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A B S T R A C T   

Ultrasonic fatigue specimens require rigorous design. The entire machine and specimen setup must vibrate in 
resonance at high frequencies, with the desired mode shapes that produce the intended stresses. The connection 
between parts must be considered too as they should allow for the desired mode shape to vibrate in free-free 
conditions. Most published research uses an analytical method that works only for uniaxial ten-
sion–compression or pure torsion specimens. This limits the range of experiments. In this paper, a semi-analytical 
formulation that can model more complex ultrasonic specimen geometries for a variety of stress states is pro-
posed, namely multiaxial tension–torsion. Comparing numerical simulations with the analytical method show a 
good correlation between results. This work can help other researchers to design and conduct more varied and 
efficient ultrasonic fatigue experiments.   

1. Introduction 

Fatigue characterisation has become more complex and nuanced 
over the years. From uniaxial sinusoidal cyclic loading to complex cyclic 
loading, to multiaxial fatigue, to corrosion, to fretting, and to many 
other important variables, fatigue testing has reached a level of 
complexity that the 19th century pioneering work from Wohler could 
never anticipate. The goal of much of the fatigue research today is to 
describe and measure the fatigue behaviour of materials in a way that is 
repeatable and scalable. The results can then be used to validate models 
or to create and improve working engineering standards. 

Engineering standards for fatigue testing and characterisation, for 
example ISO12108:2018 and ASTM E647-23 for fatigue crack growth 
testing or ISO 12106:2017 and ASTM E606/E606M-21 for strain- 
controlled methods (among many other standards), define rigorous 
experimental practices. These standards specify the specimen’s geome-
try, the analytical calculations, and the experimental methodology that 
must be followed. One novel method under research, which only exist-
ing standard, WES 1112:2017, is from the Japan Welding Engineering 

Society [1,2], is the ultrasonic fatigue testing method. The first Ultra-
sonic Fatigue Testing (UFT) machine was designed by Mason in 1951 
[3]. This machine induced cyclic tension–compression at the ground- 
breaking 20 kHz frequency. Such high testing frequency allowed to 
speed up tests to the point that it became possible to study the Very High 
Cycle Fatigue (VHCF) regime, between 106 to 1010 cycles. 

The UFT method did not attract much attention from the scientific 
community at first. This was primarily related to the technological 
challenges of reliably controlling, measuring, and collecting all the 
necessary experimental data at such high frequencies. Today’s ad-
vances in computing power, measurement equipment and data 
acquisition capabilities, have enabled researchers to overcome many 
of the previous barriers in UFT. This resulted in a vast number of 
publications being presented in the last 10 to 20 years, new UFT 
machines being built, novel experimental methodologies being pre-
sented, and expanding the capability into a large variety of materials 
and stress profiles [4]. To the present-day, researchers have achieved 
tension–compression with and without mean stress [5–7], pure torsion 
with and without mean stress [8,9], bending with and without mean 
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stress [10,11], biaxial in-plane tension–compression (from equibiaxial 
to pure shear) [12,13], biaxial bending [14], and biaxial ten-
sion–torsion. Furthermore, such studies were demonstrated using 
conventional metals [15], additive manufactured metals [16], and/or 
composite materials [17,18]. There are many more published exam-
ples of the variety in UFT machine capabilities. 

Regarding uniaxial tension–compression and pure torsion ultra-
sonic specimens, a well-established analytical method has been vastly 
used [16]. For bending there are analytical models for ultrasonic 3- 
point bending fatigue as well. For any other loads or any consider-
able changes in the specimen’s geometry the analytical solution be-
comes impractical or even unfeasible. The Japanese standard WES 
1112:2017 [2] and the book from Bathias and Paul [19] describe the 
analytical method to design a specimen with resonance at the working 
frequency of the machine. The equation that relates the point of 
displacement measurement with the maximum induced stress is also 
derived. 

ptBased on the work from Arani and Rahaeifard [20], the present 
research proposes a fast semi-analytical approach for frequency, mode 
shape determination and stress calculations towards ultrasonic fatigue 
specimen modulation. In this approach, the displacement field is 
expanded using base functions which satisfy the essential boundary 
conditions. Utilising this method, the governing equation can be 
reduced to an eigenvalue algebraic problem which gives natural fre-
quencies, mode shapes and stress distribution throughout the spec-
imen axis. It gives good accuracy and fast responses for specimens 
with variable cross sections. 

This work aims to develop a method that can model complex 
axisymmetric or plane shapes uniaxial and multiaxial ultrasonic 
specimen geometries, more reliably and faster than numerical 
methods. The proposed semi-analytical solution, like the numerical 
and analytical counterparts, determines a geometry that matches the 
working frequency of the ultrasonic machine and provides the 
displacement to stress relation for calibration and control of the fa-
tigue experiment. The method was then transcribed in a MATLAB 
script that can determine any given specimen geometry’s longitudinal 
and torsional resonant frequencies and their associated mode shapes 
for demonstration of outcomes. 

2. Semi-analytical solution 

2.1. Modal analysis 

The free vibration governing equation of motion of a bar with vari-
able cross section can be written as: 

−
∂
∂x

(

α ∂u
∂x

)

+ β
∂2u
∂t2 = 0 (1) 

in which u denotes the longitudinal displacement or the torsion angle 
along the bar axial direction. Due to the variations in the cross section of 
the bar, quantities α and β are a function of the longitudinal (i.e. x) di-
rection. These parameters can be expressed as per equations (2) and (3) 
for longitudinal and torsional vibrations, respectively: 

α(x) = EA(x); β(x) = ρA(x) (2)  

α(x) = GJ(x); β(x) = ρJ(x) (3) 

where E is the Young’s modulus, G is the shear modulus, A is the 
cross sectional area, J is the polar moment of inertia of the cross section, 
and ρ is the material’s density. 

To solve equation (1), a semi-analytical approach is used. In this 
approach, the time response of the system is written as: 

u(x, t) =
∑p

i=1
ciηi(x)γi(t) (4) 

where ci are real constants,ηi(x) are ‘appropriate’ functions satisfying 

the essential boundary conditions and γi(t) are ‘appropriate’ functions 
satisfying the initial conditions. For a free-free bar, ηi(x) can be: 

ηi(x) = cos
(

iπx
L

)

, i = 1, 2, ..., p (5) 

Substituting equation (5) in the equation of motion, multiplying the 
outcome by ηj and integrating from x = 0 to x = L, yield a set of Ordi-
nary Differential Equations (ODEs) as follows: 

([M]γ̈ + [K]γ )c = 0 (6) 

The components of mass and stiffness matrices are given by: 

Mij =

∫ L

0
βηiηjdx (7)  

Kij =

∫ L

0
αη′

iη′
jdx (8) 

where the prime denotes derivatives with respect to x. Assuming 
harmonic responses for γ, results in the following eigenvalue problem: 
(
[K] − [M]ω2 )c = 0 (9) 

Non-trivial solutions of this equation give the natural frequencies 
(ω). Each natural frequency yields a response vector c based on which 
the mode shapes can be determined as follows: 

Γ =
∑p

i=1
ciηi (10)  

2.2. Stress analysis 

When only a specified mode (e.g. ith mode) of the bar is excited, the 
longitudinal and torsional deformations will only depend on the corre-
sponding mode shape, i.e.: 

u(x) = U0Γi(x)γi(t) = U0Γi(x)sin(ωit+ θ0) (11) 

Assuming the maximum displacement (or rotational angle) at the 
free ends equals to Umax gives the parameter U0 as: 

U0 =
Umax

Γi(0)
(12) 

Normal stresses for longitudinal vibration and shear stresses for 
torsional vibration can be obtained by applying Hooke’s Law linear 
elastic response resulting in equations (13) and (14). Strain is derived by 
the displacement amplitude U0 and the mode shape vector Γ. 

σx = E
∂u(x)

∂x
= EU0Γ′

i(x)γ(t) (13)  

τrx = Gr
∂u(x)

∂x
= GrU0Γ′

i(x)γ(t) (14) 

in which r in equation (14) is the radial distance from the rod’s 
longitudinal axis. U0 is the approximate (small rotations) axial 
displacement induced by the torsional rotation. The highest shear stress 
is therefore at the outer surface (at the radius) for every cross section. 

3. Ultrasonic specimen design and computation 

The analytical model described and proposed in this work was used 
to analyse ultrasonic uniaxial (tension–compression and pure torsion) 
and multiaxial tension–torsion specimens. 

The semi-analytical method proposed here was computed by 
MATLAB scripts created for this purpose. The scripts allow the analysis 
of any specimen geometry, whether new or already tested, and facil-
itate easy and quick dimensional or geometric changes to achieve a 
final 20 kHz working resonance. It is therefore possible to produce any 
specimen’s concept significantly faster than with Finite Element 
Analysis (FEA), using an iterative process, since the computational 

P.R. da Costa et al.                                                                                                                                                                                                                             



International Journal of Fatigue 176 (2023) 107887

3

method is simpler and less power demanding. This is especially useful 
and important regarding the design of complex multi-mode speci-
mens, as is the case of the tension–torsion specimens that are 
addressed in this paper. 

The assessment of the proposed analytical method performance 
starts with a uniaxial axisymmetric hourglass specimen, which analyt-
ical method is well-known. Next, a more complex multiaxial ten-
sion–torsion specimen is analysed. All geometries in this study were 
subjected to a modal frequency analysis using the Finite Element 
Analysis (FEA) Abaqus software with hexahedra quadratic elements. 
The outputs are resonant frequencies (eigenvalues) and mode shapes 
(eigenvectors). The mode shapes are expressed in unitary millimetre 
displacement ratios. Because ultrasonic fatigue experiments typically 
test linear materials in the elastic regime, the displacement-stress rela-
tion, which can be obtained from the computed deformed mode shape, is 
assumed to be linear. 

3.1. Tension-compression specimen 

The hourglass specimen’s geometry has been used in many previous 
ultrasonic fatigue testing research. Typical materials range from con-
ventional machined steel [15,21], to aluminium [22] to copper [23,24], 
and to additive manufactured aluminium, titanium, and other alloys 
[16,25–27]. The experimental methodology with an axisymmetric 
hourglass shaped specimen has also been widely validated. The design of 
the specimen can be done analytically using equations from the pub-
lished literature or by FEA. 

The analytical method also provides the required equations to 
determine the tension–compression stress amplitudes that are produced 
from the mode shape deformation, based on displacement measure-
ments conducted experimentally. In the particular case where the stress 
ratio is R = − 1, the displacement is typically measured at the free end of 
the specimen. Fig. 1 presents the specimen’s drawing with key general 
dimensions, a representation of the tension–compression setup (booster- 
horn-specimen) with the point of displacement measurement indicated 
(free end). The geometry for a specimen made from AISI P20 steel 
(density ρ = 7800kgm− 3, Young’s modulus E = 202GPa and Poisson’s 
ratio ν = 0.30), which was tested in this study, is also depicted with its 
physical dimensions. 

The Bathias analytical method has been developed considering that 
the unknown dimension to be determined in Fig. 1 (A) is L1, while di-
mensions L2, R1 and R2 are given. These preestablished dimensions L2, 
R1 and R2 can be set based on existing literature and standards for 
consistency and validation between different methods [1,2,15,16]. The 
analytical method determines L1 based on the material properties and a 
target value for the resonant frequency of the ultrasonic machine 
(generally ω = 20kHz). Given that the hourglass specimen has a hy-
perbolic curvature, the induced displacement and resulting normal 
stress (for a stress ratio R = − 1, i.e., no mean stress) can be determined 
from the following equations: 
⎧
⎪⎨

⎪⎩

U(x) = A0 • ζ(L1, L2)
sinh(ξx)
cosh(ψx)

, forx < L2

U(x) = A0sin(k(L − x) ), forL2 < x < L
(15)   

where E is the Young’s modulus, A0 is the axial displacement 
measured at the free end of the specimen as per Fig. 1.B, and k, ζ, ψ and ξ 
are variables that depend on geometrical dimensions and material 
properties. 

The specimen’s final geometry represented in Fig. 1.C was obtained 
using FEA. Due to the differences between the way FEA and analytical 
methods derive solutions, the results for the L1 dimension may be 
slightly different as well when using different methods. While the FEA 
model resulted in a 20.4 mm value for L1 for a 20 kHz approximate 
frequency, the Bathias analytical method resulted in 20.1 mm for the 
same dimension. The analytical method being proposed herewith 
resulted in an L1 value of 20.65 mm. It must not be forgotten that the 
method being proposed in this paper is more generalised (as it can be 
used for pure uniaxial tension–compression, pure torsion and multiaxial 
tension–torsion), hence it is expected that there are some discrepancies 
between the different methods. 

The distribution of the normalised1 displacements and stress ampli-
tudes along the length of the specimen and for all three methods are 
plotted in Fig. 2. 

A comparison of the resonant frequencies obtained by different 
methods was also performed. Table 1 shows all three L1 dimensions that 
allow obtaining frequencies closest to 20 kHz for each method2, being 
the L1 20.4 mm the final experimentally tested geometry. 

There are no significant differences between the three methods. Both 
the displacement and stress distributions in Fig. 2 show good agreement 
between the three methods, where the highest difference is 3 % only. 
The frequency is also in good agreement with a 1.5 % difference when 
the Bathias analytical method and the herewith proposed semi- 
analytical method are compared. 

The three methods were further compared to experimental mea-
surements. A strain gauge was attached at the centre of the specimen 
shown in Fig. 1.C. This is the fatigue testing region (i.e., where the 
maximum stress occurs). The experimental relationship between the 
displacement at the free end of the specimen and the stress amplitude at 
the centre of the specimen was compared with the one determined from 
the three methods discussed. Results were plotted in Fig. 3 for several 
different stress amplitudes. The stress amplitude that results from the 
three non-experimental methods is always higher than the experimental 
value that is when using a strain gauge. Even though the proposed 
method has the highest discrepancy, it always stays within an acceptable 
range of 2.6 %. 

3.2. Pure torsion specimen 

The first pure torsion ultrasonic testing method utilized two trans-
versely connected horns that enabled an axial displacement to be turned 
into an angular rotation. This ultrasonic fatigue concept was introduced 
by Marines et al. [28]. The same setup has since then been employed in 
other publications such as [9,29,30]. Later, Nikitin et al. [31] employed 
a torsional piezoelectric actuator that can directly excite the setup with 

⎧
⎪⎨

⎪⎩

σ(x) = E • A0 • ζ(L1, L2)

[
ξcosh(ξx) • cosh(ψx) − ψsinh(ξx) • sinh(ψx)

cosh2(ψx)

]

forx ≤ L2

σ(x) = E • k • A0sin(k(L − x) ), forL2 < x ≤ L
(16)   

1 Data was normalised to ensure a common scale was being used when 
comparing data and to eliminate any numerical discrepancies between the 
different methods being used.  

2 The dimensions for L1 that allow obtaining frequencies closest to 20 kHz for 
each method are underlined in tables 1 and 2. 
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cyclic rotational displacements, discarding the complex two horn design 
system from Marines. 

Both Marines and Nikitin ultrasonic pure torsion methods used the 
same specimen’s geometry. This specimen’s shape is very similar to the 
tension–compression hourglass specimen. The dimensions are deter-
mined to achieve not the longitudinal mode, but the rotational/torsional 
resonant mode at 20 kHz. Therefore, the key rigidity material’s property 
to design the torsional specimen is the shear modulus rather than the 
Young’s modulus. Since the shear modulus has a lower value than the 
Young’s modulus, torsional specimens tend to be smaller than ten-
sion–compression specimens. 

Again, both Bathias and the Japanese Standard WES 1112:2017 
describe an experimental methodology together with analytical equa-

Fig. 1. Tension-compression uniaxial ultrasonic fatigue test specimen and setup: [A] Hourglass specimen key general dimensions; [B] Booster-horn-specimen setup 
with displacement measurement representation; [C] AISI P20 specimen dimensions. All dimensional units in mm. 

Fig. 2. Tension-Compression specimen 20 kHz mode shape: [A] normalised displacement distribution; [B] resulting normal stress distribution.  

Table 1 
Tension-compression hourglass specimen modal frequency comparison between 
the three studied methods.  

L1 
[mm] 

Longitudinal Frequency [kHz] 

Bathias analytical 
method 

FEA modal 
analysis 

Proposed semi-analytical 
method  

20.1  20.00  20.14  20.25  
20.4  19.87  19.98  20.12  
20.65  19.76  19.88  20.00  

Fig. 3. Tension-compression free-base displacement vs stress amplitude at the fatigue region (centre of the specimen for a uniaxial hourglass specimen).  
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tions for the specimen’s design. Equations (17) and (18) are used to 
calculate the specimen’s rotational displacement distribution and the 
resulting shear stress distribution when the torsional specimen is reso-
nating at a frequency of 20 kHz: 
⎧
⎪⎪⎨

⎪⎪⎩

Ur(x) = A0r • R1 • φ(L1, L2)

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cosh(αx)

√
sinh(βx)

cosh(αx)

]

, forx < L2

Ur(x) = A0r • R2cos(k(L − x) ), forL2 < x < L

(17)   

The torsional specimen dimensions for an AISI P20 steel specimen 
are presented in Fig. 4, together with an uniaxial tension–compression 
specimen of the same material for comparison. It is clear the size dif-
ference due to the considerably lower value of the shear modulus when 
compared to the Young’s modulus (about two fifths for steel). 

Again, the three methods being discussed in this paper (Bathias 
analytical method, FEA method, and the proposed semi-analytical 
method) were used to compare the resulting displacement and stress 
distribution for a unitary rotational displacement value at the base of the 
specimen (see Fig. 5). 

The methods present a negligible difference in the results they pro-
duce for the pure torsion specimen. When comparing the ratio of shear 
stress for a unitary rotational displacement at the free end, the proposed 
method is closest to FEA, with only 0.2 % difference. Bathias analytical 
method has the highest difference, with a 6 % discrepancy when 
compared to the proposed method. 

3.3. Tension-torsion specimens 

Initially, conventional and ultrasonic fatigue testing were mainly 
focused on uniaxial cyclical loads, such as tension–compression, pure 

torsion, and pure bending. Multiaxial stresses were later recognised as 
the leading dynamic stress state in machines and structures [4,32], 
meaning two directional loads (biaxial stress state) or even three 
directional loads (triaxial stress state) became a subject of interest in 
fatigue testing. 

To reach multiaxial stresses in ultrasonic machines more complex 
specimens and setups may be required. Some of the biaxial ultrasonic 
fatigue methods developed to the present day include the ones from 
Montalvão and Wren [33], Montalvão et al. [34] and Costa et al. [12] 
with the application of cruciform specimens that induce from equi-

biaxial (in-phase) to pure shear (out-of-phase) tension–compression 
biaxial stress states (including non-unitary biaxiality ratios); Brugger 
et al. [14] biaxial bending where a disk-shaped specimen has a 20 kHz 
bending resonance excited by an axial horn; and Costa et al. [35] ten-
sion–torsion axisymmetric specimen that is excited simultaneously in an 
axial and transverse resonance using a specially designed (patented) 
horn. 

Costa et al. [35] tension–torsion specimen geometry was also used as 
a case study to analyse the semi-analytical method proposed in this 
paper. One interesting difference between the design of tension–torsion 
specimens as the ones from Costa et al. [35] and biaxial UFT cruciform 
specimens as the ones introduced by Montalvao and Wren [33], is that 
the former are multi-mode specimens (where two mode shapes need to 
resonate at the same 20 kHz frequency) whereas the latter are single- 
mode specimens (i.e., where the biaxial stress at 20 kHz is achieved 
from a single mode of deformation). Therefore, tension–torsion ultra-
sonic machines have a setup that uses a complex ultrasonic horn 
attached to the commonly used longitudinal piezoelectric transducer. 
The horn-booster setup was specially designed to excite an also unique 
specimen so that it resonates with both axial and torsional resonant 
modes simultaneously. Numerical software is essential for the method-
ical design and experimental method of this study, as there is no 

Fig. 4. Pure torsion ultrasonic fatigue test specimen and setup: [A] Hourglass key general dimensions; [B] AISI P20 pure torsion specimen dimensions; [C] AISI P20 
tension–compression specimen dimensions; [D] Rotational displacement measurement representation. All dimensional units in mm. 

⎧
⎪⎪⎨

⎪⎪⎩

τ(x) = GA0rR1φ(L1,L2)

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cosh(αx)

√
[βcosh(βx)cosh(αx) − αsinh(βx)sinh(αx) ]

cosh2(αx)

]

, forx ≤ L2

τ(x) = GA0rR2sin(k(L − x) ), forL2 < x ≤ L

(18)   
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supporting analytical method, and the resonant behaviour is complex. 
However, finding a working specimen is very time consuming because of 
the many variables and the computational time for each specimen 
iteration. To design a tension–torsion specimen, previous methods 
required changing the dimensions iteratively until the desired resonant 
modes and stress ratios were achieved. The resonant modes were 20 kHz 
for both tension–compression and torsion, and the stress ratio was the 
intended torsional shear stress divided by the axial normal stress from 
tension-compression. Fig. 6 presents three AISI P20 steel ultrasonic 
tension–torsion specimens designed by Costa et al. [36] and which were 
tested in this study. 

All three specimen geometries in Fig. 6 were modelled by iterative 
FEA computation. By experience knowledge of the effect of each 
established dimensional variable, each final specimen requires several 
modal FEA computations before reaching a combination with the two 

desired resonant modes at 20 kHz, the first longitudinal and the third 
torsional resonant modes. The frequencies determined for the three 
specimen designs by FEA (Costa et al. [36]) and the proposed semi- 
analytical method are compared in Table 3. 

From Table 3, the proposed semi-analytical method consistently 
presents slightly higher frequencies, with a higher frequency difference 
for the longitudinal resonant mode. Comparing all frequencies, the 
discrepancies for tension–torsion specimens are slightly larger than for 
uniaxial specimens (Tables 1 and 2). The results for tension–torsion 
specimens in Table 3 show a maximum 2.3 % discrepancy between 
methods, while uniaxial specimens showed maximum discrepancies of 
0.7 % and 2 % in Tables 1 and 2 respectively. 

Taking as reference specimen Spc2 (the one presenting the best 

Fig. 5. Pure torsion hourglass 20 kHz mode shape: [A] normalised displacement distribution; [B] resulting normal stress distribution.  

Fig. 6. Costa et al. [36] AISI P20 steel tension–torsion ultrasonic specimen geometries tested. All dimensional units in mm.  

Table 2 
Pure torsion hourglass specimen modal frequency comparison between the three 
computed methods.  

L1 
[mm] 

Transverse Frequency [kHz] 

Bathias analytical 
method 

FEA modal 
analysis 

Proposed semi-analytical 
method  

3.7  20.00  19.29  19.69  
3.52  20.34  19.61  20.00  
3.35  20.65  19.97  20.37  

Table 3 
Tension-Torsion ultrasonic specimen modal frequencies comparison between 
FEA [36] and the proposed analytical method for all three specimen geometries 
represented in Fig. 6.   

Resonant 
mode 

FEA 
[kHz] 

Proposed Semi-analytical 
Method [kHz] 

Discrepancy 
(%) 

Spc1 Longitudinal  20.00  20.34  1.70 
Torsional  20.02  20.21  0.95 

Spc2 Longitudinal  20.00  20.21  1.05 
Torsional  19.99  20.10  0.53 

Spc3 Longitudinal  20.04  20.50  2.30 
Torsional  20.05  20.40  1.76  
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agreement between the FEA and the proposed semi-analytical method), 
Fig. 7 presents the normalized unitary axial displacement and the 
resulting axial stress distributions, while Fig. 8 presents the normalised 
unitary rotational displacement and the resulting shear stress 
distributions. 

As with the uniaxial test specimens previously analysed (both ten-
sion–compression and pure torsion), the obtained displacement and 
stress distributions from FEA and the proposed semi-analytical method 
(Fig. 7) are in good agreement: only a small increase in the induced 
stress in the fatigue main ‘throat’ (narrower section) central region is 
noticed. 

Regarding Fig. 8 rotational and resulting shear stress, the same dif-
ferences as those obtained in the pure torsion specimen are present. The 
results show even higher agreement both in displacement and resulting 

stress compared to Fig. 7 axial resonance. 
As Costa et al. [36] describe, when testing tension–torsion ultrasonic 

specimens, both the axial and the rotational displacements at the free 
end must be measured before conducting the intended fatigue to failure 
experiments. The resulting measurement methodology consists of the 
superposition of Fig. 1.B axial measurement and Fig. 4.D rotational 
measurement. A rosette strain gauge was used by Costa et al. [36] to 
measure the stress amplitude at the middle of the main ‘throat’, the 
highest stress region and therefore the fatigue testing region. 

To validate all the methods discussed here for predicting the reso-
nance behaviour of ultrasonic multiaxial specimen geometries, the 
strains measured by Costa et al. [36] with the placed rosette strain 
gauges were directly compared for several different imposed ampli-
tudes. A relation between the displacement at the base and the stress at 

Fig. 7. Spc2 axial displacement and the resulting axial stress distributions.  

Fig. 8. Spc2 rotational displacement and the resulting shear stress distributions.  

Fig. 9. Tension-Torsion free-base displacement (axial and rotational) vs stress amplitude (normal and shear) at the fatigue region (main throat).  
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the ‘main throat’ was calculated by FEA and the newly proposed semi- 
analytical method. Using this relation, the stress amplitude can be 
estimated from the axial and rotational displacements measured in the 
experiment. Fig. 9 compares all the computed stress state amplitudes in 
the fatigue testing region of the tension–torsion Spc2 specimen illus-
trated in Fig. 6 with the experimentally obtained values. 

4. Discussion 

The semi-analytical method proposed in this paper has demonstrated 
excellent results. However, this paper does not fully explore the poten-
tial of the method. As previously discussed, there is a vast number of 
ultrasonic fatigue tests that require the redesigning of the specimen 
geometry towards the intended experiment aims (e.g. size effect [37], 
fretting [38,39], multiaxial fatigue [4,33–35], etc.). The added 
complexity beyond the hyperbolic hourglass shape specimens makes the 
associated analytical calculation cumbersome and unreliable. When 
under such circumstances, FEA software is used. However, FEA 
computation is slow, especially when a trial-and-error iterative method 
is used to reach a final and working geometry. The fast computation of 
the proposed semi-analytical method makes the design of any future 
ultrasonic machine components (such as horns and specimens) faster 
and more reliable. This method can also be interlinked with optimisa-
tion methods like the ones presented by Baptista et al. [40,41] for the 
design of a cruciform geometry. 

The tension–torsion specimen was used as a case study to demon-
strate the proposed semi-analytical method advantages. When using 
FEA to obtain the working geometries, a lengthy iterative process is 
required. However, the presented semi-analytical script can produce the 
three specimens shown in Fig. 6, along with other combinations, much 
more quickly, potentially within the same amount of time that an 
experienced operator would need to produce a single specimen if using 
FEA. 

Beyond the semi-analytical method application presented, there are 
other applications worth discussing. One example of this semi analytical 
model optimisation abilities is the modulation of higher critical fatigue 
volume specimens for size-effect studies. Paolino et al. [37] created 
several specimens using FEA to reach a 20 kHz ultrasonic specimen that 
significantly increased the fatigue volume testing region. The applica-
tion of the proposed method would allow for a fast search of the 
dimensional combination that presented a given critical fatigue volume, 
discarding the computational iterative cumbersome FEA process. 

Another example is the design of ultrasonic specimens with a con-
stant width narrow section for fretting fatigue, similar to the one applied 
by Sun et al. [38] or by In-Shik et al. [39]. The analytical equations to 
determine a final working 20 kHz geometry are a lot more complicated 
than the ones used for the design of hourglass hyperbolic specimens. 
When testing specimens for fretting the displacement distribution must 
be fully characterised to apply the fretting pads in accordance with the 
desired fretting amplitude. 

The semi-analytical method is the same no matter the specimen ge-
ometry requirement. Beyond this method only FEA allows for 20 kHz 
modelling of complex geometries, but this can be more time consuming. 
The semi-analytical method can also be used as a support for FEA 
optimisation models for modelling the required specimens. For example, 
Yoshiaki et al. [42] applied four different specimen geometries (two 
smooth and two notched) to conduct a fatigue notch effect characteri-
sation of JIS SUJ2-A and SUJ2-B bearing steels. All four specimens were 
subjected to FEA analysis for determining the final 20 kHz frequency and 
the stress concentration factor. To achieve the desired stress concen-
tration the FEA software must iteratively produce a 20 kHz working 
frequency specimen for every variable cross-section until the desired 
value is meet. The semi-analytical method can be employed to deter-
mine several specimen dimensional combinations that yield a 20 kHz 
resonant frequency, while FEA can be used to determine the resulting 
stress distribution due to the stress concentration at the notch. 

5. Conclusions 

The present work introduces a novel semi-analytical method to 
model both uniaxial and multiaxial ultrasonic fatigue test specimens. 
The method is based on base functions that satisfy the essential 
boundary conditions. The computation of the method using MATLAB 
scripts allows to quickly determine the optimal geometry of the speci-
mens. The performance of the method was tested with uniaxial ten-
sion–compression, pure torsion and biaxial tension–torsion ultrasonic 
specimens. The method provides the frequencies and mode shapes as 
outputs, including normalised displacement and resulting stress distri-
butions across the specimen’s length. 

Regarding the uniaxial specimens, the proposed semi-analytical 
method results were compared with an existing analytical method and 
Finite Element Analysis (FEA). The results showed the reliability of the 
method to model a 20 kHz specimen and correctly predict its fatigue 
stress amplitude for a given measured displacement. 

The most interesting application of the method was shown when 
modelling tension–torsion ultrasonic specimens. Their higher geometric 
complexity and frequency constraints restrict the application of an 
analytical method like the one used to determine the geometry of uni-
axial specimens. Tension-torsion specimens are multi-mode specimens, 
i.e., where the specimens are designed so that two mode shapes of in-
terest resonate at the same 20 kHz frequency. Until now, this enforced 
the application of FEA software, which resulted in a difficult and time- 
consuming modelling methodology due to the iterative nature of the 
tuning process. The semi-analytical method proposed in this paper can 
compute faster than other existing methods. This enables to solve more 
complex problems involving ultrasonic modulation of specimens. 
Moreover, it makes it easier to apply this method in optimisation 
processes. 
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