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Abstract
Uncertainty estimation has received momentous consideration in applied machine learning to capture model uncertainty.

For instance, the Monte-Carlo dropout method (MC-dropout), an approximated Bayesian approach, has gained intensive

attention in producing model uncertainty due to its simplicity and efficiency. However, MC-dropout has revealed short-

comings in capturing erroneous predictions lying in the overlapping classes. Such predictions underlie noisy data points

that can neither be reduced by more training data nor detected by model uncertainty. On the other hand, Monte-Carlo based

on adversarial attacks (MC-AA), an outstanding method, performs perturbations on the inputs using the adversarial attack

idea to capture model uncertainty. This method admittedly mitigates the shortcomings of the previous methods by

capturing wrong labels in overlapping regions. Motivated by this method that was only validated with neural networks, we

sought to apply MC-AA on various graph neural network models to obtain uncertainties using two public real-world graph

datasets known as Elliptic and GitHub. First, we perform binary node classifications, then we apply MC-AA and other

recent uncertainty estimation methods to capture the uncertainty of the models. Uncertainty evaluation metrics are

computed to evaluate and compare the performance of the uncertainty of the model. We highlight the efficacy of MC-AA

in capturing uncertainties in graph neural networks wherein MC-AA outperforms other given methods.
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1 Introduction

Graph neural networks (GNNs) have attained significant

success in machine learning applications with the resur-

gence of graph data in several fields such as in bioinfor-

matics (Lim et al. 2019; Harada et al. 2020), social

networks (Xu et al. 2018; Rozemberczki et al. 2019; Guo

and Wang 2020) and blockchain (Weber et al. 2019;

Alarab et al. 2020a) to provide automated decision-making

in complex structured data. However, graph learning

models produce overconfident predictions that are not

trustworthy. To obtain reliable predictions, the uncertainty

of the model is paramount to address this issue. On the

other hand, recent years have witnessed a surge of interest

in uncertainty estimation-based Bayesian approximations

to capture model uncertainty in machine learning models

(Abdar et al. 2021). Hence, not only the predictions of the

model assist in decision-making but also the quantified

uncertainty. In classification tasks, uncertainty estimates

can be discriminated between two different scenarios. The

first scenario involves the data points falling out of distri-

bution and they express the epistemic uncertainty, whereas

the data points that fall near or at the decision boundary are

known as aleatoric uncertainty.

Many studies have been conducted to reflect these sce-

narios using several uncertainty estimation methods as in

Abdar et al. (2021); Gal and Ghahramani 2016; Amersfoort

et al. 2021). For instance, Monte-Carlo dropout (MC-

dropout), introduced in Gal and Ghahramani (2016) as a

Bayesian approximation, performs multiple stochastic

forward passes in the neural network with activated drop-

out during the test phase to obtain model uncertainty. This

method is capable of targeting data points that fall near the

decision boundary of class distributions (Alarab et al.
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2021), where this method has revealed promising and

effective results in previous studies (Gal et al. 1705;

Kennamer et al. 2019; Ng et al. 2018). Although its sim-

plicity and efficiency produce uncertainties, MC-dropout

has revealed a remarkable drawback. The drawback lies in

the hindrance of this method in capturing data points that

fall into overlapping classes. Henceforth, these data points

produce certain erroneous predictions. Another method

known as deterministic uncertainty quantification (DUQ)

(Amersfoort et al. 2020) has also appeared to capture out-

of-distribution data points using a single feedforward pass.

However, this method captures only the data points which

reside far from the training data.

The recent work in Alarab and Prakoonwit (2021) has

proposed a novel method to estimate uncertainty based on

an adversarial attack idea known as Monte-Carlo adver-

sarial attack (MC-AA). Instead of perturbing the decision

boundary as in MC-dropout, this method performs a direct

perturbation to the input using the fast gradient sign

method (FGSM). The MC-AA method reveals a significant

effect in capturing data points between the overlapping

classes at the cost of increasing the number of uncertain

predictions with correct classifications that do not affect the

uncertainty performance. Although the efficacy of MC-AA,

this method has been merely proposed on multilayer per-

ceptron (MLP) for binary classification (Alarab and

Prakoonwit 2021).

Unlike the existing studies, our novelty in this paper is

to provide a comprehensive study on the validity of MC-

AA with the emergent graph neural network models for

binary node classification tasks to produce uncertainty

estimates besides the model’s predictions. The main chal-

lenge is to examine the viability of the promising method

MC-AA on two datasets called Elliptic and GitHub graph

data from two distinct fields known as blockchain and

social networks, respectively. These datasets are arbitrarily

chosen but with binary labels to target binary node clas-

sification tasks. Our study has admittedly revealed the

outperformance of MC-AA against other given methods

wherein the former improves the fail-safes in graph neural

networks.

This paper is structured as follows: Sect. 2 provides an

overview of the related work. Section 3 and Sect. 4

demonstrate the uncertainty methods and the evaluation

metrics, respectively. The experiments are provided in

Sect. 5. Section 6 discusses the provided results, and a

conclusion is presented in Sect. 7.

2 Overview of related works

The prominence of Bayesian approaches has emerged for

several years in the estimation of the uncertainty of neural

networks, known as Bayesian neural networks (BNNs)

(MacKay 1992). BNNs have introduced the notion of pri-

ors over the weights of the neural network to produce

posterior distributions (Neal 2012). Although BNNs are

mathematically easy to formulate, their exact inference is

intractable (Gal 2016). Also, Gaussian processes (GP)

derived from Bayesian approaches have involved priors

over the functions of neural networks instead of their

weights (Rasmussen 2003). GPs have played an important

role in the estimation of uncertainty throughout the years;

however, they are prohibitively expensive (Gal 2016).

Recently, studies in uncertainty estimation have come out

with approximate Bayesian methods that are practically

feasible as in Gal and Ghahramani (2016); Amersfoort

et al. 2021; Amersfoort et al. 2020) (please refer to Abdar

et al. (2021) for a comprehensive review of uncertainty

estimation methods). Interestingly, the work in Gal and

Ghahramani (2016) has provided a simple, efficient, and

scalable method, MC-dropout, to capture model uncer-

tainty. The idea of this method lies in providing multiple

stochastic forward passes, during the testing phase, that

samples priors from Bernoulli distributions as a Bayesian

approximation. Practically, this method performs multiple

perturbations on the decision boundary leading to an

ensemble of decision functions to output the final predic-

tions rather than uncertainty estimates. This method has

shown its efficacy in producing an uncertainty estimation,

especially data points near the decision boundary of the

classifier (Alarab et al. 2021). The DUQ method (Amers-

foort et al. 2020) is another uncertainty estimation method

which captures the out-of-distribution data points where

the lack of training data exists.

On the other hand, classification tasks are inherently

subjected to noisy instances that cannot be reduced by

acquiring more data. As a result, this leads to a region of

overlapping classes. The limitation of MC-dropout and

DUQ methods lies in capturing this type of data point.

Since MC-dropout performs multiple perturbations on the

decision boundary as an ensemble of decision functions,

none of these functions can provide the correct label of a

noisy point in the overlapping classes region. In addition,

the DUQ model does not target this type of uncertainty.

Henceforth, such instances are erroneously predicted with

certainty.
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To mitigate this issue, recent work in Alarab and

Prakoonwit (2021) has proposed an uncertainty estimation

method that uses the idea of adversarial attacks. This

method, known as Monte-Carlo adversarial attack (MC-

AA), applies back-and-forth perturbations in the direction

of the decision boundary on each data point. The con-

structed perturbations are derived from the FGSM method

which was originally introduced to calculate adversaries

for a robust neural network classifier (Chakraborty et al.

2018). Although the promising performance of MC-AA,

this method has been only applied and validated with

multilayer perceptron (MLP) on tabular datasets. On the

other hand, graph neural networks have witnessed growth

and success in the machine learning era in recent years with

the increase of graph data (Xu et al. 2018). For this pur-

pose, we test and validate the efficacy of MC-AA on sev-

eral graph learning algorithms, unlike any previous study,

with graph datasets from different fields then we evaluate

and compare MC-AA against other methods wherein

promising results are provided.

This paper highlights the efficacy of MC-AA in the

prominent GNN models to compute uncertainty estimation

with the increase of graph datasets.

3 Uncertainty estimation methods

3.1 MC-AA

MC-AA stems from the idea of adversarial attacks. In

white-box attacks, adversaries are deterministic noisy

perturbations of inputs to fool the decision of a trained

model (Chakraborty et al. 2018), wherein these attacks

have a great impact on the safety of the model. The per-

turbed inputs can be obtained using the FGSM method. Let

yi be the observed output that corresponds to the input xi
for i 2 f1; . . .;Ng with N being the number of observa-

tions. A neural network can be expressed as f ð:Þ with input

x and prediction by ¼ f ðxÞ accompanied by a set of learn-

able weights w ¼ W1; . . .;WLf g where L is the number of

layers. Also, we denote byJð:; :Þ, the loss function of the

neural network model. Using the FGSM method, we can

express the adversarial example of the input by:

xð�Þ ¼ xþ �:sign rxJ x; byð Þð Þ; ð1Þ

where xð�Þ is the perturbed input known as an adversarial

example by � which is a small value and rx is the gradient

with respect to the original input x.

Let � 2 I ¼ f��max; . . .; 0; b; . . .; �maxg such that I is

symmetric interval evenly spaced by b, and bounded by

�max where �max is a tunable hyperparameter. The FGSM

method requires a target label to produce the perturbed

version of the original input, so the target label is arbitrarily

assumed to be 0 in the whole paper.

Hence, each input x can produce multiple adversarial

examples x�j associated with by�j ¼ f x�j
� �

at �j for j 2
f1; :::; jIjg where |I| denotes the cardinality of I. In other

words, each test sample induces multiple inputs derived

from the back-and-forth perturbations of the initial sample

in the direction of the decision boundary. By performing

MC-AA, multiple outputs by�j are obtained from multiple

perturbed versions x�j of each data point x as summarised in

Algorithm 1, wherein these outputs are used to estimate

uncertainty.

The main types of uncertainty can be categorised into

epistemic and aleatoric uncertainty. The lack of training

examples in a newly tested point indicates epistemic

uncertainty, whereas the noisy instances are said to be

aleatoric. In (Gal and Ghahramani 2016), this work has

introduced different measurements of uncertainty estimates

such as mutual information. Furthermore, the work in

Smith and Gal (1803) has claimed that mutual information

is used to capture epistemic uncertainty in the model, in

which mutual information has been used to convey the

amount of information required by the model’s output.

However, it is not fully true that mutual information cap-

tures only epistemic uncertainty. This is due to the over-

confident predictions provided by neural network

optimisation. Thus, some data points of aleatoric uncer-

tainty are expected to be captured too. Meanwhile, we are

interested in the points lying near the decision boundary

and between the overlapping classes, which are suitable to

detect using MI. In this paper, we follow the procedure

used in Gal and Ghahramani (2016) where the predictive

mean of an input data x using the MC-AA method can be

written as:

pMC�AA yjx;wð Þ ¼ 1

T

X
T

j¼1

pðyjx2j
;wÞ � 1

T

X
T

j¼1

ŷ2j
; ð2Þ

where by�j is the output associated with x�j at �j and T is

equivalent to Ij j:
Besides the predictive mean, the predictive uncertainty

derived from mutual information measurement, due to Gal

and Ghahramani (2016), can be written as:

bI yjxð Þ ¼ bH yjxð Þ þ
X

c

1

T

X
T

i¼1

p y ¼ cjx�ið Þlog p y ¼ cjx�ið Þ;

ð3Þ

where c is the class label, p yjx�ið Þ is equivalent to by�i , and

bH yjxð Þ ¼ �
X

c

pMC�AA y ¼ cjxð Þlog pMC�AA y ¼ cjxð Þ:

ð4Þ
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3.2 MC-dropout

This method is based on multiple stochastic forward passes

during the testing phase, in which a dropout function is

applied after each weight layer (Gal and Ghahramani

2016). For each given input, multiple distinct outputs are

obtained by drawing T samples from the Bernoulli distri-

bution under the activated dropout. The weights of the

neural network at sample t can be written as:

pMCdrop yjx;wð Þ ¼ 1

T

X
T

t¼1

yðx;Wt
1; . . .;W

t
LÞ: ð5Þ

Like MC-AA, the mutual information can be obtained as

follows:

bI yjxð Þ ¼ bH yjxð Þ

þ
X

c

1

T

X
T

t¼1

p y ¼ cjx;wð Þlog p y ¼ cj x;wð Þ; ð6Þ

where c is the class label, and

bH yjxð Þ ¼ �
X

c

pMCdrop y ¼ cjx;wð Þlog pMcdrop y ¼ cjx;wð Þ:

ð7Þ

3.3 Deterministic uncertainty quantification
(DUQ)

DUQ is formed of a feature extractor followed by a kernel

to perform predictions. The feature extractor is used to

learn the feature vectors corresponding to each class. The

kernel computes the distance between the feature vectors

and the class centroids. The centroid is computed and

updated using the exponential moving average of

momentum c on the feature vectors of a certain class.

Referring to Amersfoort et al. (2020), the output of the

DUQ model using a radial basis function kernel can be

written as:

Kc f h xð Þ; ecð Þ ¼ exp �
1
n Wcf h xð Þ � ecj jj j22

2r2

 !

; ð8Þ

where f h is the feature extractor output that maps an input
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vector x, ec is the centroid of class c, :j jj j2 is the l2-norm,

and r is the length scale. Wc is a weight matrix corre-

sponding to class c of size d where this matrix transforms

the output of the feature extractor to new embeddings of

the centroid size. A further two-sided gradient penalty is

added to this model since the deep learning models are

prone to feature collapse (Amersfoort et al. 2020). The

two-sided gradient penalty can be written as follows:

k: rx

X

c

Kc

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2

2

� 1

2

4

3

5; ð9Þ

where k is a hyperparameter to be tuned.

4 Uncertainty evaluation

We use the uncertainty measurements to perform uncer-

tainty evaluation as introduced in Mobiny et al. (1906).

Every test sample comprises a correct/incorrect classifica-

tion accompanied by certain/uncertain predictions. Correct/

incorrect is assigned according to the ground truth of labels

with the predictive mean. Certain/uncertain is set according

to the mutual information measurement, whereas the pre-

dictive uncertainty is below/above an arbitrary threshold Tu

is certain/uncertain, respectively. Assuming that the mutual

information values are normalised by ‘‘min–max’’ over the

test set, Tu can vary between 0 and 1. Hence, we can

distinguish between four possible states as follows: correct

and certain, incorrect and certain, correct and uncertain,

and incorrect and uncertain as shown in Table 1 that are

used to evaluate the performance of model uncertainty.

Referring to Table 1, the goodness of model uncertainty

can be reflected using the following expressions:

• Negative Predictive Value (NPV): It is desirable to have

a correct classification when the model is certain of its

predictions. This can be written as conditional

probability:

p correctjcertainð Þ ¼ p correct; certainð Þ
p certainð Þ ¼ TN

TNþ FN

• True Positive Rate (TPR): It is desirable to receive

uncertain predictions when the classification is incor-

rect. This can be expressed as a conditional probability:

pðuncertainjincorrectÞ ¼ p uncertain; incorrectð Þ
p incorrectð Þ

¼ TP

TPþ FN

• False Positive Rate (FPR): This ratio expresses the

correct predictions when the model is uncertain. This

ratio does not have an impact on the performance of

model uncertainty, but it is computed to obtain the

Receiver-Operation-Curve (ROC curve). It can be

written as a conditional probability:

p correctjuncertainð Þ ¼ p correct; uncertainð Þ
p uncertainð Þ

¼ FP

FPþ TN

In addition, the uncertainty evaluations provide a similar

approach to using the Area-Under-Curve (AUC) score and

ROC by tweaking the uncertainty threshold Tu between 0

and 1. On the other hand, we highlight the differences

between FP and FN here. FP does not have a high impact

on the model performance since the uncertain and correct

predictions can be forwarded for further decision-making.

While FN has a great impact on the model uncertainty

since it reflects the incorrect classifications with certain

predictions.

5 Experiments

We perform binary node classification on two arbitrarily

chosen graph data, called elliptic and GitHub datasets using

several GNNs models. Then, we compute the model

uncertainty using MC-AA against other methods.

5.1 Data description

5.1.1 Elliptic dataset

Elliptic dataset is a public graph of data derived from the

Bitcoin blockchain (Weber et al. 2019; Alarab et al.

2020b). The graph incorporates nodes as transactions and

edges as the flow of payments. The nodes are partially

labelled between licit (e.g., miners) and illicit (e.g., theft,

scam, etc.) transactions (txs). These data consist of 49

directed acyclic graphs (DAG) in which each time-stamped

graph refers to its time slot when extracted. The necessary

description of these graph data is given in Table 2. As this

data comprises 166 features which are local features (LF)

Table 1 Model uncertainty states. This table shows the four possible

states of model uncertainty to classify every test sample. This eval-

uation resembles a binary classification task. MI corresponds to

mutual information measurement

Model uncertainty Certain: MI\Tu Uncertain: MI� Tu

Correct True negatives: TN False positives: FP

Incorrect False negatives: FN True positives: TP
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(e.g., timestamp, number of inputs/outputs, transaction

fees) and aggregated features (AF), we only use LF in our

experiments which counts to 94. The train/test sets are

chosen following the temporal split of these data in which

the first 29 graphs (136,265 nodes) belong to the train set,

the graphs from 30 to 34 correspond to the validation set,

and the remaining graphs belong to the test set. Then, this

dataset is followed by a standardisation step.

As an example of graph data, we use Elliptic data. It is a

public graph of data derived from the Bitcoin blockchain

(Alarab et al. 2020a, 2020b). The graph incorporates nodes

as transactions and edges as the flow of payments. The

nodes are partially labelled between licit (e.g., miners) and

illicit (e.g., theft, scam) transactions. These data consist of

49 directed acyclic graphs (DAG) in which each time-

stamped graph refers to its time slot when extracted. The

necessary description of these graph data is given in

Table 2. As these data comprise 166 features which are

local features (LF) (e.g., timestamp, number of inputs/

outputs, transaction fees) and aggregated features (AF), we

only use LF in our experiments after features are

standardised.

5.1.2 The GitHub dataset

The GitHub dataset is a large social network of GitHub

developers. This undirected graph network was extracted

from the public API in June 2019 (Rozemberczki et al.

2019; Github social network xxxx). The graph network

consists of nodes as developers who have starred at least 10

repositories, accompanied by edges as mutual follower

relationships between developers. The node features are

acquired based on the location, repositories starred,

employer and e-mail address. The nodes acquire binary

labels, derived from the job title of each user, to predict

whether the Github user is a web or a machine learning

(ML) developer. The description of the GitHub dataset is

summarised in Table 2. We arbitrarily opt for the 0.7/0.1/

0.2 ratio for the train/validation/test split, which is followed

by a standardisation step.

5.2 Graph neural networks (GNNs)

We conducted our experiments using several graph learn-

ing models to perform binary node classification on the

given datasets. We use PyTorch (Paszke et al. 2019) and

PyTorch-geometric package (Fey and Lenssen 2019) in

Python programming language. Hence, we chose a set of

popular graph learning models as follows:

• GCN (Kipf and Welling 2017): Graph Convolutional

Network-based spectral approach. The GCN layer can

be written as:

x
0

i ¼ H
X

j2N ið Þ[ if g

ej;i
ffiffiffiffiffiffiffiffiffi

bdj
bdi

q xj

• GraphConv (Morris et al. 2020): Graph Convolutional

Network-based spatial approach. It is expressed as:

x
0

i ¼ H1:xi þH2

X

j2N ið Þ
ej;i:xj

• GAT (Vlickovic et al. 2018): Graph Attention Network.

It is expressed as:

x
0

i ¼ ai;iH:xi þH
X

j2N ið Þ
ai;j:xj

• SAGEConv (Hamilton et al. 2018): Graph SAGE

Convolution. It is expressed as:

x
0

i ¼ H1:xi þH2:meanj2N ið Þxj

• LEConv (Ranjan et al. 2020): Local Extremum

Convolution.

x
0

i ¼ H1:xi þ
X

j2N ið Þ
ej;i:ðH2:xi �H3:xjÞ

• TAGConv (Du et al 2018): Topology Adaptive GCN. It

is expressed as:

x
0

i ¼
X
K

k¼0

X

j2N ið Þ[fig
Hk

ej;i
ffiffiffiffiffiffiffiffiffi

bdj
bdi

q

0

B

@

1

C

A

k

xj

where x
0
i is the embedding derived from the input node i in

the hidden layer, Hk is the learnable weight matrix at layer

k, ei;j is the edge weight which is arbitrarily 1 here, ai;j is
the attention coefficient, mean is the average over the sum,

bdi is the degree of node i and N ðiÞ is the set of nodes in the
neighbourhood to node i.

5.3 Experimental settings and implementations

For simplicity, the experimental setup for models applied

in each of the experiments on the Elliptic and GitHub

Table 2 Graph description of Elliptic and GitHub datasets

Graph network description Elliptic GitHub

Directed Yes No

Temporal Yes No

# Nodes 203,769 37,700

# Edges 234,355 289,003

# Node features 166 128

Binary Node Labels Licit/Illicit txs Web/ML developer
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datasets is set equally. For the given graph learning algo-

rithms, the models are formed of input and output layers,

and they are trained in a full-batched fashion on both

datasets in which we empirically chose the hyperparame-

ters as provided in Table 3. The weight of the loss function

is empirically set to 0.3/0.7 for Elliptic data only, to miti-

gate class imbalance.

The classification results of the standard GNN models

Elliptic and GitHub datasets are provided in Tables 4 and

5, respectively.

5.4 Experimenting MC-AA with GNN models

5.4.1 Obtaining uncertainty estimates using Elliptic dataset

We perform uncertainty estimation using MC-AA and

compare it against MC-dropout and DUQ methods using

the given GNN models. Using MC-AA as in Algorithm 1,

we use a non-weighted loss NLLLoss and assume that all

test points belong to class 0, and we arbitrarily set b to �max

10
.

The evenly spaced interval I is chosen such that it is

bounded by �max ¼ 0:09 chosen empirically using the

highest AUC-score of model uncertainty in the GCN

model. For brevity, �max is kept the same for all models.

Hence, we perform multiple perturbations (equal to �max

b ¼
10Þ back and forth in the direction of the boundary deci-

sion. For every data point, we have 10 distinct output

predictions that can be used to estimate uncertainty via

mutual information measurement. To perform the MC-

dropout method, we simply activate the dropout during the

testing phase, and we arbitrarily perform 50 stochastic

forward passes on each input (data point) to produce model

uncertainty using mutual information measurements.

For the DUQ model, we empirically set the hyperpa-

rameters as follows: k = 0.1, c = 0.9 and r = 0.3.

We evaluate the performance of model uncertainty for

all models using the procedure proposed earlier in this

paper after computing TN, FN, FP and TP on the tested

samples. We plot the evaluation metrics (NPV, TPR, ROC

curves) that reflect the performance of MC-AA, MC-

dropout and DUQ as a function of an arbitrary uncertainty

threshold Tu for all mentioned models as shown in Figs. 1,

2, 3, 4, 5, and 6.

5.4.2 Obtaining uncertainty estimates using GitHub
dataset

Like the preceding procedure, we apply MC-AA and MC-

dropout methods on the test set of the GitHub dataset to

evaluate the model uncertainty of the given GNN models

Table 3 Hyperparameters used for all GNN models

Hyperparameters All models

Input/Hidden layers size 100

Learning rate 0.01

Dropout 0.2

# Epochs 50

Activation function ReLU

Output function Softmax

Weighted loss function NLLLoss

Table 4 Classification results of

graph models using the Elliptic

dataset

Models using elliptic % Accuracy % Precision % Recall % F1 Score

GCN 95.6 73.9 50.1 59.7

GraphConv 95.15 74.3 38.8 51

GAT 95.5 77.1 45.15 56.9

SAGEConv 95.5 76 45 56.5

LEConv 95.9 79.3 49.95 61.3

TAGConv 93.93 52.8 62.3 57.2

Table 5 Classification results of

graph models using the GitHub

dataset

Models using GitHub % Accuracy % Precision % Recall % F1 score

GCN 87.26 82.65 63.28 71.68

GraphConv 81.87 61.92 74.79 67.75

GAT 86.97 77.1 80.29 71.68

SAGEConv 87.06 80.66 64.74 71.82

LEConv 82.05 64.29 66.4 65.33

TAGConv 87.4 80.58 66.56 72.9
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with the MC-AA method and compare it to that in the MC-

dropout method. To perform MC-AA, we choose non-

weighted NLLLoss with the test set arbitrarily assumed to

belong to class 0 and b ¼ �max

10
by default. Then, we

empirically choose �max to be equal to 0.5 which has

achieved the highest AUC score of model uncertainty on

the GCN model. For simplicity, this hyperparameter is

assigned equally in the rest of the GNN models. On the

other hand, we perform MC-dropout with 50 stochastic

forward passes on the test set.

The DUQ model is assigned with the following hyper-

parameters: k = 0.1, c = 0.9 and r = 0.3.

The performance of model uncertainty is evaluated for

all the abovementioned GNN models using the same

evaluation metrics as preceded as shown in Figs. 7, 8, 9,

10, 11, and 12.

Fig. 1 Model uncertainty of GCN using the Elliptic dataset. The subplots (from left to right) correspond to NPV, TPR and ROC-curve as a

function of threshold Tu

Fig. 2 Model uncertainty of GraphConv using the Elliptic dataset. The subplots (from left to right) correspond to NPV, TPR and ROC-curve as a

function of threshold Tu

Fig. 3 Model uncertainty of GAT using the Elliptic dataset. The subplots (from left to right) correspond to NPV, TPR and ROC-curve as a

function of threshold Tu
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6 Discussion

After conducting comprehensive experiments using several

GNN models on Elliptic and GitHub graph data, MC-AA

has generally revealed superior success over MC-dropout

and DUQ uncertainty methods. From Figs. 1, 2, 3, 4, 5, 6,

and 7, NPV and TPR curves are significantly improved

with the MC-AA method in all graph learning models

using the Elliptic dataset. This shows that MC-AA has

detected more data points that are correct knowing that

they are certain. Also, higher uncertain data points which

are incorrect are detected with MC-AA in comparison to

other methods. As a result, the AUC scores, corresponding

to the MC-AA method, have revealed a significant out-

performance against MC-dropout and DUQ methods.

Fig. 4 Model uncertainty of SAGEConv using the Elliptic dataset. The subplots (from left to right) correspond to NPV, TPR and ROC-curve as a

function of threshold Tu

Fig. 5 Model uncertainty of LEConv using the Elliptic dataset. The subplots (from left to right) correspond to NPV, TPR and ROC-curve as a

function of threshold Tu

Fig. 6 Model uncertainty of TAGConv using the Elliptic dataset. The subplots (from left to right) correspond to NPV, TPR and ROC-curve as a

function of threshold Tu

Uncertainty estimation-based adversarial attacks: a viable approach… 7933

123



With the GitHub dataset, NPV and TPR have generally

recorded better results with MC-AA against other uncer-

tainty methods. However, DUQ has revealed higher AUC

scores compared to other uncertainty estimation methods.

This means that the number of FN instances (incorrect and

certain) is lower with MC-AA but with more FP instances

(correct and uncertain). Meanwhile, FP instances (correct

and uncertain) do not affect model uncertainty as it is

acceptable to have correct predictions that the model is

uncertain about. Since MC-AA applies direct perturbations

on the data points, the points lying near the decision

boundary or in overlapping classes are included as uncer-

tain. Thus, more points around the classifier are subjected

to uncertain predictions that have been deduced by the

reduced FN and increased FP. Consequently, the behaviour

of MC-AA is viable and effective on GNN models that are

tested with two datasets, Elliptic and GitHub, from dif-

ferent fields of blockchain and social networks,

Fig. 7 Model uncertainty of GCN using the GitHub dataset. The subplots (from left to right) correspond to NPV, TPR and ROC-curve as a

function of threshold Tu

Fig. 8 Model uncertainty of GraphConv using the GitHub dataset. The subplots (from left to right) correspond to NPV, TPR and ROC-curve as a

function of threshold Tu

Fig. 9 Model uncertainty of GAT using the GitHub dataset. The subplots (from left to right) correspond to NPV, TPR and ROC-curve as a

function of threshold Tu
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respectively. Generally, MC-AA has attained very rea-

sonable and consistent results in capturing model uncer-

tainty of GNN models. The concept of the MC-AA method

is a valid and viable approach which is not limited to given

models or graph datasets used in this paper. However, this

paper targets binary node classification tasks only. In this

paper, both the MC-AA and the MC-dropout method are

set with an equal number of forward passes, in which the

time complexity for both algorithms is the same. Whereas

the DUQ model provides uncertainty with a single forward

pass only which is more computationally efficient than the

latter algorithms.

We also highlight the node classification results, refer-

ring to Tables 4 and 5, in which DeepGCN and TAGConv

have performed the best in binary node classification of

Elliptic and GitHub datasets with accuracies of 97.1% and

87.4% and f 1-scores of 74.9% and 72.9%, respectively.

Fig. 10 Model uncertainty of SAGEConv using the GitHub dataset. The subplots (from left to right) correspond to NPV, TPR and ROC-curve as

a function of threshold Tu

Fig. 11 Model uncertainty of LEConv using the GitHub dataset. The subplots (from left to right) correspond to NPV, TPR and ROC-curve as a

function of threshold Tu

Fig. 12 Model uncertainty of TAGConv using the GitHub dataset. The subplots (from left to right) correspond to NPV, TPR and ROC-curve as a

function of threshold Tu
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7 Conclusion

We have examined the viability of the MC-AA method to

capture model uncertainty in graph neural networks

(GNNs). We have carried out a comprehensive study on

several graph-based approaches and two real-world graph

data known as Elliptic and GitHub. Subsequently, we

performed uncertainty estimation using MC-AA against

MC-dropout and DUQ methods. The evaluation of model

uncertainty has generally revealed a significant outperfor-

mance of MC-AA over other methods in all GNN models.

MC-AA has shown great impact in targeting the erroneous

data points that fall between the overlapping classes. As a

result, we have concluded that MC-AA is a viable and

effective method to capture model uncertainty in GNN

models in binary node classification that is not limited to

the preceding datasets. We foresee future work to extend

our study of MC-AA with multiclass node classification.

Furthermore, we plan to include active learning in graph

neural networks using the uncertainty measurements of the

MC-AA method.
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