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A B S T R A C T   

Two phosphonium-derived ionic liquids: trihexyltetradecylphosphonium bis(2-ethylhexyl)phosphate (IL1) and 
trihexyltetradecylphosphonium tricyanomethanide (IL2) were used as additives in lithium complex- (G1) and 
anhydrous calcium-based (G2) greases at 5 wt%. Friction torque and wear tests were performed using a modified 
four-ball machine for testing rolling bearings in order to determine the friction and wear reducing properties of 
these grease samples in a real component. The IL2 improved the friction reduction performance of both greases, 
especially G1. Both ILs improved the antiwear behaviour of grease G2. Grease G2 showed higher oxidation and 
thermal ageing levels than G1, but the addition of the ILs, IL2 in particular, improved this issue.   

1. Introduction 

Lubricating greases are the most commonly used lubricants in rolling 
bearings. More than 90% of rolling bearings are sealed for life, and they 
use grease to ensure lubrication [1], as its semi-solid state makes it much 
less likely to leak out from the bearing [2]. Mineral oils and triglycerides 
are commonly used as base oils, although synthetic oils are required for 
some applications. Among synthetic oils, poly-alpha-olefins (PAO), 
perfluoropolyalkylether fluids (PFPE), polyalkylene glycols, silicones 
and synthetic esters are generally used. The substances most commonly 
used to thicken the grease are: soap thickeners, simple or complex; 
inorganic thickeners such as clay, silica or polyurea; and mixed soap 
thickeners comprised of several cations. Grease lubrication with syn-
thetic base oils is most often used for bearing applications in extreme 
environments, but many synthetic base oils are not compatible with 
soap thickeners, so teflon, polyurea, clay or fumed silica thickening 
systems must be used to form grease lubricants [1]. 

Since 2001, ionic liquids (ILs) have been widely studied as lubricant 
additives, but most of the research on this topic involves liquid lubri-
cants [3,4]. The ILs can be grouped according to different properties, 
such as the cation or anion on which they are based and their miscibility 
in organic compounds, among others. ILs that are immiscible in non- 
polar hydrocarbon oils were used as additive in earlier research 

[5–24]. Despite their immiscibility, they can enhance friction and wear 
reduction. Further research was carried out into oil-soluble phospho-
nium cation-based ILs [25–50] and ammonium cation-based ILs 
[11,18,50–61], as additives in lubricant oils or organic compounds. 
Several ILs based on imidazolium and pyrrolidinium cations, which are 
only miscible in base oils of a polar nature, have been studied 
[11,38,57,58,62–74]. ILs have also been studied as additives in water- 
based fluids, an environmentally friendly alternative to petroleum oil- 
based lubricants, especially in fire-resistant hydraulic fluids and metal-
working fluids [75–85]. 

From 2010 onwards, researchers started to study the use of ILs as 
additives in lubricant greases [85–89], showing them to possess good 
antiwear and friction reduction properties. In these studies, standard 
tribological tests (pin-on-disk, ball-on-disk, four-ball or reciprocating 
configurations) were used to test the influence of the ILs on the tribo-
logical properties of greases. Polyurea grease was additised with five 
different alkyl imidazolium ILs at 1 wt% [85] and with imidazolium 
bearing a benzotriazole group at 2 wt% [87]. The authors found that the 
1 wt% alkyl imidazolium IL additives performed better at high tem-
perature conditions, while imidazolium bearing a benzotriazole group, 
at a concentration of 2 wt%, had excellent friction reduction and anti-
wear performance. Wang et al. [86] tested a lithium lubricating grease 
based on a polyalphaolefin (PAO 10) additised with three phosphonium 
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ILs at 5 wt%. The results showed that the friction-reducing and antiwear 
properties were enhanced in all cases. More recently, Ploss et al. [88] 
tested four non-halogenated ILs containing the trihexyl(tetradecyl) 
phosphonium cation as an additive in polypropylene (PP) and lithium 
complex (LiX) greases at concentrations of 2–10 wt%. In this case, a 
reduction in wear of up to 60% and in traction of up to 40% were found. 

Although the main use of lubricant greases is in rolling bearings, few 
studies have described the performance of greases in this practical 
application [90–97]. Some of these studies explored topics like lubri-
cation film thickness, wear or friction [90–92]; while others were 
focused on power loss, heating or lifetime [93–97]. None of them dealt 
with the performance of greases additised with ILs in practical appli-
cations (e.g., rolling bearings). 

In previous works [89,98], thermal conductivity, thermal stability 
and tribological performance of two greases (lithium complex- and 
anhydrous calcium-based) were studied using three phosphonium-based 
ILs as additives: trihexyltetradecylphosphonium bis(2-ethylhexyl) 
phosphate, [P6,6,6,14][BEHP] (designated as IL1); trihexylte-
tradecylphosphonium tricyanomethanide, [P6,6,6,14][TCM] (designated 
as IL2); and trihexyltetradecylphosphonium decanoate, [P6,6,6,14][DEC] 
(designated as IL3). Rheology, lubricant film thickness and friction 
behaviour experiments were also carried out. The results showed im-
provements in friction reduction and lubricant film thickness for some of 
the mixtures [89]. Meanwhile, the higher friction and wear reductions 
were obtained with the use of [P6,6,6,14][BEHP] and [P6,6,6,14][TCM]. 
Now, this work aims to determine how the additivation of the above-
mentioned greases with these two better-performing ILs affect friction 
torque and wear in a real component (bearing) tested under real oper-
ating conditions (rolling/sliding motion). In addition, greases were 
analysed after tribological tests with FTIR and ferrometry. 

2. Methodology 

2.1. Greases and ionic liquids 

Two non-additised greases (lithium complex-, G1, and anhydrous 
calcium-based, G2) provided by Axel Christiernsson International and 
two ILs (trihexyltetradecylphosphonium bis(2-ethylhexyl)phosphate or 
[P6,6,6,14][BEHP], coded as IL1, and trihexyltetradecylphosphonium 
tricyanomethanide or [P6,6,6,14][TCM], coded as IL2) provided by 
IOLITEC GmbH were used in this work. The chemical formulae and 
structures of these ILs are shown in Table 1. The physicochemical 
properties of the greases and the mixing procedure of the base greases 
and the ILs at 5 wt% were described in [89]. Apart from the non- 
additised greases, only the 5 wt% IL mixtures were tested in this 
work, as their performance was much better than that of greases with 2 
wt% of ILs in previous tests. 

2.2. Rolling bearing assembly and test procedures 

Rolling bearing tests were conducted in a modified Cameron-Plint TE 
82/7752 four-ball machine (Fig. 1) to study the tribological behaviour of 
the greases and their mixtures with ILs in a real component. For this 
purpose, the four-ball arrangement was replaced by a rolling bearing 
assembly on which different bearing tests can be performed and friction 
torque measurements can be obtained at different test temperatures. 
This procedure allows the performance of tests under rolling/sliding 
conditions, which correspond with the real operating conditions of 
bearings. A complete explanation of the development of this procedure 
can be found in references [93–95,99–101]. This test performed on a full 
bearing configuration is better than the well-known 4-ball test (ASTM 
D2266), which simulates smearing under pure sliding and is not relevant 
for rolling bearings, so the bearing and grease industry recommend full 
bearing tests [102]. 

During the test, the bearing was under a constant axial load (P) of 
approximately 7000 N, which was applied from bottom to top using a 
dead weight system. An electric motor was used to set the different test 
speeds as needed. The power was transmitted to the rolling bearing shaft 
with a belt-pulley arrangement, so that it rotates the upper bearing 
track, while the lower track was fixed to the housing. A KISTLER® 
9339A (Kistler Group, Winterthur, Switzerland) piezoelectric reaction 
torque cell, coupled to the housing, was used to measure the friction 
torque. 

A thrust ball bearing (TBB) reference 51107 from SKF (Sweden) was 
chosen for testing, and a new one was used for each test. This rolling 
bearing has 21 rolling elements of 6 mm of diameter, and the raceways 
have a mean diameter of 43.5 mm. 

Two different rolling bearing tests were performed:  

• Friction torque tests: a short test performed at constant load and 
temperature, where the friction torque is measured at different 
rotational speeds; 

• Wear tests: a long test (3 × 24 h) performed at constant load, tem-
perature and rotational speed. After the test, the roughness of the 
lower raceway was analysed, as well as the mass loss of the rolling 
bearing. A grease sample was collected after the test for evaluation 
by FTIR and Ferrometry. 

2.2.1. Friction torque tests 
These tests started with a period of 15 h, during which testing was 

performed at the established axial load of 7000 N, at a temperature of 
50 ◦C in the bearing, and at 500 rpm rotational speed, to allow running- 
in and churning / grease distribution. To reach and maintain the tem-
perature, an external thermal bath was used as described by Marques 
et al. [104]. After the churning period, the temperature in the rolling 
bearing was set at 80 ◦C and the rotational speed was reduced to 250 
rpm. Once the temperature stabilized, after about two hours, the 

Table 1 
Chemical structure and empirical formula of the ionic liquids.  

Ionic liquid Cation Anion 

Trihexyltetradecylphosphonium bis(2-ethylhexyl)phosphate 
[P6,6,6,14][BEHP]  

Empirical formula: C48H102O4P2 

Designation: IL1 

Bis(2-ethylhexyl)phosphate  

Trihexyltetradecylphosphonium tricyanomethanide 
[P6,6,6,14][TCM]  

Empirical formula: C36H68N3P 
Designation: IL2 

Tricyanomethanide  
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frictional torque was measured. Then the speed was increased to 750 
rpm until the temperature stabilized (about 1 h) and friction torque was 
measured again. Finally, the speed was increased to 1500 rpm and the 
torque measured one last time after the temperature had stabilized. At 
each speed step, five friction torque measurements were taken and then 
averaged. 2 mL of grease was used to lubricate the rolling bearings 
(which corresponds to approximately 30% of the rolling bearinǵs free 
volume). For each grease, the test was performed twice. 

2.2.2. Wear tests 
Wear tests were performed in the same device used in the friction 

torque tests. In these tests, the rolling bearing operated for 3 days (72 h), 
at constant load (7000 N), constant temperature (80 ◦C) and constant 
rotational speed (250 rpm). To increase the severity of the tests, three 
balls were removed from each bearing, which put the maximum hertzian 
pressure at 2.5 GPa. The operating conditions were chosen in order to 
promote boundary lubrication conditions. 

The mass loss of each rolling bearing was measured on a scale with a 
precision of 0.001 mg. In addition, the infrared spectra of each grease 
before and after the wear tests were obtained on an Agilent Cary 630 
FTIR device, using an ATR (Attenuated Total Reflectance) accessory to 
determine molecular alterations in the greases due to thermal aging. All 
the spectra shown in this work were taken directly from the device’s 
software without smoothing, and a very good reproducibility was ach-
ieved. All spectra were normalized to the same peak’s height at 1460 
cm− 1 [105], allowing the comparison between the relative height of the 
sample spectra. After each test, a grease sample was also analysed by 
Direct Reading Ferrography, obtaining the DS (wear particles <5 µm) 
and DL (wear particles >5 µm) parameters. The severity of wear parti-
cles index (ISUC) and the concentration of wear particles index (CPUC), 
defined by the Eqs. (1) and (2), were calculated from these parameters 
[106]. 

ISUC =
(DL2 − DS2)

d2 (1)  

CPUC =
(DL + DS)

d
(2)  

where d is the dilution of the grease sample. 
The roughness of the lower (fixed) racetrack of each rolling bearing 

was measured by interferometry using a BRUKER NPFLEX. A total area 
of 1.5 × 1.5 mm was collected. Although it is not possible to measure the 
roughness profiles at exactly the same position before and after test, the 
data collection was performed in the same region, which was assured by 
marking the bearing ring before the tests. 

As it is possible to observe in the Fig. 2, the raceway is curved in the 
(y) direction. This curvature was removed and then the surface rough-
ness (Ra) was determined according to ISO 4287, filtering the data with 
a Gaussian filter with a cut-off length of 0.25 mm. The roughness results 
were analyzed in the rolling direction (x) only because the curvature 
removal might show misleading results in the filtered roughness profile 
in the y direction. 

3. Results and discussion 

3.1. Rolling bearing tests 

3.1.1. Friction torque results 
The frictional torque of the TBB lubricated with the above- 

mentioned greases is shown in Fig. 3. The values represent the mean 
of two replicates performed for each lubricant mixture. The greases 
without IL (G1 and G2) showed the highest friction torque values, which 
were similar and approximately constant under the tested speeds. 
Grease G1 additised with IL2 showed the lowest values of friction tor-
que, these being more significant at the lowest speed. The mixture of 
grease G1 with IL1 showed friction torque values similar to neat G1, 
always bearing in mind the uncertainty of the measurements. Further-
more, IL2 also conferred better friction reduction properties when mixed 
with grease G2, while the mixture of G2 + IL1 showed friction torque 
values that were similar to those of grease G2 at the tested speeds. 

3.1.2. Wear results 
Fig. 4 shows the wear results from the tests performed with all the 

lubricant samples. The addition of both ILs to grease G1 increased wear, 
but the wear values were very small and the differences observed be-
tween samples are within the combined uncertainties of the bearing test 

Fig. 1. Schematic diagram of rolling bearing assembly [103].  
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and the mass measurement. However, the addition of the ILs to grease 
G2 decreased wear considerably in all cases. 

These results were different to those reported in [98], where the 
same lubricant samples were tested under pure sliding motion with both 
four-ball (constant speed) and reciprocating (variable speed) tests. In 
such cases, wear decreased with the addition of the ILs to the grease (G1) 
in both tribological tests, while wear increased in the case of grease G2 
in the four-ball tests. On the other hand, friction behaved differently 
with the addition of the ILs to grease G1 (increased) and to grease G2 
(decreased). Although the antiwear behaviour found in that case was 

correlated with the presence of phosphorus on the wear surface, the 
results obtained in this study could be related to the different motion 
configuration (rolling/sliding), where the sliding is typically 5% [102]. 
The tribological improvement not only depends on the concentration 
and chemistry of the IL but on the tribosystem also, as was stated by 
Zhou et al. [3]. 

The extreme complexity of grease lubrication is closely related to the 
high number of variables involved (base oil viscosity/nature, additive 
package, thickener type and/or content, consistency, etc.) and the 
numerous performance requisites (low friction, low and high 

Fig. 2. Roughness of the bearing surface in the perpendicular (y) and longitudinal (x) directions of movement.  

Fig. 3. Friction torque for the different blends of G1 (left) and G2 (right).  

Fig. 4. Mass loss for the different blends of grease G1 (left) and grease G2 (right).  
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temperature properties, improved oil bleeding, etc.) [102]. In fact, 
Gonçalves et al. [107] found that greases showing better performances 
in single contact tests can provide worse wear protection or rolling 
bearing life. In this study, the tests were performed after the churning or 
fully flooded film thickness period. Then, the bleeding period took place, 
where the bearing is mainly lubricated by the base oil or the mixture 
base oil-IL, and the film thickness decreases, which is known as the 
starvation phenomenon. This phenomenon occurs due to the lack of 
replenishment or the insufficient filling of the inlet region of the lubri-
cated contact, which can decrease the lubricant film thickness by around 
75% with respect to the values of the fully flooded film thickness [108], 
resulting in a lower load carrying capacity, asperity contacts taking 
place, and the appearance of wear mechanisms, like scuffing [109]. 
Under normal operation and depending on the initial grease volume and 
distribution, the lubricated contacts can starve due to several causes: 
side flow, centrifugal effects, surface tension, oil bleeding from the 
grease and evaporation [107]. In addition, lubricant loss may be caused 
by oxidation, polymerization, evaporation, centrifugal force induced 
thin film flow or droplet formation in the outlet of the contacts [110]. 

Table 2 shows the ferrometric parameters and indexes. In general, 
the number of wear particles larger than 5 µm was higher than those 
smaller than 5 µm. Grease G2 without IL had the highest CPUC and ISUC 
values, indicating that the use of this grease resulted in higher wear. The 
wear reduction found when IL2 was added to grease G2 can also be 
observed in the ferrometric parameters and index values shown in 
Table 2. However, grease G1 showed smaller values for both the CPUC 
and ISUC indexes than its mixtures with the ILs, corresponding with the 
wear results reported in Fig. 4. 

Fig. 5 shows the average roughness evaluated in the rolling direction 
for all the 12 tests. It is possible to observe that the initial roughness is 
slightly different between the new bearings (average of 0.082 µm with a 
standard deviation of 0.008 µm) so instead of comparing just the final 
roughness value after the tests between samples, it is more suitable to 
analyze the difference relative to the initial roughness for each sample. 

From Fig. 5 it is clear that the roughness increased after the testing 
for all samples, due to the severe operating conditions, namely boundary 
lubrication (3 days running at 250 rpm, 80 ◦C and 2.5 GPa). However, 
and despite the differences in the initial roughness of each bearing, it is 
also possible to observe that the increase of roughness after the wear test 
is higher for all G2 greases, particularly for the neat G2. Given that 
grease G1 and grease G2 are formulated with a base oil of the same 
nature, the differences in the variation of the roughness should be due to 
the slight smaller viscosity of the base oil used in grease G2 and the 
influence it might have on lubricant film generation. This was shown in 
the film thickness tests reported in [89], where grease G1 showed 
generally higher lubricant film thickness. 

It is also interesting to notice that the addition of both ionic liquids 
improve the antiwear behaviour for grease G2, but this does not happen 
to grease G1. Nevertheless, it is clear that between the greases with ionic 
liquids, the ones which contain IL2 show a better behavior (smaller 
roughness increase) than those containing IL1. The reason for this 
behavior cannot be inferred from the tests performed in this work, but 
the results reported in [35,67] support that ionic liquids generate tri-
bofilms on the metallic surfaces contributing to the reduction of friction 
and improving the antiwear behaviour [98]. 

Fig. 6 shows the variation of the average roughness (Ra) of the 
bearing raceways in the rolling direction versus the mass loss of the 
rolling bearing. According to Fig. 6, the greater the mass loss, the higher 
is the increase in roughness. Only the bearing lubricated with the 
mixture G1 + 5%IL1 broke that tendency, but the difference with the G2 
+ 5%IL2 counterpart was minimum (about 10-3 g of mass loss and 2% of 
variation of Ra, which is within the uncertainties of the wear test and the 
mass loss measurement). 

Cen and Lugt [111] reported that the only relevant physical property 
that determines the film thickness, and thus the probability of asperity 
contacts and wear, in the early lifetime of a grease is the base oil vis-
cosity, and not the bleed rate or any grease rheological properties. 
Considering that the greases G1 and G2 were formulated with base oils 
of similar viscosities, their original consistency and yield stress are also 
similar [89], and were studied under the same testing conditions, their 
different antiwear behavior could be related to oxidation. Changes on 
EHL film over long times, which are related to tribological behaviour, 
are given by mechanical and chemical degradation [102]. Chemical 
degradation is primarily given by oxidation, and also by evaporation, 
although other phenomena occur such as acid formation, thermo- 
oxidative degradation of the thickener and the base oil, varnish and 
sludge formation, etc. The oxidation of the base oil and thickener are not 

Table 2 
Ferrometric parameters and indexes.  

Grease sample DL DS CPUC × 10-3 ISUC × 10-6 

G1  7.4  4.9  0.123  0.003 
G1 + 5% IL1  46.5  18.2  0.647  0.183 
G1 + 5% IL2  57.2  24.3  0.815  0.268 
G2  119.8  79.8  19.960  79.840 
G2 + 5% IL1  77.4  49.8  12.720  35.107 
G2 + 5% IL2  25.3  11.8  3.710  5.009  

Fig. 5. Surface roughness of the rolling bearing before and after the wear tests.  

Fig. 6. Variation of surface roughness 
(

Rabefore − Raafter
Rabefore

)
in the rolling direction.  
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fully independent problems. However, studies on grease thickener 
oxidation are rare and most oxidation research has been made on 
lubricating oils, being generally accepted that their corresponding re-
sults can be applied to lubricating greases [1]. Fig. 7 shows the FTIR 
spectra of the fresh grease (before wear testing) and the used grease 
(after the wear test, with the suffix “a”). From comparison of the spectra, 
it is clear that the calcium-based grease (G2) seems to be more sensitive 
to oxidation than the lithium-based grease (G1), due to its higher peak 
around 1750 cm− 1 and also a clear offset in the whole fingerprint region 
(1800–650 cm− 1). The G1-containing samples also show some oxida-
tion, but much less than their G2 counterparts. The oxidation level was 
diminished with the addition of IL2 to both G1 and G2 greases, and IL2 
confers higher resistance to aging/oxidation than IL1. The higher 
improvement on thermal stability of these greases with the addition of 
the IL2 was also reported in a previous work [98], which is related to 
evaporation and hence to chemical degradation. The fact that anhydrous 
calcium soap greases (G2) can be used up to temperatures of 110 ◦C, 
while the operating temperature range of the lithium complex greases 
(G1) is between − 30 ◦C and 140 ◦C [1], explains the higher contribution 
of the ILs on the wear protection properties of the grease G2 (Fig. 4) and 
the better tribological behavior of the grease G1. In summary, these data 
may explain the worse antiwear protection of grease G2 and its mixtures 
with the ILs. In addition, the polar nature of the oxidation products in-
crease the polarity of the grease over time, which lead to an increase of 
water absorption from the air [112,113]. This phenomenon can cause 
corrosion impacting negatively in the grease wear protection. 

4. Conclusions 

Friction torque and wear tests in a real component (bearing) were 
carried out to evaluate the tribological behaviour of two greases (lithium 
complex- and anhydrous calcium-based) additised separately with two 
phosphonium-based cation ILs. The mass and roughness variations of 
the bearing were evaluated, and the greases were analysed after wear 

tests with FTIR and ferrometry. The main conclusions of this study are 
the following:  

• IL2 improved the friction reduction performance of both greases, 
with the lowest friction torque value in the case of grease G1. 

• The addition of both ILs to grease G1 resulted in a slight wear in-
crease, while the addition of the ILs to grease G2 improved its anti-
wear performance, especially in the case of IL2.  

• The ferrometric results were in concordance with the mass loss 
(wear) results. Furthermore, in general the decrease in surface 
roughness of the bearing raceways was also closely related to wear.  

• Regarding oxidation and thermal aging, the FTIR spectra showed 
higher oxidation of grease G2 than grease G1, and the addition of IL2 
provided higher resistance to oxidation than IL1 in both greases.  

• The different tribological behaviour of the tested ILs is probably 
related to their antioxidant action. The exact mechanism taking 
place is unclear, but these ILs might be a suitable additive for grease 
G2 in bearing applications. 
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[6] A.E. Jiménez, M.D. Bermúdez, F.J. Carrión, G. Martínez-Nicolás, Room 
temperature ionic liquids as lubricant additives in steel-aluminium contacts: 
influence of sliding velocity, normal load and temperature, Wear 261 (2006) 
347–359, https://doi.org/10.1016/j.wear.2005.11.004. 

[7] M. Cai, Y. Liang, M. Yao, Y. Xia, F. Zhou, W. Liu, Imidazolium ionic liquids as 
antiwear and antioxidant additive in poly(ethylene glycol) for steel/steel 
contacts, ACS Appl. Mater. Interfaces 2 (2010) 870–876, https://doi.org/ 
10.1021/am900847j. 
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[20] A.E. Jiménez, M.D. Bermúdez, Imidazolium ionic liquids as additives of the 
synthetic ester propylene glycol dioleate in aluminium-steel lubrication, Wear 
265 (2008) 787–798, https://doi.org/10.1016/j.wear.2008.01.009. 

[21] J. Qu, P.J. Blau, S. Dai, H. Luo, H.M. Meyer, Ionic liquids as novel lubricants and 
additives for diesel engine applications, Tribol. Lett. 35 (2009) 181–189, https:// 
doi.org/10.1007/s11249-009-9447-1. 

[22] M. Yao, Y. Liang, Y. Xia, F. Zhou, Bisimidazolium ionic liquids as the high- 
performance antiwear additives in poly(ethylene glycol) for steel-steel contacts, 
ACS Appl. Mater. Interfaces 1 (2009) 467–471, https://doi.org/10.1021/ 
am800132z. 
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