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Abstract— This paper presents an efficient skull stripping method to improve the decision-making 

process. Extended weiner filtering (EWF) is used for removing the noise and enhancing the quality 

of images. Further, laplacian lion optimization algorithm (LXLOA) is implemented. LXLOA 

utilizes the Otsu’s and Tsallis entropy fitness function to determine an optimal solution. The 

implemented LXLOA provides a threshold value required for performing the segmentation on the 

brain MRI images. The extracted features are selected using fuzzy weighted k-means embedding 

LDA (linear discriminant analysis) method for improving training of the classification model. The 

proposed LXLOA is extensively tested on standard benchmark functions CEC 2017 and 

outperforms the existing state-of-the-art algorithm. Rigorous statistical analysis is conducted to 

determine the statistical significance. Three-fold performance comparison is performed by 

considering (a) the quality of the segmented image; (b) accuracy, sensitivity, and specificity; and 

(c) computational cost of convergence for finding an optimal solution. Result reveals that LXLOA 

gives promising results and demonstrate effective outcomes on the standard quality measures (a) 

accuracy (97.37%); (b) sensitivity (85.8%); (c) specificity (90%); and (d) precision (91.92%). 
 

Keywords—Brain Tumor Images, Extended weiner filter , Laplacian Lion optimization algorithm, 

Fuzzy weighted k-means embedding LDA, Classification. 

1. Introduction 

The automatic computer-aided diagnostic procedures are unfolding medical imaging research to 
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explore and visualize tremendously emerging patterns [1, 2]. The growing standardization in 

clinical decision-making advances the process and increases the patient’s survival rate at an early 

stage. Computer vision and pattern recognition help the radiologist, physician, pathologist and 

experts in the contribution of advanced techniques for the treatment of patients [3, 4]. Medical 

imaging segmentation is an essential and challenging task for improving the decision-making 

process's performance [5-7]. 

In their reports, WHO (World Health Organization) and American Brain Tumor Association 

have classified brain tumor as benign and malignant tumor types. Grading of these tumor types can 

be done on a scale from grade I to grade IV. However, National Brain Tumor Society report states 

that over 87,000 people will be diagnosed with a primary brain tumor in 2020 in  the United States. 

Hence, this estimation states that there will be 61,430 brain tumor benign cases and 25,800 brain 

tumor malignant cases. 

Image processing plays a crucial role in enhancing prominent finding effectiveness and 

identifying the patterns [8, 9]. The multidimensional image can be generated using two modalities 

for radiological medical imaging applications such as computed tomography (CT) and magnetic 

resonance imaging (MRI) [10]. The most preferred non-invasive modality for acquiring human 

neural activity is MRI due to high resolution, least ionizing radiation, and soft tissue capabilities 

[11]. Generally, the different MRI images are utilized for diagnosis purposes, including T1- 

weighted MRI, Flair with contrast enhancement, Flair and T2-weighted MRI [12] as shown in Fig 

1. 

                                      

(a)                          (b)                           (c)                      (d) 

Fig 1. Representative of (a) T1-Weighted MRI (b) Flair (c) Flair with Contrast Enhancement (d) T2-Weighted MRI. 

The intelligent detection system helps the experts, radiologists, and physicians to decide the 

uncertainties present in neoplasm. Patel et al. [13] showed the study of different segmentation 

techniques such (a) thresholding [14] (b) region-based segmentation [15] (c) edge-based 

segmentation (d) fuzzy c-mean clustering method [16] for medical imaging.  

Metaheuristics hybridization is growing exponentially by developing a fusion of two different 

search operators. The proposed LXLOA algorithm is derived from the merits of the laplacian 
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crossover and lion optimization algorithm. LXLOA is implemented for segmentation and contributes 

to the skull stripping process. LXLOA algorithm provides a new optimal solution in mating phase 

by producing new offspring. LXLOA selects the best male agent (high fitness value) to mutate with 

female lion for generating a new cub. Laplacian operator explores best probable male lion to replace 

with worst performing lion. Thus, the best solution is obtained for efficient segmentation of brain 

MRI images. 

The key contributions are highlighted as follows: 

(i) An intelligent brain tumor detection and diagnosis model is proposed for computer-aided 

diagnosis systems. Extended weiner filtering is applied for improving the intensity of images. 

Further, LXLOA algorithm is based on Otsu’s and Tsallis entropy function to obtain the 

threshold value and perform segmentation. This process improves the convergence speed. Thus, 

efficient skull stripping of brain MRI is designed. 

(ii) A fuzzy weighted k-means embedding linear discriminant analysis algorithm is implemented for 

the prominent selection of optimized features subset. The artificial neural network (ANN) is 

used for classification purposes. 

(iii)  Extensive computer simulations and testing are conducted on benchmark functions to 

determine the efficiency and effectiveness of the proposed method.  Moreover, statistical tests 

are performed for determining the performance significance of acquired results. Further, three-

fold comparison is performed as follows:  

a) Firstly, the quality of the segmented image is measured using three quality metrics: (a) fitness 

value; (b) peak signal-to-noise ratio (PSRN) value; and (c) structural similarity index measure 

(SSIM) value.   

b) Secondly, the classification method is trained with acquired selected features from the fuzzy 

weighted k-means embedding LDA to compute accuracy, sensitivity, and specificity.  

c) Thirdly, the effectiveness of the LXLOA is evaluated in terms of the computational cost of 

convergence for finding an optimal solution.  

      The performance of the proposed LXLOA (Algorithm-1) is compared against the state-of-the-

art metaheuristic algorithms such as DE [17], WOA [18] , PSO [19], LOA [20], ACSA [22 ]. The 

performance of algorithm depends on the selection of its parameter. These algorithms belong to 

the family of swarm intelligence algorithms. These are nature inspired metaheuristic algorithm, 

and they get converged to the optimal global solution. These algorithms approaches towards 

optimal solution but cannot guarantee it. The rationale behind selecting these algorithms are as 

follows: (a) DE algorithm holds good exploration ability for optimization problem .(b) WOA [24] 

maintains a good balance between exploration and exploitation stage and avoids the premature 
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convergence. (c) PSO iteratively updates the position via a swarm of particles for determining the 

optimal solution. (d) LOA adopts different strategies to depending upon the social organization 

and behaviour of lions to find the optimal solution. (e) ACSA’s functionalities are based on 

breeding of cuckoo birds and works on exponentially increasing switching parameters to provide 

improved solution.  

       The paper is structured in different sections as follows: Section 2 presents related work and 

standard lion optimization algorithm; Section 3 discusses the proposed methodology; Section 4 

describes experimental setup, results and discussion; and Section 5 shows the conclusions and 

future research directions. 

2. Related Work 

Bio-inspired algorithms and swarm intelligence are nature-inspired techniques that help to solve 

real optimization problems [25]. Various metaheuristic algorithms are applied in image 

segmentation to obtain refined results and effective performance [26]. Few popular optimization 

algorithms are artificial bee colony (ABC) [27] [71] [72] [73], particle swarm optimization (PSO) 

[28], whale optimization algorithm (WOA) [29], genetic algorithm (GA) [30], adaptive particle 

swarm optimization  [31], cuckoo search algorithm [32], grey wolf optimization [33], cat swarm 

optimization [34], and lion optimization algorithm [35]. These optimization algorithms provide the 

optimal global solution for the selected set of features through exploitation and exploration [36, 37]. 

A comparative analysis of different existing algorithms are summarized and presented in Table 1.  

Table 1. Comparative analysis of existing algorithms with respect to brain MRI dataset, approaches used and 

performance. 

Author Dataset Approach Performance 

Wang et al. [38] BRATS 2017 Anisotropic and Cascaded CNN model _ 

Kumar et al. [39] 
T1 weighted MRI -55 

patient 

PCA –ANN, Gradient vector flow 

boundary 
95.37% 

Sharma et al. [40] T1 weighted MRI 
Global thresholding, Post-processing using 

anisotropic diffusion filtering, DE +ANN 
94.3% 

El Abbadi et al. [41] 
65 MRI weighted brain 

image. 
Probabilistic neural network 98% 

Lashkari et. al. [42] 
T1 & T2 weighted MRI - 

210 case 
Histogram equalization, MLP model- ANN 98% 

Vijh et.al.[43] 
T1 weighted MRI - 61 

sample case 

Hybrid of Otsu and Adaptive particle 

swarm optimization 
98% 

 

Chao et al. [44] 

 

MNIST 

 

CaRENets 

Overall (0.925) 

accuracy 

Zhao et al. [45] 
2013 benchmark BRATS 

data 
Patch-wise Convolutional neural network 

Overall (0.81) 

Accuracy 

Manic et al. [46] stated the approach for segmenting the grayscale image based on firefly 
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optimization algorithm using multi-level thresholding. The Kapur’s and Tsallis functions were 

selected for determining the optimal threshold value for segmenting the images. Thus, the 

simulation results were evaluated and tested; the algorithm gave better outcomes on comparative 

analysis. However, the quality metrics of the image was determined using parameters like (a) peak-

signal- to-noise-ratio (PSNR); (b) root mean square error (RMSE); (c) structural similarity index 

matrix (SSIM); and (d) normalized absolute error. 

Soleimani et al. [47] implemented the ABC optimization algorithm for segmentation of brain 

tumor to perform diagnosis and improve the model's accuracy. Jafari et al. [48] proposed a hybrid 

method for the detection and prognosis of brain tumor MRI imaging. The simulated steps were 

performed utilizing thresholding, post-processing fast fourier transform, feature selection through 

the genetic algorithm, classification using a support vector machine. The performance measures 

were computed by determining the accuracy of 83.22%. 

Yin et al. [49] proposed a novel approach by applying the multilevel thresholding using 

differential evolution (DE) optimization algorithm for producing a segmented image. Pugalenthi et 

al. [50] presented the method in which preprocessing is performed by applying social group 

optimization and fuzzy Tsallis thresholding for improving the intensity of the brain tumor section 

so that the region can adequately be segmented. The features were extracted by considering the 

GLCM technique and analyzing the classification using the SVM-RBF kernel for benign and 

malignant tumors. The evaluated accuracy for the model was estimated at 94% on the MRI brain 

image dataset. 

Natarajan et al. [51] stated the techniques for efficient brain tumor segmentation by 

implementing preprocessing, segmentation and post-processing on MRI images. Manogaran et al. 

[52] presented the approach for identifying the abnormalities present in brain image using 

orthogonal gamma distribution for determining the under and over segment region on 994 MRI 

brain images of 30 patients. The wavelet and GLCM based features are extracted from the 

segmented image, and morphological based operation was applied for the post-processing of brain 

MRI tumor image. Further, the image quality was measured using quality metrics as PSNR and 

MSE parameters.  

Havaei et al. [53] implemented the convolutional neural network (CNN) for automatic brain 

tumor segmentation on the BRATS (2013) benchmark dataset. Bansal et al. [54] proposed 

multilayer perceptron architecture using lion optimization algorithm (MLP-LOA) for classification 

purpose. The different stages of the LOA were implemented for determining the optimal solution. 

The MLP-LOA algorithm efficiency was evaluated by comparing with different existing 

classification algorithm.  
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2.1 Lion Optimization Algorithm 

Swarm intelligence and evolutionally computational based metaheuristics algorithms have been 

successfully implemented for solving various real time complex optimization problem. Lion 

optimization algorithm (LOA) [55] is a popular metaheuristics algorithm inspired from the social 

organization and behaviour of the lion. The formation of initial population is consisting of randomly 

generated solutions. The social organization of lion are categorized namely as nomads and resident 

respectively. Resident lion also referred to pride consisting majority (75-90%) of female lion and 

remaining as male lion. The pride territory members contains the best visited position in the region. 

In LOA, the different procedure and strategies are followed by each specific gender to search for 

optimal solution. Typically, lion forms the coordinated group to encircle and hunt the prey. 

Furthermore, in the region of pride territory, randomly some females are selected for hunting, 

however the remaining female moves in different location of territory. In pride, each male resident 

lion roams in its own territory. During roaming, resident male lion updates their position if lion 

reaches a new position which is finer than the current position. The roaming behaviour of lion 

enables strong local search and provides improved solution. Mating process increments the growth 

in population of lion and helps in exchanging the information among the members in pride. In each 

pride, % 𝑋𝑚𝑡 of female lions intimate with one or more randomly selected males resident lion from 

the same pride to produce the offspring [56]. However, the nomad female lion mates with one of 

the randomly selected male among the nomads. During mating, the produced offspring is randomly 

chosen as female and male. Further, defense operation of lion is performed to retain the best male 

lions as solution playing the vital role in LOA.  So, the defense operation is two stage process: (i) 

defense against newly developed mature resident male’s lion in pride; and (ii) defense against 

nomad males. The migration behaviour of lion is inspired by the switch lifestyle, where lions 

exchange from one pride to another pride territory. The migration characteristic helps in improving 

the diversity of pride and exchanging information.  Thus, lion optimization algorithm introduces 

various operators that helps in achieving the optimal solutions.  

3. Material and Methods 

This section shade light on the proposed methodology for the development of intelligent brain 

tumor detection. The working of the proposed system is divided into six stages are discussed in 

subsections as follows: (a) brain MRI acquisition; (b) skull stripping of brain MRI (i) image pre-

processing using proposed extended weiner filtering; (ii) image segmentation using proposed 

LXLOA algorithm; (iii) morphological mathematical operations; and (iv) eliminating cerebral 
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tissue); (c) applying anisotropic diffusion; (d) feature extraction; (e) feature selection; and (f) 

classification. The flow process of proposed methodology is depicted in Fig.2.  

 

Fig.2. Flow daigram of the proposed methodology. 

Series of simulations have been conducted to evaluate the performance of the proposed LXLOA 

algorithm. All simulations were performed on Intel core i7 with 2.2 GHz speed, 16GB RAM, 

NVIDIA Geforce GTX1080 ti 4GB, and Windows 10 operating system. MATLAB 2018b was used 

for implementing the proposed algorithm. Extensive parameters tuning was performed for 

developing the robust simulation model for the implementation of the proposed system (see Figure 

2). LXLOA was implemented using the parameters presented in Table 2, while Table 3 shows the 

ANN's parameters selected for training the network. 

3.1 Brain MRI Data and Normalized Image 

T1-weighted brain MRI data consist of 250 samples attained from IBSR (brain segmentation 

repository) (IBSR), and 150 sample images of MS free data are collected from the Laboratory of 

eHealth at the University of Cyprus [57] and Institute of neurology and genetics, at Nicosia Cyprus. 

The obtained sample images are normalized for improving the intensity of images so that effective 

segmentation and pattern recognition can be visualized.  
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3.2 Skull Stripping 

Skull stripping plays an essential role in brain MRI medical imaging for enhancing the clinical 

research and decision-making process [58, 59]. It is a crucial preprocessing phase for removing 

cerebral tissue and improving the analysis of brain magnetic resonance images. In the proposed 

work, the automatic skull stripped algorithm is developed by contributing the two major process (i) 

applying extended wiener filtering technique to enhance the quality of images (ii) LXLOA algorithm 

to obtain fitness value for segmentation of brain MRI image.  

3.2.1 Extended Weiner Filtering (EWF) 

After normalizing the image, the statistical approach of proposed extended weiner filtering 

(EWF) is applied to remove noise and enhance brain MRI quality. The mathematical equation of 

weiner filtering [60] in fourier transform is shown in Eq.(1). EWF utilizes the dispersion index 

which ensures whether the set of obtained occurrences are dispersed or clustered. Dispersion index 

(SI) is the ratio of variance and mean for noise estimation as shown in Eq. (2). The filter reduces 

the mean squared error criteria and smoothens the image. The mathematical formation of extended 

weiner filtering is depicted in Eq. (3). 

𝐾(𝑥, 𝑦) =
𝑈 ∗ (𝑑, ℎ)𝑃𝑠(𝑑, ℎ)

|𝑈(𝑑, ℎ)|2 𝑃𝑠(𝑑, ℎ) + 𝑃𝑛(𝑑, ℎ)
 (1) 

𝑆𝐼 =  
𝜎2

𝜇
 (2) 

𝐸𝑊𝐹(𝑥, 𝑦) = 𝐾(𝑥, 𝑦) +
𝑆𝐼 − 𝜎2

𝑆𝐼
𝐾(𝑥, 𝑦) (3) 

      Here, 𝐾(𝑥, 𝑦) represents the filter,  image U(d, h) shows the Fourier transform of PSF (point spread 

function), 𝑃𝑠(𝑑, ℎ) is the power spectrum of the processed signal process, 𝑃𝑛(𝑑, ℎ) is the power spectrum of 

processed noise. 𝑆𝐼 Shows the dispersion index ,  𝜎 and 𝜇 shows the standard deviation and mean ,EWF 

(x,y) is extended wiener filter. 

3.2.2 Laplacian Lion Optimization Algorithm  

Image segmentation is a necessary and challenging task for image analysis and diagnosis of 

disease. The fitness values is generated with combination of otsu’s function and tsallis entropy as 

shown in Eq. (4). Fitness value is considered as optimal threshold value for segmentation. In 

LXLOA algorithm, mating process increments the growth in population of lion and helps in 

exchanging the information among the members in pride. In each pride, % 𝑋𝑚𝑡 of female lions 

intimate with one or more resident male lion having high fitness value (best agent) from the same 

pride to produce the offspring. However, the nomad female lion mates with one of the best male 

agent among the nomads. A mutation with probability is applied on each gene of generated offspring 
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for enhancing the inherited characteristics of new cub and balancing the computation cost. The 

laplacian crossover operator [61] is referred to as linear combination of parents for generating pair 

of new best offspring as depicted in Eq. (5). The offspring are produced using Eq. (6) and (7) 

respectively. The parameters and their respective values are presented in Table 2. The parameters 

are selected on the basis of permutation and combination and best value are considered.The detailed 

proposed LXLOA is depicted in algorithm-1.  

 𝑀𝑓𝑖𝑛𝑎𝑙= 𝛼𝑀𝑂𝑡𝑠𝑢 + 𝛽𝑀𝑇𝑠𝑎𝑙𝑙𝑖𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦  (4) 

𝑙𝑖 =  {
𝑤 − 𝑞 𝑙𝑜𝑔𝑒(𝑢𝑖), 𝑣𝑖 ≤

1

2

𝑤 + 𝑞 log𝑒(𝑢𝑖), 𝑣𝑖 <
1

2

 (5) 

New_Cub𝑀  =  𝑥𝑚𝑎𝑙𝑒
𝑖 + 𝑙𝑖|𝑥𝑚𝑎𝑙𝑒

𝑖 − 𝑥𝑓𝑒𝑚𝑎𝑙𝑒
𝑖 | (6) 

New_Cub𝑀𝑠 =  𝑥𝑓𝑒𝑚𝑎𝑙𝑒
𝑖 + 𝑙𝑖|𝑥𝑚𝑎𝑙𝑒

𝑖 − 𝑥𝑓𝑒𝑚𝑎𝑙𝑒
𝑖 | (7) 

Here,  𝑀𝑓𝑖𝑛𝑎𝑙 is the fitness value, 𝛼, 𝛽  are the random values ranging from 0 to 1, 𝑀𝑂𝑡𝑠𝑢 and 

𝑀𝑇𝑠𝑎𝑙𝑙𝑖𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦  represents the Otsu’s function and Tsallis entropy. 𝑙𝑖 shows the laplacian  

distributed random number,  w and q (q>0) represents the location and scale parameters. (𝑢𝑖) and 

(𝑣𝑖 ) are the two distributed  random numbers having range [0,1]. New_Cub𝑀 and New_Cub𝑀𝑠 are 

obtained offspring. If produced offspring doesn’t belong to search space in that case 𝑁𝑒𝑤_𝑐𝑢𝑏𝑖 is 

kept to as random number in interval [𝑁𝑒𝑤_𝑐𝑢𝑏𝑙𝑜𝑤
𝑖  , 𝑁𝑒𝑤_𝑐𝑢𝑏𝑢𝑝

𝑖 ] , 𝑥𝑚𝑎𝑙𝑒
𝑖  represents the male in 

pride, 𝑥𝑓𝑒𝑚𝑎𝑙𝑒
𝑖  shows the female in pride. 

Table 2. Parameters and values. 

Parameter Value 

Number of prides 4 

sex ratio 0.8 

Percent of nomad lions 0.2 

Mating probability 0.3 

Roaming percent 0.2 

Immigrate rate 0.4 

Mutation probability 0.2 

Population size 200 

Algorithm-1 presents the proposed laplacian lion optimization algorithm (LXLOA). It takes 

image as an input and producsed a final processed image for feature extraction.  

Algorithm 1:  Laplacian Lion Optimization Algorithm (LXLOA) 

Term used: L: Lion, F: Resident rate of lion, RP: Roaming percentage of pride, Xmt: Mutation 

probability, IR: immigration rate of LOA, ffinal: Best optimal value, O: extracted features , i: no of 
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iteration, P: population generated randomly, No_Iteration: maximum number of iterations, 

Female_Lion: Random female lion to go on hunting, R_Female_Lion: Remaining female lion that 

move toward the best visited from pride territory, IRFL:  Immigrate resident female lion, 

New_CubC: New cubs are generated after crossover operation, New_CubM: New cubs are generated 

after mutation operation, New_Cubupp: New cub after replacing worst performing lion in pride, 

New_Cubupn: New cub after replacing worst performing lion in nomade, FV: Fitness Value, 

Imagebestvalue:The optimal best value for image is generated at ffinal 

Input: Image E(x,y). 

Output:  Final processed image for feature extraction (O).  

1. Begin 

2.    Set P ← Generation of random population upto L of lion over the solution of image. 

3.    Perform pass the generated values with FV using  Eq. (4).  

4.    While i < =No_Iteration do 

5.    For begin nomad and pride lion do.  

6.    Set L ← Select L of nomad lion from P.  

7.    Set (1-L) ←Remaining (1-L) forms the pride territory. 

8.    For each pride do 

9.       Set F ← Rate of resident population as female and remaining as males.  

10.    End For  

11.    For each pride do 

12.        Set Female_Lion ← Selection of random female lion to go on hunting.  

13.        Set R_Female_Lion ← Move towards the best explored from pride territory. 

14.        Set RP ← Randomly selected for each resident lion. 

15.        Apply laplacian crossover over best selected lion (using Eq. (6) and (7)) 

16.        Set New_CubC ← R_Female_Lions intimate with resident male lion. 

17.        Set New_Cubupp ← New_Cub (Replacing worst performing lion in pride).  

18.    End For  

19.   For each nomad lion do  

20. New_CubM ← Nomad female lion mutate with one of the best male agent. 

21. Apply laplacian crossover over best selected lion. 

22. New_Cubupn ← Replaces the worst performing lion in nomad. 
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23. Nomad male randomly attacks the prides. 

24.    End For  

25.    For each lion pride do 

26. Set IRFL ← IRFL from territory and becomes nomad lion. 

27.    End For  

28.    Perform migratory operation using steps (29) – (31). 

29.    Select (R_Female_Lion) ← R_Female_Lion with the lower FV in pride. 

30.    Set Nomad ← R_Female_Lion. 

31.    Set Prideupdate ← Nomade female with the best FV.  

32.    Balance lion’s population equilibrium at the end of each iteration. 

33.                Set FV ← Update FV. 

34.                Set i ← i + 1. 

35.    End While 

36.    Generate Imagebestvalue ← Optimal best value for image is generated 𝑓𝑓𝑖𝑛𝑎𝑙. 

37.    Perform morphologyical and skull stripping operations on segmented image (O). 

38. End. 

Step-by-step working of Algorithm-1: Algorithm-1 presents the proposed LXLOA. It accept image 

E(x, y) as inputs and produces final processed image for feature extraction (O). Algorithm-1 begins 

at step-2 by generating a random population (P) upto L of lion from the input images E(x, y).  Step-

3 is responsible for evaluating fitness value by combining both Otsu’s function and Tsallis entropy 

as indicated in Eq. (4). The main functionality of the Algorithm-1 is in a while loop which runs 

from steps 4 - 35. The while loop at step-4 runs until it reaches to the maximum number of iteratirons 

(No_Iteration). From steps 5 – 10 a for loop is implemented which is responsible for selection of 

nomad pride and  pride territory. At step-6, lion (L) is selected as nomad lion from the total 

population (P), while the remaining (1-L) forms the pride territory as indicated at step-7. At steps 8 

- 9, a for loop is implemented for each pride to set the percent of F (resident rate of lion) population 

as female and remaining as males. This rate percent gets inversed in the nomad lions. Another for 

loop is implemented from steps 11 – 18. This for loop deals with female lions are selected randomly 

for hunting (step 12) and exploring the pride territory (step 13). After that, in pride, the roaming 

percentage (RP) of pride terotory are randomly selected for each resident lion as shown at step 14. 

Steps 15 – 17 are given to present the crossover operation and replacement of the worst performing 

lion in pride. We have used Eq. (6) – (7) to perform crossover operation. Mutation operation is 
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performed from steps 19 – 24. Here, nomad female lion mutate with one of the best male agent 

among the nomads to produce new offspring (New_CubM) as shown in step 20. Then, apply 

laplacian crossover over the best selected lion (step 21). At step 22, new cub (New_Cubupn) replaces 

the worst performing lion in nomad. And then, nomad male randomly attacks the prides (step 23). 

A for loop at steps 25 – 27 is presented for the percentage of immigrates resident female lion (IRFL). 

Here, IRFL indicates the percentage of female lion immigrates from territory and becomes nomad 

lion. Migration operation is performed from steps 29 – 31. It is performed by selecting the resident 

female lion (R_Female_Lion) having the lower fitness value in pride (step 29) and converting them 

to nomad (step 30). Further, the vacant places in each pride is fulfilled, by migrating or distributing 

the nomad female having best fitness value as indicated in step 31. Lion’s population equilibrium 

is balanced at the end of each iterations, so, considering the maximum population of gender in 

nomad category, the lions having least fitness value are removed (step 32). Thus, the control is 

maintained on number of live lions. At this stage, update the fitness value as shown at step 33 and 

move to the next iteration (step 34). The while loop terminates at step 35. Step 36 and 37 are 

respectively for generation the optimal best value for images and to perform morphologyical and 

skull stripping operations on segmented image. 

3.2.3 Mathematical Morphological Operations and Skull Stripping 

The mathematical morphological operations are post-processing functionalities performed on 

images using the structuring element. The transformation operations are implemented on segmented 

images using erosion and dilation to perform the analysis. 

The skull stripping is achieved by eliminating the extra cerebral tissue and visualizing the 

extracted mask for conducting exploration and region of interest. 

3.3 Anisotropic Diffusion Filtering and Feature Extraction 

It is implemented for denoising purpose, i.e., removing the noise and enhancing the contrast as 

well intensity among the different brain MRI sections. The filtering maintains the balance for 

existing different levels of noise in the image. 

It is crucial for identifying the pattern and determining the texture, statistical analysis. Grey level 

co-occurrence matrices (GLCM) [62-64] and grey level difference matrix (GLDM) are the second-

order statistical measures that are applied to extract the 23 features from brain MRI segmented 

image. There is general applicability of grey level-based texture features spatial dependencies or 

relationship in image classification. The 23 extracted statistical features in the proposed work 

namely are contrast, entropy, difference entropy, autocorrelation, homogeneity, cluster prominence, 

inverse difference, information measure of correlation 1 (Imc 1), cluster shade, information measure 



13 
 

of correlation 2 (Imc 2), sum entropy, sum variance, sum of square variance, sum average, 

horizontal weighted sum, maximum probability, grid weighted, diagonal weighted sum, vertical 

weighted sum , energy , coorelation , dissimilarity. 

3.4 Feature Selection 

It is achieved using fuzzy weighted k-means (FKM) embedded LDA (Algorithm 2) for 

determining the optimized set of features. The FKM embedding LDA is applied for providing the 

solution to the multidimensional pattern recognition problem. The mathematical formulation of 

fuzzy weighted k-means is expressed through Eq. (8), (9) and (10), respectively. The calculation of 

the weighted mean is performed using Eq. (11). The modification in the membership matrix and 

Bayes rule of LDA is depicted in Eq. (12). 

U = [K(x,y)] 1≤ x≤ e, 1 ≤ y ≤ e (8) 

∑ k𝑥𝑦
𝑛

𝑘=0
 = 1, y=1, 2, 3…n (9) 

Wfb = ∑ ∑ ∑ 𝑠𝑥𝑘
𝛼 𝑓𝑒𝑘

𝛽|𝑦𝑖𝑒 − 𝑐𝑘𝑒|2𝑚
𝑒=1𝑖∈1

𝑘
𝑘=1         (10) 

     Here, U represents the universal function , K(x,y) shows the factor of features, 𝑠𝑥𝑘 is the 

membership function showing the fuzzy cluster, Wfb is the fuzzy weighted k-means , 𝑦𝑖𝑒 and 𝑐𝑘𝑒 

represents factor and unsupervised weighted mean , 𝑓𝑒𝑘 shows the weight of feature e for cluster k. 

𝑚𝑥𝑦 =
∑ 𝑢𝑥𝑦

𝑚  𝑛
𝑥=1 ∑ 𝑠𝑥𝑘

𝑚  𝑛
𝑥=1 ∑ 𝑠𝑥𝑘

𝑚  𝑛
𝑥=1

∑ 𝑠𝑥𝑘
𝑚  𝑛

𝑦=1 ∑ 𝑠𝑥𝑘
𝑚  𝑛

𝑦=1

 
 

(11) 

𝑓𝑥𝑦 =
(||𝑔𝑦 − 𝑚𝑥𝑦||

2

− 𝑛𝑥 ||𝑚𝑥𝑦 − 𝑔||
2

)
−1

𝑚−1

∑ (||𝑥𝑦 − 𝑚𝑥𝑦||
2

− 𝑛𝑥 ||𝑚𝑥𝑦 − 𝑔||
2

)
−1

𝑚−1 𝑐
𝑘

 

 

(12) 

     In equation (12), 𝑚𝑥𝑦 shows the weighted mean , 𝑔𝑦 is the sample of data belonging to y, 𝑛𝑥 is 

the count of data points reside in x,  g is the relative distance from the cluster, m is the fuzzifier 

function.  

Algorithm 2:  Fuzzy weighted k-means embedding LDA   

Term used: 𝑘𝑥𝑦 : elements of features, K: Clusters  

Input: Extracted Features from GLCM and GLDM technique. 

Output:  Selected feature for next processing.  

1. Initialization of the membership matrix using Eq.8. 

2. Generate the random values from [0, 1] such that the elements 𝑘𝑥𝑦 of K satisfies using Eq.9. 

3. while (the average of the square differences between the membership matrix): 

4.             Calculate the fuzzy weighted k-means embedding LDA using Eq.10 an Eq.11. 

5.             Update the membership matrix with Eq.12. 
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6. end while 

7. Selected Feature values extracted. 

In Algorithm-2, the fuzzy weighted k-means embedding LDA is applied on acquired statistical 

features for selecting the finest features to obtain precise accuracy. The membership matrix is 

initialized (Step-1), and the random value [0, 1] is determined (Step-2). A while loop is executed 

from step 3-7, considering the average of the square differences between the membership matrixes. 

Within the while loop, two tasks are accomplished: (a) fuzzy weighted k-means  embedding LDA 

is calculated through Eq. (10) and Eq. (11) ; and (b) membership matrix  (membership function 𝑓𝑥𝑦)  

is updated using  Eq.  (12). Finally, the  related features are extracted at step-7, and a further 

classification technique is implemented. 

3.5   Artificial Neural Network 

ANN classify the tumored and non-tumored brain MRI images [65-67]. ANN consists of 

computational multilayer interconnected neurons stimulated from biological neural networks to 

predict outputs based on specific inputs for training the network. The backpropagation neural 

network approach is a computationally effective method for updating the weights , therefore the 

backpropogation architecture is used. The testing was conducted for identifying the best 

permutation and combination of parameters that determine the robustness. The parameters 

considered are as follows: (a) layer: [2, 3, 4, 5, 6]; (b) learning rate: [0.01, 0.1, 0.2, 0.4]; (c) batch 

size: [1, 2, 3]; (d) epochs: [10 , 20, 30, 35, 40, 45, 50, 60, 70, 80]; (e) activation function: [tanh, 

sigmoid, relu]; and loss function: [categorical_crossentropy, mean squared error]. Parameters that 

gave the best results for training the ANN are summarized in Table 3. 

Table 3. Parameters and values used in the ANN. 

Parameters Values 

Number of Layer 3 

learning rate 0.1 

activation function tanh, sigmoid 

Optimizer Adam 

Batch size 2 

Epochs 50 

Loss Categorical Crossentropy 

Validation split 0.8/0.2 

Training and Testing set 7:3 

4.  Simulation Results, Discussion and Analysis 

Extensive computer simulations have been performed to evaluate the performance of the 

proposed algorithm. In the subsections, we present the following: (a) performance comparison on 

CEC2017 benchmark functions; (b) performance analysis of brain MRI datasets and simulation 

results are discussed; (c) statistical analysis; (d) discussion on quality matrices; (e) comparison with 
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state-of-the-art algorithms; (f) compartive results and analysis; and (g) discussion of results. 

4.1 Performance Analysis on CEC 2017 Benchmark Functions 

The proposed algorithm LXLOA is tested on CEC 2017 standard benchmark functions problem 

[68]. The benchmark functions belongs to categories namely, unimodal function (F1-F3), 

multimodal function (F4-F10), hybrid function (F11-F19), composition function (F20-F29). The 

mean and best fitness values are computed for showing the effectiveness of proposed algorithm 

LXLOA against the state-of-the-art algorithms as shown in Table 4.  The considered dimensions, 

number of iterations over 20 runs and population size are 50, 1000, 200 respectively. Furthermore, 

observations state that the proposed LXLOA outperforms and provides a significant solution when 

compared with other metaheuristic techniques. 

Table 4. Comparative result analysis on benchmark function suite.  

Function Fitness DE WOA LION PSO ACSA LXLOA 

f1 Best 1.93E-07 28.22753 2341.614 0.000252 0.564802 5.610218 

Mean 0.005194 15512352 2341.614 227.4466 310474.5 1.416315 

f2 Best 5.64E-09 67881.22 153623 1.96E-05 1357.624 1.99E-12 

Mean 1.68E-06 85411.61 183023 0.679315 1708.912 0.068775 

f3 Best 2.61E-07 7.63E-07 3.78E-18 5.17E-24 1.53E-08 8.87E-07 

Mean 9.06E-05 6963.623 0.061275 0.00144 139.2739 1.49E-06 

f4 Best 3.13E-06 5.5E-07 5.5E-07 0.000208 0.000208 1.49E-17 

Mean 0.000209 1353.203 2712.742 0.000913 27.06498 7.516757 

f5 Best 4.19E-12 0.005024 0.478917 0.000932 0.001033 7.20E-10 

Mean 1.52E-06 0.131142 0.472357 0.009354 0.011977 1.65E-09 

f6 Best 1637.905 0.480504 139.496 4.875304 4.884914 1.60E-10 

Mean 1252.855 950.2088 157.136 9.958886 28.96306 0.631596 

f7 Best 4.67E-05 0.004733 155.0405 5.850404 5.850499 0.429481 

Mean 0.000313 0.062793 139675.8 0.9702 0.971456 1.424421 

f8 Best 5.07E-08 8.39E-11 9.72E-16 1.47E-32 1.68E-12 5.19E-09 

Mean 0.750191 0.209619 2.9E-15 0.000127 0.004319 5.41E-08 

f9 Best 5.18E-13 10447.23 9693.229 4067.368 4276.313 8.22E-15 

Mean 6.27E-09 10456.99 9791.229 4067.481 4276.621 2.44E-11 

f10 Best 0.388201 28.35728 9899686 3.516534 4.08368 4.03E-05 

Mean 0.388252 0.016425 1762870 158.5792 158.5795 0.750191 

f11 Best 246.3645 5362.274 3783.848 1224.119 1331.365 5.33E-03 

Mean 246.8728 5922.022 37643.9 1224.408 1342.849 0.024381 

f12 Best 0.75255 8.522189 1962.135 2.63669 2.807134 9.48E-07 

Mean 0.695429 5.77E+08 2807.875 70.28371 11539415 0.158039 

f13 Best 26.03428 4122.495 3812.395 870.8856 953.3355 7.17E-12 

Mean 28.58031 5391.492 91571.53 873.3859 981.2158 7.049893 

f14 Best 0.492069 5682.04 571.0485 1.759394 115.4002 0.016531 

Mean 2.975573 4367.468 637.6884 30.75647 118.1058 0.071366 

f15 Best 0.180927 6164.711 6200.941 2457.498 2580.792 1.557302 

Mean 1.096115 3.15E+08 67382.34 2491.902 6305865 0.934786 
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f16 Best 86.55439 3706.789 3833.025 1231.729 1305.865 2.65E-07 

Mean 86.6231 2.04E+08 6.1E+10 1331.846 4080172 0.00321 

f17 Best 0.09995 2463.619 2565.265 4108.524 4157.796 4.05E-10 

Mean 0.755612 2959.807 32021.85 4115.572 4174.768 0.003185 

f18 Best 0.285803 4935.755 5737.945 1645.049 1743.764 1.576064 

Mean 0.230461 8.37E+08 58653.45 1689.196 16744092 7.73E-07 

f19 Best 84.58424 2472.14 2587.482 960.9384 1010.381 1.297055 

Mean 84.587 1.07E+09 28226.82 879.5446 21367903 1.055225 

f20 Best 294.098 2.37E-05 1.55E-05 1.19E-05 1.23E-05 1.88E-06 

Mean 294.139 2.9E-05 1.91E-05 0.352457 0.352457 1.35E-06 

f21 Best 417.2918 2512.619 2538.59 872.9317 923.1841 2.20E-13 

Mean 417.2919 3348.184 44399.19 874.096 941.0597 1.166838 

f22 Best 717.3037 3051.619 3187.129 1412.285 1473.317 0.021739 

Mean 717.3881 3694.798 34993.43 1413.852 1487.748 0.007397 

f23 Best 980.6591 2.76E-05 0.000233 15.42417 15.42417 1.39E-06 

Mean 981.4909 0.000559 0.000586 18.3773 18.37731 5.31E-06 

f24 Best 1068.116 4.41E-06 2.24E-05 384.4512 384.4512 1.88E-07 

Mean 1068.439 8.21E-06 2.83E-05 892.0024 892.0024 1.98E-07 

f25 Best 0.003788 1.03E-05 1.64E-06 0.424411 0.424411 1.48E-07 

Mean 0.005067 9.29E-05 1.77E-06 0.002573 0.002574 2.5E-07 

f26 Best 1471.335 3.25E-05 8.13E-06 14.21998 14.21998 1.81E-08 

Mean 1471.942 1.13E-05 8.91E-06 129.9557 129.9557 1.89E-08 

f27 Best 294.1373 3.45E-08 1.08E-07 5.64E-11 7.46E-10 2.21E-15 

Mean 295.2326 4.13E-08 4.44E-07 1.99E-11 8.45E-10 1.89E-14 

f28 Best 2.81E-08 2.17E+08 2.33E-06 3.38E-08 4344904 4.78E-12 

Mean 2.94E-08 8.59E-08 1.45E-07 3.38E-08 3.56E-08 3.68E-12 

f29 Best 1912.455 6.3E+08 3.18E+10 4.69E+10 4.69E+10 480.505 

 

Mean 

1853.655 4.7E+10 3.22E+10 5647528 9.46E+08 395.05 

4.2 Performance Analysis on Brain MRI Datasets 

Brain MRI data from two different databases  were used during the simulations. 400 sample 

images were considered for simulations. Algorithm-1 and 2 were implemented respectively to 

perform: (a) to examine skull stripping and segmentation; and (b) selection of the prominent 

features. ANN was implemented to process the sample data. Here, sample data is divided into a 7:3 

ratio for testing and training purpose. A sample image of IBSR tumored is depicted in Fig 3, while 

Fig. 4 represents a sample image of an MS-free dataset on non-tumored MRI. 

    
(a) (b) (c) (d) 
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(e) (f) (g) (h) 
Fig 3. Tumored brain MRI sample Images. (a) Normalization of brain MRI image; (b) Extended Weiner filtering; (c) 

Segmented image using LXLOA (d) – (e) Mathematical morphological operations; (f) Extracted skull stripped image; 

(g) Anisotropic diffusion; and (h) Feature extraction. 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Fig 4. Non-tumored Brain MRI sample Images. (a) Normalization of brain MRI image; (b) Extended weiner filtering; (c) 

Segmented image using LXLOA (d) – (e) Mathematical morphological operations; (f) Extracted skull stripped image 

(g) Anisotropic diffusion; and (h) Feature extraction. 

      Table 5 (a), 5 (b), 5(c) presents the extracted 18 features obtained by implementing from co- 

occurrence matrices to analyze the spatial relationship and determine the statistical texture features. 

18 features such as cluster prominence, auto correlation, correlation, contrast, cluster shade, 

homogeneity, entropy, energy, dissimilarity, sum entropy, sum average, maximum probability, sum 

of square variance, inverse difference, Imc 2 (information measure of correlation 2), Imc 1, 

difference variance, and difference entropy are extracted. 

Table 5 (a). Features extracted sample IBSR data the IBSR and MS free sample images using GLCM Method 

Sl. No Image Cluster Prominence Auto Correlation Correlation Contrast Cluster Shade Homogeneity 

1 1.2454 1.4426 0.015595 0.9913 0.00218 -0.9646 

2 1.3198 1.6215 0.02815 0.9867 0.00437 -0.9467 

3 1.2777 1.514 0.04639 0.9722 0.00795 -0.9041 

4 1.2896 1.5231 0.035416 0.9801 0.00575 -0.9271 
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5 1.2889 1.5027 0.018384 0.9905 0.00265 -0.9611 

6 1.3228 1.6481 0.023017 0.9898 0.00345 -0.9572 

7 1.31 1.6836 0.040468 0.9809 0.00675 -0.927 

8 1.2992 1.7636 0.021899 0.9914 0.00325 -0.9622 

9 1.3094 1.7211 0.027616 0.9883 0.00428 -0.9512 

10 1.3078 1.7348 0.023256 0.9906 0.00349 -0.9592 

11 1.3111 1.7232 0.023097 0.9905 0.00346 -0.9592 

12 1.3208 1.6873 0.0188 0.9923 0.00272 -0.966 

13 1.3164 1.7116 0.018051 0.9928 0.00259 -0.9679 

14 1.3162 1.6907 0.026926 0.9883 0.00415 -0.9515 

15 1.3194 1.6633 0.027692 0.9876 0.00429 -0.9492 

16 1.3137 1.6867 0.032938 0.9851 0.00527 -0.9406 

17 1.3143 1.7101 0.023017 0.9905 0.00345 -0.959 

18 1.3123 1.6304 0.041724 0.979 0.00700 -0.9219 

19 1.162 1.3847 0.043454 0.9674 0.00735 -0.8949 

20 1.3148 1.633 0.037642 0.9815 0.00618 -0.9296 

 

Table 5 (b). Feature extraction of sample IBSR data the IBSR and MS free sample images using GLCM Method 

Entropy Energy Dissimilarity Sum Entropy Sum Average Maximum Probability 

0.9989 0.4339 0.74576 0.126 0.4324 2.2958 

0.9978 0.5384 0.66628 0.1647 0.5354 2.4158 

0.996 0.5042 0.7064 0.1429 0.4987 2.3453 

0.9971 0.4981 0.70511 0.1446 0.4941 2.3507 

0.9987 0.4703 0.71781 0.1398 0.4685 2.336 

0.9983 0.545 0.65717 0.1697 0.5426 2.4332 

0.9966 0.5774 0.64018 0.1766 0.5727 2.458 

0.9984 0.5893 0.61674 0.19 0.587 2.5101 

0.9979 0.5793 0.62982 0.183 0.5763 2.4822 

0.9983 0.5801 0.62603 0.1852 0.5777 2.4911 

0.9983 0.5755 0.63005 0.1833 0.5731 2.4833 

0.9986 0.5571 0.64356 0.1769 0.5552 2.4591 

0.9987 0.566 0.63508 0.1812 0.5642 2.4753 

0.9979 0.5666 0.64067 0.1776 0.5637 2.4618 

0.9979 0.5561 0.65051 0.1726 0.5531 2.4436 

0.9974 0.571 0.64079 0.177 0.5674 2.4596 

0.9983 0.5704 0.63459 0.181 0.568 2.4746 

0.9965 0.556 0.65975 0.1667 0.5511 2.4226 

0.9963 0.4259 0.76729 0.1127 0.4208 2.2589 

0.9969 0.553 0.65968 0.1671 0.5488 2.4241 

Table 5 (c). Feature extraction of sample IBSR data and MS free sample images using GLCM Method. 

Sum of Square Variance Inverse Difference Imc 2 Imc 1 Difference Variance Difference Entropy 

0.50192 0.851 0.9989 0.7446 0.002189 0.0021846 

0.65435 0.7899 0.9978 0.7875 0.004379 0.0043596 

0.56345 0.82335 0.996 0.7515 0.007958 0.0078942 

0.57259 0.8218 0.9971 0.7597 0.005754 0.005721 
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0.55643 0.83068 0.9987 0.7623 0.002653 0.0026455 

0.67534 0.78165 0.9983 0.7952 0.003453 0.0034406 

0.69949 0.76762 0.9966 0.7945 0.006751 0.006705 

0.75677 0.74331 0.9984 0.8153 0.003256 0.0032454 

0.72756 0.75678 0.9979 0.8064 0.004281 0.0042622 

0.73748 0.75273 0.9983 0.8104 0.003495 0.0034824 

0.72953 0.75663 0.9983 0.8086 0.003467 0.0034545 

0.70473 0.76908 0.9986 0.8043 0.002723 0.0027153 

0.72207 0.76106 0.9987 0.8087 0.002596 0.0025896 

0.70622 0.76701 0.9979 0.8015 0.004154 0.004137 

0.68613 0.77605 0.9979 0.7961 0.004295 0.0042761 

0.70265 0.76758 0.9974 0.7983 0.005277 0.0052491 

0.72048 0.76099 0.9983 0.8065 0.003453 0.0034406 

0.6596 0.7852 0.9965 0.7833 0.007003 0.0069542 

0.44347 0.86685 0.9963 0.7059 0.007354 0.0073 

0.66214 0.78486 0.9969 0.7857 0.006189 0.0061509 

On the other hand, Table 6 shows the extracted 5 features using grey level difference matrix for 

statistical measures for probability density functions. The 5 features are as follows: grid- weighted 

sum, diagonal-weighted sum, vertical-weighted sum, horizontal-weighted sum, and cluster 

prominence. Table 7 presents an optimized feature subset. It presents min, max and average values 

of the IBSR and MS free sample images. 

Table 6. Feature extraction of sample IBSR data the IBSR and MS free sample images using GLDM Method. 

S. N 

Image 

Grid-Weighted 

Sum 

Diagonal-Weighted 

Sum 

Vertical-Weighted 

Sum 

Horizontal-Weighted 

Sum 

Cluster 

Prominence 

1 142000 143000 142000 142000 0.70536 

2 142000 142000 142000 142000 0.76196 

3 141000 142000 141000 142000 0.73254 

4 142000 142000 142000 142000 0.73989 

5 142000 143000 142000 142000 0.7372 

6 142000 142000 142000 142000 0.76354 

7 141000 142000 141000 142000 0.75458 

8 142000 142000 142000 142000 0.73985 

9 142000 142000 142000 142000 0.75131 

10 142000 142000 142000 142000 0.7489 

11 142000 142000 142000 142000 0.75214 

12 142000 143000 142000 142000 0.76087 

13 142000 143000 142000 142000 0.75641 

14 142000 142000 142000 142000 0.7579 

15 142000 142000 142000 142000 0.76113 

16 142000 142000 142000 142000 0.75663 

17 142000 142000 142000 142000 0.7553 

18 142000 142000 141000 142000 0.75767 

19 141000 142000 141000 142000 0.65183 

20 142000 142000 142000 142000 0.7591 
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Table 7. Optimized feature subset showing min, max and average value of the IBSR and MS free sample images 
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4.3 Statistical Analysis 

Rigorous statistical analysis was performed to determine the statistical performance significance 

at 95% level of the confidence interval. Equation (13) presents the hypotheses (H0: null hypothesis 
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and HA: alternative hypothesis) used to perform the statistical tests. 

H0 : 
DE WOA LION LXLOA PSO ACSA     = = = = =  

(13) 
HA : 

DE WOA LION LXLOA PSO ACSA           

To perform the statistical tests mean and best values of the benchmark functions are used. 

Sample size 30 has been drawn from each algorithm. We have performed the Krushkal-Wallis test 

to verify the hypothesis given in Equation (13). 

Table 8. Independent samples Kruskal-Wallis test. 

S.N. Null Hypothesis Test Sig. Decision 

1. The distribution of Best_Fitness is the same 

across categories of algorithms  

Independent-samples 

Kruskal-Wallis test 

0.000 Reject the null 

hypothesis. 

Asymptotic significances are displayed. The significance level is 0.05. 

Table 8 presents the hypothesis test summary of independent samples Kruskal-Wallis test with 

respect to the best fitness value for across categories of algorithms. We can see p-value is less than 

0.05. Hence, H0 is rejected. It means that one or the other algorithms have shown different 

performance. We have conducted posthoc test to determine which algorithms have shown different 

performance.  

 

Fig. 5. Pairwise comparison of algorithms.   

      Figure 5 shows the pairwise comparison of algorithms. It can be noted that each node represents 

the sample average rank of algorithms. The sample average of the proposed LXLOA (= 43.90) is 

better than the other algorithms. Total 15 pairs have been formed for pairwise comparison of 
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algorithms. The algorithm pairs LXLOA-PSO, LXLOA-ACSA, LXLOA-WOA and LXLOA-

LION showed significantly better, performance mainly because obtained p-value is less than 0.05. 

The combinations have not shown significantly better results. This result concludes that LXLOA 

algorithm is more stable and showing significantly better results than PSO, ACSA, WOA and LION 

algorithms. In addition, we can see the performance of algorithm’s pair LXLOA-DE is not 

significantly better but the proposed LXLOA showed good results over DE. The performance 

significance is represented by yellow line in Figure 5 connecting pair of algorithms.  

     Pairwise tests have been conducted and results have been reported in Table 9 and 10 respectively 

for Wilcoxon test on fitness values and Kruskal-Wallis test on mean and best fitness values. Five 

pairs have been created: LXLOA– ACSA, LXLOA – DE, LXLOA – LOA, LXLOA – PSO, and 

LXLOA – WOA. It can be seen that the p-value of each pair is less than 0.05. It indicates that the 

performance of the proposed LXLOA is statistically significant at a 95% level of significance. It 

can be noted that the proposed LXLOA showed better performance by achieving the higher value 

of standard deviation as compared to other algorithms. Therefore, based on this observation , 

LXLOA is more stable and robust. 

Table 9 (a): Wilcoxon test on best fitness values. 

Algorithm (A) Algorithm (B) SD p-value 

 

LXLOA 

ASCA 16 0 

DE 64 0 

LOA 5 0 

PSO 21 0 

WOA 15 0 

SD: Standard deviation  

Table 9 (b): Wilcoxon test on mean fitness values. 

Algorithm (A) Algorithm (B) SD p-value 

 

LXLOA 

ASCA 7 0 

DE 58 0 

LOA 1 0 

PSO 18 0 

WOA 21 0 

SD: Standard deviation  

Table 10 (a): Kruskal-Wallis test on best fitness values. 

Algorithm (A) Algorithm (B) SD p-value 

 

LXLOA 

ASCA 23 0 

DE 11 0 

LOA 17 0 

PSO 16 0 

WOA 18 0 

SD: Standard deviation  
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Table 10 (b): Kruskal-Wall Test on mean fitness values. 

Algorithm (A) Algorithm (B) SD p-value 

 

LXLOA 

ASCA 21 0 

DE 9 0 

LOA 13 0 

PSO 15 0 

WOA 13 0 

SD: Standard deviation  

4.4 Quality Metrics 

Three quality metrics: (a) fitness values; (b) PSNR value; and (c) SSIM values were chosen for 

evaluating the performance. Fitness values to assess the optimal threshold value of the image 

quantitatively. The evaluation function is used for determining the optimal fitness score of the 

image. PSNR [69] quantifies the standard of reconstructed segmented image quality using the 

minimized value of root mean squared error as shown in Eq. (14) and Eq. (15), respectively. A 

higher value of PSNR indicates that an improved reconstructed image is obtained with better 

quality. 

PSNR = 20(
255

𝑅𝑀𝑆𝐸
)     (14) 

RMSE =√∑ ∑
(𝐵(𝑥,𝑦)−𝐵′(𝑥,𝑦))2

𝑃.𝑄

𝑄
𝑦=1

𝑝
𝑥=1                            

(15) 

      B is the original image, and B’ is the segmented image with a size P*Q. 

SSIM [70] determines the similarity between two reconstructed and original images. The 

mathematical formulation is represented in Eq. (16). A higher value of SSIM determines the more 

structural similarity and edge information of the segmented image. 

SSIM (B, B’) = (2µ𝐵 + 𝑛1) + 2(2𝜎𝐵𝜎𝐵′ + 𝑛2)/ ( µ𝐵
2 + µ𝐵′

2 +𝑛1) (𝜎𝐵
2 + 𝜎𝐵′

2 +𝑛2)               (16) 

Here, µ𝐵(µ𝐵′ ) shows the mean intensity and 𝜎𝐵 (𝜎𝐵′) represents the standard deviation of brain 

MRI image B (B’).  The constants values of 𝑛1 and 𝑛2 taken are 6.5025 and 58.5225. 

4.5 Comparative Results and Analysis 

The comparative result computation of different metrics measures are reported in this section. 

Table 11 shows the average fitness value of the segmented image. Table 12 shows the average PSNR 

values for measuring the image quality. Table 13 presents the comparative analysis of average SSIM 

values estimating the structural similarity depending on the reconstructed image intensities. Each 

sample image shows the average value of 20 images. The observation states that LXLOA provides 

higher PSNR and SSIM values which gives better image quality. Table 14 computation provides 

the jaccard coefficient and dice similarity values for validation purpose. The quantitative assessment 
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performance metrics consider the similarity of the reconstructed outcome image with a 

corresponding ground image. 

Table 11. Comparative analysis of average fitness values on brain MRI sample images using different metaheuristics 

techniques 

Sample Image DE WOA PSO LOA ACSA LXLOA 

Image 1 3.31 1.936 3.6975 4.2783 4.285695 4.332092 

Image 2 1.127 3.6716 4.6968 5.79828 5.807674 5.047576 

Image 3 5.093 6.242 5.7309 7.6035 7.614962 8.376435 

Image 4 1.0882 4.2876 4.6976 5.98388 5.993275 8.425117 

Image 5 1.2737 4.2864 4.7112 5.99712 6.006542 13.52087 

Image 6 0.34316 4.287 4.7103 5.9964 6.005821 5.857293 

Image 7 0.20226 4.288 4.7055 5.9919 6.001311 8.299372 

Image 8 1.0333 4.3026 4.6991 5.98988 5.999278 9.316846 

Image 9 0.39789 4.2911 4.7175 6.00483 6.014265 8.572981 

Image 10 0.34316 4.287 4.7103 5.9964 6.005821 5.857293 

Image 11 0.20226 4.288 4.7055 5.9919 6.001311 8.299372 

Image 12 0.33545 4.2871 4.6995 5.98563 5.995029 7.578636 

Image 13 2.2837 4.9864 4.6151 6.11102 6.12025 6.286947 

Image 14 1.36116 4.2987 4.6103 5.89991 5.909131 5.958293 

Image 15 1.20226 4.2955 4.9455 6.23415 6.244041 7.794372 

Image 16 1.4333 4.8926 4.3191 5.78688 5.795518 8.751246 

Image 17 0.46189 4.2911 4.875 6.16233 6.17208 8.724481 

Image 18 0.50116 4.897 4.6103 6.0794 6.088621 5.857293 

Image 19 0.69746 4.848 4.8475 6.3019 6.311595 7.289372 

Image 20 0.71746 3.884 3.9465 5.1117 5.119593 5.273513 

Table 12. Comparative analysis with respect to average PSNR values on brain MRI sample images. 

Sample Image DE WOA PSO LOA ACSA LXLOA 

Image 1 15.265 20.6 18.998 19.0186 19.0566 20.89488 

Image 2 15.47 20.89 20.82 20.84089 20.88253 23.06032 

Image 3 15.66 21.275 21.2 21.22128 21.26368 23.2098 

Image 4 15.843 20.912 21 21.02091 21.06291 23.13809 

Image 5 16.075 20.788 20.788 20.80879 20.85036 20.99588 

Image 6 16.466 21.109 21.109 21.13011 21.17233 21.32009 

Image 7 16.964 20.599 20.599 20.6196 20.6608 20.80499 

Image 8 17.539 18.23 18.306 18.32423 18.36084 21.57966 

Image 9 23.15 24.546 23.51 23.53455 23.58157 29.84146 

Image 10 22.809 22.909 23.009 23.03191 23.07793 24.22788 

Image 11 21.8 22.898 22.762 22.7849 22.83042 25.14698 

Image 12 22.3 22.2 20.244 20.2662 20.30669 25.49644 

Image 13 17.075 20.888 20.988 21.00889 21.05086 21.90488 

Image 14 16.886 20.235 20.219 20.23924 20.27967 21.41099 

Image 15 15.964 21.689 21.698 21.71969 21.76309 22.81489 

Image 16 17.639 18.353 18.386 18.40435 18.44113 19.50916 

Image 17 25.15 26.546 26.51 26.53655 26.58957 30.18789 

Image 18 22.829 22.929 23.315 23.33793 23.38456 24.15718 

Image 19 21.9 22.998 22.962 22.985 23.03092 24.94498 

Image 20 15.466 20.119 20.823 20.84312 20.88477 21.58269 
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Table 13. Comparative analysis with respect to average SSIM values on brain MRI sample images. 

Sample Image DE WOA PSO LOA ACSA LXLOA 

Image 1 0.33822 0.44141 0.44111 0.441551 0.442434 0.448612 

Image 2 0.33717 0.44757 0.44735 0.447798 0.448692 0.453844 

Image 3 0.33173 0.44943 0.4484 0.448849 0.449746 0.455348 

Image 4 0.33054 0.45715 0.45261 0.453067 0.453972 0.463196 

Image 5 0.32771 0.46507 0.46619 0.466655 0.467587 0.472569 

Image 6 0.43511 0.47034 0.47665 0.47712 0.478074 0.490911 

Image 7 0.357 0.47654 0.46709 0.467567 0.468501 0.572791 

Image 8 0.4772 0.48483 0.50017 0.500655 0.501655 0.707172 

Image 9 0.40819 0.48708 0.41066 0.411147 0.411968 0.726079 

Image 10 0.41558 0.48748 0.41926 0.419748 0.420586 0.726412 

Image 11 0.41733 0.69748 0.42101 0.421708 0.42255 0.73422 

Image 12 0.41292 0.69412 0.63496 0.635654 0.636924 0.739482 

Image 13 0.4152 0.49708 0.4906 0.491097 0.492078 0.75345 

Image 14 0.4156 0.48758 0.41896 0.419448 0.420286 0.664782 

Image 15 0.45143 0.74856 0.5101 0.510849 0.511869 0.777044 

Image 16 0.5192 0.65693 0.6996 0.700257 0.701656 0.840482 

Image 17 0.45819 0.46708 0.46066 0.461127 0.462048 0.736179 

Image 18 0.4658 0.4748 0.4926 0.493075 0.49406 0.719322 

Image 19 0.4156 0.6986 0.421 0.421699 0.422541 0.73326 

Image 20 0.43717 0.46557 0.46535 0.465816 0.466746 0.473034 

Table 14. Shows the average Jaccard Coefficient and Dice similarity values for IBSR and MS free data images. 
Sample Image Dice Coefficient Jaccard Coefficient 

Image 1 0.99339 0.98686 

Image 2 0.99182 0.98378 

Image 3 0.99236 0.98483 

Image 4 0.99233 0.98477 

Image 5 0.99251 0.98512 

Image 6 0.99271 0.98553 

Image 7 0.9937 0.98749 

Image 8 0.99154 0.98323 

Image 9 0.99191 0.98395 

Image 10 0.99206 0.98424 

Image 11 0.99235 0.98482 

Image 12 0.99092 0.98199 

Image 13 0.9985 0.98414 

Image 14 0.99568 0.982 

Image 15 0.9964 0.99 

Image 16 0.9959 0.98986 

Image 17 0.99282 0.98578 

Image 18 0.992436 0.984583 

Image 19 0.99235 0.98677 

Image 20 0.99451 0.98612 
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Table 15: Classification of result with respect to selected features for determining tumored and non-tumored MRI. 

Parameters SVM ANN 

Sensitivity 79.2 85.8 

Specificity 86.625 90 

Precision 91.38461 91.92857 

Accuracy 92.0898 97.3269 

Table 16: Comparison of efficiency with respect to time taken by different meta-heuristic technique. 

Algorithm DE WOA PSO LOA ACSA LXLOA 

Average time taken in seconds 200.646 186.3541 195.6152 188.568 185.648 181.4101 

 

Table 15 depicts the comparative analysis of classification methods (SVM and ANN) on the 

proposed technique's selected features (Algorithm- 2). Results reveal that the ANN outperforms the 

SVM. ANN gives (a) accuracy (97.37%), (b) sensitivity (85.8%), (c) specificity (90%) and (d) 

precision (91.92%).  

The computational time of the algorithms is presented in Table 16. It can be seen that time taken 

by the proposed LXLOA (181.4101) is lesser than the other meta-heuristic algorithms. This result 

indicates that the LXLOA has a higher tendency of convergence to the global optimum. We noted 

that the convergence speed of the DE is worst because it took maximum computational time to 

reach to the global solution. So it can be concluded that the proposed LXLOA is a cost-effective 

computational method, and it can converge to a global optimum solution quickly. 

4.5 Discussion and Analysis 

Figure 2 presents the proposed methodology flow process to detect and predict brain tumor using 

MRI images. The consolidated steps of the proposed method are shown in Algorithm-1. The 

simulated analysis at each successive stage for the skull stripping technique on IBSR and MS free 

dataset is shown in Fig 3 and Fig 4, respectively. The extracted texture and statistical feature are 

depicted in Table 5(a), 5(b), 5(c) and Table 6 respectively, and optimized features selected through 

Fuzzy weighted k-means embedding LDA (Algorithm-2) are shown in Table 7. The visualization 

analysis of average fitness function, PSNR and SSIM are depicted in Fig 6 (a), (b), (c) for 

comparative analysis of existing metaheuristics such as DE, WOA, PSO, LOA, ACSA and LXLOA. 

The observation shows the proposed algorithm is providing promising results compared to other 

methods. The validation of the proposed algorithm is attained by evaluating the similarity between 

the ground truth image and segmented image, as depicted in Fig 7. Moreover, Fig 8 presents that 

the artificial neural network gives better performance measures on a comparative study with support 

vector machine 
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(a) 

 

 

(b) 
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(c) 

Fig 6. Representation of average results obtained on comparative analysis using different metaheuristics technique. (a) 

average fitness value; (b) average PSNR; and (c) average SSIM. 

 

Fig. 7. Validation using dice coefficient and jaccard coefficient. 
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Fig 8. Performance measures with reference to algorithm. 

5. Conclusions 

In this paper, an approach for the intelligent computer-aided mechanism has been developed to 

diagnose and detect tumor and non-tumored brain MRI images to take preventive measures at an 

early stage. Extended weiner filtering technique is proposed for improving the quality of image 

dataset needed to be analysed. Further, LXLOA was proposed to improve efficiency and provide 

the optimal threshold value for segmentation of the tumor region. The optimized set of features 

were extracted from segmented using effective fuzzy weighted k-means embedding LDA algorithm 

and, it helped in the decision-making process. Extensive simulations were conducted to determine 

the effectiveness of the proposed algorithm. To present a fair outcome, results were validated using 

different parameters. LXLOA is tested on 29 standard functions and compared with different 

metaheuristics algorithms such as DE, WOA, PSO, LOA, ACSA and LXLOA. The performance 

was measured using three quality metrics (a) fitness, (b) PSNR, (c) SSIM and validated using 

different coefficient parameters. The observation determines that LXLOA outperforms the existing 

state of the art and generates better computational efficiency. The best feature subset was selected 

using fuzzy k-means embedding LDA algorithm giving improved classification computation. 

Results revealed that LXLOA showed promising results by attaining accuracy of 97%. Thus, the 

proposed algorithm is providing promising experimental analysis and outcomes. The immediate 
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future extension involves the usage of 3- dimensional (3-D) medical data for clinical research by 

incorporating the improved metaheuristics algorithms. 
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Abbreviation and description 

Abbreviation   Description 

EWF : Extended Weiner Filter 

LXLOA : Laplacian Lion optimization algorithm 

WOA : Whale Optimization Algorithm 

APSO : Adaptive Particle Swarm Optimization 

DE : Differential Evolution 

LOA : Lion Optimization Algorithm 

ACSA : Adaptive Cuckoo Search Algorithm 

PSO : Particle Swarm Optimization 

GWO : Grey Wolf Optimization 

CSA : Cuckoo Search algorithm 

CSO : Cat Swarm Optimization 

CNN : Convolutional neural network 

IBSR : Brain segmentation repository 

MRI : Magnetic Resonance Imaging 

CT : Computed Tomography 

PSRN : Peak Signal-To-Noise Ratio 

SSIM : Structural Similarity Index Measure 

RMSE : Root Mean Square Error 

SVM : Support Vector Machine 

ANN : Artificial Neural Network 

LDA : Linear Discriminant Analysis 

FKM : Fuzzy Weighted K-Mean 

WHO : World Health Organization 

3-D : 3-Dimensional 

CT : Computed Tomography 

LB : Lower Bound 

UB : Upper Bound 

DIM : Dimension 

GLCM : Grey Level Co-Occurrence Matrices 

GLDM : Grey Level difference Matrix 

CEC : Congress on Evolutionary Computation 
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 𝐾(𝑥, 𝑦) : Filter 

U(d, h) : Fourier transform of PSF (point spread function) 

𝑃𝑠(𝑑, ℎ) : Power spectrum of the processed signal process 

𝑃𝑛(𝑑, ℎ) : Power spectrum of processed noise 

𝑆𝐼 : Dispersion index 

𝜎 : Standard deviation 

𝜇 : Mean 

EWF (x,y) : Extended wiener filter. 

 𝑀𝑓𝑖𝑛𝑎𝑙 : Fitness value 

𝛼 , 𝛽 : Random values ranging from 0 to 1 

𝑀𝑂𝑡𝑠𝑢 : Otsu’s function 

𝑀𝑇𝑠𝑎𝑙𝑙𝑖𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦  : Tsallis entropy 

𝑙𝑖 : Laplacian distributed random ``number 

𝑤 : Location 

𝑞 : scale parameter 

𝑢𝑖 , 𝑣𝑖  : Distributed random numbers having range [0, 1]. 

New_Cub𝑀 : Offspring (New cube) 

𝑥𝑚𝑎𝑙𝑒
𝑖  : Male in pride 

𝑥𝑓𝑒𝑚𝑎𝑙𝑒
𝑖  : Female in pride 

U : Universal function 

K(x,y) : Factor of features 

𝑠𝑥𝑘 : Membership function showing the fuzzy cluster 

Wfb : Fuzzy weighted k-means 

𝑦𝑖𝑒 : Factor 

𝑐𝑘𝑒 : Weighted mean 

𝑓𝑒𝑘 : Weight of feature e for cluster k. 

𝑚𝑥𝑦 : Weighted mean 

𝑔𝑦 : Sample of data belonging to y 

𝑛𝑥 : Count of data points reside in x 

g : Relative distance from the cluster 

m : Fuzzifier function 


