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There is growing interest in how data-driven approaches can help understand individual

differences in face identity processing (FIP). However, researchers employ various FIP tests

interchangeably, and it is unclear whether these tests 1) measure the same underlying

ability/ies and processes (e.g., confirmation of identity match or elimination of identity match)

2) are reliable, 3) provide consistent performance for individuals across tests online and in

laboratory. Together these factors would influence the outcomes of data-driven analyses.

Here, we asked 211 participants to perform eight tests frequently reported in the literature.

We used Principal Component Analysis and Agglomerative Clustering to determine factors

underpinning performance. Importantly, we examined the reliability of these tests, relation-

ships between them, and quantified participant consistency across tests. Our findings show that

participants’ performance can be split into two factors (called here confirmation and elimi-

nation of an identity match) and that participants cluster according to whether they are

strong on one of the factors or equally on both. We found that the reliability of these tests is

at best moderate, the correlations between them are weak, and that the consistency in

participant performance across tests and is low. Developing reliable and valid measures of

FIP and consistently scrutinising existing ones will be key for drawing meaningful con-

clusions from data-driven studies.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom.
gy, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, SA2 8PP,

.K. Bobak), alex.l.jones@swansea.ac.uk (A.L. Jones).
ding authors. For queries pertaining to data analysis, please contact ALJ.

Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cortex.2023.05.018&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:a.k.bobak@stir.ac.uk
mailto:alex.l.jones@swansea.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cortex.2023.05.018&domain=pdf
www.sciencedirect.com/science/journal/00109452
www.elsevier.com/locate/cortex
https://doi.org/10.1016/j.cortex.2023.05.018
https://doi.org/10.1016/j.cortex.2023.05.018
https://doi.org/10.1016/j.cortex.2023.05.018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


c o r t e x 1 6 6 ( 2 0 2 3 ) 3 4 8e3 6 4 349
1. Introduction

Data driven approaches in face identity processing (FIP) utilize

large datasets and computational techniques such as Prin-

cipal Component Analysis, Factor Analysis, or clustering to

gain insights into how humans process facial information.

Several studies have been published using this approach

pertaining to the specificity of face recognition (Hildebrandt,

Wilhelm, Schmiedek, Herzmann, & Sommer, 2011; �Cepuli�c,

Wilhelm, Sommer, & Hildebrandt, 2018), trait impressions

from faces (Sutherland & Young, 2022; Vernon, Sutherland,

Young, & Hartley, 2014), Social and Emotion Perception

(Jones & Kramer, 2021), and image characteristics (Burton,

Kramer, Ritchie, & Jenkins, 2016; Hancock, Burton, & Bruce,

1996). In Face Identity Processing (FIP) this is a relatively new

approach in studies with typical and superior (Baker, Stabile,

& Mondloch, 2023; Bobak, Mileva, & Hancock, 2019; Nador,

Vomland, Thielgen, & Ramon, 2022; Verhallen et al., 2017) as

well as impaired (Bennetts et al., 2022; DeGutis et al., 2022;

Lowes, Hancock, & Bobak, 2023) perceivers.

The data-driven approach allows for more unconstrained

analysis of large data setsean algorithm splits or clusters data

based on a common underlying characteristic which can offer

unique insight into processes driving participants' perfor-

mance. This is unlike the traditional top-down hypothesis-

driven approach where any analysis is constrained by an a

priori prediction. For example, recent studies using a range of

FIP tests reported clusters of participants in typical (Baker

et al., 2023) and developmental prosopagnosia (Bennetts

et al., 2022; DeGutis et al., 2022) populations corresponding

to different perceptual impairments (Bennetts et al., 2022;

DeGutis et al., 2022) or response bias (Baker et al., 2023).

However, the quality, i.e., reliability of the FIP tests and con-

sistency of performance of participants on these tests is

largely unknown because they were originally developed for

studies examining either isolated effects in a specific test or

small groups of typical, superior, or impaired perceivers, or

both. How do these tests perform together, when adminis-

tered as a large battery with large number of participants, in

the laboratory and online is not known. Specifically, would

these tests rank participants consistently in terms of their

general FIP abilities? This largely depends on their internal

reliability that can impact across-task consistency in most

participants. Indeed, initial evidence suggests that some

commonly used tests may be, in fact, sub-optimal for

individual-difference analyses and across-task comparison

(Fysh, Stacchi, & Ramon, 2020; Stacchi, Huguenin-Elie, Cal-

dara, & Ramon, 2020). In this study, using ‘big data’ and data-

driven approach, we aim to answer some of these important

questions pertinent to the rapidly growing data-driven psy-

chological research.

1.1. Assessment of individual differences in face identity
processing (FIP)

Valid and reliable testing of face identity processing (FIP) in

typical perceivers (Bate et al., 2018; Bobak, Pampoulov, & Bate,

2016; Dunn, Summersby, Towler, Davis, & White, 2020; Fysh

et al., 2020; Ramon, 2021; Stacchi et al., 2020; Stantic et al.,
2021), super-recognisers (e.g., Bate, Portch, & Mestry, 2021;

Ramon, 2021) and developmental prosopagnosics (White

et al., 2017a; 2017b, 2021) has recently attracted a lot of in-

terest amongst researchers. FIP is typically assessed by

examining face perception (minimal memory demand) and

facememory (sub) processes. The evidence for this perceptual

and mnemonic distinction comes from individuals with ac-

quired and developmental prosopagnosia exhibiting problems

at the early encoding (Biotti, Gray, & Cook, 2019), or later,

discrimination (Fysh & Ramon, 2022; White et al., 2017a,

2017b) stage.

This distinction also exists at the high end of the FIP ability

(Bate et al., 2018; Bobak, Hancock, & Bate, 2016). The so-called

super-recognisers (SRs) have been described as heterogenous

in their presentation (Bobak, Bennetts, Parris, Jansari, & Bate,

2016), with some excelling at face perception only (Bate

et al., 2018; Bobak, Hancock, & Bate, 2016), and others excel-

ling at both face perception and memory (Bate et al., 2018;

Bobak, Dowsett, & Bate, 2016; Bobak, Hancock, & Bate, 2016;

Ramon, 2021). Thus, although face recognition and face

perception necessitate terminological and methodological

distinction in individual differences studies (Ramon, 2018;

Ramon & Gobbini, 2018), in practice this ‘gold standard’ has

not always been adopted in literature (Belanova, Davis, &

Thompson, 2018; Bobak, Pampoulov, & Bate, 2016; Phillips

et al., 2018) and researchers use various tests to examine the

sub-processes. For example, Super-recogniser and forensic

experts to date have often undertaken the Cambridge Face

memory Test (CFMTþ, Russell, Duchaine, & Nakayama, 2009),

Cambridge Face Perception Test (CFPT, Duchaine, Germine, &

Nakayama, 2007; Russell et al., 2009), the Glasgow Face

Matching Test (Burton, White, & McNeill, 2010), or a combi-

nation of these tests. Occasionally, SRs have been included in

experimental groups because of their professional activities,

such as being a part of a police force (Phillips et al., 2018;

Robertson, Noyes, Dowsett, Jenkins, & Burton, 2016). Some

early research into superior face-recognition employed just

one test to select high performers (Bobak, Bennetts, et al.,

2016; Bobak, Dowsett, & Bate, 2016; Bobak, Hancock, & Bate,

2016; Phillips et al., 2018).

For example, Phillips et al. (2018) set out to compare face

matching performance of then leading computer algorithms

with several professional groups, SRs, and students, recruited

using various criteria. The expert groups, forensic and

fingerprint examiners, were recruited in their workplaces

(e.g., Police). The SRs were identified using either a

CFMT þ score over 90 points, or a GFMT score of over 90% (38

items correct or above), or a professional activity as a SR. In-

dividuals fulfilling only one of these conditions were included in

the experimental group (N ¼ 13). These inclusion criteria rest

on the assumption that these laboratory tests and profes-

sional activity are equivalent to one another in terms of one

unique underlying FIP ability. Recent evidence from the indi-

vidual differences literature suggests that this may not be the

case and the selection of the tests is critical for the results and

conclusions of a study (Bate et al., 2021; Fysh et al., 2020; Stacchi

et al., 2020).

At least three recent studies with typical perceivers

showed that multiple tests, even when used in combination,

are hard to interpret (Bate et al., 2018; Fysh et al., 2020; Stacchi
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et al., 2020). Stacchi et al. (2020) administered five FIP tests to

over 200 participants in controlled laboratory conditions. The

authors found that while the data from three tests (the

CFMTþ, the Yearbook Test e YBT, and the Facial Identity Card

Sorting Test e FICST) converged in terms of participants’

ranking, the two challenging matching tasks, Expertise in

Facial Comparison Test (EFCT) and Person Identification

Challenge (PICT; White, Phillips, Hahn, Hill, & O’Toole, 2015),

did not predict performance on the other tests. Specifically,

the top performers on EFCT and PICT scored in the full range

of the remaining tests (above and below the medians).

In another study, Bate et al. (2018) examined the consistency

of performance across different applied screening tests. They

screened 200 people using the CFMTþ and three new applied

tests of face processing: Models Memory Test (MMT), Pair

Matching Test (PMT), and a facial composite (EVO-Fit) to

lineup matching test. Approximately 60% of people showed

consistency in their performance across all tests. Interest-

ingly, the two tests examining face memory were weakly

correlated (r ¼ .146, p ¼ .039) in spite of seemingly testing the

same FIP sub-process (memory; see also Fysh et al., 2020 for

similar conclusions). TheMMTused different stimuli (faces) to

the CFMTþ and included target-absent trials, where partici-

pants had to decide that a learned face is not present in an

array of three faces. This is unlike the CFMT þ where a target

face is always present. Therefore, although in principle testing

seemingly the same sub-processeface memoryethe two

memory tests in the Bate et al. require encoding and retrieval

of different types of perceptual information to correctly solve

target present and target absent trials (see Boudry, Nador, &

Ramon, 2023 for a detailed discussion of the role of target

prevalence in FIP tests).

Bate and colleagues suggested adopting an index score to

capture average performance e a composite of all tests that

informs about one's general ability (see also Lowes et al., 2023;

Royer, Blais, Gosselin, Duncan, & Fiset, 2015). The use of an

index face score is supported by the recent evidence sug-

gesting that across various face processing tasks, there is an

underlying common factor f, akin to the general intelligence g

(Verhallen et al., 2017). As such, all face processing tasks may

be underpinned by the same f ability and thus performance

should be best predicted from it.

1.2. Reliability and validity of assessment

These initial results, however, do not address the implications

of the reliability and validity (c.f. Mayer & Ramon, 2022) of

used tests for the analyses (though DeGutis et al., 2022, note

that the Cambridge Face Perception Test (CFPT) has only

acceptable reliability). This is problematic, because lack of

reliability can lead to uninterpretable results in individual

differences.

Indeed, specific tests of FIP may be unreliable, i.e., the re-

sults across items in a test are inconsistent, which impacts

on the maximum possible strength of correlations between

the tests. Using an example from Verhallen et al. (2017)

where the internal reliability (a) of a holistic processing

task was .53 and the reliability of the GFMT was .91, the

maximum expected correlation between these tests would be
√(.53 � .91) ¼ .69. Good reliability is an inherent part of in-

telligence and personality researchefor example, the sub-

tests of the Wechsler Abbreviated Scale of Intelligence, Sec-

ond Edition (WASI-II) have an excellent internal reliability

ranging from .90 to .92 in an adult sample (McCrimmon &

Smith, 2013), yet reliability has not typically been scruti-

nised in FIP tasks (c.f., Bowles et al., 2009; Richler, Floyd, &

Gauthier, 2014), and definitely not in every study and every

sample. Importantly for the data-driven approaches, such

error variance from an unreliable test can impact the quality

of PCA (Bailey, 2012) and clustering by increasing the

contribution of the error variance to all the components of

the PCA, spreading explained variance across more compo-

nents. However, it is important to note that as performance

on a test approaches the ceiling (either when a test is too

easy, or the participants’ FIP is superior), the reliability for

such a test, or a sample may be artificially inflated.

More than only the ‘pure’ FIP ability may also be needed to

accurately complete any given test. Participants may adopt

different response strategies depending on the test difficulty,

structure of the response options, and own response biases.

The Bate et al. (2018) and Fysh et al. (2020) studies show this

may be the case based on the modest correlations between

two memory based tasks (one with a ‘target absent’ option,

and one without). While the eyewitness literature widely ac-

knowledges that differences between ‘choosers’ (i.e. those

who always make a positive identification in a line-up) and

‘non-choosers’ exist (Wixted & Wells, 2017), and that an ideal

test of eyewitness accuracy should incorporate measures of

FIP ability and proclivity to choose (Baldassari, Kantner, &

Lindsay, 2019), this issue is rarely acknowledged in the

fundamental FIP research (c.f., Baker et al., 2023). However, a

recent review by Bindemann and Burton (2021) suggested that

acknowledging decision making strategies is important when

assessing performance on face matching tasks, while Boudry

et al. (2023) provide the first consistent examination of the

role of target prevalence in FIP tests. This is particularly

important given the evidence that performance on different

sub-components of even simple matching tests is unrelated

(Megreya & Burton, 2007).

1.3. Differences between online and laboratory
assessment

Finally, while some individual differences data are acquired in

laboratories under controlled conditions (Bennetts, Mole, &

Bate, 2017; Bobak, Bennetts, et al., 2016), other studies rely

on online data collection methods (Baker et al., 2023; Bate

et al., 2018; Davis, Lander, Evans, & Jansari, 2016) and yet

comparative analyses for these two sources of data are rarely

reported in FIP literature. A thorough examination of online

testing methods is long overdue given the shift to that envi-

ronment over the last three years. To address these important

issues we examined: 1) the directly unobservable factors that

may underpin FIP performance using data-driven approaches:

Principal Components Analysis (PCA) and Hierarchical

Agglomerative Clustering 2) the relationship between and reli-

ability of most commonly used FIP tests, 3) and the consistency

in performance within participants.

https://doi.org/10.1016/j.cortex.2023.05.018
https://doi.org/10.1016/j.cortex.2023.05.018


c o r t e x 1 6 6 ( 2 0 2 3 ) 3 4 8e3 6 4 351
2. Method

The study was approved by the University I and University II

institutional Ethics Committees. Below, we report how we

determined our sample size, all data exclusions, all inclusion/

exclusion criteria, whether inclusion/exclusion criteria were

established prior to data analysis, all manipulations, and all

measures (tests) in the study. No part of the study procedures

or analysis plans was preregistered prior to the research being

conducted.

2.1. Participants

Weobtained two samples of data on the same tasks; one in the

laboratory, and one online. All participants wereWhite. In the

laboratory sample, we recruited 108 students and visitors at

two UK institutions (University I, N ¼ 88; University II, N ¼ 20).

Participants’ demographic data are summarised in Table 1.

Given the planned analyses (PCA and internal reliability) and

the number of tests (N¼ 7), we anticipated the study needing a

minimum of 140 participants. This estimation was based on a

conservative requirement for minimum sample size being 20

times larger than the number of variables in an Exploratory

Factor Analysis (Mundfrom et al., 2005). We thus opted to re-

cruit the maximum possible number of participants given the

available funding to maximise the statistical power of

analyses.

The online recruitment was fully managed by University II

via Prolific. Although the age of the online sample was signif-

icantly higher than the lab sample, t (208) ¼ 5.68, p < .001,

d¼ .78, we decided to collapse the two samples for consistency

and to givemore observations to the principal component and

clustering analyses. We justified this decision because a) the

data distributions for all tasks were largely overlapping and b)

the relationship between age and face recognition ability in

adults is small and linear (Susilo, Germine, & Duchaine, 2013),

c) any underlying meaningful difference would be identified

using the opted for data driven approach, and also that these

approaches have better performance with larger datasets.

Because we were interested in individual differences we

elected to remove participants only if their performance indi-

cated inattention, repetitive button pressing, or misunder-

standing of instructions, removing participants who had more

than one “error” across all the tasks. We defined an error as a

performance level that is indicative of a failure to attend on a

task. In detail, an error was classified when a participant had a

score of less than .05 on the target absent or less than .05 on the
Table 1 e Summary of the demographic data.

Sample origin Lab

N recruited 108

N excluded 1 (experimenter e

N retained (final sample) 107

Mean Age (SD) 23.4 (4.3)

Gendera 58 males, 49 fema

Handedness 13 left

a The age differences between the genders were ns in both samples (one

this analysis).
target present conditions of the one-in-ten task. For the PICT,

KFMT, GFMT, and the upright and inverted versions of the

EFCT,we classified an error as a participant scoring less than .2

on thematch ormismatch conditions, or scoring less than .4 on

the match and mismatch conditions. The number of errors

were summed across tasks and participants excluded if they

hadmore than one. The exact code for exclusion is available in

the online materials (https://osf.io/5k9ny/). This resulted in

excluding six participants from the online sample, while none

wereexcluded fromthe labsample, a removalof5.45%ofonline

data or 2.84%of the full sample,which is in linewith exclusions

in recent studies with online participants (e.g., Carragher &

Hancock, 2022). Participant recruitment was restricted to the

18e35 age range with the aim of examining data relatively

unaffected by cognitive ageing. All participants gave an

informed consent and were reimbursed £10 for their time.

2.2. Materials and procedure

2.2.1. Tests
The paradigms and specific tests used in this study are shown

in Fig. 1 and the text below. For more information, we refer

readers to the specific papers that implemented these tasks

(cited in this paper). These tests cannot be publicly shared by

the authors due to data protection restrictions, but we include

a Wiki page on how materials were obtained https://osf.io/

5k9ny/wiki/Materials/.

2.2.1.1. CAMBRIDGE FACE MEMORY TEST: LONG FORM (RUSSELL ET AL.,
2009). In this task, participants are asked to memorise six

male faces (wearing beanie hats so the external features, i.e.,

hair and ears) are invisible. The test consists of 102 trials and is

split into four parts. In part one, participants are presented

with three views of the learned face and must subsequently

pick from a lineup of three faces (containing the same image).

In part two, participantsmust pick from lineups of three faces,

but the images are novel. Parts three and four are identical,

but the images are overlaid with visual noise and the faces are

in varying poses and face expressions. Part four images also

show hair. There are two 20 s long reviews of all learned faces

after part one and after part two. All images are presented in

grayscale. The maximum correct score is 102 and the chance

level is at 33.3%.

2.2.1.2. THE GLASGOW FACE MEMORY TEST: SHORT (BURTON ET AL.,
2010). In this task, participants are presented with two im-

ages of faces side by side and have to decide whether they

show the same person (‘matched’ pairs) or two different
Online

110

rror) 6 (based on performance)

104

27.1 (5.2)

les 53 males, 56 females, 1 unknown

14 left, 5 ambidextrous

participant who did not disclose their gender was removed from only

https://osf.io/5k9ny/
https://osf.io/5k9ny/wiki/Materials/
https://osf.io/5k9ny/wiki/Materials/
https://doi.org/10.1016/j.cortex.2023.05.018
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Fig. 1 e Schematic figure paradigms and specific tests participants attempted in this study.N.B. the EFCT was shown to

participants in both upright and inverted versions.
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people (‘mismatched’ pairs) and respond by pressing a

keyboard key (‘s’ or ‘k’). The images were taken on the same

day by different cameras and are in grayscale to avoid

matching on basic visual features such as blemishes or moles.

There are 40 trials, half arematched (they show two images of

the same person) and half are mismatched (they show two

images of different people). There is no time limit to respond,

and the chance level is at 50%.

2.2.1.3. ONE IN 10 TEST (BRUCE ET AL., 1999). In this version of the

test, each trial consists of a target face extracted from a video

recording displaying amale face from a 30� angle. This ‘target’
image is presented with a 5 � 2 array of faces below (ten im-

ages). All images are presented in colour. The target images

measure 216 � 263pixels and the arrays measure

1050 � 700pixels. There are 80 trials and half of the trials are

target present (the ‘target’ person appears on one of the im-

ages in the array) and half of the trials are target absent (the

‘target’ person does not appear in the array). All images in the

array are numbered from 1 to 10 and participants have to

respond with the corresponding number key if they think that

the target is present (they press 0 for face number 10) or press

the space bar if they think that the ‘target’ does not feature in

the array. The chance level is at 10% in target present trials.

2.2.1.4. EXPERTISE IN FACIAL COMPARISON TEST UPRIGHT (EFCT-U).
This test, developed by White et al. (2015), examines face

matching ability. It comprises a total of 84 trials, half of which

arematched and half mismatched. The pairs are displayed for

a maximum of 30 s and participants can respond during the

30 s or after images disappear. We retained the original

response options which were as follows: (i) sure they are the

same person; (ii) think they are the same person; (iii) do not

know; (iv) think they are different people; and (v) sure they are

different people. We adopted the scoring method used in

previous studies (Kramer, Jones, & Gous, 2021; O'Toole et al.,

2007); responses 1 and 2 were converted to ‘same’ judg-

ments and 3, 4, and 5 as ‘different’ judgments (n.b., the EFCT

as developed byWhite et al. (2015) intending to use AUC as the

dependent measure).
2.2.1.5. KENT FACE MATCHING TEST (KFMT): SHORT (FYSH &

BINDEMANN, 2018). This version of the task consists of 40

identity pairs (20 males and 20 females). Twenty pairs show

the same identity (‘matched’ pairs) and 20 show different

identities (‘mismatched’ pairs). One image from each pair

came from the Kent Unfamiliar Face Database andwere taken

under controlled conditions, akin to a document photograph.

These images measure 1050 � 700pixels. The other image in

each pair is a student ID photograph which varies in pose,

expression, and lighting. These images measure 142 � 192

pixels. Participants respond by a keypress (‘m’ or ‘x’). There is

no time limit and the chance level is 50%.

2.2.1.6. EXPERTISE IN FACIAL COMPARISON TEST INVERTED (EFCT-I).
The form of this test is identical to the EFCT-U except that a

new set of 84 pairs of images are presented upside down. We

adopted the same scoring method as in EFCT-U. We included

this test to calculate the index of holistic processing which

was the aim of another analysis (see Berger, Fry, Bobak,

Juliano, & DeGutis, 2022) e we report the results here for

completeness but do not discuss them.

2.2.1.7. PERSON IDENTIFICATION CHALLENGE TEST (PICT). The PICT is

a test of face perception. It is exactly the same in its procedure

and response options to the EFCT (White et al., 2015). The

people presented in the images in the test are taken from a

greater distance and with more contextual information (i.e.,

the background). We adopted the same scoring method as in

EFCT-U.

2.2.1.8. FACIAL IDENTITY CARD SORTING TEST (FICST). This face

perception test originally adopted from Jenkins, White, Van

Montfort, & Mike Burton, 2011), and recently used by Stacchi

et al. (2020) involves a simultaneous card sorting procedure.

The test aims to assess face matching across variable

appearance. The faces are forty images of two Dutch celeb-

rities (Chantel Janzen, Bridget Maasland) provided by Jenkins

and Burton. All images measure 38 � 50 mm and are in

grayscale. Participants were shown all images at once scat-

tered on a flat surface and are instructed to sort them into as

https://doi.org/10.1016/j.cortex.2023.05.018
https://doi.org/10.1016/j.cortex.2023.05.018
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many or as few identities they thought were in the pile.

Jenkins et al. (2011) reported participants perceived on average

7.5 identities in the pile (replicated by Stacchi et al., N ¼ 218,

Midentities ¼ 7.6). The experiment ended when participants

informed the researcher that they had sorted the pile into the

correct (in their opinion) number of identities. The number of

IDs recorded was included in the analyses. We also recorded

the number of errors, i.e., an image of one identity in a pile of

predominantly the other identity. Because this test was not

possible to conduct online at the time of testing and we

collapsed data for the lab and online sample, we only report it

in supplementary materials.2

All the tests were administered in the same (as described

above) fixed order to minimize error variance. The FICST was

not included in the online version of the study for practical

reasons, i.e. it was not possible to implement it on Testable at

the time of running the study (but see footnote 1). After

completing the first four tests, participants were asked to take

a 30 min long break. Testing took place in dimly lit cubicles

using 19 inch monitors running 1280 � 1024 pixels resolution

with refresh rate 60 Hz and 24 inch widescreen monitors

running 1920 � 1080 pixels resolution with refresh rate 60 Hz

at Universities I and II respectively. The laboratory testingwas

conducted by six Experimenters.

All online experiments were implemented in Testable and

run via Prolific on participants' own devices (laptops and PCs,

but not mobile phones and tablets). The devices and screen

resolutions varied between participants. The consistent

stimuli display size was ensured using Testable's calibration

screen where participants have to press a credit-card sized

card against their screen and adjust the length of a bar dis-

played in the browser using arrow keys on their keyboard to

align with the size of the card.
3. Analytic strategy

Our three main aims to achieve in this study were to examine

a) patterns of performance emerging amongst participants, b)

overall reliability of the tests and the correlations between the

tests c) consistency of performance within participants and

We present the analysis plan for each of these aims below. All

data (including not reported here reaction times) and code for

analysis are available on our OSF page https://osf.io/5k9ny/.

The OSF wiki further defines every file in the repository and

every variable name and abbreviation in the files.

3.1. Patterns of performance: data driven approach

To examine the patterns of performance, we chose to imple-

ment Principal Components Analysis (PCA) and hierarchical

agglomerative clustering, a form of cluster analysis (CA).

Verhallen and colleagues reported in their paper that face

processing ability is underpinned by a process akin to general

intelligence (g) and dubbed it f. We sought to replicate this
2 The most up to date version of this task published in Ramon
(2021) represents a subset of all images provided by Jenkins and
colleagues and its new, online version should be requested from
Prof. Dr. Ramon at the Applied Face Cognition Lab.
finding by performing PCA with all tests. As the correlations

between match and mismatched performance tend to be low

and these sub-components are often reported separately (e.g.,

Bobak et al., 2019), we split the matching tests (except for the

CFMTþ) bymatched andmismatched performance, and the 1-

in-10 test by target present and target absent performance,

before z-score standardising the data and conducting the PCA.

Additionally, to investigate the presence of clusters of in-

dividuals within the dataset, we used hierarchical agglomer-

ative clustering (Kaufman & Rousseeuw, 1990) with the

retained principal components. This type of clustering groups

observations together according to their similarity in

Euclidean space. Briefly, hierarchical agglomerative clustering

begins by considering each observation (here a participant

and their scores on the respective tasks) as a single cluster. On

each iteration, the two nearest clusters are merged into one

larger group, until all clusters fall into a single group upon

completion. Clusters were calculated according to Ward's
method (Ward, 1963), which merges observations that have

the smallest difference in error sums of squares between their

respective clusters.

Once estimated, agglomerative clustering gives a tree-like

structure that can be cut to contain a given number of clus-

ters. To select the number of clusters to retain, we used the

silhouette coefficient (Rousseeuw, 1987). This statistic com-

pares themean distance between an observation and all other

observations within the same cluster, against the mean dis-

tance between that data point and all other points within the

next-nearest cluster. We opted to use hierarchical agglomer-

ative clustering as opposed to other methods like K-Means

(Bennetts et al., 2022), because it is a deterministic algorithm

that requires no random initialisation (unlike K-Means), and

so is easily reproducible. In addition, it is transparent, with the

estimated tree structure showing all possible cluster solu-

tions, which is a unique advantage of the approach.

Clusters were estimated using the agnes method from the

cluster package in the R programming language (M€achler,

Rousseeuw, Struyf, Hubert, & Hornik, 2012). Data was Z-

scored standardisedbefore clustering, and exactly like thePCA,

had all measures split by their match/nonmatch conditions

(excluding the CFMT þ which only has target present trials).

3.2. Reliability and correlations

The correlation strength depends, amongst other factors, on

the internal reliability of tasks under scrutiny. The lower the

internal reliability of these tasks, the lower the maximum

expected correlation between them (relative to a perfect cor-

relation of ±1). We calculated the maximum expected corre-

lations (MEr) using the formula adopted by Verhallen et al.

(2017), i.e., taking the square root of the product of the inter-

nal reliabilities (Cronbach's alpha) of each taskMEr¼√(a1*a2)

(c.f. Nimon, Zientek, & Henson, 2012). To estimate the re-

lationships between tasks, we employed Pearson

productemoment correlations.

3.3. Consistency of the tests

Given the number of face recognition tasks in this study, we

aimed to test for the consistency of performance of each

https://osf.io/5k9ny/
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participant across the different tasks e more simply, to what

extent does a high-scoring individual on one task also score

highly on another? A statistic ideally suited to exploring this

relationship is the intraclass correlation coefficient (ICC),

which can summarise the extent to which participants

maintain their rank orders across repeated measurements

(Liljequist, Elfving, & Skavberg Roaldsen, 2019). More gener-

ally, the ICC represents a ratio of systematic variations be-

tween participants to individual andmeasurement noise. This

is an important application, as existing literature often uses

one or two tasks to classify participants as a super-recogniser

or prosopagnosic, with little recourse to the reliability of FIP

tests (c.f., Nador et al., 2022).

We submitted six tasks (CFMTþ, GFMT, KFMT, PICT, EFCT

upright, andOne-in-Ten) to an ICC analysis, omitting the EFCT

inverted. This is because, for practical reasons, we were

interested in how consistent participants were in upright

tasks. The ICC analysis can produce two values: absolute

agreement and consistency. The absolute agreement tests the

extent to which onemay get the same score between the tasks

(e.g., 75% on CFMT, GFMT etc.). The consistency ranks the

individual subjects across allmeasures. For example ranking 1

on CFMTþ but 18 on PICTwould indicate poor consistency in a

subject. Conversely, ranking 1 or 60 across all tests would

indicate good consistency. Although in, for example, medical

sciences and repeated measurements the absolute value may

be important (e.g., for repeated resting heart rate measure-

ment in one subject), here, wewere interested in scores across

tasks with different ranges in performance, so we report

consistency only. The analysis yields one value for the whole

dataset. We used the cut-off of Koo & Li (2016) to interpret the

strength of the ICC.
4. Results

4.1. Descriptive statistics

Table 2 shows summary statistics (means and SDs) for the FIP

tests used in this study, split by the task origin (lab or online).

The summary statistics broadly track previous literature
Table 2 e Descriptive statistics across tasks and data
collection origin. The CFMTþ score is the average of the
raw number of trials correct, the FICST is the average of
participants’ FICST score: (the number of pilesþnumber of
errors) e 2 (optimal performance separating the pile to two
identities without errors); all remaining tasks are the
average of proportion correct responses.

Task Lab Online

Mean SD Mean SD

CFMTþ 69.60 11.52 67.51 11.93

EFCT inv .68 .08 .60 .07

EFCT up .81 .07 .74 .07

GFMT .81 .10 .78 .15

KFMT .64 .11 .61 .11

1-in-10 .62 .14 .54 .18

PICT .75 .09 .61 .10

FICST 5.86 4.03 e e
suggesting that our data is not anomalous with respect to

reported performance on these tests. However, as we lay out

below, one should not be ‘hung up’ on descriptive statistics,

given the reliability of the test and (in)consistency in perfor-

mance (see Table 3).

4.2. Data driven approaches

4.2.1. Principal Component Analysis
As indicated above, for the PCA, we chose to split perfor-

mance, where possible, by matched and non-matched (and

the target present and target absent in 1-in-10) trials. The PCA

separated performance into two components explaining

50.8% of the variance in the dataset. In linewith previouswork

indicating a lack of correlation between match and mismatch

ability (e.g. Kokje, Bindemann, & Megreya, 2018; Megreya &

Burton, 2007), these two components broadly reflected match

and target present (PC1) and non-match (nm) and target absent

(PC2) performance. The CFMTþ loaded on the PC1 (match

performance). The distribution of tasks across two compo-

nents and their loadings are presented in Fig. 2.3

4.2.2. Clustering
After fitting the hierarchical agglomerative clustering tree, we

tested for the presence of clusters by examining the silhouette

coefficient for candidate cluster numbers from one to ten. The

highest silhouette coefficient was observed for three clusters,

SC¼ .16, and the agglomerative coefficient (the dissimilarity of

each observation to the first cluster it is merged with, divided

by the dissimilarity of the merge in the final step) was .91,

indicating a relatively good cluster solution. The cluster

showed a larger group containing 60% of observations

(n¼ 123), and two smaller clusters, one containing 23% (n¼ 48)

and the final containing 17% (n ¼ 34), see Fig. 3.

To interpret the clusters, we considered them in light of the

principal component solution derived earlier. The largest

cluster (60% of the sample) comprised individuals who had

positive scores relatively close to zero on both components

(cluster PC1 mean ¼ .91, PC2 mean ¼ .63), suggesting average

performance on both matching and non-matching compo-

nents. Cluster two, comprising around 23% of the sample, had

low scores on PC1 (mean¼�2.80) but positivemiddling scores

on PC2 (mean ¼ .87), while cluster three (17%) had negative

scores close to zero on PC1 (mean ¼ �.36), and low scores on

PC2 (mean ¼ �2.22). Given the interpretations of the PC

loadings, this seems likely to indicate groups of individuals

with average performance; poor match performance but

normal mis-match performance, and the converse.
3 By submitting the full dataset to the PCA we ignored the
origin of the data. One advantage of PCA is that we may now find
that the origin (lab/online) is correlated strongly with a compo-
nent, indicating that the component may represent the source of
variability in the data associated with the lab/online distinction.
We tested for this here to see how much variance this may ac-
count for. The origin shows the strongest relationship with PC3
(r ¼ .47), which explained around 8% of the variance. We opted to
keep the first two components as they explain around 50% of the
variability in the dataset, with each subsequent component after
PC3 explaining less than 7% of the variance.

https://doi.org/10.1016/j.cortex.2023.05.018
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Fig. 2 e The PCA component loadings. The loadings represent the strength of the relationship of each task with the PCA1

and PCA2.

Table 3 e Pearson correlations, reliability (Cronbach's Alpha; a shown in the first row of each, lab and online samples), and
maximum expected correlations (see the formula in the analytic strategy section). Values on the upper diagonal represent
the maximum expected correlation, lower diagonal the correlation coefficient.

Origin Task CFMTþ EFCT Inv EFCT Up GFMT KFMT One-In- Ten PICT

Lab a .884 .643 .662 .669 .597 .881 .554

CFMTþ e .754 .765 .769 .727 .882 .700

EFCT Inv .155a e .653 .656 .620 .753 .597

EFCT Up .304 .592 e .666 .629 .764 .606

GFMT .474 .204 .441 e .632 .767 .609

KFMT .308 .178a .333 .328 e .725 .575

One-In -Ten .302 .258 .440 .386 .274 e .699

PICT .212 .421 .418 .285 .440 .283 e

Online a .884 .520 .690 .824 .597 .933 .517

CFMTþ e .678 .781 .854 .727 .909 .676

EFCT Inv .371 e .599 .655 .557 .697 .519

EFCT Up .530 .441 e .754 .642 .803 .597

GFMT .558 .484 .565 e .702 .877 .653

KFMT .458 .330 .509 .428 e .746 .555

One-In-Ten .540 .323 .433 .486 .363 e .695

PICT .313 .343 .427 .329 .339 .201a e

a Indicates non-significant (p > .05) correlations.
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4.3. Reliability and correlations

We first correlated the performance of all participants on all

accuracy scores in all tasks. The results are presented in Table

1. The individual p values are available on the OSF page. In the

FICST task, we recorded the number of piles andmistakes, but

not individual cards in these piles. It was thus impossible to
calculate the reliability and the maximum expected correla-

tions with this test.

4.4. Consistency of performance

Weplaced all tasks on the same scale for analysis, expressed as

the proportion of trials correct. For the whole dataset, the

https://doi.org/10.1016/j.cortex.2023.05.018
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Fig. 3 e Top left: Individual data points plotted on the principal component axes and their cluster locations. Larger points

represent the centroids of each cluster. Top right: The average silhouette coefficient per number of clusters. Bottom:

Dendrogram of agglomerative clustering solution. Dashed lines represent cluster segregation (vertical) and height at which

the dendrogram was cut (horizontal) to create the clusters.
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consistency ICC was significant, ICC(C, 1) ¼ .38 [.32, .45], F (208,

1040)¼ 4.70,p< .001.However, this estimate (.38) indicatespoor

consistency, falling below .50 (Koo & Li, 2016). Next, we exam-

ined the ICC in both the lab and online data to check for any

divergences that may explain the result. For the lab data con-

sistency was poor; ICC (C, 1) ¼ .32 [.24, .41], F (104, 520) ¼ 3.77,

p < .001. For the online data, the consistency was marginally

higher; ICC(C, 1) ¼ .38 [.29, .47], F (103, 515) ¼ 4.71, p < .001. We

further opted to visualise these data to allow for cross-study

comparisons, using methods described by Fysh et al. (2020).

First, we computed the rank sum for each participant

across all tests by ranking performance on each individual

test, and summing across these per participant. Ranking this

summed ranking allowed us to extract the highest 2.5% (those

with the lowest rank scores, i.e. better performance) the

middle 2.5%, and the and lowest 2.5%, giving a view across the

range of abilities. Radar plots (see Fig. 4) were created that

mapped the relative performance abilities of these individuals

(five per category) illustrating the variability at the top,middle,

and bottom of the sample.
5. General discussion

In this study,we examined a large dataset (N¼ 211)with online

and laboratory samples of young adults, using data driven

approaches (Principal Component Analysis and Hierarchical

Agglomerative Clustering) to determine patterns of
performance across tasks. We found that the two main prin-

cipal components reflected accuracy on matched and mis-

matched (Target Present and Target Absent) trials,

respectively. The clustering further corroborated these find-

ings by splitting participants into three clusters, reflecting

similar performance on both Principal Components (bias-free

responding), higher performance on PC1 (biased towards

‘match’ responses) or higher performance on PC2 (biased to-

wards non-match response).We also showed that the internal

reliability is mostly low in commonly used tests, the correla-

tions between FIP tests are small to moderate, and the con-

sistency of performance within participants (across tests) is

poor (see also Nador et al., 2022). Interestingly these seemed

irrespective of the origin of the data, i.e., the online data is not

any more unreliable or inconsistent than data collected in the

laboratory.

5.1. Patterns of performance: Principal Component
Analysis and clustering

Our first aimwas to investigate the patterns of performance in

our sample. Verhallen et al. (2017) proposed that FIP ability is

underpinned by a single process f akin to general intelligence

(g). If thiswere true,wewould expect the tasks to load strongly

on one component. However, it has previously been reported

that the correlations betweenmatch andmismatched trials in

simultaneous matching tasks is low (Bobak et al., 2019) and

thus match vs. mismatch performance may represent

https://doi.org/10.1016/j.cortex.2023.05.018
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Fig. 4 e Radar plots of individual score profiles on each task at the top, middle, and bottom levels of performance of the

dataset. The shaded area represents the average score in the dataset on each task, and the dots and dashed lines represent

the individual participants' profile on that task. The rank sum e the rank of the sum across individual task rankingseis

displayed centrally for the participant. We then took the rank scores of each participant on each variable, and computed a

cosine similarity matrix between all possible pairs of scores. This approach is a geometric measure of the angle between

participants' ranks on each variable, and functions much like a correlation coefficient. Those with a cosine similarity of one

will have the same pattern of rank performance across each task, while those with zero will be maximally divergent. We

sorted this similarity matrix by the rank sum across tasks (the variable used to select participants in Fig. 4), and visualised it

as a heatmap in Fig. 5. This heatmap uses the cosine similarity between all possible pairs of participants' scores, producing
a performance similarity matrix, and orders this by the rank sum variable. This illustrates the relationships among

individuals according to their overall performance across each task.
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different cognitive processes (see also, Berger et al., 2022) and/

or decisional strategies or biases (Baker et al., 2023; Baldassari

et al., 2019).

Indeed, the first two components (PC1 and PC2) of the

unrotated solution explained nearly 51% of the variance in the

dataset. For all the simultaneousmatching tasks and the 1-in-

10, the ‘match’ and ‘target-present’ sub-tests loaded strongly

on PC1, the ‘mismatch’ and ‘target-absent’ sub-test loaded

strongly on PC2 suggesting two main sub-processes under-

pinning participants' performance, we call these confirmation

and elimination (of an identity match), respectively. The

CFMTþ loadedmore strongly on PC1,most likely reflecting the

structure of this task where participants always have to

choose a target on each trial.

This finding is consistent with the low reliability of most

of the matching tasks. One of the reasons for insufficient

internal reliability of a test is that it measures more than one

construct (or here: sub-process; Cook & Beckman, 2006). This

appears to be the case in most of the FIP tasks used here and

suggests that the match and mismatch (or TP and TA in the

1-in-10 task) trials tap somewhat into different cognitive sub-

processes. One possible explanation could be that ‘match’

trials are treated as a ‘confirmation’ task (i.e. “they look

similar e are they both face A?”) whereas ‘mismatch’ trials

are treated as a elimination task (i.e. “they look quite

different e is face A also a face B?”). Similarly for the 1-in-10

task, the TP trials may reflect detection (of a match amongst
10 foils) and confirmation, whether TA trials may involve a

process of elimination.

Do participants differ with respect to how they approach

these tasks?Theclusteringof theprincipal components further

suggested that participants have somewhat different response

preferences. While the largest cluster consisted of participants

who scored averagely on both components (broadly corre-

sponding to bias-free performance), two clusters indicated

groupsofpeoplewhoaremoreprone todeclare a pair of images

or a lineup a ‘mismatch’ (Cluster 2) or a ‘match’ (Cluster 3),

suggesting that routinely examining patterns of responding by

separate analysis of different types of trials has a merit.

Additionally, we found limited evidence for the notion of f

(a single general face-factor) proposed by Verhallen et al.

(2017). This discrepancy may not be a result of perceptual

processes, but instead reflect decisional strategies of partici-

pants and different tests used in ours and Verhallen et al.’s

studies. Our study constitutes a conceptual, rather than direct

replication of Verhallen et al.’s results (Wilson, Harris, &

Wixted, 2020) and thus is not directly comparable.

Our results can also be conceptualised as participants

having a consistent bias towards saying match or mismatch

across tests. A signal detection analysis, which does separate

performance into sensitivity and bias, shows that, indeed,

bias scores are correlated across our tests (see supplementary

analysis). The two interpretations are equivalent: someone

who is better atmatch trials thanmismatch trials will have an

https://doi.org/10.1016/j.cortex.2023.05.018
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Fig. 5 e The cosine similarity matrix between all pairings of individuals, ordered by their rank sum. Darker areas of the

figure indicate participants with higher similarity in their performance across tasks to one another, while lighter areas

indicate greater divergences. The figure suggests those with a general higher performance across tasks, as indicated by

their rank sum, are more similar to each other.
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overall bias towards saying match (see Hancock, 2023 for

further discussion). It is possible, however, that there are

different underlying causes. Some participants may simply be

more cautious about declaring a match, leading directly to

differences in bias (e.g. Baker et al., 2023). There may also be

distinct abilities. For example, Berger et al. (2022) found that

match score and eye-processing ability correlated, while

mismatch scores correlated with holistic processing.

It is also worth noting that although some researchers use

signal detection analysis (e.g., Baker et al., 2023), it is arguably

not an appropriate approach for matching tasks. Burton and

Bindemann (2020) point out that mismatched trials cannot be

conceptualised as ‘noise’ and matched trials as ‘signal’ and

that detecting a mismatched trial is as much of a signal as

stating that two images match (for example in passport con-

trol settings). We agree with this approach.

5.2. Reliability of the FIP tests

Internal reliability is a proxy for how consistent a measure is,

i.e. it informs us whether items in a test or a questionnaire

measure the same construct. It also offers an approximation
to other forms of reliability, for instance test-retest when

obtaining multiple time-point measurements is impractical

(e.g., testing large assessment batteries (Cook & Beckman,

2006). The ‘acceptable’ value of alpha differs depending on

the scale application (Tavakol & Dennick, 2011). It can be

deemed as satisfactory at level .7 or .8 when comparing

groups, but be only acceptable at .9 or .95 for clinical appli-

cations (Bland & Altman, 1997).

Here, we showed that only two tests, the CFMTþ and the 1-

in-10, consistently met the more lenient, satisfactory, crite-

rion of a ¼ .7 (see Fig. 6).

This finding limits inferences we can make from these

widely used tests (and possibly many others widely used in

the FIP field). Reliability is an important (but not sufficient)

component of validity of a measurement. Unreliable tests are

equally problematic for estimating one's FIP ability, as would

be a thermometer giving three consecutive body temperature

readings of 36 �C, 34 �C, and 37.5 �C for diagnosing hypother-

mia. It is thus unsurprising that large FIP screening attempts

with multiple tests show limited evidence of generalizability

from one test to another, oftenwith procedurally similar tasks

(Fysh et al., 2020; Stacchi et al., 2020). Using a composite score

https://doi.org/10.1016/j.cortex.2023.05.018
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Fig. 6 e Reliability of laboratory and online tests.
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(Royer et al., 2015) does not entirely remedy the issue. The

sources of thismeasurement error and reliability can be either

in the variability of the items (i.e., images) or of the partici-

pants, potentially limiting the generalizability of the results to

one specific stimuli set and one specific participant sample

(Shavelson, Webb, & Rowley, 1992). Imagine an instance

where one of the four simultaneous matching tasks would be

used in a study to estimate one's face matching ability (e.g.,

Phillips et al., 2018). If another researcher would run the same

study with another task, they might arrive at very different

conclusions pertaining to their sample, despite testing, in

principle, the same ability with a somewhat different stimuli

set and, sometimes, procedure.

The solution to this problem might lie in the analytic

approach, specifically the use of linear mixed models where

participants and stimuli ate treated as random factors. Studies

in FIP research are typically analyzed using aggregated re-

sponses (e.g., average accuracy on task A for a sample of

subjects). This method treats the stimuli and participants as a

fixed effect and assumes that the stimuli and participants are

representative of, in the instance of FIP research, all faces, and

all people. To make results more generalizable over stimuli

and participants, FIP researchers may wish to adopt linear

mixed modelling, an approach widely used in e.g., psycho-

linguistics (DeBruine & Barr, 2021; Yarkoni, 2020).

5.3. Relationships between the FIP tests

All upright tasks correlatedwith one another significantly, but

the strength of these correlations varied from weak to mod-

erate, in line with previous studies (Balsdon, Summersby,

Kemp, & White, 2018; Dunn et al., 2020; McCaffery,

Robertson, Young, & Burton, 2018). Interestingly, even the

correlation between tests that were procedurally identical, i.e.

EFCT-up and PICT, and KFMT and GFMT, were moderate

(r¼ .418) andweak (r¼ .328), respectively. This is lower than in
the previous comparison of these matching tasks. For

example, Stacchi et al. (2020) reported a correlation of .78 be-

tween PICT and EFCT but they administered the task with bi-

nary response options (2AFC paradigm, see also Noyes, Hill, &

O’Toole, 2018; Phillips et al., 2018) suggesting that even minor

changes to response optionsmayhavean impact on the outcomes

of a test. This is important, because while most studies use

binary responseoptions, someopt for a 5- (White et al., 2015) or

even6-point (Carragher&Hancock, 2022) Likert-like scales and

it is unclear how exactly these procedural differences impact

participant behaviour. Future work would benefit from a sys-

tematic investigation of response options in FIP tasks.

Fysh and Bindemann (2018) reported a moderate correla-

tion of .45 between the GFMT and the KFMT. While our lab

results may represent a simple regression to the mean, it is

peculiar that the shared variance of two tests differingmerely

by the face images used as stimuli and participant samples,

e.g., the GFMT and the KFMT, vary from 10.8% to 20.2%,

depending on the study. Clearly, the contribution of error

variance to these tasks is high and conclusions drawn from

studies employing the tests ought to be treatedwith caution. It

is particularly interesting that PICT, KFMT, EFCT, and GFMT

are almost procedurally identical (bar response options in the

EFCT and PICT) and yet the individual performance ranks vary

depending on the test used, which may result in different

conclusions about participant's face matching (or perception)

ability. This inconsistency may be driven by stimulus prop-

erties, pairings, and, in this study, response options (binary vs.

1e5 confidence scale). We chose to retain the original format

of response options for the EFCT and PICT given that this is

how these tests were administered in several studies (O'Toole
et al., 2007; White et al., 2015). Although this format could be

partially responsible for the weaker correlations with tests

using two forced response choices, the correlation between

PICT (confidence response) and KFMT (binary) is actually the

strongest.
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Indeed, the variability in stimuli properties between the

tests is considerable: the GFMT images were taken on the

same day, with two different cameras, the KFMT images were

taken months apart, with different devices and at varying

distances, while the EFCT and PICT images were taken at

varying distances, in different lighting and over a period of

two years (Phillips et al., 2011). Although this variability may

be overcome to some extent at the upper end of the FIP ability

continuum, i.e., the super-recognizers (Ramon, 2021), this

does not seem to be the case for most participants. We show

in Figs. 4 and 5, that indeed, the top 2.5% of the whole sample

appear to be more consistent in their performance than the

remaining participants which is unsurprising e to make it to

the top of the ranking, one needs to be consistently good. The

problem remains with estimating the ability of the middle of

the distribution.

The internal reliability of the tests also has implications

for the interpretation of correlations between them.

Although a maximum absolute value of a correlation is in

theory ±1, in practice this can only be achieved if the internal

reliability (a) is also one. This is not the case with any of the

FIP tests in this study. As such, the maximum expected

correlations are not perfect and their interpretation may

need adjustment (see Table 2). In their meta-analysis of over

700 individual differences studies, Gignac and Szodari

(Gignac & Szodorai, 2016) recommended adjusted coefficients

of .10, .20, and .30 as small, medium, and large effect sizes,

respectively. This was based on the average correlation

strength reported in individual difference studies. Following

these guidelines, most of the correlations in our study could

be interpreted as strong. What we find important, however,

is how little shared variance between these tests these ana-

lyses explain and thus this recommended adjustment may

not be appropriate. Where estimation of individual's ability is

important (e.g., when selecting for occupational roles within

national security settings), such estimation clearly must not

rely on one test and should be carried out using valid a

reliable tests of FIP (Ramon, 2021). While high performers can

overcome these test-specific challenges and score consis-

tently high (Nador, Zoia, Pachai, & Ramon, 2021; Nador, Zoia,

Pachai, & Ramon, 2021, 2022), low performers tend to struggle

with most FIP tasks, but estimating the ability of the ‘middle’

part of the FIP continuum posits a challenge that researchers

should strive to address. It is also possible that high reli-

ability and correlations between measures could simply

reflect high performance.

Construction of an instrument to measure FIP is a difficult

task: different images of the same person need to be suffi-

ciently different to be uncertain, while images of different

people need to be similar enough. Typical performance

should be around 70% to allow for a range of abilities to be

tested without hitting floor or ceiling. Participants will use

any cues available, such as hairlines, ears or spots to discern

a match. Such techniques are valid in a forensic setting but

hardly typical of everyday face recognition and so need to be

minimised in a test of FIP. Early tests were assembled largely

by eye from a set of available images. Individual pairs varied

in difficulty but not in any very systematic way. Recently

there have been attempts to produce more psychometrically

valid tests, with items of graded difficulty (Stantic et al., 2021;
White, Guilbert, Varela, Jenkins, & Burton, 2021). In principle,

such tests should show greater consistency across observers.

Unfortunately, neither was available at the time of our

testing.

5.4. Consistency of performance

Our last aim was to quantify the consistency of performance

across the tests for all subjects. Specifically, if a participant

ranks first or second on one test, would they also rank in the

upper range on the remaining face processing tasks? We

already suspected this might not be the case given the

weakemoderate correlations in our sample and the findings

of previous studies. Others have reported a lack of consistency

in performance of participants unselected for FIP ability using

data visualization and examining the top and bottom 5% of

the accuracy distribution for various tasks (Stacchi et al., 2020;

Fysh et al., 2020), but Ramon (2021) reported that super-

recognizers are consistently better than participants unse-

lected for FIP ability across three challenging test assessing

perception and memory for facial identity.

Indeed, in our combined data set, as well as lab and online

data analyzed separately yielded ICC values below .40 sug-

gesting that there was little consistency in performance

across tests in our sample (see Fig. 7).

This lack of consistency may not always be noticeable.

Large datasets are often collected as neurotypical compari-

son data for neurodivergent populations with severe pro-

cessing deficits (e.g., some cases of developmental

prosopagnosia), irrespective of the task, so the inconsistent

performance of neurotypical participants is not of primary

interest, but still affects the quality of the data and conclu-

sions. These results also raise questions about the conver-

gent validity of new FIP tests and their relationship with

other tests measuring the same and different sub-processes,

i.e. face perception and face memory. Although despite until

now often arbitrary approaches to test development, we

almost always see positive (albeit weak-to-moderate) corre-

lations between them (Balsdon et al., 2018; Dunn et al., 2020;

McCaffery et al., 2018), it is unclear what these correlations

represent. The possible candidates are shared processes in

these often interchangeably used tasks, their reliability, or

other variance, such as procedural similarity. It is, indeed,

possible that large proportion of the variance is owed to

procedural similarity of the tests. For example, in our study,

the correlation between the EFCT inverted and PICT (proce-

durally identical tests, but with different stimuli) supersedes

most other correlations between upright matching tasks.

Some of the correlations may also reflect good internal reli-

ability, such as those with the CFMTþ.

Recently, several labs have devised new tests for typical

perceivers, SRs, and prosopagnosic participants (Stantic et al.,

2021; White et al., 2021) or batteries of tests (Bate et al., 2018;

Dunn et al., 2020; Ramon, 2021), and two of these labs rec-

ommended using multiple converging tests to examine face

processing ability (Bate et al., 2018; Ramon, 2021). Our results

show that even with this more conservative approach the

conclusions that can be drawn from an assessment battery

might be limited. Ranking 5 on one test, but 25 on another,

extremely similar test limits the generalizability of
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conclusions in FIP literature. We recommend that reliability

and consistency are routinely examined and reported in all studies

(rather than cited from the original publication) and, when-

ever possible, assessment is carried out using multiple (reli-

able) tests of FIP (see also Ramon, 2021).
6. Conclusion

This study administered seven commonly used tasks of face

processing (face memory and face perception) to 211 typical

perceivers in the laboratory and online. Data driven analyses

(PCA and clustering) revealed that performance splits into two

components, ‘confirmation’ PC1 and ‘elimination’ PC2,

explaining approximately 51% of variance in performance,

suggesting that most tasks measure more than one sub-

process. Agglomerative clustering of these principal compo-

nents further grouped participants into three clusters reflect-

ing different response strategies (or biases), one with similar

levels of confirmation and elimination performance, one with

higher elimination than confirmation performance, and the

converse.

To our knowledge, this is the first study to systematically

assess the internal reliability of the tests commonly used in

neuropsychological and individual differences studies (c.f.,

Nador et al., 2022). The reliability varied from acceptable

(CFMTþ and 1-in-10) to poor (PICT, KFMT). Extending previous

work (Bate et al., 2018; Fysh et al., 2020; Stacchi et al., 2020), our

results revealed small to medium correlations between tests

and thus large individual differences between them, even

when operating within the same paradigm (simultaneous

matching tasks). The intraclass correlation coefficient (ICC)

further confirmed low consistency in performance (i.e. large

variability in ranking on different tests between participants)

in our sample.
We make several recommendations for future studies in

FIP. Firstly, researchers may re-think either the use of some of

the commonly employed tests, or adjust the analyses to ac-

count for stimuli as random factors. Secondly, studies in FIP

(both with neuropsychological and/or super-recogniser pop-

ulations and with typical perceivers) should routinely report

internal reliability of the used tests for each attempt and each

sample. Finally, newly developed tasks of face processing

should be examined for convergent validity with other

established and ecologically valid measures (e.g., Ramon,

2021), even if the only difference are the images used in the

task. Until we improve the FIP tests, the inconsistent findings

and reports of heterogeneity in special populations and

typical perceivers are not only unsurprising but expected and

cannot be attributed to individual differences only.

In sum, while the ‘big data’ individual differences

approach (Bate et al., 2018; Bennetts et al., 2022; DeGutis

et al., 2022; Fysh et al., 2020; Stacchi et al., 2020) can help

researchers discover processes driving human performance,

there are limitations how robust this approach can be given

the available data. This is akin to automated face recognition

algorithms and their limitations. Often, an algorithms' ‘test’
performance does not only depend on the algorithm itself

but is reliant on the quality and diversity of the ‘training set’.

The same is true in the FIP data. The conclusions of data-

driven analyses are going to be as meaningful as the qual-

ity of the data sets allows.
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