loop leading back to a prior location. Entropy is theoretically connected to many complexity 

metrics (Boeing, 2018, 2019), so that the higher the entropy, the more complex –i.e. less ordered– 

the network. To calculate entropy, we used the following formula:  

 

𝐻 = − ∑

36

𝑖=1

𝑃(𝑜𝑖)𝑙𝑜𝑔(𝑃(𝑜𝑖)) 

Equation 1. Entropy formula 

 

In the formula, H represents entropy, i indexes the bins and P(o_i) represents the proportion of 

segment orientations that fall in the ith bin. This formula is based on Shannon’s entropy and was 

originally defined to compute the Street Network Entropy (SNE) in a city street network (Boeing, 

2018; Coutrot et al., 2022). To calculate the entropy, segment lines were used and the Douglas-

Peucker algorithm (1973) was used to simplify the line made of the connected segments (Figure 

2c). For all game levels, maximum offset tolerance was used between the original and the 

simplified line of three pixels. 

 

 

2.5) Task Difficulty 

 

To quantify the navigation difficulty score, we used the 10,626 trajectories we recorded for each 

level. Participants’ trajectories, i.e., the path they used, were recorded by sampling the participants’ 

coordinates in the environment with a rate of 2Hz. The length of the trajectory was then calculated. 

The difficulty score for each level was calculated by subtracting the minimum trajectory length 

from the median trajectory length and then normalising it with the minimum trajectory length. The 

minimum trajectory corresponds to the optimal trajectory for a given level. Hence, the difference 

between the median and the minimum trajectories shows how far the median performance is from 

being optimal. We divided this difference by the minimum trajectory length to normalize the 

difficulty score according to the size of the level. Without this step, this difference would be 

proportional to the size of the level rather than to its navigation difficulty. We computed the 

difficulty score for each level, and for different demographics. We computed the difficulty score 

for Male vs Female participants, and for Younger (below the median age, 40 y.o.) vs Older (above 

40 y.o.) participants. 



 

 
𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = (𝑚𝑒𝑑𝑖𝑎𝑛(𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝑙𝑒𝑛𝑔𝑡ℎ)  −  𝑚𝑖𝑛(𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝑙𝑒𝑛𝑔𝑡ℎ)) / 𝑚𝑖𝑛(𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝑙𝑒𝑛𝑔𝑡ℎ) 

 

Equation 2. Difficulty score formula 

 

Equipped with the spatial metrics outlined in previous sub-sections and with the difficulty score, 

we can now rephrase our central research question as follows: Which spatial metrics (including 

task-specific metrics) best explain how difficult a level is? The challenge to answer this question 

empirically is that we had as many as 58 metrics (some of which were strongly correlated) and 45 

levels. This multicollinearity means that we could not simply apply a standard regression to predict 

difficulty from metrics. We applied a principal component analysis (PCA), but the interpretation 

of its loadings was not straightforward, as highlighted in the results sections. Rather, we used a 

shrinkage and variable selection method for regression models: the Least Absolute Shrinkage and 

Selection Operator (LASSO) regression (Tibshirani, 1996). LASSO is similar to standard 

regression, but it penalises the number of predictors, leading to a sparser and more interpretable 

model. The formula for the LASSO regression is as follows: 

 

𝐿𝑙𝑎𝑠𝑠𝑜(ß̂) =  ∑

𝑛

𝑖=1

(𝑦𝑖− 𝑥𝑖
𝑇ß̂)2 + 𝜆 ∑

𝑚

𝑗=1

|ß̂𝑗| 

 

Equation 3. Lasso regression formula 

 

Where ß are the coefficients (i.e., the importance) of the selected metrics x in predicting the 

difficulty, i is the level number, yi is the difficulty score of the ith level, and λ penalizes the number 

of variables (the higher λ, the sparser the model). The selected metrics x are normalized (z-score) 

to be on the same scale. The penalisation variable λ is determined with 10-fold cross validations 

for different values of λ. We chose the λ corresponding to the minimum cross-validation error plus 

one standard deviation. 

 

We bootstrapped the LASSO regression 1000 times to generate 95% confidence intervals for each 

coefficient. We first ran the LASSO regression for each of the four families of metrics and selected 

the metrics with non-zero coefficients. 

- For task-specific features, the metrics selected were: number of destinations and weather.  

- For general geometric features, the metrics selected were: number of decision points, area of 

navigable spaces, number of circles, and Entropy.  

- For space syntax geometric features, the metrics selected were: number of axial lines, and 

isovist view area from the start/total.  

- For space syntax relational features, the metrics selected were: axial choice, axial integration, 

VGA connectivity, segment integration, and metric reach for a threshold of 25 units2 (MR 25).  

We then ran a second LASSO regression for all the selected metrics from each family. We also 

generated a correlation matrix with all the selected metrics in the four families. 

 

 
2
 We used 25, 50, 75, 100 units based on the size of all environments. 25 units mean 0.5cm here.  



 

Finally, we explored whether different demographics affected the selection of metrics. To this end, 

we re-ran the whole analysis outlined above for Male and Female participants, and for Younger 

(below the median age, 40 y.o.) and Older (above 40 y.o.) participants separately.  

 

3. Results 
  

3.1) Principal Component Analysis 

 

Our primary aim was to understand which spatial metrics best explain how difficult a virtual 

environment is to navigate. As a first approach, we ran a Principal Component Analysis (PCA) on 

the 58 metrics of the 45 levels. The first component of the PCA (C1) explained 40% of the variance, 

and the second component (C2) explained 18% of the variance (Appendix D). The first component 

was strongly and positively correlated with difficulty (r = 0.74, p < 0.001), and the second 

component was weakly and negatively correlated with difficulty (r = -0.25, p = 0.12). As 

mentioned in the methods section, the issue with the Principal Component Analysis is that with 58 

metrics, interpreting the loadings is not straightforward. In contrast, a Lasso regression allows us 

to select a limited number of important variables, which is much more useful when addressing our 

central question. 

  

3.2) Lasso regression 

  

We plotted all of the resulting metrics, together with difficulty, in a correlation matrix (Fig 3). The 

correlation matrix shows that the difficulty of levels is positively correlated with the number of 

decision points (r=0.76, p<.001), number of circles (r=0.76, p<.001) and number of destinations 

(r=0.74, p<.001). There is a negative correlation between the difficulty and isovist view area from 

the start/total (r=-0.54, p<.001), weather (r=-0.48, p<.001; i.e. worse performance with fog) and 

segment integration (r=-0.41, p<.05). The results show that several geometric (general) and task 

specific features correlated with difficulty. 



 

 
Figure 3. Correlation matrix with all the metrics that met threshold for significant correlation with difficulty using our 

Lasso approach. Each data point represents a wayfinding level. The line represents the least square regression line, the 

number next to it the regression coefficient, and the number on the right shows the p values. Histograms show the 

metrics distribution. 

  



 

We then ran another LASSO regression including all the selected metrics from each family (Fig 

4a). Weather and segment integration were selected with negative coefficients, and number of 

destinations, number of decision points, area of navigable spaces, number of circles, entropy and 

metric reach were selected with positive coefficients. 

 

 

  

3.3) Effects of demographics 

  

We re-ran the Lasso regression to separately predict the level difficulty computed for Male and 

Female participants, then for Younger (below 40 y.o.) and Older (above 40 y.o.) participants. 

Younger and older participants were defined considering median age as a cut-off point. This 

resulted in different sets of coefficients for each demographic (see Figure 4b and Figure 4c, 
respectively, but also see Appendix E to see the Lasso coefficients for the selected metrics across 

age groups). For several metrics, there was a difference in the resulting coefficients but not in 

whether these were positive or negative (e.g. area of navigable space has a higher coefficient for 

Older than for Younger participants). Notably, there were some metrics that were selected only for 

one demographic profile but not for the others. Number of decision points and axial integration 

were selected for Female but not for Male participants. Finally, axial integration was selected for 

Older but not for Younger participants. 

 



 

 
Figure 4. Lasso coefficients for the selected metrics from each family (a), coefficients for Males and Females 

(b), and coefficients for different Younger and Older participants (c). The Lasso computation was bootstrapped 



 

1000 times, and the boxplots represent the distribution of the coefficients across these iterations. In the boxplots, 

the horizontal bar represents the sample median, the hinges represent the first and third quartiles, and the whiskers 

extend from the hinges to the largest/lowest value no further than ±1.5 * IQR from the hinge (where IQR is the 

interquartile range). 

 

 

 

4. Discussion 
  

In this study, we aimed to understand the factors that make an environment hard to navigate. We 

used an online app-based navigation test with a variety of virtual environments and a large sample 

of participants to determine which environmental features best explain navigability. We measured 

58 spatial metrics —divided into four families— and, using a Lasso regression, we found the set 

of metrics from each family that best explained navigation difficulty. Re-applying the Lasso 

regression for the selected metrics returned a final selection of eight metrics. Several of these are 

consistent with past predictions of factors that make environments difficult to navigate (e.g. 

number of decision points, the presence of fog, area of navigable spaces, and metric reach), other 

factors were more nuanced and relate to the complexity of the path structure of an environment 

(e.g. entropy, number of circles and segment integration). Critically, we also found that several 

other predicted metrics did not predict difficulty, such as intelligibility. Thus, our results indicate 

that perceived ‘complexity’ of an environment is insufficient to predict how hard it will be to 

navigate. Instead it is important to measure specific geometric features. We also discovered 

differences between different socio-demographic groups. For example, the number of decision 

points was more predictive of navigational performance for female participants than for male 

participants and for younger participants than for older ones. These findings help explain why some 

environments are harder to navigate than others and provide principles for the design of navigable 

environments. Below we discuss the theoretical importance of each of the selected metrics. We 

then discuss an interesting outcome of the present study, which is that some variables (axial 

integration and number of decision points) had an impact on difficulty only for certain 

demographics in our sample. Finally, we discuss limitations of our study related to the use of 

mobile testing, the inclusion of participants, and the impact of landmarks on navigation. 

  

4.1.) Theoretical import of the selected metrics 

 

It is hardly disputable that the more complex an environment is, the harder it is to navigate. The 

challenge is how to measure that complexity (Boeing, 2019). Street network entropy had been 

previously hypothesised to be a good measure of the complexity of spatial configuration (Batty, 

2005; Batty et al., 2014). This is exactly what we find using SHQ: the higher the path network 

entropy of an environment, the harder it is to navigate that environment. Entropy is an 

informational measure of unpredictability, and our study shows that it also predicts wayfinding 

difficulty (Barhorst-Cates et al., 2021). This is also consistent with results from a recent study that 

showed that people who grew up in more entropic environments (e.g. rural environments or organic 

cities) are better at navigating more entropic game levels in SHQ than people who grew up in less 

entropic environments (e.g. griddy cities like Chicago) (Coutrot et al., 2022). Our results suggest 

that growing up in more entropic environments provides greater challenge for wayfinding thus 

training navigation abilities compared to growing up in environments with more organised grid-

like layout.  



 

 

The impact of entropy on wayfinding difficulty connects the present findings with recent 

information-theoretic approaches to the study of navigation (Lancia et al., 2023). Previous 

experimental work has employed information theory measures to model the saliency of different 

decision points when processing route directions (Takemiya et al 2012), the capacity of grid cells 

in spatial memory (Mathis et al., 2012), agent-signage interaction (Dubey et al., 2021), or the 

cognitive cost of shortcuts (Lancia et al., 2023), to name but a few examples. Our findings advance 

this line of work by showing that the information theoretic measure of street network entropy 

captures much of what makes an environment difficult to navigate. Moreover, because we have 

put entropy in competition with other potential predictors through the Lasso regression, our results 

are more robust than previous studies employing a single environmental metric. Furthermore, as 

entropy is a measure of unpredictability, this finding links with predictive approaches to spatial 

cognition. If, as recent models of hippocampal and prefrontal function suggest (e.g. Brunec and 

Momennejad 2022; Stoianov and et al., 2022), navigation depends on hierarchically nested 

predictions of the environment, it is congruent that the predictability of the environment (i.e. street 

network entropy) becomes a key factor in navigation difficulty. 

 

Our novel finding that segment integration is a key determinant of what makes an environment 

difficult to navigate may help explain some prior brain dynamics during navigation. Segment 

integration, which is linked to the closeness centrality of paths, measures how accessible each 

segment of a path is from the rest of the system. Using neuroimaging, we have previously found 

that the right anterior hippocampus tracked the changes in segment integration of the streets entered 

during navigation in London (Javadi et al. 2017). Given the central importance of the hippocampus 

in navigation guidance (Nyberg et al., 2022) our new results may explain why   segment integration 

is tracked by the hippocampus during navigation. Previous behavioural studies have also shown a 

link between wayfinding and segment integration. Peponis et al. (1990) and Willham (1992) found 

high correlations between wayfinding behaviour and local integration values. More recently, Haq 

et al. (2009) found local integration to be an effective predictor of both exploration and wayfinding. 

As for global integration values, such as the one we employed, Emo et al. (2012) tasked participants 

with a search task and found global integration to be the most effective measure of spatial 

configuration when explaining their path choices. Our results go beyond past studies showing 

integration is not only a good predictor of trajectories (Hillier et al., 1993; Penn, 2003), but also 

help predict how difficult an environment is to navigate.  

 

The findings here also speak to the use of line-based vs grid-based analyses. In isovist and visibility 

graph analyses, navigable space is represented with grids and the relationship between grids are 

investigated. Previous studies comparing the two approaches discovered that grid-based analysis 

produces a better correlation with movement (Desyllas & Duxbury, 2001). While that might remain 

the case for predicting pedestrian movement, our findings show that line-based analysis (in our 

case segment integration) is better at predicting navigation difficulty. One of the reasons for the 

divergent results can be the environment investigated in the 2001 study. Only one urban area, the 

area around St Giles Circus in Central London, was analysed rather than multiple layouts. In 

addition, pedestrian flow was sampled for 5 minute periods within every hour from the morning 

till the evening. These differences in methods and case study may be the reason for the difference 

in results. 

 



 

Richter (2009) had previously hypothesised that the more branches there are at a given decision 

point, the more difficult it is to navigate that intersection. Here, we find evidence supportive of the 

impact of decision points on difficulty, in that we found the number of decision points is a key 

metric to explain navigational difficulty. In addition, the inclusion of the number of circles in the 

set of significant factors is interesting because it has been the subject of debate. Some architects 

considered that ringiness might aid navigation, as it makes it easier for people to remediate their 

wrong turns (see also Natapov et al., 2020). This idea, which was not substantiated by empirical 

findings, resulted in many newly built nursing homes being constructed in the shape of a 

continuous path around an inside courtyard. However, when Marquardt and Schmieg (2009) put 

the hypothesis to an empirical test, they found an effect in the opposite direction: circular floor 

plans hindered orientation. This can be explained with architectural differentiations:  a circular 

path without salient objects can cause many locations to look similar to other locations, in which 

case, confusion can arise. Hence, the relationship between simplicity of plan configurations and 

orientation needs to be considered (Weisman, 1981). Our study further supports the finding that 

ringiness makes an environment harder to navigate. Ringiness in Sea Hero Quest paths provided 

alternative routes for the participants (e.g., they could take one route to a location and another one 

to go back). Moreover, when combined with the other factors we had, such as fog or non-existence 

of salient objects, it might become harder for participants to recover from any wrong decision. 

Therefore, the more rings an environment has, the more navigational choices participants have. 

This could cause confusion and make it harder for people to complete the wayfinding task. 

Furthermore, environments with many rings will require more circumnavigation of a region. Such 

circumnavigation has been found to distort representation of travel time and Euclidean distance 

between locations (Brunec et al., 2017). Such distortions may play a role in leading to more errors 

in navigation.  

  

In the context of this experiment, the metric weather indicates the presence/absence of fog, and by 

extension, the degree of visibility within a level. Unsurprisingly fog leads to worse navigation. The 

importance of weather makes sense when we consider the importance of vision for human 

navigation (Ekstrom, 2015). In addition, if it is foggy, it becomes harder for participants to see 

environmental clues and use these to inform and navigate. The inclusion of the number of 

destinations in the final list is also not altogether surprising either, given that goals were not 

generally encountered in the order of passage. This results in a higher demand to keep multiple 

goals in mind and more back-tracking, both features of navigation found to drive increased activity 

in the prefrontal cortex (Javadi et al., 2019b; Patai and Spiers, 2021). An increase in the number of 

destinations corresponds to an increase in the ‘intrinsic cognitive load’ (Sweller, 2010) of the task 

itself, which in turn is argued to increase wayfinding difficulty (Armougum et al., 2019; 

Giannopoulos et al., 2014). We also found that the larger the area of navigable spaces, the more 

difficult that level was to navigate. This finding is consistent with evidence that participants who 

travel longer distances tend to make larger directional errors (Ishikawa et al., 2008). We note that 

by including minimum trajectory length in the calculation, we normalised the difficulty score 

according to the area of each level, to avoid larger environments resulting automatically in higher 

difficulty scores due the very fact of being larger. 

  

The two other measures of complexity that made the final Lasso selection were metric reach and 

segment integration, which originate in Space Syntax methods. Metric reach captures the density 

of paths and path connections accessible from each individual path segment (Peponis et al., 2008). 



 

The higher the metric reach of an environment, the more complex it is. Metric reach has previously 

been found to be a good predictor of pedestrian movement (Ozbil et al., 2015). Here, we find that 

it is also a good predictor of wayfinding difficulty. Moreover, prior studies have suggested 

intelligibility would be an important factor for predicting difficulty (Conroy 2001; Hillier 2012; 

Kim 1999). Yet, we found no relationship between it and difficulty. This may be because other 

variables manipulated here, such as the number of decision points, may have a more dramatic effect 

on difficulty and these can be high in environments which score high on intelligibility.  

 

4.2.) The impact of the variables on different socio-demographic groups   

Finally, our analysis stratified participants by gender and age. Notably, we found a roughly equal 

proportion of men and women in the pool of participants who completed the 45 levels, similar to 

the proportion who initially downloaded the game. This is interesting because on average men 

perform better at navigating in SHQ (Coutrot et al, 2018). Thus, this suggests that persisting in 

completing the game was not simply a function of navigation skill, but it is also about participants’ 

determination. Even if participants got lost or made wrong decisions during navigation, they could 

correct their path and complete the navigation tasks. There were a few differences between groups 

in our lasso analysis. Axial integration was selected for Female and Older participants but not for 

Male or Younger participants. Axial lines are determined in terms of visibility, following the “line 

of sight” concept (Hillier & Hanson, 1984). This implies that female participants and older 

participants are more sensitive to length of the view in an environment. Additionally, we found 

female, but not male, participants were impacted by the number of decision points. It is unclear 

why this is. Female participants tend to be more likely to re-use prior learned routes or follow route 

strategies (Fields & Shelton, 2006; Marchette, Bakker, & Shelton, 2011; Boone et al., 2019). It 

may be that increasing the number of decision points makes determining a route (e.g. left, then 

right, etc) more difficult, but more research would be useful to replicate this finding and explore it 

further.  

 

4.3.) Limitations and future directions 

Our study contains a number of limitations that are useful to consider. Firstly, although we have 

shown navigation in Sea Hero Quest predicts real-world navigation (Coutrot et al. 2019) and that 

flat-screen VR is a good approximation to the real-world for spatial memory (Zisch et al., 2022) 

there are many differences in our experiment to real-world navigation. Navigation in physical 

environments typically provides a wide field of view while it can be more restricted in virtual 

environments, which can cause difficulty of spatial learning (Barhorst-Cates et al., 2019 ). In 

addition, idiothetic information is available and the control of movement is different. Thus, it will 

be useful to use the findings from this study to make predictions about the navigational difficulty  

of real-world environments. Due to constraints in creating a coherent video game we were limited 

in the extent to which we could make environments that were extreme for particular properties. 

For example, it would be useful to contrast an extremely griddy to maximally entropic environment 

to show the extent of the impact of street network entropy on navigation. A similar approach could 

be taken for the other variables, such as the impact of regional boundaries on navigation 

(Greisbauer et al., 2022), and extended to other animals and artificial agents (de Cothi et al., 2020). 

Finally, the participants who entered our analysis were those that completed all the levels. Further 

research may be useful to explore different sampled groups of participants. It would also be useful 

to explore how different environmental features impact the performance of participants using 



 

different strategies to navigate (e.g. a counting-dependent strategy vs. a landmark-dependent 

strategy, as in Greg et al., 2022). 

 

  

5. Conclusion 

 

In conclusion, we find the key elements that determine the navigability of an environment, in other 

words, navigational difficulty, are: entropy, segment integration (closeness centrality of paths), 

number of decision points, number of rings, weather, number of destinations, area of navigable 

spaces, and metric reach. Further empirical work could look at environments that vary along our 

proposed key environmental features. Researchers could also study the way in which the proposed 

set of key environmental features interact with other important elements for navigation, such as 

visibility. Finally, further analysis could be carried out to understand in detail why particular 

metrics did not pass the selection process, such as intelligibility, which had previously been 

hypothesised to predict difficulty (Kim 1999; Conroy 2001; Hillier 2012). Overall, our findings 

are relevant for psychology and neuroscience, and they can also inform future urban planning and 

architectural design. Built environments can be designed considering these factors in order to help 

people find their way. 
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Appendix A.Data 

Data from this study are available at 

https://osf.io/acmkb/?view_only=6c90e16f89d846109f207def12d92a80 . 
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Appendix Table A.1. Description of each metric used in this study 
 

Group Term Meaning 

Task specific Destinations Checkpoints are the locations where a way-finder should reach to complete a wayfinding task 
successfully. 

Weather Two weather conditions are coded in this study: foggy or clear weather/visibility condition.  

Geometric 

(general) 

Decision point (intersection) A point where way-finders should make a decision (e.g. turn right or go straight on) 

Area moveable Navigable area (the area where participants navigate a boat through virtual environments). 

Number of rings Street segments with a circular shape. As the number of rings increases, the number of 
navigational choices increases.  

Dead-end End of a street segment where there is no  possible exits (i.e. cul-de-sac) 

Segment length The length of a road segment. While measuring, the distance between two intersections is 
considered. 

Average  segment length Average length of road segments in each level. 

Maximum segment length Maximum length of road segments in each level. 

Total segment length Total length of road segments in each level. 

Shortest route A route between an origin and destination, which is the shortest one based on time needed (in 

our case) 

Street network entropy Unpredictability of a street network. Hence, when the values is low, it is easy to predict the 

system 

Geometric 

(space syntax) 

Axial # of lines Number of axial lines used to define navigable environments.  

Axial map A map that is drawn based on line-of-sight (straight lines in which people have unobstructed 

vision) 

All lines map Line complex that results from drawing every straight line (all possible line-of sights). 

Segment map A map where the space between two junctions is represented with one line 

Visibility graph analysis 
(VGA) 

Analysing an environment considering the visual relations and using grids 

Isovist/total view Isovist view area that can be seen from the start point/total navigable area 



 

Relational 

Metrics 

Axial choice Possibility for each axial line to be selected as a part of the shortest route.  In this study, we 
used n*, 2, 3, 5 direction changes.  

Axial integration Accessibility of axial lines from the rest of the system within a specific number of direction 
changes.  We used n, 2, 3, 5 direction changes. 

Connectivity The number of segments intersect with a segment. A higher number of intersection means 
higher connectivity 

VGA connectivity Grids/cells that are connected to each other (similar to connectivity; here the relationship 
between grids is explored). 

Visual integration Accessibility of each grid from the rest of the system within a specific number of steps (here 
the relationship between grids is explored). 

Mean depth Calculated by defining a depth value to each space considering the number of spaces it is away 
from other spaces. We sum these values and divide by the number of spaces in the system less 

one (showing how deep or shallow a line is) . 

Normalised choice This adjusts choice values according to the depth of each segment in a game level. It gives the 

opportunity to compare structures across cases/environments. 

Segment integration Accessibility of each segment from the rest of the system within a specific number of  

direction changes. We used n, 2, 3, 5 direction changes. 

Directional reach Total street length that a way-finder can reach using a set specific number of direction 

changes. We used 10 degrees and 0 and 2 direction changes and 20 degrees and 0 and 2 

direction changes in this study.  

Metric reach (MR) Total street length that a way-finder can reach up to a set  distance threshold. We set 5 

thresholds based on the scale of the environments: 10, 25, 50, 75 and 100 meters.  

Intelligibility The easiness of understanding an environment from any point a way-finder stands (correlation 

between axial connectivity-integration) 

Visual intelligibility The ease of understanding an environment from any point a way-finder stands (correlation 

between visual connectivity-integration). 

* Global measure that shows the relationship between a line towards all other lines in the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix Table A. 2. Fifty-eight metrics used in this study and the results of each level. Note that task-related conditions are 

converted to numeric data. Weather and map conditions were shown as 0 or 1. In both conditions, “1” represents clear weather/ 

map conditions and “0” represents occluded map/ low visibility conditions.     

 
 

Appendix Table A.2. (Continued) 



 



 

Appendix B- Image prepared to show the distribution of the number of players 

 

Appendix B. 1. Proportion of the total number of players.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix C. Images prepared to illustrate some of the space syntax metrics for each level 

 
Appendix C.1. Axial based choice (r:3) for all wayfinding levels 



 

Appendix C.2. Axial based choice (r:n) for all wayfinding levels 



 

Appendix C.3. Axial based normalised choice (r:n) for all wayfinding levels 



 

Appendix C.4. Axial based integration  (r:3) for all wayfinding levels 



 

Appendix C.5. Axial based integration  (r:n) for all wayfinding levels 



 

Appendix C.6. Segment based integration  (r:3) for all wayfinding levels 



 

Appendix C.7. Segment based integration  (r:n) for all wayfinding levels 



 

Appendix C.8. Metric reach for all wayfinding levels 



 

Appendix C.9. Directional reach for all wayfinding levels 



 

Appendix C.10. Visual connectivity for all wayfinding levels  



 

Appendix C.11. Visual integration for all wayfinding levels 



 

Appendix Figure D. Results of the principle component analysis  

 
 

Appendix D.1: Results of the PCA analysis and the two components (C1 and C2) 



 

Appendix Figure E.  Lasso coefficients for the selected metrics across age groups. 

 
Appendix E.1: Lasso coefficients for the selected metrics from each family across age groups. 

Age group 1 = [20 29], 2=[30 39], 2=[40 49], 2=[50 59], 2=[60 69] years old. The Lasso 

computation was bootstrapped 100 times and error bars represent the standard errors. 
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