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Abstract: The definition and nature of information have perplexed scientists due to its dual nature in measurements. 

The information is discrete and continuous when evaluated on a metric scale, and the Laplace-Beltrami operator and 

Gauss-Bonnet Theorem can map one to another. On the other hand, defining the information as a discrete entity on the 

surface area of an n-dimensional discrete digital manifold provides a unique way of calculating the entropy of a 

manifold. The software simulation shows that the surface area of the discrete n-dimensional digital manifold is an 

effectively computable function. Moreover, it also provides the information-geometrical evaluation of Shannon 

information metrics.  

Keywords: Planck Level; discrete n-dimensional digital Manifold; Shannon digital information entropy; Information 

Capacity; Bekenstein-Hawking information entropy; Delaunay triangulation. 

 

1 Introduction 

The definition and nature of information remain complex and multifaceted and have been 

the subject of much debate and exploration in various scientific fields. In a significant attempt to 

cover human history, from the invention of writing up to memes and the current information and 

communication technology enabled-enabled information space, James Gleick [1] explores the 

evolution of our understanding of information, from ancient communication methods such as 

drums and smoke signals to modern digital technologies, arguing that information is not just a static 

entity but a force that drives the evolution of the universe and the development of human 

civilization. 

From a formal perspective, information can be viewed as discrete and continuous, 

depending on the context in which it is being evaluated. Claude Shannon pioneered the study of 

information theory in the mid-20th century, whose work laid the foundation for modern 

communication technologies. In recent years, a growing body of literature has examined the 

implications of quantum mechanics for our understanding of information. 

Much work on the potential of the Quantum information entropy for different potential 

functions has been carried out: In [2], the effects of various parameters such as potential 

asymmetry, strength, and phase on the entropic measures of the system, including the von 

Neumann entropy, Tsallis entropy, and Rényi entropy has been studied, and the potential 

asymmetry was found to have a significant impact on the entropic measures of the system. 
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For the quantum information entropies associated with a symmetrically trigonometric 

Rosen-Morse potential, it was found that the entropic measures of the eigenstates are affected by 

the strength and phase of the potential and that the Tsallis entropy is more sensitive to changes in 

the potential parameters compared to the von Neumann entropy [3]. 

Another study shows that the von Neumann entropy and Shannon entropy exhibit a 

maximum value at a particular parameter value, while the Fisher information entropy displays a 

minimum value [4]. This study indicates that the system's information content is highest at this 

specific parameter value for the Poschl-Teller-like potential. 

For a hyperbolical potential function, the potential strength and asymmetry significantly 

impact the system's entropic measures, and the potential phase can affect the entropic measures in 

different ways [5]. 

The Shannon entropies of the system were also found to be affected by the potential 

strength, mass distribution, and potential shape [6], and for an infinite circular well, the Shannon 

entropy is inversely proportional to the radius of the well and directly proportional to the mass of 

the particle [7]. 

These studies have tended to focus on a specific potential function and mass distribution, 

that the particle is non-relativistic, which may limit its applicability in specific contexts. 

Additionally, the study only considers a single particle in the potential, which may not accurately 

reflect the behavior of larger systems. 

Although these researches are fascinating, additional research seems necessary to fill the 

gaps by adding the geometric nature of information through digital n-dimensional manifolds to 

expand our understanding of this fundamental concept. From information flow in terms of 

molecular movements to the black hole information storage bounds and the actual fabric of 

spacetime, the definition and the very nature of information have perplexed humanity for thousands 

of years. The confusion comes from the fact that the nature of information is abstract and manifold, 

thus very elusive.   

Because of this multifariousness, one may approach information from many different 

branches of sciences, such as (i) Vector and Tensor Analysis, Geometry, Differential Geometry, 

(ii) Physics, Statistical Mechanics, and Entropy, (iii) General Theory of Relativity with spacetime 

and gravitational interactions under information concept, (iv) Quantum Information Theory, (v) 

Shannon Information Theory towards the quantification of information, (vi) Semantic Information 

studies towards meaning and truth [8], (vii) Computational aspects with Automata Theory & 

Turing Machine as information processing machines, (viii) Cellular Automata [9], and (ix) 

Bekenstein entropy & information bounds. This enumeration of approaches is inconclusive, and 

representing information on a digital manifold as a geometric entity may be an attempt to resolve 

this conundrum.  

Entropy has been central to many information studies ever since Boltzmann. For example, 

Shannon entropy quantizes the information and creates a unit for measuring digital information 
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known as a bit [10]. Later studies have accomplished a new definition known as Bekenstein-

Hawking Entropy [11,12], which is  

𝑆𝐵𝐻 = 𝑘𝐵
𝐴

4ℓ𝑝
2  

2where  is the area of the event horizon,  is the square of Planck length, and  is Boltzmann's constant.p BA l k  

Moreover, Bekenstein came up with an Information bound [13], which states that there is a 

maximum information-processing rate for an information system with finite size and energy, which 

was preceded by Bremermann [14] and later updated by Gorelik [15]. 

Recent studies have evolved around the concept of "Information Geometry." For example, 

Amari examined the "dually flat structure of a manifold, highlighted by the generalized 

Pythagorean theorem" within the information theory [16] and defined the manifold of probability 

distributions as the origins of information geometry[17]. 

Nielsen pointed out the fundamental differential-geometric structures of information 

manifolds in a detailed survey [18]. 

The main objective of this study is to evaluate the discrete information on metric and Planck 

levels to highlight its geometric nature over manifolds. We believe that examining the geometric 

nature of information through digital n-dimensional manifolds will enable us to resolve the problem 

of the elusiveness of information.  

The rationale of this paper is as follows:  We briefly summarize the early works and 

describe the problem in the first section. Then in section two, we first introduce the current 

framework of the computational potential of information on n-dimensional digital manifolds and 

the possibility of defining the fabric of information as 1s or 0s of a discrete entity on a Planck scale. 

Since the spacetime in  2D or 3D near or on the Planck scale can be visualized by Delaunay 

triangulation algorithm, the aforementioned computational framework is implemented as a 

simulation. The methodology section, section three, pictures all those simulations and the surface 

area computations for spheres and manifolds. The evaluation of the simulation results, mainly the 

Shannon information entropy on a Planck scale, is in section four. Naturally, the discussion of the 

simulation results and the conclusion are provided in the sections following four.  

 

Therefore, the main contributions of this research work include the following: 

i. A novel perspective defines the information as a discrete entity on the surface area of an n-

dimensional discrete digital manifold and thus provides a unique way of calculating the 

entropy of a manifold. 

ii. Introducing a geometrical information evaluation of Shannon information metrics on a 

discrete n-dimensional digital manifold, a new tool for analyzing and understanding digital 

systems' information content and structure.  

 
After the introduction, this paper is organized as follows. First, in section two, we define 

the information on metric and Plack levels by computational aspects. Also, this section combines 

(1) 
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the Bekenstein-Hawking entropic value with Shannon entropy to comply with information entropy 

requirements. Then, in section three, we define our research methodology used to evaluate Shannon 

information metrics on a discrete n-dimensional digital manifold. Next, we present the evaluation 

of Shannon Information Entropy on the Planck Scale in section four. The results we have achieved 

and their discussion are represented in section five, and finally, the conclusion is in section six. 

 Due to the computational nature of this study, our simulation codes and tables for Delaunay 2D/3D 

tetrahedronization, simulation pictures & videos have been uploaded to github for replicability and/or 

reproducibility. 

   

2 Computational Potentiality of Information 

Information is a fundamental concept in computer science and information theory, and 

understanding its nature is crucial for developing efficient and effective computational algorithms 

and systems. One of the vital computational aspects of information is its representation. A 

geometrical information evaluation of Shannon information metrics on a discrete n-dimensional 

digital manifold is a powerful tool for analyzing and understanding digital systems' information 

content and structure. The approach involves using geometric and topological techniques to 

construct a geometric space that represents the information content and structure of the system 

based on Shannon information metrics such as Entropy and Mutual Information. The 

computational potentiality of this information lies in its ability to be represented, processed, and 

analyzed by computational methods, allowing us to make predictions, simulate scenarios, and 

explore the behavior of complex systems. 

Computer simulations can be used to study the entropy of systems at the Planck scale. First, 

however, a computational model must be developed that accurately represents the behavior of 

particles at this scale to achieve that. Nevertheless, this has always been a difficult task, as the laws 

of physics governing particle behavior at the Planck scale are poorly understood. 

Our approach to developing a computational model of the Planck scale is to define the 

information as a discrete entity on the surface area of an n-dimensional discrete digital manifold. 

In this approach, space is divided into discrete units, and the behavior of particles is simulated on 

the lattice. Therefore, particles' behavior at the Planck scale can be simulated computationally 

efficiently. Furthermore, once a computational model has been developed, it can be used to study 

the entropy of systems at the Planck scale by simulating the behavior of particles under different 

conditions and measuring the system's entropy. By doing so, we can gain insight into the behavior 

of particles at the minor length scales and the entropy associated with these systems. 

When the nature of information is evaluated computationally on a metric scale                 

(100m - 10-6m), it presents itself as discrete and continuous. It is shown that mapping information 

from a discrete domain, in the form of a graph, into a continuous domain as a manifold can be done 

through the Laplace-Beltrami operator and Gauss-Bonnet theorem [19]. A Laplace-Beltrami 
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operator can measure the curvature of a manifold and is defined as the divergence of the gradient 

of a function defined on the manifold. The Gauss-Bonnet theorem is a fundamental theorem that 

relates the curvature of a surface to its topology. 

A manifold is a topological space that can be covered by a collection of open subsets Oi, 

where Oi is isomorphic to some open subset of Rn.  Manifolds are suitable differentiable 

mathematical objects for information to be defined on because they are non-Euclidean in the global 

view and resemble Euclidean spaces in local scales. A discrete domain, such as a graph, can be 

considered a collection of discrete points or vertices connected by edges. 

The computer simulations and the effectively calculable functions relating to the 

information entropy are in n-dimensional discrete digital manifolds. A discrete digital manifold 

means the discretization of a continuous manifold [20] and is defined as a digital manifold as 

follows: 

A connected subset  of is an -dimensional digital manifold

if any point  is included in some -cell of ,  and (i) any two -cell are ( 1) connected,

(ii) every ( 1) cell in  has only one or tw

m
M n

p M n M n n

n M

 −

−



o parallel-moves, and (iii)  does not contain any ( 1) cell.

Therefore, the  is a discretization of Euclidean space where .
m

M n

m +

+



 

One peculiar way of examining the very nature of information through computer 

simulations is to consider it a discrete digital entity on the Planck scale (10-35m). Defining 

information on the Planck scale as a discrete digital entity on the surface area of an n-dimensional 

digital manifold within the equilateral triangles (2D) or tetrahedrons (3D) uniquely matches it with 

that of the Bekenstein information metrics.   

It is thus possible to define the fabric of information as 1s or 0s of a discrete entity that 

covers the surface area of an n-dimensional digital manifold on a Planck scale measurable by the 

Bekenstein number [21]. That is 

 

 

2 70 2whereas  is the square of the Planck length, and is equal to 2.612270 10 .p x m−  

Considering the spacetime to be 2D (or yet 3D) near or on the Planck scale and thus 

discretizing it with a digital manifold calls for a triangulation process known as the Causal 

Dynamical Triangulation (CDT) [22-23-24-25], which is a descendant of quantum Regge calculus 

[26,27].  

The surface area of any given n-dimensional digital manifold is an effectively calculable 

function by the Delaunay triangulation algorithm. Moreover, the union of multiple n-dimensional 

digital manifolds can be obtained by point set addition computation. At the same time, the addition 

of two triangulated manifolds is also obtainable through the wedge product computations. 

24 .  . ln 2pN = (2) 
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3 Methodology  

In this section, we describe the methodology used to evaluate Shannon information metrics 

on a discrete n-dimensional digital manifold and the explanation on the steps involved in 

constructing the digital manifold, selecting the Shannon information metrics, and calculating the 

metrics and Surface Area Calculations for Sphere and Manifolds using information geometry tools. 

In this study, the computer simulations are coded in Processing 3.0 Beta graphics library 

and Ghull graphics visualization library. First, the triangle approximations of n-dimensional digital 

manifolds and n-spheres are obtained by point sets randomly generated on objects' surfaces. Then, 

the Delaunay triangulation algorithm calculates the surface areas of the digital manifold & of the 

n-sphere. The computations are detailed below. 

An n-sphere is an n-dimensional digital manifold. For (n ≥ 2), the n-spheres are simply-

connected n-dimensional manifolds of constant, positive curvature. The surface area formula for 

an n-dimensional digital manifold is then:  

/2
1

1( )

( 1)
2

n
n

n

n
S R R

n

 −

− =

 +

  

whereas ,  and are the number of dimensions and radius respectively.

The  is the gamma function which is an extention of the factorial function.

That is, if  is a positive integer then ( ) ( 1)

n R

n n n

+



 = − !.

 

The amorphous objects that generated a manifold and n-spheres also have positive constant 

curvature. Therefore, the Euler characteristic of those unstructured manifolds and 3-sphere, 4-

sphere is 2. 

Our computer simulations obtained the below-provided pictures 3.1 and 3.2. They show the 

triangulation process of a 3-sphere and a 3D manifold. 

In picture 3.1, step (a) shows the initial points to form a 3-sphere; steps (b), (c), and (d) 

establish the point connections, the triangulations, and the wholly formed 3-sphere, respectively.  

 

 

(3) 
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Picture 3.1 Triangulation of a 3-Sphere. The a-b-c & d show the interim stages of triangulation. 

 

Similarly, in picture 3.2 below, the forming stages of a 3D manifold are provided in 4 

specific steps (a) the initial points, (b) connections of the points, (c) the triangulation, and (d) the 

complete triangulated 3D manifold.   
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Picture 3.2 Triangulation of a 3D-Amorphous object, a manifold. The a-b-c & d show the interim 

stages of triangulation of the manifold. 

Tables 3.1 & 3.2  below summarize Delaunay triangulation computations for surface area 

calculations of n-spheres and manifolds. 

Table 3.1 Surface Area Calculations for n-Spheres. 

Delaunay Triangulations for Surface Area Computation of an n-Sphere 

3-Sphere 4-Sphere 

Random 

Points 
Number of 

Triangles 
Area 
(unit2) 

Random 

Points 
Number of 

Triangles 
Area 
(unit2) 

1000 1988 124748.43 1000 23464 18025282.00 

2000 3976 125204.76 2000 48304 18620394.00 

3000 5961 144430.16 3000 73652 18928320.00 

The total area of a sphere 125663.70 The total area of a sphere 19739175.45 
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Table 3.2 Surface Area Calculations for Manifolds. 

Delaunay Triangulations for Surface Area Computation of a Manifold 

3D Manifold 4D manifold 

Random 

Points 
Number of 

Triangles 
Area 
(unit2) 

Random 

Points 
Number of 

Triangles 
Area 
(unit2) 

1000 212 214617.36 1000 2976 49536179 

2000 302 218472.06 2000 5116 51396624 

3000 350 223421.52 3000 6124 52887740 

 

As seen in Table 3.1 above, the n-sphere computations were realized through the formulas 
2

1
4  3,  100 

n
S R where n R

−
= = =  for the 3-sphere and 

2 3

1
2  4,  100 

n
S R where n R

−
= = =  4-sphere, 

respectively. Each n-sphere is created thrice by 1000, 2000, and 3000 random surface points and 

has its number of triangulations for the area calculations. Therefore there are six n-spheres with 

their respective areas to be used for the entropy calculations shown in the next section.  

The same approach was taken for the creation of the manifolds. Again, the 3D and 4D 

manifolds were created thrice by 1000, 2000, and 3000 random surface points, along with their 

triangles and area calculations. It is imperative to notice that all the manifolds have constant & 

positive curvature, and their points are between (-100) & (+100) in each dimension. 

Thus, these Tables 3.1 and 3.2 show that the surface area of n-spheres and 3D-4D digital 

manifolds can be obtained by the Delaunay triangulation algorithm computationally. The 

significance of this methodology lies in the fact that it is now possible to compute the entropy of 

n-dimensional digital manifolds.  

 

4 Evaluation of Shannon Information Entropy on the Planck Scale 

The Shannon metrics for quantizing discrete, digital information on a metric scale are 

effectively calculable functions. This subsection extends these metrics for information-bearing n-

dimensional discrete digital manifolds on the Planck scale. The primary assumption is that the 

Planck scale is discrete. Therefore, information systems like n-spheres or n-dimensional digital 

manifolds are independent of measurement. 

For simplification in calculations, the unit of the calculated surface area of the n-

dimensional digital manifolds and n-spheres is represented by base 10 with the exponent (70) in 

square meters (x1070 m2). 
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The information capacity of an n-dimensional digital Manifold (ICndm) is determined by its 

surface area (A) divided by the Bekenstein number (N). 

2 bitsndm

A
IC ln

N
=  

2where A is the surface area and  is Bekenstein number which is 4 pN N =  

The maximum entropy (Hmax) for the n-dimensional digital manifold (Mndm) may be defined 

as a Shannon entropy function. Since this entropy is the maximum, all the probabilities are assumed 

to be the same and equal to 0.5.    

max

1

( )  ln  bits per manifold
ndm

ndmIC

i i

i

H M pp
=

= −  

max

5

where  is the maximum entropy, 

 is the information capacity

 is n-dimensional digital manifold, 

n-dimensional digit d of al manifold,an   is probability

with 0.

ndm

ndm
IC

H M

p

p =

 

The formulas (4) and (5) may be applied to n-spheres and n-dimensional digital manifolds 

on the Planck scale as a second step. An example calculation based on the Delaunay triangulations 

for surface area computation of a 3-Sphere from Table 3.1 is below. 

70 2

2 70 2

2 70

max

Example: 3-sphere with 1000 random points:

Area, 124748 10

Planck square : 2.611 10

Bekenstein number, 4 , 4 2.611 10

124748
ln 2 0.693 8280.68 bits.

4 2.611

 : (

p

p

ndm

ndm

A x m

x m

N N x x

A
IC

N x

Max Entropy H M

−

−

=

=

= =

= = =

max

1

( ) 8280.68 0.5 0.693 2869.02 bits per manifold.

)  where 0.5ln

ndm

ndmIC

i i
i

H M x x

pp p
=

= =

= =− 

 

Enlarging this calculation to cover n-spheres and n-dimensional digital manifolds per the 

simulation aforementioned in section three is now possible. Tables 4.1 and 4.2 show the results of 

the analyses exampled above. 

 

 

 

(4) 

(5) 
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Table 4.1 n-Sphere Digital Manifold Entropies on a Plank Scale. 

n-Sphere Entropy 

 

Number 

of points 

3-Sphere 4-Sphere 

Area 

(unit2) 

ICndm 

(bits) 

Hmax(Mndm) 

(bits per 

n-sphere) 

Area 

(unit2) 

 

ICndm 

(bits) 

Hmax(Mndm) 

(bits per 

n-sphere) 

1000 124748.43 8280.71 2869 18025282.00 1196505.79 414589 

2000 125204.76 8311.01 2880 18620394.00 1236008.91 428277 

3000 144430.16 9587.17 3322 18928320.00 1256448.83 435360 

 

Table 4.2 n-Dimensional Digital Manifold Entropies on a Plank Scale. 

nD Manifold Entropy 

 

Number 

of points 

3D Manifold 4D manifold 

Area 

(unit2) 

 

ICndm 

(bits) 

Hmax(Mndm) 

(bits per 

manifold) 

Area 

(unit2) 

 

ICndm 

(bits) 

Hmax(Mndm) 

(bits per 

manifold) 

1000 214617.36 14246.15 4936 49536179 3288177,40 1139353 

2000 218472.06 14502.02 5025 51396624 3411672.46 1182145 

3000 223421.52 14830.57 5139 52887740 3510651.71 1216441 

 

Tables 4.1 and 4.2 clearly show that the computation of the maximum entropy for                    

n-dimensional digital manifolds on the Planck scale is possible within the simulation limits. 

Until this point, we have shown that the surface area of the discrete n-dimensional digital 

manifold is an effectively computable function; however, more Shannon information metrics are 

necessary to justify the assumption that the Shannon information axioms and metrics are valid on 

the Plank scale.  

Since the n-spheres and n-dimensional digital manifolds examined in this paper are 

topological structures, the union (point-to-point) and wedge (by single point only) operators may 

be applied to create more complex digital topological objects. The Shannon information measures 

can then be obtained from these complex topological structures. 

As a first step, both randomly created 3-sphere and 3D manifold were glued by point-to-

point (union) operation; in doing so, all points on both objects were connected one-to-one basis. 

The union operation was repeated thrice on 1000, 2000, and 3000 point sets. 
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Later, randomly created 3-sphere and 3D manifold were glued by a single point (wedge) 

only, and this was repeated thrice on 1000, 2000, and 3000 points sets again. The wedge operator 

connects two n-dimensional digital objects from one point only. 

Picture 4.1 below depicts the union operation on a 3-sphere and a 3D manifold in 4 steps 

progressively. Step (a) shows the formations of a 3-sphere on the left and the 3D manifold on the 

right. At step (b), the points are connected on both objects, hence the 3-sphere and a 3D manifold. 

Due to union operation, all points on both entities are combined at step (c). The result of a 3-sphere 

and a 3D manifold unionization is at step (d).   

 

 

Picture 4.1 The Union operation on a 3-Sphere and 3D manifold. The a-b-c & d show the 

interim stages. 
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Picture 4.2 below depicts the wedge operation on a 3-sphere and a 3D manifold in four 

distinctive steps. Step (a) shows the formations of a 3-sphere on the left and the 3D manifold on 

the right. At step (b), the points are connected on both objects, hence the 3-sphere and a 3D 

manifold. Finally, due to the wedge operation,  both objects are connected from one-point-only as 

seen in step (c). The result of the wedge operation is the one-point-only connected two objects as 

pictured in step (d) ).   

 

 

Picture 4.2 The Wedge operation on a 3-Sphere and 3D manifold. The a-b-c & d show the 

interim stages. 

 

Once we have the connected complex topological digital objects, as shown in the above 

pictures, performing the Shannon information metric on them is possible. By applying formulas 

(4) & (5), one may calculate the maximum entropy of n-spheres and nD manifolds as the function 

Jo
urn

al 
Pre-

pro
of



Page 14 of 21 
 

of their surface areas generated by union and wedge operators for 1000, 2000, and 3000 random 

point data sets, respectively. 

As explained above, Table 4.3 shows the maximum entropies for n-dimensional digital 

manifolds generated and calculated for three data sets. 

On the other hand, Table 4.4 shows the calculated maximum entropies for union and wedge 

operator generated, complex n-dimensional digital manifolds. 

 

Table 4.3 Shannon Information Measures on Complex Topological Objects. 

Random 

Points 

Surface Area of    

3-sphere: A1 

(unit2) 

Surface Area of 

3D Manifold: A2 

(unit2) 

Hmax (A1) 

(bits per 3-

sphere) 

Hmax (A2) 

(bits per 3D 

manifold) 

1000 123766,664 210185,560 2847 4834 

2000 125117,560 218056,770 2878 5015 

3000 125255,540 220274,230 2881 5066 

 

Table 4.4 Shannon Information Measures after the Union & Wedge Operations. 

Random 

Points 

Aunion = (A1  A2) Awedge = (A1   A2) Hmax (Aunion) 

(bits per union) 

Hmax (Awedge) 

(bits per 

wedge) 

1000 311808,900 333852,220 7172 7679 

2000 318368,900 343074,300 7323 7891 

3000 319081,440 345429,78 7339 7945 

 

It is clear in Table 4.3 that the steady increase of maximum entropy of the n-dimensional 

digital manifolds on the Planck scale over the data sets with an increasing number of points is 

clearly in line with the 2nd law of thermodynamics in all systems in metric space. 

Moreover, as seen in Table 4.4, the increase in maximum entropies of the wedged objects 

compared to unionized objects of the Planck level may also be interpreted as the 2nd law of 

thermodynamics, again, in action on the Planck level. 

At this point, it is imperative to satisfy all the initial axioms of the Shannon information 

metrics to show that all those axioms are also valid on the Planck scale. 

Axiom #1 Entropy is always non-negative for all surfaces of all discrete digital objects. 

Proof: The calculations performed over the data generated for simulation clearly shows 

this in Table 4.1 to 4.4.  
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Axiom #2 Entropy is always monotonically increasing and is maximum when all 

probabilities are equal with a value of p= 0.5.  

Proof: By formulas (4) and (5), it is evident that  

max

1
 all '  are equal then it can be written that ,  

  will increase monotonically as a function of .

That in turn means that the entropy will increase for an increasing number o

i i

ndm

ndm

if p s i p
IC

then H IC

 =

f equal probabilities

1
reaching to a maximum when all are equal to . 

2

 

Axiom #3 That Hmax(An) is symmetrical. 

Proof: The ordering of probabilities does not change the result even on independent objects 

when adding, for instance: 

( ) ( ) ( ) ( )max 1 max 2 max 2 max 1 7893 .

where 2000 points on the surface areas of 3-sphere and 3D digital manifold.

Thus Symmetric.

H A H A H A H A bits+ = + =

 

Axiom #4 Hmax(An) is additive. 

Proof: The three sets of entropy measures for two objects, (i) the 3-sphere and (ii) the 3-

dimensional discrete manifold in an n-dimensional discrete digital manifold, were 

calculated by effectively calculable functions. Since each object is independent of the 

others, they both have entropies. Thus, entropies relating to joint events (=objects) were 

calculated by (i) the ordinary arithmetic summation of the points on surface areas, (ii) by 

union operation of the whole points of the objects, and (iii) by gluing the objects from one 

single equilateral triangle of any given tetrahedron on the intersection of the objects named 

a wedge. An example follows below:  
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

max 1 2 max 1 max 2

max 1 2 max 1 2 max 1 max 2

max 1 2 max 1 2

max 1 2 max

,

Ordinary Summation:

,

7681 2847 4834 .

Union:

, (A) where A is A= .

7172 2847 4834 .

Wedge:

,  (A) where A is A=

H A A H A H A

H A A H A A H A H A

bits

H A A H A A

bits

H A A H

= +

= + = +

= +

=   

 +

= ( )1 2 .

7679 2847 4834 .

thus additive.

A A

bits

  

 +

 

 

Axiom #5 H(P) is continuous in p. 

Proof: 

( ) ( )

By the definition of probability,  it is clear that

,  1  when considered as a function of .

Where  is probability of a random point on discrete,  digital n dimensional manifold.

H P H p p p

p

= −

−

 

 

Axiom #6. Reproducing the Bekenstein-Hawking Entropy. 

Proof: Following formulas (1) and (4), it is clear that 

. BH B ndm
S k IC=  

 is Bekenstein-Hawking entropy,  is Boltzmann's constant and  is the

information capacity of n-dimensional digital manifold.

where BH B ndm
kS IC

 

The Shannon information axioms and their proofs clearly show that all those axioms are 

valid for n-dimensional digital manifolds defined on the Planck level. This proven concept permits 

us to consider the information as digital, a discrete entity on the Planck level. However, the 

unavailability of direct observations from experimental research still blocks the way to definitive 

conclusions. 

 

(6) 
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5 Results & Discussion  

The nature of information on the Planck level spacetime has various competing theories 

and interpretations in theoretical physics and remains a topic of intense research and debate. Further 

studies and explorations are needed to determine the most accurate and comprehensive view. On 

the one hand, information on the Planck scale is discrete and digital, with a finite number of bits of 

information per unit of space or time. This idea is based on quantum mechanics, which suggests 

that space and time may be quantized at the Planck scale. Furthermore, that information is encoded 

in fundamental particles' properties and interactions. On the other hand, information on the Planck 

scale is continuous and analog, with an infinite number of possible values per unit of space or time. 

This view is based on theories such as string theory and loop quantum gravity, which propose that 

space and time are fundamentally continuous and that information is encoded in the geometry of 

spacetime. 

While evaluating these ideas is challenging, there is currently no experimental evidence to 

support one theory over another. 

Through the computerized simulations, we have only shown that defining the information 

as a discrete entity on the surface area of an n-dimensional discrete digital manifold provides a 

unique way of calculating the entropy of a manifold. However, the lack of direct experimental data 

to back our approach is still the main problem, as with other studies concerning the Planck level. 

Our software simulation shows that the surface area of the discrete n-dimensional digital 

manifold is an effectively computable function, justifying the information-geometrical evaluation 

of Shannon information metrics. 

The maximum entropy for n-dimensional digital manifolds [Hmax(Mndm)], computed & 

presented in tables 4.1, 4.2, 4.3, and 4.4., clearly states that the Shannon information metrics are 

also valid on the Planck level. Moreover, the proven Shannon information axioms in section four 

offer that all those axioms are reasonable for n-dimensional digital manifolds defined on the Planck 

level. Therefore, it is now possible to consider the information as digital, a discrete entity on the 

Planck level.  

 This approach may provide a better understanding of the nature of information on the 

Planck scale. In addition, it could offer new insights into the complex systems it involves, including 

the nature of reality and the universe's origins. 

In general, evaluating the nature of the information leads to the discussion:  

(i) The information on a Planck level is a physical entity. It is directly measurable, and it 

can be approached from both discrete (deterministic) and continuous (stochastic) 

perspectives depending on the scale on which the observations and measurements have 

been made [19–26]. Therefore, it presents a scale-dependent dual nature. This scale-

dependent duality entirely complies with the observations and measurements of the 

geometric nature of the information, as seen in this study. 
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(ii) Founding on the assumptions of CDT, as demonstrated earlier in this study, the Planck-

level simulation shows that the information may be considered as the triangulation of 

spacetime or vice versa, for both can be effectively computed as a discrete                           

n-dimensional digital manifold.  

 

(iii) By following formulas (5) and (6),  the information might now be defined as   

 

 . P B ndm
I k IC=  

 

where  is the discrete information on the Planck level,  is the information

capacity of a n-dimensional digital manifold, and  is Boltzmann's constant.

P

B

ndm
I

k

IC
 

 

(iv) When the spacetime is considered as 2-dimensional manifold on the Planck scale, 

changing the curvature of a manifold does not affect its net surface area. 

 

6 Conclusion  

The nature of information on the Planck level remains a complex and challenging topic of 

research and debate in theoretical physics, pure mathematics, and computer science. While 

competing theories propose different perspectives on the discrete or continuous nature of 

information, we have shown that defining information as a discrete entity on the surface area of an 

n-dimensional digital manifold provides a unique and effective way to evaluate Shannon 

information metrics. As such, a better understanding of the nature of information on the Planck 

scale could provide invaluable insights into the complex systems it involves. However, further 

research and exploration are needed to determine the most accurate and comprehensive theory and 

uncover the universe's mysteries at the Planck scale. 

Through the calculations proven  above and the results that follow, we conclude by below 

items:  

(i) The information, modeled & computed geometrically as a discrete, digital n-

dimensional manifold in the shape of tetrahedrons (3D) or equilateral triangles (2D) on 

a Planck level, can be considered as the very fabric of spacetime itself.  

(ii) The axioms of Shannon information entropy for the n-dimensional digital manifold 

have been satisfied. Therefore, the Shannon information measure is valid on the Planck 

level.  

(iii) The spacetime on a Planck level may be considered as a fluid quantum foam [28–30] 

with information consisting of 1s and 0s within equilateral triangles (2D) or 

tetrahedrons (3D), each of which is defined on a Minkowski space [31]. Therefore, 

(7) 
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spacetime can be considered a 2D flat surface, an information plane, or an information 

volume in 3D. All that follows the approaches of  "At some scale, space, time, and state 

are discrete. The fundamental process of physics must be a simple deterministic digital 

process." [32], and "The essence of the universe is information, and the fundamental 

bits of information that give rise to the universe lives on the Planck scale."[33].  

(iv) The information attributes and functions such as confidentiality, integrity, and 

authenticity may be defined as tensorial operators on the discrete n-dimensional digital 

manifold thus, are calculable functions. Describing these calculable functions is what 

we consider future work.  
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