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Abstract

Augmented Reality (AR) technology integrates virtual objects with the real-world
scene and has been widely used in many applications. 3D point cloud registration
is one of the main processes to correctly align virtual 3D objects with real-world
scenes in AR. The higher quality of the underlying 3D point clouds with fewer
missing and noisy points, the more accurate the 3D point cloud registration.

The goal of this thesis is to develop algorithms, computational frameworks
and methods to improve the quality of 3D point clouds and in order to further
increase the accuracy of 3D point cloud registration for AR applications. To
achieve this goal, firstly, a computational framework is developed for recovering
dense and high-quality 3D point clouds from mono-endoscopic images captured by
mono-endoscopic sensors. This computational framework contains a monocular
depth learning network to generate the 3D point clouds from monocular images
and a 3D point cloud completion network to recover the missing data from the
generated 3D point clouds. The experimental results show that this computational
framework can generate dense 3D point clouds of real endoscopic images and
recover high-quality 3D point clouds from incomplete point clouds with 60%
missing points. Secondly, in order to improve the quality of 3D point clouds from
real-world objects, a learning-based neural network (TreeNet) has been proposed.
The experimental results show that TreeNet outperforms five state-of-the-art
learning-based methods and also shows good generalization on unknown data.
TreeNet is also evaluated in the proposed computational framework for endoscopic
scenes as an application, which proves the effectiveness of TreeNet for medical data.
Thirdly, in order to improve the accuracy of rigid 3D point cloud registration,
an unsupervised learning-based network (Iterative BTreeNet) has been proposed.
Iterative BTreeNet has been compared with three traditional and six state-of-the-
art learning-based methods and outperforms these methods on partial and noisy
point clouds without training them. Iterative BTreeNet also exhibits remarkable



generalization to unseen large and dense scenes that are never trained. Finally, a
learning-based network (Deform3DNet) has been proposed for non-rigid 3D point
cloud registration. Deform3DNet shows how deep learning is used successfully in
solving the non-rigid registration and correspondence challenges end-to-end with
non-rigid 3D point clouds. The experimental results demonstrate improvement
in the quality of the non-rigid registration and correspondence by comparing
Deform3DNet with seven state-of-the-art non-rigid 3D point cloud registration
and correspondence methods across large deformations, partiality and topological
noise.
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Chapter 1

Introduction

1.1 Background

Augmented Reality (AR) technology combines the real world with virtual in-
formation to enhance the human perception of the world. AR has been widely
used in many applications, for example, education [2] [3], minimally invasive
surgery [4] [5] [6], robot path planning [7] [8] and digital games [9] [10] [11].
Azuma [12] defines AR as systems that have three characteristics, including a
combination of virtual objects and real 3D scenes, interactive in real-time and 3D
registration. AR should register or correct the alignment of the virtual 3D objects
with real 3D scenes [13] [14] [15]. Therefore, a real-world 3D scene is required
and needed to be aligned with the virtual 3D object for more accurate augmented
information in the AR system. The higher the quality of the underlying real-world
3D data is, the more accurate the AR system becomes.

3D data, captured by various sensor technologies, such as LiDAR sensors,
RGB-D scanners and depth cameras, are usually formed as raw 3D point clouds.
The higher the quality of the underlying real-world 3D point cloud scene is, the
more accurate the AR system becomes [4]. However, one of the limitations of
these sensors is that the captured 3D point clouds suffer from large missing data
due to complicated occlusions, unreliable measurements, limited viewing angles
and the resolution of various sensors in dealing with texture-less regions (e.g.
water, glasses, sky, surfaces of human organs).

3D point clouds can be also reconstructed from depth estimation algorithms
that generate 3D depth information from images. Traditional depth estima-
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tion algorithms, block matching method3 (BM) and semi-global block matching
(SGBM) [16], use stereo image pairs as input to search for matched pixels in stereo
pairs, which results in lower-quality of 3D point clouds. The structure for motion
(SFM) systems estimate detailed depth maps and produce dense points [17], which
rely on powerful commodity GPU processors for real-time performance and stereo
visions. Recent advances in supervised monocular depth estimation predict the
depth from a single image [18] [19], which requires ground truth depth. State-of-
the-art unsupervised learning-based methods explore easier-to-obtain binocular
stereo footage without the need for ground truth depth [20] [21]. However, the
major limitations of these methods are the occlusions of objects, the change
of brightness of texture-less surfaces, and the surface smoothness for feature
extractions.

To deal with the limitations of various sensors and depth estimation algorithms
and achieve high-quality 3D point clouds, generating a complete 3D point cloud
(i.e. 3D point cloud completion) from a captured or reconstructed incomplete
point cloud is an essential task for a wide range of 3D vision applications from AR
system [4] [22] and robotics [23] [7] to navigation and scene understanding [24] [8],
to minimally invasive surgery [25]. In this thesis, a novel computational framework
for recovering dense and high-quality 3D point clouds from single monocular
endoscopic images in minimally invasive surgery is first proposed. The proposed
computational framework combines two main modules. One is for monocular
depth estimation, and the other is for 3D point cloud completion. The depth
estimation module generates depth information from monocular images captured
by an endoscope during minimally invasive surgery. The depth maps are then
reconstructed into 3D point clouds. The 3D point cloud completion module repairs
defects of 3D point clouds. By using this framework, five large medical in-vivo
databases of 3D point clouds are generated from public Laparoscopic/Endoscopic
video datasets [26] [27], and two synthetic 3D medical datasets are also created.
These datasets are made publicly available for researchers. This framework is
the first attempt of its kind applied to 3D point cloud completion in endoscopic
scenes during minimally invasive surgery.

3D point cloud completion refers to the process that repairs the flow of the
3D data by filling holes and incomplete parts of 3D point clouds. Research on

3https://opencv.org
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3D point cloud completion can be categorized into three classes of approaches
including geometry-based, data-driven based and learning-based methods.

Geometry-based approaches [28] [29] [30] [31] complete 3D shapes by using the
symmetric information from the partial input. Data-driven-based methods [32] [33]
retrieve suitable example patches or parts from the shape databases and warp the
retrieved models to conform with the partial input data. The major drawbacks
of geometry-based and data-driven-based methods are: (i) Not all objects are
symmetric and the partial object might not show symmetric features; (ii) Data-
driven-based methods are time-consuming and rely on the assumption that the
database must include a very similar shape.

Previous learning-based methods for 3D point cloud completion [34] [35] [36]
convert 3D datasets into structured 3D voxel grids and use voxelized representa-
tions for network training, which consumes high computer memories and reduces
output qualities. After the first learning-based 3D point cloud processing network
PointNet [1] has been proposed, the first neural network for 3D point cloud
completion [37] is proposed based on the PointNet [1] for a single class (e.g.
car objects). Recent state-of-the-art learning-based methods, FoldingNet [38],
PCN [39], TopNet [40] and Disp3d [41], propose the PointNet-based [1] encoder
and their own decoders to regenerate the entire 3D point cloud from real-world
partial 3D point clouds (i.e. cars, tables, chairs and etc.). PMPNet [42] translates
each point in the partial input to the missing areas instead of directly regenerating
the complete 3D point clouds. However, there are two shared problems with these
methods. (i) These methods are sensitive to the geometric forms and shapes of
training datasets of 3D point clouds. Therefore, they cannot handle multi-classes
effectively, even a single class that contains mostly different shapes. Training a
class-invariant model with multiple classes of training datasets is difficult with
these methods. When the number of classes increases in the training dataset,
these methods produce low-quality 3D point cloud outputs that lack structural
and spatial details, such as sharp edges and topology changes; (ii) These methods
lose original structural and spatial details in the final output due to the fact that
they regenerate the entire 3D point cloud and do not separate the reconstructed
partial input from the missing points in the final output.

Based on the two problems of these state-of-the-art learning-based methods
for 3D point cloud completion, in this thesis, a novel deep learning-based network
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by devising hierarchical tree-based decoders is proposed to build a learning-based
network-TreeNet for solving the two problems. TreeNet combines two sub-networks.
One (TreeNet-multiclass) is for multi-class training and the other (TreeNet-binary)
is for missing points generation with original structure-preserving. More specifi-
cally, TreeNet-multiclass assigns each class of a 3D point cloud completion task
to a specific sub-tree of the root node in the tree. TreeNet-binary splits features
of the root node in the tree to a binary tree structure where the left leaf node
reconstructs the partial input and the right leaf node generates points in missing
areas. Following FoldingNet [38], PCN [39], TopNet [40] and Disp3d [41], the
TreeNet is still trained and tested on real-world 3D objects (i.e. cars, tables, chairs
and etc.). In addition, the proposed TreeNet is also evaluated in the proposed
computational framework in endoscopic scenes as an additional application. The
TreeNet focuses on generating the missing areas of the partial endoscopic 3D
point clouds, whereas the state-of-the-art learning-based methods, FoldingNet [38],
PCN [39], TopNet [40] and Disp3d [41], lose original structural and spatial details
in the final output by regenerating the entire 3D point cloud and do not separate
the reconstructed partial input from the missing points in the final output, which
is unacceptable during the minimally invasive surgery.

3D point cloud registration refers to estimating matching rotations and trans-
lations for rigid and non-rigid 3D point clouds. For rigid 3D point clouds (i.e.
computer, table and chair) registration, a transformation matrix (rotation and
translation) is estimated and applied to all points in one 3D point cloud to align
with the other. For non-rigid 3D point clouds (i.e. human, cat and dog) registra-
tion, each point in one 3D point cloud needs to be transformed by an independent
transformation matrix to align to its corresponding point in the other.

Traditional rigid 3D point cloud registration methods, Iterative Closest Point
(ICP) [43], Normal Distribution Transformation (NDT) [44] and Coherent Point
Drift (CPD) [45], consider rigid 3D registration as an optimization problem.
However, the major drawbacks of these methods are that they are sensitive to
the initialization of 3D point clouds and can be computationally expensive and
time-consuming.

Recent emerged state-of-the-art learning-based approaches for rigid 3D point
cloud registration, PointNetLK [46], Deep Closest Point (DCP) [47], Robust
Point Matching (RPM) [48], Robust Graph Matching (RGM) [49], Feature-metric
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Registration (FMR) [50] and Deep Gaussian Mixture Registration (DeepGMR) [51],
propose the PointNet-based [1] encoders and their own decoders to estimate the
transformation matrix to align one 3D point cloud to the other. However, the state-
of-the-art learning-based methods [46] [47] [48] [50] [51] [49] have four drawbacks.
(i) These methods learn the rotation and translation features together and generate
the rotation and the translation in one matrix. As a result, the learning of rotation
features and translation features interfere with each other, which leads to lower
precision of registration results. (ii) PointNetLK [46], DCP [47], RPM [48],
DeepGMR [51] and RGM [49] need ground-truth transformation matrix or point-
to-point correspondences to supervise the training process. (iii) PointNetLK [46],
DCP [47], RPM [48], DeepGMR [51] and RGM [49] suffer on partial 3D point
clouds without training in this scenario, which shows the poor generalization
ability of these networks. (iv) PointNetLK [46], DCP [47], RPM [48], FMR [50]
and RGM [49] often perform poorly in dealing with large and dense scenes and
shapes that are not trained, resulting in misalignment between two 3D point
clouds.

Based on the four drawbacks of these state-of-the-art learning-based methods
for rigid 3D point cloud registration, in this thesis, a novel unsupervised deep
learning-based network - Iterative Binary Tree Network (IBTreeNet) is proposed to
improve the registration accuracy for large and dense 3D point clouds. IBTreeNet
avoids the interference between the feature extraction of rotation and translation
and does not need the ground-truth transformation matrix as supervision. IB-
TreeNet learns features for the rotation separately from the translation and avoids
the interference between the estimations of rotation and translation in one single
matrix and iteratively improves the registration accuracy for large and dense 3D
point clouds. The registration results of the IBTreeNet have been compared with
three traditional methods and six state-of-the-art learning-based methods. The
comparison experiments are evaluated on testing datasets, including clear data,
partially visible data, data with Gaussian noise and data with large rotations.
Most importantly, the comparison experiments are also tested on large and dense
unseen scenes and shapes that are not trained to evaluate the generalization and
robustness of each method. IBTreeNet outperforms state-of-the-art learning-based
and traditional methods on partial and noisy point clouds without training them
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in such scenarios and exhibits remarkable generalization and robustness to unseen
large and dense scenes that are never trained.

Non-rigid 3D point clouds registration is a fundamental challenge in computer
vision and computer graphics, with applications in shape analysis [52] [53] deforma-
tion transfer [54], 3D reconstruction [25] [55] [56], and 3D object tracking [57, 58].
Although previous non-learning based methods [59] [45] [60] have addressed non-
rigid 3D point clouds registration, there are several shared problems: (i) These
methods heavily rely on the initial poses; (ii) The transformation of the points is
constrained by the adjacent points. As a result, these methods cannot find the
optimal alignment for 3D point clouds with large and multiple deformations; (iii)
These methods can be computationally expensive and time-consuming.

Without taking into account 3D point cloud registration, many state-of-the-
art methods [61] [62] [63] [64] [65] have been proposed to find correspondence
between non-rigid 3D shapes, which are both non-learning and learning-based
approaches. Non-learning-based methods ZoomOut [61] and Fast Sinkhorn Fil-
ter [62] focus on structured 3D meshes instead of unstructured 3D point clouds
and use functional maps to estimate the point-wise correspondences. However,
Non-learning based methods are time-consuming and limited when handling large
and multiple deformations between 3D shapes. Learning-based methods FM-
Net [63] and SURFMNet [64] are also based on functional maps [66] that require
pre-computed feature descriptors of 3D meshes (i.e. SHOT descriptor [67]) as the
input of neural networks and apply ground-truth geodesic distances as supervision.
CorrNet3D [65] is the first deep neural network that takes raw 3D point clouds as
input and considers the learning of correspondence between 3D point clouds as the
deformation-like 3D reconstruction. However, there are two major drawbacks to
these methods: (i) These methods are limited when handling large and multiple
deformations between 3D shapes; (ii) These methods do not provide non-rigid 3D
point cloud registration after finding the point-wise correspondences.

To achieve high-performance non-rigid 3D point cloud registration, for the
first time, an end-to-end deep learning-based network (Deform3DNet) is proposed
for non-rigid 3D point cloud registration. In Deform3DNet, a point-to-point
transformation module is proposed, which applies as rigid as possible for the
non-rigid transformation to generate a transformation matrix for each point in
a point-to-point transformation layer. A non-rigid registration loss is proposed,
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which is differentiable and minimizes the Frobenius norm between the transformed
3D point cloud and the target. A novel structure-preserving loss is proposed by
maximizing the similarity of grouped points between the transformed and the
target 3D point clouds, keeping the internal structure in the transformed 3D point
cloud.

1.2 Hypothesis and Research Question

This thesis hypothesizes that a more accurate AR system can be obtained from
the improved 3D point cloud registration. This thesis also hypothesizes that
generating high-quality 3D point clouds by recovering missing data can improve
the 3D point cloud registration accuracy and further improve the quality of AR
systems. Therefore, the research questions for this thesis are (i) What factors
have influenced the 3D point cloud registration accuracy in the state-of-the-art
algorithms, and how to deal with it and achieve more accurate 3D point cloud
registration? (ii) How can high-quality and complete 3D point clouds be generated
from partial observations and how can the 3D point cloud completion algorithm
focus on missing points generation? (iii) How can 3D point cloud completion and
registration algorithms be applied for improving the accuracy of AR systems?

1.3 Research Contributions

This thesis develops a computational framework, deep learning-based neural
networks for 3D point cloud completion, rigid 3D point cloud registration and
non-rigid deformable 3D point cloud registration. The AR applications are finally
developed based on the proposed completion and registration networks to achieve
accurate 3D point cloud registration.

More specifically, the main contributions of this thesis are:

• Recovering Dense 3D Point Clouds from Single Endoscopic Image
(Chapter 3)

A novel computational framework is proposed to recover high-quality 3D
point clouds from single endoscopic images by combining two deep-learning
neural networks. One is for monocular depth learning, and the other is
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for 3D point cloud completion. Five large medical in-vivo databases of
3D point clouds are generated from public Laparoscopic/Endoscopic video
datasets [26] [27], and two synthetic 3D medical datasets are also created.
3D point clouds are extracted from every frame of the video datasets. The
datasets are publicly available at1.

• TreeNet: Structural Preserving for Multi-class 3D Point Cloud
Completion (Chapter 4)

A novel TreeNet-multiclass decoder is proposed for multi-class 3D point cloud
completion. The model is evaluated on 50 classes of training datasets(i.e.
cars, tables, chairs and etc.), whereas the majority of the state-of-the-art
methods only use 8 classes. A novel TreeNet-binary decoder is proposed,
which focuses on generating points in missing areas and fully preserving the
original partial input 3D point cloud. A novel TreeNet decoder is proposed,
which combines the advantages of the TreeNet-multiclass and the TreeNet-
binary for 3D point cloud completion. Three novel forward and backward
propagation methods are proposed to train TreeNet-multiclass, TreeNet-
binary and TreeNet decoders, respectively. TreeNet-multiclass, TreeNet-
binary and TreeNet exhibit strong generalization to unknown classes that
are never trained. In addition, the proposed TreeNet is also evaluated in the
proposed computational framework in endoscopic scenes as an additional
application. Experimental results prove the effectiveness of the TreeNet on
endoscopic scenes in minimally invasive surgery.

• Iterative BTreeNet: Unsupervised Learning for Large and Dense
3D Point Cloud Registration (Chapter 5)

A BTreeNet with a novel forward propagation based on the hierarchical
binary tree is proposed to align two 3D point clouds, which learns features
for the rotation separately from the translation and estimates the rotation
matrix separately from the translation matrix. A novel Iterative BTreeNet
(IBTreeNet) is proposed to continuously improve the registration accuracy,
which iteratively rotates and translates the source 3D point cloud to the
target. The Chamfer Distance and the Earth Mover’s Distance are adopted

1The datasets are publicly available to researchers at https://github.com/LONG-XI/
Endoscopic-3D-Point-Clouds-Datasets/
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as the loss function for unsupervised learning of 3D point cloud registration.
BTreeNet and IBTreeNet are tolerant to partial overlap, noise and large
scenes without training them in such scenarios. Iterative BTreeNet also
exhibits remarkable generalization to different unseen large and dense scenes
that are never trained.

• Deform3DNet: A Unified Deep Learning Network for Non-rigid
Deformable 3D Point Cloud Registration and Correspondence
(Chapter 6)

An end-to-end learning-based network for non-rigid 3D point cloud registra-
tion is proposed, which also leads to finding the point-to-point correspon-
dence. A novel non-rigid registration loss for deformable 3D point clouds and
a novel structure preserve loss to keep the internal structure for transformed
3D point clouds. Experimental results illustrate the significant improvement
of the Deform3DNet over the state-of-the-art methods on large and multiple
deformations, non-rigid partiality and topological noise (Gaussian noise).

• Augmented Reality Application (Chapter 7)

The proposed neural networks for 3D point cloud completion and registration
are applied to achieve stable and accurate 3D point cloud registration in
AR applications. Experimental results illustrate the effectiveness of the
proposed completion and registration networks for increasing the accuracy
of registration between virtual 3D objects and real-world scenes.

1.4 Thesis Outline

• Chapter 1 introduces the research background of AR, 3D point cloud com-
pletion and registration, the hypothesis of this thesis, the main contributions,
the thesis outline and the list of publications.

• Chapter 2 reviews related works related to 3D point cloud completion,
rigid 3D point cloud registration and non-rigid 3D point cloud registration
and correspondence.

• Chapter 3 introduces the proposed computational framework by recovering
high-quality 3D endoscopic point clouds from single endoscopic images. The
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3D point cloud completion algorithm in this framework regenerates the
whole 3D point cloud, which destroys the original partial 3D point cloud
in the final output and is not acceptable for medical scenes. Therefore, in
Chapter 4, a novel algorithm has been proposed for generating points only
in missing areas.

• Chapter 4 introduces the proposed TreeNet-binary, TreeNet-multiclass and
TreeNet for 3D point cloud completion. TreeNet-binary focuses on missing
points generation and TreeNet-multiclass is for multi-class training. TreeNet
combines the advantages of TreeNet-binary and TreeNet-multiclass.

• Chapter 5 deals with two shared problems of the state-of-the-art 3D point
cloud registration methods and introduces the proposed BTreeNet and
IBTreeNet for more accurate rigid 3D point cloud registration.

• Chapter 6 introduces the proposed Deform3DNet for non-rigid deformable
3D point cloud registration and correspondence.

• Chapter 7 presents the AR experiments, illustrating how the proposed 3D
point cloud completion and registration algorithms improve the accuracy of
AR systems.

• Chapter 8 concludes the thesis and discusses future research directions.

1.5 List of Publications

Accepted Journal Papers

• Long Xi, Wen Tang, TaoRuan Wan. TreeNet: Structure
Preserving Multi-class 3D Point Cloud Completion. Pattern
Recognition, 139 (2023): 109476.

• Long Xi, Wen Tang, Tao Xue, TaoRuan Wan. Iterative
BTreeNet: Unsupervised Learning for Large and Dense 3D
Point Cloud Registration. Neurocomputing 506 (2022):336-354.

10



• Long Xi, Yan Zhao, Long Chen, QingHong Gao, Wen Tang,
TaoRuan Wan, Tao Xue. Recovering dense 3D point clouds from
single endoscopic image. Computer Methods and Programs in
Biomedicine 205 (2021):106077.

• QingHong Gao, Yan Zhao, Long Xi, Wen Tang, TaoRuan Wan.
Break and Splice: A Statistical Method for Non-rigid Point
Cloud Registration, Computer Graphics Forum, 2023.

• Yan Zhao, Wen Tang, Jun Feng, TaoRuan Wan, Long Xi. Gen-
eral Discriminative Optimization for point cloud Registration.
Computers & Graphics, 102 (2022): 521-532.

• Yan Zhao, Wen Tang, Jun Feng, TaoRuan Wan, Long Xi.
Reweighted Discriminative Optimization for Least-squares Prob-
lems with Point Cloud Registration. Neurocomputing, 464
(2021): 48-71.

Papers Currently Under Review

• Long Xi, Wen Tang, TaoRuan Wan. Deform3DNet: A Unified
Deep Learning Network for Non-rigid Deformable 3D Point
Cloud Registration and Correspondence. (submitted to Com-
puter Graphics Forum)

• Yan Zhao, Long Xi, Wen Tang, Jun Feng, TaoRuan Wan.
SGRTmreg: A Learning Based Optimization Framework for
Multiple Point Clouds Registration. (submitted to Pattern
Recognition)
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Chapter 2

Related Works

This chapter reviews traditional and state-of-the-art approaches for
3D completion, rigid 3D point cloud registration and non-rigid 3D
point cloud registration and correspondence. 3D completion contains
3D mesh completion, volumetric 3D completion and 3D point cloud
completion, aiming to generate high-quality and complete 3D data
from partial observations. 3D point clouds are the raw 3D data
captured by various 3D sensors, such as LiDAR sensors, RGB-D
scanners and depth cameras. Therefore, this thesis focuses on 3D
point cloud completion. Rigid 3D point cloud registration finds the
best matching transformation matrix to align one 3D point cloud to
the other. Non-rigid 3D point cloud registration and correspondence
find point-to-point correspondences and align them between two
non-rigid and deformable 3D point clouds.

2.1 3D Completion

Research on 3D completion can be categorized into three classes of
approaches: geometry-based, data-driven based and learning-based
methods.
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Geometry-based approaches complete 3D meshes by using ge-
ometric cues from the partial input. Thrun et al. [28] propose a
symmetry-searching algorithm to identify probable symmetries and
apply the symmetry information to extend the partial 3D shape.
Podolak et al. [29] describe a planar reflective symmetry transform
(PRST) algorithm that captures all possible symmetry planes, and
then finds the greater symmetries among them. Several extensions of
symmetries detecting algorithms [30] [31] have been proposed. They
extract several partial symmetries of the 3D mesh object. However,
not all objects are symmetric and the partial object might not show
symmetric features.

Data-driven based method [32] for 3D mesh completion retrieves
suitable example patches or parts from the shape databases and
warps the retrieved models to conform with the partial input data.
In this method, the proposed non-rigid alignment algorithm aligns
the retrieved model with the input data. In addition, Sung et al. [33]
have combined the symmetry-based method and the data-driven-
based method together for improving the performance of 3D shape
completion. However, this technique is time-consuming and relies on
the assumption that the database must include a very similar shape.

This thesis focuses on learning-based methods that can be further
categorized according to the forms of the input (i.e. 3D voxel grids
or 3D point clouds).

2.1.1 Volumetric 3D Completion

Currently, one major promising progress for the 3D completion task
is utilizing 3D learning-based neural networks that are successful at

13



Encoder Decoder

Neural Network
Training Mode

Encoder Decoder

Trained Model
Testing Mode

Partial Input Complete Output

Complete Input Complete Output

Fig. 2.1 One of the structures of deep learning methods for 3D point cloud
completion.

learning 3D data representations and features automatically, reduc-
ing the incompleteness caused by designing features manually. 3D
learning-based architecture largely depends on the representation of
the 3D data, such as volumetric voxel grids or 3D point clouds. Since
convolutional neural networks can process structured and ordered 3D
datasets more effectively than unstructured datasets, most previous
3D learning-based methods [34] [35] [36] used voxelized representa-
tions for 3D shape completions. However, voxelization causes high
computational cost when the resolution increases dramatically, and
low-resolution results in low-quality output [68] [69].

2.1.2 3D Point Cloud Completion

Figures 2.1 and 2.2 show the structures of deep learning methods
for the 3D point cloud completion task with two different training
strategies. Training with the complete 3D point clouds [37] [25], as
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Fig. 2.2 One of the structures of deep learning methods for 3D point cloud
completion.
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Fig. 2.3 Illustration of PointNet [1] feature extraction encoder. Four layers are
illustrated and displayed. The arrows lead to how the features are extracted from
a point. Every point has the same operation for feature extraction.
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shown in Figure 2.1, aims to extract 3D point cloud representations
that can be further used for generating the complete 3D point cloud
from the partial input during the testing. Training with the partial
3D point clouds [40] [38] [39] [42] [41], as shown in Figure 2.2, aims
to find the global features that correlate partial 3D point clouds with
their corresponding complete 3D point clouds using a neural network.
The encoders in state-of-the-art methods [25] [37] [40] [38] [39] are
based on PointNet [1], and they also propose their own decoders for
3D point cloud completion task.

PointNet [1] is the first deep neural network that applies raw
3D point cloud for 3D point cloud processing without voxelization.
The basic idea of PointNet [1] is to learn a spatial encoding of each
point and then aggregate all individual point features to the global
features of a 3D point cloud, as shown in Figure 2.3. Specifically,
PointNet applies a 1D convolution, a batch norm (BN) and a ReLU
as a group for a feature extraction module. The 1D convolution,
defined in Equation 2.1, aims to generate point features individually.
After several feature extraction modules, a max pooling layer is
used to generate the global features of a 3D point cloud. Because,
max pooling is a symmetric function, which aims to generate global
features that are invariant to any permutation of a 3D point cloud.
PointNet [1] has been proven to be useful for tasks including 3D point
cloud classification [1] [70] [71] [72], object recognition [73] [74], object
detection [75] [76], object segmentation [1] [70] [77] [78] [79], object
reconstruction [80] [81], completion [25] [37] [40] [38] [39] [42] [41]
and registration [82] [46] [47] [48] [50] [51] [49].
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Conv1D =
B∑

i=1

N∑
j=1

Kernal · inputij (2.1)

where · is the dot product operation, i indicates the ith data or
features in a batch B, j indicates the jth row of data or features, N

indicates there are N points in a 3D point cloud, Kernal is the 1D
convolution kernel as shown in Figure 2.3. The size of one sliding
window for a Kernal is identical to the size of each row of a 3D
point cloud or a feature matrix from the previous layer, and the
number of sliding windows is identical to the size of each row of a
feature matrix in the next layer.

Achlioptas et al. [37] introduce an Auto Encoder [83] and a
Generative Adversarial Net (GAN) [84] to learn 3D point cloud
representations by focusing on a single class of 3D point cloud
completion task. FoldingNet [38] proposes a folding operation in the
decoder that deforms a 2D grid into a 3D point cloud and evaluates
the different layers of the folding operations to tune the model.
Point Cloud Network (PCN) [39] evaluates the different number
of PointNet layers and fully connected layers in the encoder and
decoder to achieve the best performance. PCN also uses a folding
operation to generate higher-resolution 3D point clouds from the
coarse 3D point clouds in the final stage of the decoder. TopNet [40]
first evaluates the encoders in PointNet [1], PointNet++ [70] and
PCN [39] and finally chooses the encoder from PCN [39]. TopNet [40]
then proposes a decoder following tree structure and evaluates the
number of 1D convolution layers with different feature sizes in the
decoder to achieve the highest accuracy in the 8 classes of datasets.
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Specifically, the root node in TopNet [40] is the global feature of the
input data. The output of each leaf node represents a single point
in a 3D point cloud, and all leaf nodes consist of a complete 3D
point cloud. Therefore, features of a partial input in the tree root
pass through all nodes to regenerate an entire 3D point cloud. The
architecture of the TopNet [40] is not designed for multi-class 3D
point cloud completion, and it loses the structural and spatial details
of partial inputs. PMPNet [42] applies PointNet++ [70] encoder
and generates translation matrices for each point in the partial input
in the decoder, which translates the incomplete input to the nearest
occluded regions. PMPNet [42] also analyses the different recurrent
units and the different searching radii in the proposed recurrent path
aggregation module to tune the decoder. Disp3d [41] proposes a
down-sampling operation, a neighbour pooling and an up-sampling
operation to regenerate the complete 3D point clouds.

2.2 Rigid 3D Point Cloud Registration

Research on rigid 3D point cloud registration can be categorized
into two classes of approaches: traditional or deep learning-based
methods. Traditional rigid 3D point cloud registration methods
consider the registration an optimization problem, applying the least
square regression or maximizing the likelihood of a probability density
function. Deep learning-based methods are successful at learning
rigid 3D point cloud representations and features by estimating the
rigid transformation in the alignment. This thesis focuses on deep
learning-based methods for rigid 3D point cloud registration.
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2.2.1 Traditional Rigid 3D Point Cloud Registration Meth-
ods

Iterative closest point (ICP) [43] and its variants [85] [86] are well-
known traditional methods for rigid 3D point cloud registration by
finding point cloud correspondences and solving a least-squares prob-
lem to update the alignment. Normal Distribution Transformation
(NDT) [44] uses the statistical models of 3D point clouds in the
alignment. The key element in NDT [44] is its representation of the
3D point clouds. Instead of using each individual point in the 3D
point cloud, NDT [44] converts the 3D point clouds into voxel grids.
The grids are represented by a combination of normal distributions,
describing the probability of finding a point at a certain position.
NDT [44] uses the representation of normal distributions to apply
standard numerical optimization methods for registration. Coherent
Point Drift (CPD) [45] considers the alignment of two 3D point
clouds a probability density estimation problem, where one 3D point
cloud represents the Gaussian Mixture Model (GMM) centroids that
need to align the other 3D point cloud. CPD [45] moves the GMM
centroids coherently as a group to the other 3D point cloud by max-
imizing the likelihood. However, ICP-based methods [43] [85] [86],
NDT [44] and CPD [45] are time-consuming and prone to local
minima when two 3D point clouds whose initial positions are far
from aligned.

Discriminative Optimization (DO) [87] and its variant Reweighted
Discriminative Optimization [88] are the supervised sequential up-
date methods that learn the update steps for solving the least-
squares problem to obtain the transformation matrix. The learning
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Fig. 2.4 The structure of deep learning methods for rigid 3D point cloud registra-
tion.

processes of optimization methods [87] [88] focus on the sequence
of update maps for each individual 3D point cloud and need to
be retrained on each individual data, whereas deep learning-based
methods [46] [47] [48] [50] [51] [49] learn the generalized features
from a large 3D point cloud dataset, and the trained features can
be used to unseen 3D point clouds that are not trained.

2.2.2 Deep Learning-based Methods on Rigid 3D Point
Cloud Registration

Figure 2.4 shows the structure of deep learning methods for rigid
3D point cloud registration. A shared encoder is used to extract
the global features of 3D point cloud pairs. The decoder aims to
generate a transformation matrix (i.e. rotation and translation) that
is transformed from one 3D point cloud to the other.

Recently proposed PointNetLK [46] is a pioneer in the task of
rigid 3D point cloud registration. PointNetLK [46] combines a
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deep learning method PointNet [1] as an encoder and a traditional
registration method Lucas-Kanade algorithm [89] at the end of the
decoder to achieve features automatically and minimize the distances
between the global feature descriptors in the alignment. DCP [47]
utilizes DGCNN [72] and an attention module [90] to extract features
of two 3D point clouds and replaces the Lucas-Kanade [89] algorithm
in PointNetLK [46] with a proposed differentiable Singular Value
Decomposition (SVD) module to reduce feature dimension. The
SVD module in DCP [47] estimates a transformation matrix with
the size of 7, where the first three output values represent the
translation matrix and the last four values represent the rotation
quaternion. RPM [48] uses raw 3D point clouds and normals as input
for the DGCNN-based [72] feature extraction module to estimate
point correspondences between two 3D point clouds. Similarly to
DCP [47], the weighted SVD module at the end of the network
estimates a transformation matrix with the size of 7 from the point
correspondences. RGM [49] transforms 3D point clouds into graphs
and learns point and graph features via a graph feature extractor
to calculate the point correspondences. Similarly to DCP [47] and
RPM [48], the transformation matrix in RGM [49] is also estimated
from a differentiable SVD. FMR [50] uses the chamfer distance [91]
as a loss function for unsupervised learning and proposes a feature-
metric projection error as a decoder for updating the transformation
parameters during each iteration. DeepGMR [51] proposes a network
that extracts pose-invariant correspondences between 3D point clouds
and Gaussian Mixture Model (GMM) parameters. Two differentiable
compute blocks are proposed in the decoder of DeepGMR [51] to
recover the optimal transformation from matched GMM parameters,
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which achieves favourable performance on 3D point clouds with point-
to-point correspondences and large transformations, respectively.

However, these state-of-the-art learning-based methods [46] [47] [48]
[50] [51] [49] learn the rotation and translation features together and
generate the rotation and the translation in one matrix. As a result,
the learning of rotation features and translation features interfere
with each other, which leads to lower precision of registration results.
Moreover, these methods use the ground-truth transformation or
point correspondence matrix as supervision. This thesis avoids the
interference between the feature extraction of rotation and transla-
tion and does not need the ground-truth transformation matrix for
supervision.

2.3 Non-rigid 3D Point Cloud Registration and
Correspondence

Traditional non-rigid 3D point cloud registration methods [92] [93] [59]
[45] [60] consider the non-rigid registration an optimization problem.
The state-of-the-art learning-based methods [63] [64] [65] find point-
wise correspondences between non-rigid deformable 3D point clouds,
but do not consider the non-rigid 3D point cloud registration. The
state-of-the-art learning-based methods [46] [47] [48] [50] [51] [49] for
rigid 3D point cloud registration generates a transformation matrix
for a whole 3D point cloud, which cannot be used for non-rigid 3D
point cloud registration.
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2.3.1 Non-rigid 3D Point Cloud Registration

Earlier approaches [92] [93] on non-rigid point cloud registration
have used Thin Plate Spline (TPS) [94] to handle deformation
and deterministic annealing for soft-assignment. TPS parameters
estimation solves a maximum likelihood estimation problem to find
the optimal controlling points and displacement vector for warping
the point set. These methods have been applied to 2D point clouds
with a small number of points.

Non-rigid Iterative Closest Point (Non-rigid ICP) [59] extends
Iterative Closest Point (ICP) [95] method to compute non-rigid
deformations. While retaining the convergence properties of ICP,
Non-rigid ICP uses a locally affine regularisation that assigns an
affine transformation to each point, minimising the difference of
transformation matrices between the adjacent points. Least-squares
problem is solved to update the alignment for the Non-rigid ICP.
However, Non-rigid ICP can not deal with large and multiple defor-
mations and heavily relies on the initial poses of the two non-rigid
3D point clouds for registration.

Coherent Point Drift (CPD) algorithm [45] uses a probabilistic
method for both rigid and non-rigid 3D point cloud registration.
CPD treats the alignment of two 3D point clouds as a probability
density estimation problem. For non-rigid 3D point cloud registra-
tion, the CPD defines the transformation as the initial position plus a
displacement function v. It uses the motion coherence theory [96] [97]
to enforce the smoothness for v between the point clouds. The CPD
finds the functional form of v using the calculus of variation and
solves the minimization problem of the negative log-likelihood.
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Whereas Bayesian Coherent Point Drift (BCPD) [60] formulates
CPD in a Bayesian setting for both rigid and non-rigid 3D point cloud
registration, BCPD replaces the motion coherence theory [96] [97]
with Bayesian inference. The major difference between BCPD and
CPD is that BCPD defines motion coherence using a prior distribu-
tion instead of the regularization term. Both CPD and BCPD are
time-consuming, prohibiting 3D point clouds with large and multiple
deformations.

2.3.2 Non-rigid 3D Shape and 3D Point Clouds Corre-
spondence

Non-rigid 3D shape correspondence deals with structured data such
as 3D meshes and finds the point-wise correspondence between
deformable 3D shapes. Finding 3D shape correspondences can
be done without 3D registration. Below, the state-of-the-art non-
learning [61] [62] and learning [63] [64] [65] based shape correspon-
dence methods are reviewed.

Functional maps (FM) [66] are used for 3D shape correspon-
dence [98] [99], which performs spectral analysis on 3D meshes to
construct a functional map and solve a least-squares problem to con-
vert the functional map to point-wise correspondence. Constraints on
functional maps are used to promote continuity of the point-wise cor-
respondence [100] and incorporate orientation information [101] into
functional maps. These methods are computationally expensive and
unstable with the dimensionality increase of the spectral embedding.
To obtain an accurate correspondence on high dimensional details,
ZoomOut [61] recovers a lower resolution to a higher resolution map

24



through an iterative spectral up-sampling scheme. To obtain an
accurate, smooth and bijective point-wise correspondence with ac-
ceptable time and memory complexity, [62] proposes Fast Sinkhorn
Filters with functional maps promoting bijective point-to-point cor-
respondence. The well-known Sinkhorn algorithm [102] [103] is used
to compute the optimal transport distance matrix between functions
in a common metric space. The distance matrix is iteratively subject
to a matrix scaling procedure leading to a regularized transport plan
that is then converted to a correspondence map. However, Both
ZoomOut [61] and Fast Sinkhorn Filters [62] are time-consuming and
require manually made Laplacian descriptors for functional maps.

To learn the optimal descriptor functions from non-rigid 3D
shapes, a supervised Function Maps Network (FMNet) [63] has
been proposed. FMNet takes pre-computed SHOT [67] descriptor
from two shapes as input and extracts features F and G from the
two SHOT descriptors by using shared residual layers [104]. The
extracted features F and G are projected onto the Laplacian eigen-
bases Φ and Ψ to produce the spectral representations F̂ and Ĝ for
functional maps. FMNet predicts a matrix C encoding the correspon-
dence between the two shapes by minimizing the F norm between
CF̂ and Ĝ. The matrix C is then converted to the spatial correspon-
dence P by using C, Φ and Ψ. Finally, a soft error loss is proposed
by minimizing the F norm between P and ground-truth geodesic dis-
tances. To avoid using the ground-truth geodesic distances, Spectral
Unsupervised FMNet (SURFMNet) [64] enforces bijective properties
on the map by minimizing the F norm between CF̂ and Ĝ and
minimizing the F norm between CĜ and F̂ . CorrNet3D [65] takes
two unstructured 3D point clouds as input instead of structured
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3D meshes and consists of a feature extraction module followed by
a deformation-like reconstruction module, which reconstructs the
two 3D point clouds in the output, respectively. The global features
between the two modules are considered the correspondence matrix
for point-wise correspondence. However, FMNet and SUPRFMNet
take the pre-computed SHOT [67] descriptors as input, which limits
the applicability of such methods on unstructured datasets such as
3D point clouds. In addition, FMNet, SUPRFMNet and CorrNet3D
are all limited in the large and multiple deformations between two
shapes in the form of either structured 3D meshes or unstructured
3D point clouds.

2.4 Summary

In this chapter, the detailed illustrations, advantages and limitations
of traditional and state-of-the-art 3D point cloud completion, rigid
3D point cloud registration and non-rigid 3D point cloud registration
and correspondence methods are discussed. Therefore, the research
objectives for this PhD project are developing algorithms, computa-
tional frameworks and methods to address the limitations of these
methods, improve the quality of 3D point clouds and further increase
the accuracy of 3D point cloud registration in AR applications.

26



Chapter 3

Recovering Dense 3D Point
Clouds from Single Endoscopic
Image

In this chapter, a novel computational framework has been proposed
to recover dense 3D point clouds from single endoscopic images using
two deep-learning neural networks. One is for monocular depth
learning, and the other is for 3D point cloud completion to recover
the missing data from the initially generated point clouds. The
experimental results indicate that the 3D reconstruction method
outperforms the state-of-the-art learning-based method and non-
learning-based stereo 3D reconstruction algorithms on the synthetic
medical datasets. 3D point cloud completion results also show a
better performance. Even if the missing rate reaches 60%, the quality
of the 3D point cloud completion result is still high.
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3.1 Introduction

Augmented reality (AR) information can help surgeons overcome
the limited field of view and the lack of depth information during
minimally invasive surgery. The higher the quality of the underlying
3D point cloud is, the more accurate the augmented information
becomes [4]. During endoscopic surgery, endoscopes are used to
visualize organ surfaces in the body and the data acquired is the
so-called endoscopic images. Constructing 3D point data from the
endoscopic image is challenging due to occlusions of instruments, the
change of brightness of organ surfaces, and the surface smoothness
for feature extractions [105] [5]. Processing an extensive amount of
endoscopic image sequences in real-time is a high computational cost,
making it difficult to generate high-quality 3D point clouds [17] [6].

Missing data or information from the initially recovered point
cloud is common, and it is a shared problem in many applications that
rely on high-quality 3D point clouds, for example, AR information
augmentation, robotic manipulation [7] and scene understanding [8].
3D point cloud completion refers to a process that repairs data flaws
by filling holes and parts of the dataset. To the best knowledge, no
prior work has been reported on monocular endoscopic 3D point
cloud completion, and the vast majority of point cloud completion
methods have been focused on objects, for which specialized 3D
shapes (e.g. aircraft, furniture) are learned or manually designed.
Large medical in-vivo databases of 3D point clouds of real endo-
scopic scenes are scarcely publicly available. The availability of such
databases will significantly assist in research innovations. Seven new
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medical datasets are generated and made freely available to research
communities.

In this chapter, a novel deep learning-based computational frame-
work is proposed for recovering 3D point clouds from single monoc-
ular endoscopic images. An unsupervised learning-based network
mono-depth is used to generate depth information from monocular
images. Given a single mono endoscopic image, the network is ca-
pable of depicting a depth map. The depth map is then used to
recover a dense 3D point cloud. A generative Endo-AE network
based on an auto-encoder is trained to repair defects of the dense
point cloud by generating the best representation from incomplete
data. The performance of the proposed framework is evaluated
against state-of-the-art learning-based methods. The results are also
compared with non-learning-based stereo 3D reconstruction algo-
rithms. The proposed methods outperform both the state-of-the-art
learning-based and non-learning-based methods for 3D point cloud
reconstruction. The Endo-AE model for point cloud completion
can generate high-quality, dense 3D endoscopic point clouds from
incomplete point clouds with holes. The proposed framework is
able to recover complete 3D point clouds with the missing rate of
information up to 60%. Five large medical in-vivo databases of 3D
point clouds of real endoscopic scenes have been generated and two
synthetic 3D medical datasets are created. These datasets have been
made publicly available for researchers free of charge.
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3.2 Previous Work

The proposed framework is closely related to two categories of prior
works: 1) Monocular Depth Estimation and 2) 3D Point Cloud
Completion.

3D Monocular Depth Estimation: Depth estimation is an
integral part of 3D point cloud reconstruction. The state-of-the-art
camera tracking and reconstruction systems (structure for motion
systems) that estimate detailed depth maps with textures at selected
keyframes can produce dense surface maps with millions of points [17].
Some of these systems rely on powerful commodity GPU processors
for real-time performance and stereo visions. On the other hand,
monocular Simultaneous Localization and Mapping (SLAM) systems
that operate with limited processing resources only generate and
track sparse feature-based models [106] [6].

Recent advances in monocular depth estimation have shown re-
sults of predicting the depth from a single image [18] [19], which can
be used for understanding the shape of a scene from a single image,
a fundamental problem in machine vision. These methods pose
the monocular depth estimation as a learning problem by training
models offline [107] [18] [108]. Among these methods, supervised
learning [18] [19] needs to train models on large collections of ground
truth. Novel unsupervised learning methods explore easier-to-obtain
binocular stereo footage without the need for explicit depth data
during the training [20] [21]. In this work, since the ground truth
of the depth information is unavailable for monocular endoscope
scenes, this chapter builds on previous unsupervised learning frame-
work [21] to develop a monocular depth estimation for 3D point
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cloud reconstruction from single endoscopic images. The novelty
of this approach is a fully differential patch-based cost function
and the Zero-Mean Normalized Cross-Correlation is proposed that
takes multi-scale patches as a matching strategy. This approach
significantly increases the accuracy and robustness of depth learning.
However, this method has only been tested with non-medical public
datasets. The method is further extended to extract the dense 3D
endoscopic point cloud based on the estimated depth and introduce
a colour extraction method onto a reconstructed 3D point cloud
from a single endoscopic image.

3D Point Cloud Completion: Real endoscopic 3D point clouds
present incomplete data (e.g., missing data, holes), due to limited
field of view and occlusions during minimally invasive surgery where
surgical instruments interact with the organs, as well as the illumina-
tion variations caused by the endoscopic light, tissue haemorrhaging
and or surgical smoke [105]. Hence, the task of filling missing holes
and information for reconstructed 3D point clouds are cast as the
task of 3D point cloud completion.

Traditional geometry-based approaches use geometric clues to
complete 3D meshes from a partial input [30], while data-driven-
based methods rely on the assumption that the database must
include a very similar shape [33]. Recently emerged deep learning-
based methods [37] [39] [38] [40] have achieved superior performance
operating on 3D point clouds through generative models based on
Auto Encoder (AE) [83] [37] [109] [40] and Generative Adversarial
Net (GAN) [84].

An optimization method has been proposed to select the best
seed for the latent GAN to improve the performance for point
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Fig. 3.1 The proposed computational framework consists of three modules: Monoc-
ular Image Depth Learning, 3D Point Cloud Extraction, and 3D Point Cloud
Completion.

cloud completion [109]. Structural point cloud decoder [40] can
only generate sparse 3D point clouds since the decoder consists of
most 1D convolution layers. Each 1D convolution layer needs to
generate a recovered point cloud, which limits the number of points
to be processed. Achlioptas et al. [37] proposed an auto-encoder
architecture for 3D point cloud processing. However, this method
focuses on 3D point cloud representation learning and has only been
tested with non-medical public datasets. this thesis applies the auto-
encoder architecture to recover dense endoscopic 3D point clouds,
and the proposed approach is the first attempt of its kind applied
to endoscopic 3D point cloud completion.
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3.3 Overview of the Framework

Figure 3.1 illustrates the entire computational framework with three
modules: Monocular Image Depth Learning, 3D Point Extraction
and 3D Point Cloud Completion.

Monocular Image Depth Learning Module: In this module,
an unsupervised learning-based network mono-depth is developed.
Public Laparoscopic/Endoscopic stereo video datasets are used for
network training. The unsupervised depth learning method treats
the monocular depth estimation as error minimization in image
synthesis. During the training, the depth is estimated from the left
image of stereo pairs. The depth is then converted into a disparity
map to synthesize the right image of stereo pairs. The loss function
is used to minimize the error between the reconstructed right image
and the original right image. Once trained, the depth information is
generated from monocular endoscopic images in the depth learning
module.

3D Point Cloud Extraction Module: In the 3D point cloud
extraction module, the depth estimated from the depth learning
module is converted into a dense 3D point cloud. A coordinate
conversion method is used to transform the pixel coordinates into
3D world coordinates. To obtain the colour information, colour
attributes of the corresponding input monocular endoscopic image
are extracted and applied to the 3D point cloud.

The effectiveness of the proposed 3D point cloud reconstruction
framework is evaluated by comparing mono-depth with a state-of-
the-art learning-based method [20], as well as with two non-learning-
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Fig. 3.2 Mono-depth network for estimating depth from monocular images; It
consumes a single image as input and consists of 14 layers of an encoder and 14
layers of a decoder. The input is encoded by 7 Conv layers with stride 2, and each
layer is followed by a Conv layer with stride 1. The decoder consists of 7 deConv
layers with stride 2, and each layer is followed by a Conv layer with stride 1.

based stereo image reconstruction methods [16]. The detailed evalu-
ation is described in section 3.7.1.1.

3D Point Cloud Completion Module: In the 3D point cloud
completion module, a generative Endo-AE network based on an
auto-encoder is performed for the task of 3D endoscopic point cloud
completion. The 3D point clouds generated in the 3D point cloud
extraction module are split into the training data and the testing
data. The auto-encoder, as an unsupervised network, uses the
training data itself as the ground truth. During the training, the
input of the network is complete 3D point clouds without any missing
data, as shown in Figure 3.5. The network learns global features of
training datasets through an encoder and converts global features
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into an original 3D point cloud through a decoder. During the
testing mode, by randomly deleting consecutive points in the testing
data, Endo-AE can generate a complete 3D point cloud from the
partial 3D point cloud input, as shown in Figure 3.6. The colour
attributes are also extracted from the corresponding 3D point cloud
in the testing data.

3.4 Methods

3.4.1 Unsupervised Monocular Depth Learning

Building on the unsupervised mono-depth network [21], the per-
pixel depth is estimated from single image input. The mono-depth
network is based on a VGG-like fully convolutional neural network
architecture [110], as shown in Figure 3.2.

During the training, the single left images Il of stereo pairs are
used as the input data for the DepthNet model to synthesize per-pixel
depth D. The depth D is transformed into a disparity map d = b×f

D ,
where b and f are the camera baseline and focal distance, respectively.
The disparity maps d are then used to reconstruct the right views
of the stereo pairs Ir_syn and the sampling of patches from right
views Ir(Nx−d,y). Finally, the fully differential loss function Ltotal

is applied to train the mono-depth network. Ltotal, as illustrated
in Equation 3.5, consists of a Patch Matching Loss LPM , a View
Reconstruction Loss LV R, a Disparity Smoothness Loss LDS, and
a Disparity Consistency Loss LDC . In addition, another parallel
ConfidenceNet, as shown in Figure 3.2, is trained by using the LPM

to evaluate the performance of the monocular depth estimation. The
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Fig. 3.3 Mono-depth network testing mode: The trained model only consumes
monocular images as input and outputs corresponding depth images.

ConfidenceNet produces a confidence map that gives a real-time
assessment of the reliability of the predicted depth.

During the testing, the trained mono-depth model does not need
the original right image of stereo pairs to calculate the loss anymore.
Thus, the trained model can generate per-pixel depth only from the
monocular image as shown in Figure 3.3.

Loss Function: Following the loss functions in unsupervised
depth learning networks [21] [20], the mono-depth is trained using
the combination of LPM , LV R, LDS and LDC .

LPM is proposed to maximize the similarities between patches
in the left input image Il(Nx,y) and shifted patches Ir(Nx−d,y) in
the reconstructed right image by using the Zero-Mean Normalized
Cross-Correlation, as defined in Equation 3.1.

ZNCC =
∑

i,j∈Nx,y
(Il(i, j) − I l(Nx,y)) · (Ir(i − d, j) − Ir(Nx−d,y))√∑

i,j∈Nx,y
(Il(i, j) − I l(Nx,y))2 ·

∑
i,j∈Nx,y

(Ir(i − d, j) − Ir(Nx−d,y))2 (3.1)

where I(Nx,y) = 1
n

∑
x,y∈Nx,y

, I(x, y) is the mean intensity of the patch
Nx,y centered at the coordinate (x, y).
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LV R, as defined in Equation 3.2, minimizes the differences between
the original right input image Ir(x, y) and its reconstruction Îr(x, y)
using the L1 norm.

LV R =
∑
xy

∣∣∣Ir(x, y) − Îr(x, y)
∣∣∣ (3.2)

LDS, as defined in Equation 3.3, regularizes the mono-depth
network to produce more smooth depth by calculating the sum of
the L1 norm of disparity gradients along x and y directions.

LDS = 1
XY

∑
x,y

∣∣∣∣∣∣∂d(x, y)
∂x

∣∣∣∣∣∣ +
∣∣∣∣∣∣∂d(x, y)

∂y

∣∣∣∣∣∣ (3.3)

LDC , as defined in Equation 3.4, attempts to make the left-view
disparity map dl(x, y) to be equal to the reconstructed right-view
disparity map dr(x − dl(x, y), y) using the L1 norm.

LDC = 1
XY

∑
x,y

|dl(x, y) − dr(x − dl(x, y), y)| (3.4)

The final loss function Ltotal is defined by Equation 3.5.

Ltotal = ωpLPM + ωvLV R + ωdLDS + ωcLDC (3.5)

where ω is the corresponding weight to balance the effect of gradients
of the backpropagation.

Since the mono-depth network generates the depth information
from single images and is trained without using ground-truth depth
in LPM , LV R, LDS and LDC loss functions, this network is defined
as an unsupervised network for depth learning.
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Fig. 3.4 3D Point Cloud Reconstruction: (a) Left image; (b) Generated depth
image from (a); (c) Reconstructed 3D Point Cloud with colour attributes from (a)
and (b).

3.4.2 3D Point Cloud Extraction

3D point cloud extraction is the second module of the proposed
framework shown in Figure 3.1. A 3D point cloud is extracted from
the generated depth D, as described in section 3.4.1. A coordinate
conversion method from the pixel coordinates to the world coordi-
nates is applied to 3D point cloud extraction. Based on the generated
depth D, 3D point clouds can be extracted using Equation 3.6.

xw = (u − u0) ∗ D/fx

yw = (v − v0) ∗ D/fy

zw = D

(3.6)

where (xw, yw, zw) is the coordinates of a point in the world coordinate
system and (u, v) is each pixel in the depth D. (u0, v0) are the centre
coordinates of the depth D in pixel coordinate system. fx and fy

are the focal lengths of the left and right cameras.
While reconstructing a 3D point cloud from the generated depth

D, the colour attributes of each pixel are extracted from the cor-
responding left image and assigned to each point in the 3D point
cloud, as shown in Figure 3.4.
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Fig. 3.5 Endo-AE completion network training mode: The input in the training
mode is a complete 3D point cloud without missing holes. The encoder is from
PointNet. F represents features extracted by each feature extraction layer. The
decoder consists of 3 fully connected layers (FC). The first two FC layers consist
of the activation function ReLU.

3.4.3 3D Point Cloud Completion

For the point cloud completion task, an Endo-AE network is trained
based on Auto-encoder (AE) that includes an encoder and a decoder
to generate complete 3D point clouds from partial 3D point clouds
with missing data. Since the Endo-AE is an unsupervised network,
the ground truth is the input training 3D point cloud itself. The
encoder of the Endo-AE network is based on PointNet [1], a state-
of-the-art deep learning method on 3D point cloud classification.
PointNet combines point-wise multi-layer perceptions with a sym-
metric aggregation function that is invariant to permutation, which
is essential for effective feature learning on 3D point clouds. The
main differences between PointNet [1] and the Endo-AE network
are the loss function, the ground truth and the output of the two
networks. PointNet focuses on 3D point cloud classification, and
the loss function of the PointNet classification network is softmax,
which can be considered a multi-classes classifier. Every 3D point
cloud has a label for classification, and each label is the ground truth
for PointNet. Thus, the PointNet classification network outputs

39



Fig. 3.6 Endo-AE completion network testing mode: The trained model consumes
a 3D point cloud with the missing data and outputs a complete 3D point cloud.

the label of an input 3D point cloud. Whereas the loss function
of the Endo-AE network is the chamfer distance, as illustrated in
Equation 3.7, which minimizes the distance between the input and
the output of 3D point clouds. The ground truth of the Endo-AE
network is the input training 3D point cloud itself, and the output
is the complete 3D point cloud.

During the training, the input of the Endo-AE network is the
complete 3D point cloud without missing data, and the output 3D
point cloud is the reconstruction of the input. The input and output
3D point clouds in training mode are shown in Figure 3.5. A 3D point
cloud with N points is represented as a N ×3 matrix, and each row of
the matrix is the 3D coordinates of a point defined as Pi = (x, y, z).
The encoder compresses an input 3D point cloud of N points into a
k dimensional feature vector vϵRk. Specifically, the combination of
1D convolution (Conv), batch norm (BN) and ReLU layers is used to
transform each point Pi into a point feature vector F . A point-wise
max pooling is placed after all feature extraction modules, ensuring
the global features are invariant to any permutations of a 3D point
cloud and producing a k-dimensional feature vector. The decoder
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aims to generate the reconstruction of the input 3D point cloud
based on the learned k-dimensional feature vector by using three
fully connected layers. The chamfer distance [91] is used as the loss
function to maximize the similarity between the output 3D point
cloud and the ground truth. Thus, the learned global features can
represent the 3D point cloud for the point cloud completion task.

During the testing, the input of the trained completion model is
partial 3D point clouds, and the trained model can output complete
3D point clouds based on learned global features extracted from the
encoder. The input and output 3D point clouds in testing mode are
shown in Figure 3.6.

3.5 Implementation Details

The experiments are conducted in two stages. A mono-depth network
is trained to predict depth for 3D point cloud reconstruction. The
3D point cloud completion is then achieved based on reconstructed
point clouds with a trained Endo-AE network. The unsupervised
mono-depth network and Endo-AE network are trained on an Nvidia
Titan X GPU with 12G memory and a CPU with 32G memory. The
implementation details for the two networks are explained as follows:

Hyper Parameters: The mono-depth network applies the same
hyper-parameters following the state-of-the-art depth learning net-
works [21] [20]. In terms of training the mono-depth network, all
input images are resized to 512×256 with a batch size of four. Adam
optimizer with an initial learning rate of 0.0001 and 50 epochs are
used for the training process. The weights defined in the total loss
are ωp = 0.5, ωv = 1, ωd = 0.1 and ωc = 1, respectively. In addition,
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6 skip connections are implemented, preserving intermediate infor-
mation during training to ensure the high quality of per-pixel depth
estimation. The first four kernel sizes of the encoder are 7, 7, 5, and
5, followed by ten kernel sizes of 3. The kernel size of the decoder in
each layer is the reverse order in the encoder.

The Endo-AE network applies the same hyper-parameters follow-
ing the state-of-the-art 3D point cloud processing networks [111] [37].
The encoder of the Endo-AE network consists of five layers of shared
1D convolution with 64, 128, 128, 256 and 128 filters, respectively.
The decoder consists of three fully connected layers with 256, 256
and 4096 × 3 filters, respectively. Adam optimizer is also used with
an initial learning rate of 0.0005, a batch size of 50 and 500 epochs.
The Endo-AE is trained with the input size of M1 ×3 and the ground
truth size of M2 × 3, generating the output point cloud with the
size of M3 × 3, where M1, M2 and M3 can be any number. In this
experiments, M1 = M2 = M3 = 4096.

Data Augmentation: To increase the robustness of the mono-
depth network and prevent over-fitting, images are randomly flipped
and the brightness and colour of images are changed. During the
Endo-AE training, 3D point clouds are augmented by applying a
random rotation matrix.

3.6 Evaluation Metrics

The 3D point cloud reconstruction and completion methods are eval-
uated with minimum matching distance (MMD). Minimum matching
distance (MMD) calculates the average distance in the matching
between two 3D point clouds. MMD_CD is based on the chamfer
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distance [91] (Equation 3.7), and MMD_EMD is about the Earth
Mover’s distance (EMD) [112] (Equation 3.8).

CD(Sout, Sgt)= 1
Sout

∑
pϵSout

min
qϵSgt

||p−q||2

+ 1
Sgt

∑
qϵSgt

min
pϵSout

||q−p||2
(3.7)

The chamfer distance calculates the average nearest point distance
between Sout and Sgt by finding the closest neighbour with O(nlogn)
complexity. In addition, Sout and Sgt can be 3D point clouds with
different sizes.

EMD(Spred, Sgt)=min
ϕ

∑
pϵSpred

∥p−ϕ(p)∥2 (3.8)

where ϕ : Spred →Sgt is bijection. The EMD distance minimizes the
distance between Spred and Sgt with O(n2) complexity. Note that
EMD requires the same sizes of Spred and Sgt.

A major difference between MMD_CD and MMD_EMD is that
calculating MMD_EMD is too expensive with O(n2) complexity and
takes more time than calculating MMD_CD with O(nlogn) com-
plexity. Another major difference between them is that MMD_CD
can calculate the average distance between two point clouds with
different sizes, whereas calculating MMD_EMD requires the two 3D
point clouds to have the same sizes.
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3.7 Results and Discussions

3.7.1 3D Point Cloud Reconstruction

In this section, the 3D point cloud reconstruction method is first
compared with a state-of-the-art learning-based method Godar et
al. [20] and two non-learning-based stereo image reconstruction
methods [16]. Secondly, 3D endoscopic point cloud datasets are
generated based on the proposed 3D point cloud reconstruction
method.

3.7.1.1 Comparison experiments

Evaluation Datasets: There are some endoscopic datasets gen-
erated by previous researcher projects, such as EndoVis 2019 Sub-
challenge dataset1, Laparoscopic Image to Image Translation Dataset
[113] and EndoAbS dataset [114]. EndoVis 2019 Sub-challenge
dataset may not be publicly downloadable. The laparoscopic Im-
age to Image Translation Dataset includes simulated monocular
images and the corresponding depth. However, this dataset does
not provide camera parameters and ground truth 3D point clouds
or ground-truth stereo correspondences that are required to train
the mono-depth learning network.

The EndoAbs dataset [114] is captured from soft phantoms of
abdominal organs with the aim of representing the real surgical
scenario as closely as possible. It consists of 120 images of the kidney,
liver and spleen, captured under 3 different endoscopic lighting
conditions by varying 3 different low light intensities, which poses
the challenge for evaluating the 3D reconstruction methods. 20

1https://endovissub2019-scared.grand-challenge.org/
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Fig. 3.7 Quantitative comparison on EndoAbS: (a) Images of kidney, liver and
spleen in EndoAbS dataset; (b) Results of learning-based Godar method; (c)
Results of traditional block matching algorithm from OpenCV; (d) Results of
traditional semi-global block matching algorithm; (e) Results of mono-depth.

ground truth 3D point clouds are also captured by the laser scanner.
To minimize the error during the evaluation, the ground truth 3D
point clouds are manually transformed (translated and rotated) in
the EndoAbS dataset to match the views of the images.

A new synthetic medical dataset is also created for the network
training by capturing stereo images and the corresponding ground
truth 3D point clouds under the same view using a 3D computer
modelling software2. Specifically, the synthetic dataset contains 200
stereo images and their corresponding depth images from the 3D

2https://www.autodesk.com/products/maya/
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liver and heart models. All images and corresponding depth are
captured by randomly rotating and translating the 3D liver and
heart models in the scene. The light in this dataset shines evenly in
all directions from the location of the light and every object in the
scene is illuminated by the light. Finally, the ground truth 3D point
clouds are extracted from 200 left frames and 200 corresponding
depth images using Equation 3.6.

Comparison with Learning-Based Method: The Godar [20]
and the mono-depth networks are trained on the publicly available
Laparoscopic/Endoscopic video datasets [26] [27]. The performance
of these two methods on the EndoAbS dataset is first compared. The
reconstructed 3D point clouds are shown in (b) and (e) in Figure 3.7.
The chamfer distance (CD) is calculated between reconstructed 3D
point clouds and ground truth 3D point clouds. Although the En-
doAbS dataset is captured under low light conditions, the CD results
on the kidney, liver and spleen for the mono-depth are 0.54533mm,
0.41444mm and 0.07512mm, showing better performance than Go-
dar’s with CD results of 0.76253mm, 0.49351mm and 0.09610mm.

The proposed 3D reconstruction method is also compared with
Godar’s on the synthetic medical dataset, as shown in (b) and (e)
in Figure 3.8. The CD results in Figure 3.8 show that the proposed
3D reconstruction method also outperforms Godar’s method on
the synthetic medical dataset. In addition, the average CD is also
calculated on the created synthetic medical dataset for the proposed
3D reconstruction method (0.01514mm), which outperforms Godar’s
method (0.01902mm).

Comparison with Stereo Image Reconstruction Meth-
ods: To assess the effectiveness of learning-based methods with
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Fig. 3.8 Quantitative comparison on the synthetic medical dataset: (a) Images
of liver and heart; (b) Results of learning-based Godar method; (c) Results of
traditional block matching algorithm from OpenCV; (d) Results of traditional
semi-global block matching algorithm; (e) Results of mono-depth.

47



non-learning-based stereo-image reconstruction methods, the pro-
posed method is compared with non-learning-based block matching
method3 (BM) and semi-global block matching (SGBM) [16]. BM
and SGBM directly use low-level image feature to search for matched
pixels in the left and right images of stereo pairs. As a result, the
quality of the generated 3D point cloud is usually poor, as shown
in (c) and (d) in Figures 3.7 and 3.8. The CD results show that
the proposed mono-depth outperforms BM and SGBM on both the
EndoAbS dataset and the synthetic medical dataset. In addition, the
average CD result on the synthetic medical dataset for mono-depth
is 0.01514mm, which shows better performance than BM and SGBM
with 0.29784mm and 0.49407mm.

3.7.1.2 Generated Endoscopic Datasets

3D endoscopic point cloud datasets are generated based on depth in-
formation generated from publicly available Laparoscopic/Endoscopic
video datasets [26] [27] using the proposed 3D point cloud recon-
struction method.

Five stereo endoscopic videos from the datasets [26] [27] are
chosen to generate depth information, including Abdomen Wall,
Uterine Horn, Liver, Nephrectomy scene 1 and Nephrectomy scene
2, respectively. The stereo videos are divided into 35,000 left frames
and 35,000 right frames. Around 10,000 Nephrectomy left frames
and 10,000 Nephrectomy right frames are randomly selected as the
input to train the mono-depth network. Once the model has been
trained, the mono-depth network can generate the per-pixel depth
from the monocular image. Approximately 35,000 depth images

3https://opencv.org
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Fig. 3.9 Estimated depth from five different endoscopic image datasets, which
are Abdomen Wall, Uterine Horn, Liver, Nephrectomy scene 1 and Nephrectomy
scene 2, from left to right.

from 35,000 left frames are generated, as shown in Figure 3.9. The
five left frames in Figure 3.9 are randomly selected from Abdomen
Wall, Uterine Horn, Liver, Nephrectomy scene 1 and Nephrectomy
scene 2, respectively.

Based on the generated depth images, approximately 35,000 in-
vivo 3D point clouds are generated by using Equation 3.6. The
generated datasets consist of five endoscopic point cloud categories,
including Abdomen Wall, Uterine Horn, Liver, Nephrectomy scene 1
and Nephrectomy scene 2. The datasets are made publicly available
for researchers, which can be used for learning-based methods as
training datasets and evaluating 3D reconstruction methods. Each
dense 3D point cloud contains approximately 100,000 points on
average. Each category is divided into six parts and the first frame
of each part is displayed, as shown in Figure 3.10. The points are
extracted from every pixel of the input image, thus, points in a
reconstructed 3D point cloud are evenly distributed. However, the
points in the dark or black area are considered as outliers and have
been removed when extracting 3D point clouds. Therefore, the
points are sparse in the dark or black area, as shown in the 7th and
8th rows in Figure 3.10. The margins of endoscopic images, i.e., the
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black margins in I2, are due to the movement of the instrument that
is not horizontally and vertically positioned. Thus, the margins are
removed when extracting 3D point clouds. The datasets contain five
classes of in-vivo datasets, including approximately 37,000 3D point
clouds in total.

3.7.2 3D Point Cloud Completion

3.7.2.1 Evaluation of Completion Performance

For the 3D point cloud completion task, five class-specific Endo-AE
networks are trained separately with five classes of endoscopic point
cloud datasets generated in Section 3.7.1.2. A two-classes Endo-AE
network is also trained with two synthetic 3D models, as mentioned
in Section 3.7.1.2.

For each class, 90% of 3D point clouds are randomly selected as
the training data and the remaining 10% as the testing data. To
evaluate the trained Endo-AE model on partial 3D point clouds, the
remaining 10% of testing data is used to create partial 3D point
clouds with different missing rates. First, a point is randomly selected
from each testing 3D point cloud with the size of N × 3, where N is
the total number of points in a 3D point cloud. Second, the nearest
N ∗ delete_rate points around that selected point are deleted to
create partial 3D point clouds with different missing rates, where
delete_rate is the rate of deletion, i.e., 0.2, 0.4, 0.7, etc. Third,
each partial 3D point cloud is randomly sub-sampled to 4096 points.
Finally, for each class of testing datasets, 7 groups of partial 3D
point clouds testing data with various missing rates of [20%, 30%,
40%, 50%, 60%, 70%, 80%] are generated. The examples of partial
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Fig. 3.10 Results of 3D point cloud reconstructions of public Laparo-
scopic/Endoscopic video: The 3D point cloud is extracted from every frame
of the video. Ii represents Images, and Pi is the corresponding extracted 3D point
clouds related to Ii. Note that I4 and I5 are from the same video stream, but the
scene changes from the middle of the video. Thus, it has been divided into two
separate datasets.
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Fig. 3.11 3D point cloud completion of endoscopic datasets: (a) Original 3D point
clouds of five endoscopic datasets (around 100,000 points per point cloud); (b)
Ground-truth point clouds (4096 points per point cloud) generated from (a); (c)
Point cloud inputs with 60% of missing data generated from (a); (d) Completion
results; (e) Point cloud inputs with 20% of missing data generated from (a); (f)
Completion results.

3D point clouds with 60% and 20% missing data are shown in (c)
and (e) in Figure 3.11.

The visualizations of 3D point cloud completion results with 60%
and 20% of missing data for five class-specific Endo-AE networks
are shown in Figure 3.11. All completion results of MMD_CD and
MMD_EMD in (f) are smaller than that in (d), indicating that the
less missing input data, the more accurate the recovered 3D point
clouds. P1, P2, P3, P4 and P5 show the effectiveness of the Endo-AE
with the 20% and 60% of missing rates.

The completion result is unstable in the dataset of P2 when the
missing rate reaches 60%. The unstable recovery is due to the large
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Fig. 3.12 Result of Endo-AE on partial point cloud with multiple missing areas:
(a) A ground truth of Abdomen Wall; (b) A point cloud input with multiple
missing areas and 20% of missing rate; (c) Completion result of Endo-AE.

deformation of the organ in the video, which is caused by surgical
instruments. Thus, it is difficult for a neural network to extract
common global features for all different deformation degrees. In
addition, an example of a 3D completion result on a partial point
cloud with multiple missing areas and a 20% of the missing rate
is visualized, as shown in Figure 3.12, which indicates that the
Endo-AE can process various partial 3D point clouds with multiple
missing areas. Figures 3.11 and 3.12 show that the Endo-AE model
can deal with the partial input 3D point cloud with various missing
areas and rates.

The K-nearest neighbour (KNN) is calculated to find the corre-
sponding points between the ground-truth 3D point cloud and our
generated 3D point cloud, where K is 1. After finding the nearest
neighbour between them, the colour of each point is extracted from
the ground truth and duplicated to the corresponding point in the
generated 3D point cloud, as shown in Figures 3.11 and 3.12.

The two-classes Endo-AE network completion results with 50%
of missing regions on simulated 3D heart and liver models are shown
in Figure 3.13, which presents superior completion results.
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Fig. 3.13 3D point cloud completion of synthetic datasets: (a) Ground-truth;
(b) Inputs with 50% of missing data; (c) Completion results; (d) Overlay of
ground-truth point clouds and completion results.

Figure 3.14 shows the average values of each evaluation metric
calculated between the generated point cloud and the ground truth
on 7 groups of partial 3D point clouds testing data. MMD_CD and
MMD_EMD show that the error of missing data repairing increases
gradually as more regions are occluded. The average MMD_CD on
seven datasets is 0.00236mm when the missing rate of input data
is 20%. Even if the missing rate reaches 60%, the quality of the
Endo-AE completion result is still good with the average MMD_CD
0.00804mm. The results of MMD_EMD on Nephrectomy scene 1
(D4) show better performance when the missing rate is 40% than
20% and 30%. The reason is that some partial inputs in testing sets
are similar to each other due to the missing data of incomplete point
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Fig. 3.14 The quantitative completion results with different missing rates: D1 to
D7 represent Abdomen Wall, Uterine Horn, Liver, Nephrectomy1, Nephrectomy2,
Simulated heart and Simulated liver, respectively. The missing rates for evaluation
are 20%, 30%, 40%, 50%, 60%, 70% and 80%.

clouds randomly removing consecutive points from original point
clouds.

3.7.2.2 Comparison with GANs

The generative auto-encoder-based Endo-AE is compared with an-
other generative network, generative adversarial network (GAN), by
training a raw GAN and a latent-space GAN (l-GAN) [37], respec-
tively.

Raw GAN operates directly on 3D point clouds, and the generator
of the raw GAN consists of five fully connected layers with ReLU,
producing a 4096×3 point cloud. The architecture of the discrimina-
tor is identical to the encoder of the Endo-AE with leaky ReLUs and
without any batch normalization, and a sigmoid activation function
is placed after the discriminator.

A raw GAN is trained on a single class of Liver and one of the
3D completion results is shown in Figure 3.15. The MMD_CD and
MMD_EMD of the proposed Endo-AE are 0.00138 mm and 0.14223
mm, showing better performance than raw GAN with MMD_CD
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Fig. 3.15 Results of GAN and Endo-AE with single-class training: (a) An original
3D dense point cloud of Liver; (b) A point cloud input with 20% of missing data;
(c) Output of GAN; (d) Completion result of Endo-AE.

Fig. 3.16 Results of GAN and Endo-AE with multi-classes training: (a) An original
3D dense point cloud of Abdomen Wall; (b) A point cloud input with 20% of
missing data; (c) Output of GAN; (d) Completion result of Endo-AE.

0.50478 mm and MMD_EMD 0.65328 mm. In addition, the Endo-
AE also outperforms raw GAN on single-class training when the
missing rate of testing data reaches 30%, 40%, 50%, 60%, 70% and
80% based on the average values of MMD_CD and MMD_EMD.

Raw GAN is not able to generate a specific 3D point cloud with
respect to the input data for multi-classes training, which means
the output of raw GAN can be similar to any data in multi-classes
datasets. Figure 3.16 shows the output of raw GAN and Endo-
AE, respectively. The input data (b) is a 3D point cloud of the
Abdomen Wall. Endo-AE can generate the complete 3D point cloud
(d) according to the input (b), but the output of raw GAN (c) is
similar to the data in Uterine Horn. An l-GAN is also trained,
passing data through a pre-trained Endo-AE, the same problem with
raw GAN occurs. Thus, although raw GAN and l-GAN can produce
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complete 3D point clouds, it is not reliable for endoscopic 3D point
cloud completion.

In addition, even if raw GAN and l-GAN are trained with a single
class of endoscopic 3D point clouds, the same problem still occurs.
One major reason is that GAN randomly generates data based on
the whole training set and does not find the best representation of
the corresponding partial input 3D point cloud. Another reason is
the specialist in endoscopic data. Because the in-vivo endoscopic
data is varied and deformable, differences can be large even between
the closest frames in the same dataset.

3.7.3 Discussion and Limitation

As shown in Figure 3.17, although the proposed mono-depth network
outperforms the state-of-the-art learning-based method (Godar) and
non-learning-based stereo 3D reconstruction algorithms (BM and
SGBM), the quality of the extracted 3D point cloud is still affected
by low light, dark, over-exposed conditions, shadows and smoke. The
low light condition, darkness and shadows cause inconsistent and
wrong depth information, which is because the network considers
the low light and dark areas to be far away from the endoscope. The
over-exposed condition causes deformation in the extracted 3D point
cloud, as shown in the right red box in Figure 3.17 (c). One possible
reason is that the over-exposed areas are texture-less and are difficult
to calculate the disparities. The smoke also affects the estimation of
depth information, the network considers a large amount of smoke
as part of the scene and estimates the depth of the smoke, as shown
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Fig. 3.17 Effects of low light, over-exposed conditions, shadows and smoke. Red
boxes show inconsistent and wrong depth and green boxes show a better quality
of depth estimation.

in the red box in Figure 3.17 (d). The network also tolerates a small
amount of smoke, as shown in the green box in Figure 3.17 (d).

Figure 3.14 shows the high-quality completion results of the
Endo-AE model on seven datasets in terms of various missing rates.
Figures 3.15 and 3.16 also illustrate that the Endo-AE outperforms
GANs. The limitation of the proposed Endo-AE network is that the
output of the complete 3D point cloud is regenerated rather than
repaired by increasing the number of points in missing areas.

In the proposed framework, the mono-depth and Endo-AE net-
works are trained separately. Because the 3D point cloud completion
network should be trained using ground-truth 3D point clouds for
supervision, and there are no ground-truth 3D point clouds for the
public laparoscopic/endoscopic stereo video datasets. Therefore, the
depth learning network is first trained to generate the 3D endoscopic
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point clouds. These generated 3D endoscopic point clouds are con-
sidered as ground-truth 3D point clouds for training the 3D point
cloud completion network. Theoretically, the mono-depth and the
Endo-AE networks can be trained together once the ground-truth
endoscopic 3D point clouds are obtained. In the future, these two
networks will be trained together when the ground-truth endoscopic
3D point clouds are obtained.

3.8 Conclusion

A novel framework to recover dense 3D point clouds from single
endoscopic images has been proposed. The framework includes an
unsupervised mono-depth network that generates the depth from a
single endoscopic image. Based on the mono-depth learning network,
a dense 3D point cloud can be extracted from an endoscopic image.
The seven groups of in-vivo 3D endoscopic point cloud datasets have
been created and made publicly available to researchers. A generative
Endo-AE network is then trained to complete 3D point clouds with
various degrees of missing data. Experimental results show the
capability of the proposed computational framework for producing
dense 3D endoscopic point cloud datasets and its effectiveness in
repairing defects of real endoscopic point cloud datasets and synthetic
medical models.

In the next chapter, a 3D point cloud completion network is pro-
posed to generate points only in missing areas instead of regenerating
all points in the output.
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Chapter 4

TreeNet: Structural Preserving
for Multi-class 3D Point Cloud
Completion

In this chapter, a novel deep learning network (TreeNet) is pro-
posed for 3D point cloud completion. The objectives of this chapter
are to focus on multi-class training and missing points generation
with original structure-preserving. Experimental results show that
TreeNet outperforms five state-of-the-art learning-based methods
on the public 3D real-world object dataset (i.e. cars, tables) and
exhibits good generalization to unknown classes that are not trained.
The proposed TreeNet is also evaluated in the previously proposed
computational framework (Chapter 3) on endoscopic scenes, which
shows the effectiveness of TreeNet for medical data.

4.1 Introduction

3D point clouds, captured by various sensor technologies such as laser
and RGB-D scanners and depth cameras, suffer from large missing
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data due to complicated occlusions, unreliable measurements, limited
viewing angles and the resolution of various sensors in dealing with
texture-less regions of the scene. Therefore, generating a complete
3D point cloud (i.e. 3D point cloud completion) from a captured
incomplete point cloud is an essential task for a wide range of 3D
vision applications [4] [24] [8] [25]. The 3D point cloud completion
networks [38] [39] [40] [42] [41] have achieved the state-of-the-art
completion results. However, there are two shared problems with
these methods. First, these methods perform poorly on multi-
classes, even a single class that contains mostly different shapes.
These methods produce low-quality 3D point clouds on multi-classes
training data and lose structural and spatial details, such as sharp
edges and topology changes. Second, these methods lose original
structural and spatial details in the final output due to the fact that
they regenerate the entire 3D point cloud and do not separate the
reconstructed partial input from the missing points in the final output.
Here, an important observation has been made that the partial input
should be fully preserved rather than regenerated. Based on this
original idea, a novel deep learning-based network is proposed by
devising hierarchical tree-based decoders to build a learning network
- TreeNet for solving the two problems.

TreeNet has two networks in tree structures: (i) TreeNet-multiclass
focuses on multi-class training with a specific class of the point cloud
completion task on each sub-tree to improve the quality of the
3D point cloud output; (ii) TreeNet-binary focuses on generating
points in missing areas and fully preserving the original partial input.
TreeNet-multiclass and TreeNet-binary are both network decoders
and can be trained independently. The TreeNet decoder is the
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Fig. 4.1 TreeNet architecture. TreeNet combines TreeNet-multiclass and TreeNet-
binary.

combination of the TreeNet-multiclass and TreeNet-binary, which
is trained with an encoder from existing methods (i.e. PointNet
encoder).

Three novel forward propagation methods are proposed to train
the TreeNet-multiclass, TreeNet-binary and TreeNet, respectively.
First, to train the TreeNet-multiclass for multi-class 3D point cloud
completion, an activation gate is proposed for the standard forward
propagation to activate and deactivate sub-trees of the root node
by assigning each class of a 3D completion task to its corresponding
activated sub-tree. Unlike the standard backward propagation, the
gradient of the loss function in TreeNet-multiclass is only calculated
on the activated sub-trees during each batch of the training. Second,
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the forward propagation for TreeNet-binary splits features of the root
node to a binary tree structure where the left leaf node reconstructs
the partial input and the right leaf node generates points in missing
areas. Third, TreeNet is trained using the combined forward propa-
gation methods of TreeNet-multiclass and TreeNet-binary. The pro-
posed TreeNet-multiclass, TreeNet-binary and TreeNet are compared
with five state-of-the-art learning-based methods on fifty classes of
the public Shapenet dataset [115] and unknown classes [115], which
shows that the proposed models provide significant improvements
in the overall quality and exhibit strong generalization to unknown
classes that are not trained.

4.2 Methodology

Given a partial 3D point cloud input with N points where each point
is defined as Pi = (x, y, z), the novel tree-based decoder-TreeNet
generates M missing points. TreeNet decoder, as shown in Figure 4.1,
contains TreeNet-multiclass and TreeNet-binary. TreeNet-multiclass
(Section 4.2.1) is for multi-class 3D point cloud completion, as shown
in Figure 4.2. TreeNet-binary (Section 4.2.2) generates points in
missing areas and preserves the original partial input, as shown in
Figure 4.4. Currently, TreeNet uses TreeNet-binary as the sub-tree of
the root node in TreeNet-multiclass and achieves the final structure
of TreeNet. However, this does not limit the TreeNet-multiclass
and TreeNet-binary to be used as individual decoders. TreeNet-
multiclass, TreeNet-binary and TreeNet are trained using their own
forward propagation methods (Section 4.2.3) and a combined chamfer
distance [91] as loss (Section 4.2.4) and within an auto-encoder
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Fig. 4.2 TreeNet-multiclass architecture. Each sub-tree is designed to focus on
a specific class of 3D point cloud completion tasks during the training. Once
trained, these sub-trees can be used for unknown classes. (Refer to Section 4.3.5
for more details about unknown classes.)

framework that includes a PointNet [1] based encoder as a first
stage.

4.2.1 Multi-Class Point Cloud Completion

To train a class-invariant model for multi-class 3D point cloud com-
pletion, TreeNet-multiclass assigns each class of the 3D completion
task to a specific sub-tree of its root node, where each of the sub-tree
is identical to others and designed to focus on generating 3D point
clouds from a specific class. To this end, the number of branches to
the root node is identical to the number of classes in the training
data. The architecture of the TreeNet-multiclass is shown in Fig-
ure 4.2. The root node is a feature vector of partial inputs generated
from a PointNet-based encoder. The 1D convolution (Conv), batch
norm (BN) and ReLU layers are used for generating features at
each level of the tree. The root node is connected with D sub-trees
that correspond to D classes of data. To assign D classes of 3D
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completion tasks to D corresponding sub-trees of the root, an activa-
tion gate (Equation 4.2) is proposed for the forward propagation to
activate and deactivate the sub-trees in the decoder, as illustrated
in Section 4.2.3.1. Each node contains the features extracted from
its connected node in the previous layer. The feature only passes
through its corresponding activated sub-tree, and other sub-trees
will be temporarily deactivated. The deactivated sub-trees will be
activated again when the corresponding features of input data pass
through. Therefore, these sub-trees do not share weights with each
other and focus on each class of the 3D completion task. Each
leaf node in each sub-tree represents a complete 3D point cloud.
TreeNet-multiclass is trained by using the proposed novel forward
and backward method described in Section 4.2.3 and the chamfer
distance loss as shown in Equation 4.5.

Assuming there are T 3D point clouds in the training set, including
D classes of datasets. The B training point clouds in each batch of
the training are randomly selected from the training set, and the
whole training set is trained with E epochs. Assuming there are
Q different classes of data contained in each batch and Q varies in
each batch. Thus, Q different sub-trees are activated at the same
time for each batch of training and D − Q different sub-trees are
deactivated. Because Q varies in each batch of training, there are
T
B × E different situations of the forward propagation during the
training, and the values in the activation gate are automatically
updated T

B × E times based on the class of the randomly selected
data. Two possible situations of forward propagation are shown for
training during two different batches of training in Figure 4.3. The
second sub-tree from the left to the right is deactivated in (a) but
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Fig. 4.3 Forward propagation. The forward propagation only operates on the
activated nodes in each batch of training. (a) One possible situation during a
batch of training. (b) Another possible situation during another batch of training.

activated in (b). The first sub-tree from the left is deactivated in
(b) but activated in (a).

Once trained, these sub-trees can be used for unknown classes. A
partial 3D point cloud from an unknown class can be passed through
the encoder to all sub-trees in the decoder. The activation gate is
disabled for unknown classes. Thus, there are D different completion
outputs from D sub-trees. Refer to Section 4.3.5 for more details
about unknown classes.

Since the output of the TreeNet-multiclass decoder is a complete
3D point cloud by regenerating all points in the output, in the next
section, the tree-based decoder is further designed to generate points
in missing areas and preserve the original partial input structure
(Section 4.2.2).
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Output_R are used to calculate the combined loss during training.

4.2.2 Missing Points Generation with Original Structure
Preserving

To generate points in missing areas and fully preserve the structure of
the original partial input, a novel TreeNet-binary decoder is further
proposed to follow a binary tree structure. The architecture of the
TreeNet-binary is shown in Figure 4.4. During the training, the left
leaf node produces the reconstruction of the partial input, and the
right leaf node generates points in missing areas. To make the output
global shape similar to the ground truth, the outputs from the left
and the right leaf nodes are used to calculate the combined loss
for the network training, as shown in Equation 4.6 in Section 4.2.4.
Once trained, the left sub-tree is disabled and only the right sub-tree
is used. The final output is the combination of the output of the
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right leaf node and the partial input. Therefore, the original partial
input is fully preserved.

Most importantly, there are two uses for the proposed TreeNet-
binary. First, the TreeNet-binary can be considered as an individual
decoder and trained with the novel forward propagation, as illus-
trated in Equation 4.3 in Section 4.2.3.1. Second, the TreeNet-binary
is used as the sub-tree of the root node in TreeNet-multiclass and
the final structure of TreeNet is achieved.

4.2.3 Forward and Backward Propagation in Tree-Based
Decoder

In this section, the forward and backward propagation methods
are illustrated for training TreeNet-multiclass, TreeNet-binary and
TreeNet, respectively.

4.2.3.1 Forward Propagation

Based on the design of the TreeNet-multiclass, an activation gate is
proposed to activate and deactivate sub-trees of the root node for
novel forward propagation. The features pass through all neurons in
standard forward propagation (Equation 4.1), whereas the features
only pass through their corresponding activated sub-tree in the
proposed forward propagation for TreeNet-multiclass (Equation 4.2).

z
(l+1)
i = w

(l+1)
i y

(l)
i + b

(l+1)
i ; y

(l+1)
i = f(z(l+1)

i ) (4.1)

where i indexes the hidden neuron in each layer and l indexes the
hidden layer. w

(l+1)
i and b

(l+1)
i denote the i-th weight and bias at

layer l + 1. y
(l)
i is the i-th features of inputs at the layer l. z

(l+1)
i is
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the i-th feature of inputs at the layer l + 1. f(·) is any activation
function, e.g. Tanh.

Given D classes of training data, the number of sub-trees in
TreeNet-multiclass is D. Let d ∈ {0, 1, ..., D} and defines the d-th
sub-tree from the left to the right. Assuming the feature size of the
root node is reshaped to [B, D, m], where B is the batch size and
[D, m] is the size of a feature vector F from a partial input 3D point
cloud. Thus, there are B feature vectors in the root node preparing
to pass through the tree. The purpose is to assign B feature vectors
to their corresponding sub-trees during each batch of training. An
activation gate (Equation 4.2) activates and deactivates sub-trees of
the root node, and the size of the activation gate is [B, D, m] which
is as same as the feature size of the root node. Thus, there are D

inner gates in the activation gate, where each inner gate gd is a vector
with the size of m × 1 and all values in each gd are the same, either
all 0 or all 1. Each inner gate corresponds to a sub-tree and decides
whether the corresponding sub-tree is activated or deactivated. For
the sub-trees with the corresponding features F coming through, all
values in gd become 1, and sub-trees without the corresponding F

values in gd become 0. Activation_Gate is an element-wise product
with B feature vectors in the root node to activate and deactivate
sub-trees. Thus, the forward propagation for TreeNet-multiclass is
defined by Equation 4.2.

Activation_Gate = [g1, g2, g3, ..., gD]

ỹsubtree_Root = Activation_Gate ∗ yRoot

zd(l+1)

i = wd(l+1)

i ỹd(l)

subtree_Rooti + bd(l+1)

i (d ∈ {0, 1, ..., D})

yd(l+1)

i = f(zd(l+1)

i )

(4.2)

69



where ∗ denotes an element-wise product. yRoot denotes the features
in the root node of the tree. ỹsubtree_Root denotes features in the root
of each sub-tree. d defines the d-th sub-tree from the left to the
right. l indexes the hidden layer and i indexes the hidden neuron
in each layer. ỹd(l)

subtree_Rooti denotes the i-th activated or deactivate
neuron in d-th sub-tree at the layer l. wd(l+1)

i and bd(l+1)

i denote the
i-th weight and bias in d-th sub-tree at layer l + 1. zd(l+1)

i denotes the
i-th feature vector in d-th sub-tree at the layer l + 1. yd(l+1)

i denotes
the i-th feature vector in d-th sub-tree at the layer l + 1. f(·) is a
Tanh activation function.

The forward propagation for TreeNet-binary, as defined by Equa-
tion 4.3, is proposed to train TreeNet-binary.

yRST = yRootidx
(idx = 0, ..., m − 1)

yLST = yRootidx
(idx = m, ..., 2m)

z
(l+1)
RST (i) = w

(l+1)
RST (i)y

(l)
RST (i) + b

(l+1)
RST (i); y

(l+1)
RST (i) = f(z(l+1)

RST (i))
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(l+1)
LST (i) = w

(l+1)
LST (i)y

(l)
LST (i) + b

(l+1)
LST (i); y

(l+1)
LST (i) = f(z(l+1)

LST (i))

(4.3)

where yRootidx
denotes the feature vector in the root node of the

tree. yRST and yLST denote features for the right and left sub-trees,
respectively. m is the feature size of the left and right sub-trees.
y

(l)
RST (i) and y

(l)
LST (i) denote the i-th neuron in the right and left sub-

trees at the layer l, respectively. w
(l+1)
RST (i) and b

(l+1)
RST (i) denote the i-th

weight and bias for right sub-tree at layer l + 1. w
(l+1)
LST (i) and b

(l+1)
LST (i)

denote the i-th weight and bias for left sub-tree at layer l + 1. z
(l+1)
RST (i)

and z
(l+1)
LST (i) denote the i-th feature vector in right and left sub-trees

at layer l +1, respectively. y
(l+1)
RST (i) and y

(l+1)
LST (i) denote the i-th feature
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vector after an activation function f(·) in right and left sub-trees at
layer l + 1, respectively.

The TreeNet combines TreeNet-multiclass and TreeNet-binary
and is trained using the combined forward propagation of TreeNet-
multiclass and TreeNet-binary, as defined by Equation 4.4.

Activation_Gate = [g1, g2, g3, ..., gD];

ỹsubtree_Root = Activation_Gate ∗ yRoot;

ỹd(l)

RST = ỹd(l)

subtree_Rootidx
(d ∈ {0, 1, ..., D})

(idx = 2d × m, ..., (2d + 1) × m − 1);

ỹd(l)

LST = ỹd(l)

subtree_Rootidx
(d ∈ {0, 1, ..., D})

(idx = (2d + 1) × m, ..., (d + 1) × 2m − 1);

zd(l+1)
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RST (i) + bd(l+1)
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LST (i) = wd(l+1)
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LST (i) + bd(l+1)

LST (i); yd(l+1)

LST (i) = f(zd(l+1)

LST (i));

(4.4)

where ỹd(l)

RST and ỹd(l)

LST denote the d-th right and left sub-trees at
layer l, respectively. m is the feature size of each sub-tree root node
and is also the size of each inner gate gd. wd(l+1)

RST (i) and bd(l+1)

RST (i) are the
i-th weight and bias in d-th right sub-tree at layer l + 1. wd(l+1)

LST (i)

and bd(l+1)

LST (i) are the i-th weight and bias in d-th left sub-tree at layer
l + 1. yd(l+1)

RST (i) and yd(l+1)

LST (i) denote the i-th feature vector after an
activation function f(·) in d-th right and left sub-trees at layer l + 1,
respectively.

4.2.3.2 Backward Propagation

Backward propagation (BP) is the major learning procedure that
repeatedly adjusts the weights and biases of the connections in the
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Fig. 4.5 Backward propagation. The backward propagation only operates on the
activated nodes in each batch of training. (a) One possible situation during a
batch of training. (b) Another possible situation during another batch of training.

network to minimize a measure of the difference between the output
and the ground truth. Since the values of nodes in deactivated
sub-trees are zero, the gradient of the loss function in the backward
propagation is only calculated on the activated sub-trees during each
batch of training. Whereas the existing learning-based methods
for 3D point cloud completion [37] [38] [39] [40] [42] [41] need all
neurons in the decoder to participate in backward propagation during
training. Therefore, TreeNet is more efficient and effective in training
multi-classes of data. Similarly to forward propagation, two possible
situations of backward propagation are shown during two different
batches of training in Figure 4.5. The first sub-tree of the root node
from the left to the right is deactivated in (a) but activated in (b).
The second sub-tree of the root node from the left to the right is
activated in (a) but deactivated in (b). The last sub-trees to the
right are all deactivated in both (a) and (b).
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4.2.4 Loss Function

The loss function for 3D point cloud completion measures the dif-
ference between the output 3D point cloud Soutput and the ground
truth point cloud Sgt. The loss is defined to be invariant to any
permutation of 3D point clouds in both Soutput and Sgt. Similarly
to the state-of-the-art methods [38] [39] [40] [42] [41], the chamfer
distance (CD) [91] is also used in the loss function.

CD(Soutput, Sgt)= 1
Soutput

∑
xϵSoutput

min
yϵSgt

||x−y||2

+ 1
Sgt

∑
yϵSgt

min
sϵSoutput

||y−x||2
(4.5)

The chamfer distance calculates the average nearest point dis-
tance between Soutput and Sgt by finding the closest neighbour with
O(nlogn) complexity. In addition, Soutput and Sgt can be the different
sizes of 3D point clouds.

The loss function for TreeNet-multiclass is CD, as illustrated
in Equation 4.5. Based on the chamfer distance, the final loss
functions for TreeNet-binary and TreeNet are the same, as defined
in Equation 4.6.

Loss1 = CD(SOutput_L, SGT_L)

Loss2 = CD(SOutput_R, SGT_R)

Loss3 = CD(SOutput_L&R, SGT_Whole)

Loss = (λ1 · Loss1 + λ2 · Loss2) + Loss3

(4.6)

where Output_L is the output of the left leaf node, and GT_L is
the ground truth corresponding to the Output_L. Output_R is
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the output of the right leaf node, and GT_R is the ground truth
corresponding to the Output_R. Output_L&R is the combination
of the Output_L and Output_R, and GT_Whole is the ground
truth corresponding to the Output_L&R. λ is the corresponding
weight to balance the effect of gradients of the backward propagation.

4.3 Experiments

The tree-based decoders are trained within an auto-encoder frame-
work that includes a PointNet-based encoder [39]. An Nvidia Geforce
2080Ti GPU with 12G memory is used for network training. Three-
stage experiments are conducted. First, a set of experiments are
conducted to decide the final design of the TreeNet-multiclass,
TreeNet-binary and TreeNet, including the effectiveness of the ex-
isting point cloud encoders, depth of the trees and values of λ in
the loss function (Section 4.3.3). Second, the TreeNet-multiclass,
TreeNet-binary and TreeNet are compared with the state-of-the-art
methods [38] [39] [40] [42] [41] on testing datasets from trained classes
(Section 4.3.4). Third, the generalization ability of each network is
evaluated on unknown classes that are never trained (Section 4.3.5).
Similar to the state-of-the-art methods [38] [39] [40] [42] [41], the
chamfer distance (Equation 4.5) is used as the evaluation metric to
compare the output 3D point clouds with the corresponding ground
truth.

4.3.1 Implementation Details

The TreeNet-multiclass, TreeNet-binary and TreeNet are trained for
600 epochs with a batch size of 32, a learning rate of 0.005, and an
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adagrad optimizer. TreeNet-binary and TreeNet have L = 7 levels
for generating the output 3D point cloud with the size of 2048 × 3,
and TreeNet-multiclass has L = 3 levels. The weights defined in
the total loss for TreeNet-binary and TreeNet are λ1 = 0.2 and
λ2 = 0.8. The level of the tree and the weights in the loss function
are illustrated from the ablation studies in Section 4.3.3.2.

For TreeNet, the feature size for the tree root is 1024, and the
feature size for each sub-tree root is 2048. The filter sizes for
the left sub-tree in each level are [1024, 1536, 2048, 2560, 1024 ×
3]. The filter sizes for the right sub-tree in each level are also
[1024, 1536, 2048, 2560, 1024 × 3]. The class label of each partial
input 3D point cloud is automatically saved and decides the values
in Activation_Gate(l) (Equations 4.2 and 4.4) during the training.

As shown in Figure 4.1, TreeNet is trained with the input size of
N × 3 and three ground truth sizes of N1 × 3, N2 × 3 and N3 × 3,
generating the output 3D point cloud with the sizes of M1 × 3 and
M2 × 3. Once trained, the size of the final output 3D point cloud
is (N + M1) × 3. Note that N , N1, N2, N3, M1 and M2 can be
any number. In the experiment, N = 1024, N1 = 512, N2 = 1024,
N3 = 2048, M1 = 1024 and M2 = 1024.

4.3.2 Datasets

Training and Testing Datasets. For a fair comparison, the
ShapeNetCore [115] dataset is used as the training and testing
datasets following FoldingNet [38], PCN [39], TopNet [40], PMP-
Net [42] and Disp3d [41]. ShapeNetCore [115] is composed of 55
object classes with more than 50,000 3D point clouds, where each
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3D point cloud contains 2048 points. The ShapeNetCore [115] 3D
point cloud dataset is a subset of the full ShapeNet [115] 3D mesh
dataset. The 2048 points in each 3D point cloud have been randomly
down-sampled from the 3D meshes, thus, points are randomly dis-
tributed in each 3D surface. Each class of objects are categorized by
global shapes and geometric clues from human experts. Each class
contains 3D objects (e.g. laptops, cars, buses, pillows, lamps, sofas,
tables, caps, mugs, vessels and etc.).

For the ShapeNetCore dataset of the 8 classes (29,774 point
clouds), the data used for training is 97%, and the data used for
testing is 3%. This percentage of dataset splitting used is followed
by the recent state-of-the-art methods PCN [39], TopNet [40], PMP-
Net [42] and Disp3d [41]. This dataset includes airplanes, cabinets,
cars, chairs, lamps, sofas, tables and vessels.

In addition to the 8 classes, the further 42 classes in ShapeNetCore
are randomly selected and combined with the 8 classes of ShapeNet-
Core. This dataset contains 50 classes (51,188 point clouds). The
data used for training is 90%, and the data used for testing is 10%.
The testing dataset is not used for training and only for testing.
This dataset includes airplanes, lamps, mugs, bowls, caps, laptops,
buses, pillows, etc.

Since all 3D point clouds in ShapeNetCore are complete 3D point
clouds, the partial 3D point clouds are created from all training and
testing sets. During each epoch of training, the partial 3D point
clouds are created from the training set with missing rates from 20%
to 50%. During the testing, the partial inputs are created from the
testing set with missing rates from 20% to 50%. The removed areas
are selected from k nearest points around a randomly selected point.
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Table 4.1 Encoder analysis: Quantitative comparison of the TreeNet against
previous works using different encoders. E represents the encoder, and D is the
TreeNet decoder. The encoders in TopNet and PCN are identical. The chamfer
distance is reported multiplied by (103).

Methods CD

PointNet [1](E) + TreeNet(D) 1.002

PointNet++ [70](E) + TreeNet(D) 7.284

AE [37](E) + TreeNet(D) 1.267

PCN [39]/TopNet [40](E) + TreeNet(D) 0.817

Testing Dataset from Unknown Classes. To evaluate the
robustness and generalization ability of a network, the remaining
five classes of the ShapeNetCore dataset are used as the unknown
classes for the evaluation, including cameras, baskets, stoves, towers
and printers. These five unknown classes consist of 843 3D point
clouds that are not trained and strange to all networks. The testing
partial point clouds are created with 50% of the missing rate.

4.3.3 Ablation Studies

In this section, the results of the ablation studies are presented to
analyse the effectiveness of four state-of-the-art PointNet-based en-
coders for feature extraction modules in methods [1] [70] [37] [39] [40]
and the tree-based decoders. Following PCN [39], TopNet [40], PMP-
Net [42] and Disp3d [41], the model training and testing are based
on the same 8 classes of the ShapeNetCore datasets.
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Table 4.2 Quantitative comparison between different levels of the proposed net-
works tested on 8 classes of testing data. The chamfer distance is reported
multiplied by (103).

Level 3 4 5 6 7 8

TreeNet-multiclass 1.31 1.37 1.38 1.37 1.47 1.45

TreeNet-bianry 1.999 1.098 0.990 0.989 0.919 0.957

TreeNet 1.065 0.853 0.853 0.853 0.817 0.828

4.3.3.1 Encoder Analysis

The effectiveness of five state-of-the-art PointNet-based encoders are
analysed in PointNet [1], PointNet++ [70], AE [37], PCN [39] and
TopNet [40].

In this experiment, to select the most effective encoder, the same
TreeNet decoder is used as described in Section 4.3.3.2 but only
change the encoder. The results of this analysis are reported in
Table 4.1. As can be seen, the PCN’s encoder shows a better
performance than others. Thus, PCN’s encoder is chosen as the
final encoder. Note that compared across these methods using the
same encoder, the TreeNet model outperforms the state-of-the-art
methods (see Section 4.3.4.3).

4.3.3.2 Tree-Based Decoders Analysis

Tree-based decoders analysis is based on choosing the number of tree
levels L in TreeNet-multiclass, TreeNet-binary and TreeNet, and
weights λ1 and λ2 in Equation 4.6.

The depths of trees are one of the important design parameters.
The number of tree levels L in TreeNet-multiclass, TreeNet-binary
and TreeNet is chosen for an output point cloud size 2048 × 3 by
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Table 4.3 Quantitative comparison between different weights for the final loss on
8 classes of ShapeNet. The chamfer distance is reported multiplied by (103).

λ1, λ2 TreeNet-binary TreeNet

λ1 = 0.1, λ2 = 0.9 0.980 0.866

λ1 = 0.2, λ2 = 0.8 0.919 0.817

λ1 = 0.3, λ2 = 0.7 0.943 0.824

λ1 = 0.4, λ2 = 0.6 0.930 0.858

λ1 = 0.5, λ2 = 0.5 0.976 0.870

λ1 = 0.6, λ2 = 0.4 0.922 0.838

λ1 = 0.7, λ2 = 0.3 0.959 0.895

λ1 = 0.8, λ2 = 0.2 0.946 0.884

λ1 = 0.9, λ2 = 0.1 0.952 0.896

varying L in 3, 4, 5, 6, 7, 8, respectively. The results on 8 classes of
the ShapeNet dataset are reported in Table 4.2. Based on the results,
3 levels in TreeNet-multiclass and 7 levels in TreeNet-binary and
TreeNet are used. As shown in the table, one notices that after
a certain level, the increase of the tree depth does not necessarily
increase the quality of the output, which is due to the fact that
3 levels in TreeNet-multiclass and 7 levels in TreeNet-binary and
TreeNet already sufficiently include the majority of features in the
output of 2048 points in this experiment. The results for different
weights λ1 and λ2 are reported in Table 4.3. λ1 = 0.2 and λ2 = 0.8
are set based on these results. In all experiments, regardless of the
value for L and λ above, the TreeNet-multiclass, TreeNet-binary and
TreeNet outperform the state-of-the-art methods (see Table 4.4 in
Section 4.3.4.3).
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Fig. 4.6 Qualitative completion results from the same partial input based on 8
and 50 classes of training data. The second and third rows show the completion
results of models trained on 8 and 50 classes of data, respectively.

4.3.4 Evaluation of Tree-Based Decoder

In this section, the effectiveness of TreeNet-multiclass, TreeNet-
binary and TreeNet trained on 8 and 50 classes of training data
is analysed by comparing them with FoldingNet [38], PCN [39],
TopNet [40], PMPNet [42] and Disp3d [41].

4.3.4.1 Effectiveness of TreeNet-multiclass

To analyse the effectiveness of the proposed TreeNet-multiclass
for multi-class 3D point cloud completion, all networks including
FoldingNet [38], PCN [39], TopNet [40], PMPNet [42], Disp3d [41]
and the TreeNet-multiclass are trained on the same 8 and 50 classes
of training datasets, respectively. All networks are evaluated on the
8 and 50 classes of testing datasets (Section 4.3.2), respectively.

80



Figure 4.6 shows the results of each trained model from the same
partial input. The second row in Figure 4.6 shows the results of each
method based on 8 classes of training data, and the third row shows
the results based on 50 classes of training data. The chamfer distance
has been calculated between each result and ground truth and shown
at the bottom of each figure. Based on the chamfer distances, the
quality of output 3D point clouds from FoldingNet [38], PCN [39],
TopNet [40] and PMPNet [42] decreases when the number of classes
increases from 8 to 50 in the training data, whereas the TreeNet-
multiclass model has shown stable results when the number of classes
increases.

The average chamfer distances of the TreeNet-multiclass against
the state-of-the-art methods tested on 8 and 50 classes of the testing
data are shown in Tables 4.4, 4.5 and 4.6 with qualitative results
in Figure 4.7. The TreeNet-multiclass outperforms FoldingNet [38],
PCN [39], TopNet [40], PMPNet [42] and Disp3d [41] across all 8
and 50 classes of testing data. As shown in Figure 4.7, Disp3d [41]
generates a car from a partial vessel as an input, which shows the
poor ability on multi-classes training. The multi-classes training for
the TreeNet-multiclass solves this problem and distinguishes features
between each class. Most noticeably, the result of TreeNet-multiclass
has shown a 5.08% improvement trained on 8 classes of data over the
next best method TopNet [40], and a 10.19% improvement trained on
50 classes over TopNet [40], demonstrating the capability of TreeNet-
multiclass in handling multi-class 3D point cloud completion tasks
effectively.
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Fig. 4.7 Qualitative completion results of models trained on 8 (first and second
row) and 50 (third and fourth row) classes of data, respectively.

Table 4.4 Quantitative comparison of the proposed approach against previous
works tested on 8 and 50 classes of testing data. The chamfer distances are
reported multiplied by (103). Bold denotes the top three performing measures.

Methods 8 Classes 50 Classes

FoldingNet [38] 1.862 1.242

PCN [39] 1.946 1.251

TopNet [40] 1.378 1.079

PMPNet [42] 1.911 1.081

Disp3d [41] 1.880 1.649

TreeNet-multiclass 1.308 0.969

TreeNet-binary 0.926 0.757

TreeNet 0.823 0.596
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Table 4.5 Evaluations of every class in 8 classes of testing datasets. The chamfer
distances reported are multiplied by (103). Bold denotes the top three performing
measures.

Methods plane cabinet car chair lamp sofa table vessel

FoldingNet [38] 1.56 1.99 1.15 2.87 2.39 1.78 1.95 1.21

PCN [39] 1.33 2.11 1.18 2.94 2.43 1.95 2.06 1.57

TopNet [40] 0.89 1.57 1.02 1.99 1.70 1.48 1.35 1.03

PMPNet [42] 1.18 2.65 1.53 2.46 2.27 1.75 2.50 0.95

Disp3d [41] 0.95 1.51 0.92 2.73 3.73 1.46 2.42 1.32

TreeNet-multiclass 0.75 1.40 0.91 1.97 1.75 1.38 1.48 0.82

TreeNet-binary 0.53 1.17 0.60 1.30 1.37 0.82 1.00 0.62

TreeNet 0.44 0.96 0.53 1.12 1.29 0.74 0.98 0.53

Table 4.6 Evaluations on the 50 classes of testing datasets. Nine classes of results
are selected and displayed. The chamfer distance is reported multiplied by (103).
Bold denotes the top three performing measures.

Methods table bench bus laptop pistol pot monitor bed mug

FoldingNet [38] 1.98 1.42 0.60 1.40 1.21 1.44 1.16 1.98 1.85

PCN [39] 1.96 1.14 0.63 1.01 1.07 1.49 1.15 2.23 1.92

TopNet [40] 1.49 0.92 0.63 0.86 0.96 1.58 0.98 1.99 1.59

PMPNet [42] 2.46 0.83 0.77 0.92 0.80 0.97 0.72 1.02 1.17

Disp3d [41] 5.05 1.33 0.49 0.61 0.89 1.99 1.53 3.05 1.46

TreeNet-multiclass 1.44 0.81 0.57 0.62 0.84 1.50 0.88 1.98 1.01

TreeNet-binary 1.02 0.69 0.37 0.59 0.55 0.93 0.62 2.11 1.09

TreeNet 0.87 0.48 0.30 0.38 0.48 0.87 0.50 1.15 0.78
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Fig. 4.8 Illustration of TreeNet-binary output.

4.3.4.2 Effectiveness of TreeNet-binary

To analyse the effectiveness of the proposed TreeNet-binary, all
networks are trained on the same 8 and 50 classes of training datasets
and evaluated on the same 8 and 50 classes of testing datasets
(Section 4.3.2), respectively. Figure 4.8 illustrates the final output
(h) of the TreeNet-binary which is the combination of the partial
input (a) and the output of the right leaf node (g), which proves
that TreeNet-binary is able to generate points in missing areas and
fully preserve the original partial input.

The average chamfer distances are shown in Tables 4.4, 4.5 and 4.6
with qualitative completion results in Figure 4.9. As can be seen
that TreeNet-binary also outperforms FoldingNet [38], PCN [39],
TopNet [40], PMPNet [42] and Disp3d [41] across 8 and 50 classes of
testing data, respectively. The result of TreeNet-binary has shown
a 32.80% improvement trained on 8 classes of data over the next
best method TopNet [40] and a 29.84% improvement trained on 50
classes of data over TopNet [40].
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Fig. 4.9 Qualitative completion results of methods trained on 50 classes of data.

4.3.4.3 Effectiveness of TreeNet

To assess the effectiveness of TreeNet, the TreeNet is not only
compared with FoldingNet [38], PCN [39], TopNet [40], PMPNet [42]
and Disp3d [41] but also with TreeNet-multiclass and TreeNet-binary.

The average chamfer distances of the TreeNet against the state-of-
the-art methods on 8 and 50 classes of the testing data are shown in
Tables 4.4, 4.5 and 4.6, with qualitative results shown in Figure 4.10.
TreeNet combines the advantages of TreeNet-multiclass and TreeNet-
binary and outperforms TreeNet-multiclass and TreeNet-binary on
8 and 50 classes of testing data. In addition, TreeNet significantly
outperforms FoldingNet [38], PCN [39], TopNet [40] , PMPNet [42]
and Disp3d [41] across 8 and 50 classes of testing data. The result
of TreeNet has shown a 40.28% improvement on 8 classes over the
next best method TopNet [40], and a 44.76% improvement on 50
classes over TopNet [40]. As shown in Figure 4.10, FoldingNet [38],
PCN [39] and TopNet [40] have failed to recover structural and
spatial details such as sharp edges of a bench (2nd column), a laptop
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Fig. 4.10 Qualitative completion results of models trained on 50 classes of data.
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Fig. 4.11 Completion results from different branches in the tree for data in unknown
classes.

(6th column) and a monitor (7th column) and topology change of a
jar (5th column). Disp3d [41] confuses features between classes to
some extent and generates a pot from a partial jar (5th column). In
contrast, TreeNet has successfully generated these details and never
confuses features between classes. Most importantly, FoldingNet [38],
PCN [39], TopNet [40] and Disp3d [41] all lose the structural and
spatial details of the original partial input. On the contrary, TreeNet-
binary and TreeNet generate points in missing areas and preserve
the partial input.

4.3.5 Generalization on Unknown Classes

Several comparison experiments have been extensively conducted to
evaluate the generalization capability of the proposed networks. All
learned models including FoldingNet [38], PCN [39], TopNet [40],
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PMPNet [42], Disp3d [41], TreeNet-multiclass, TreeNet-binary and
TreeNet are trained on the same 50 classes of training data and
directly tested on the unknown classes (Section 4.3.2) that have never
been trained. These shape datasets in unknown classes are different
from the training datasets, which poses a significant challenge to the
generalization of all learning-based methods.

A partial 3D point cloud from an unknown class can be passed
through the encoder to all sub-trees in the decoder. The root
nodes in TreeNet-multiclass and TreeNet contain common features
extracted from the encoder, and each sub-tree in the decoder uses
these common features to generate a complete 3D point cloud. As
shown in Figure 4.11, a partial 3D shape from an unknown class is
passed through the encoder to all sub-trees in the decoder and the
generalization abilities from different sub-trees in TreeNet-multiclass
and TreeNet are shown, respectively. The final output is the best
completion result with the lowest chamfer distance between each
output and the ground truth.

The performance of each method on unknown classes is reported
in Table 4.7 with qualitative completion results of each method
in Figure 4.12. The TreeNet ranks first and achieves the best
completion results on all five unknown classes, which shows the
strong generalization and robustness evaluated on unknown classes
and also proves that the sub-trees can share common features among
different classes. Refer to Section 4.4 for more detailed discussions
and illustrations about unknown data.

88



Fig. 4.12 Qualitative completion results of models on unknown classes with
unknown shapes.
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Table 4.7 Evaluations on unknown classes. The chamfer distance is reported
multiplied by (103). Bold denotes the top three performing measures.

Methods camera basket stove tower printer Avg.

FoldingNet [38] 2.05 1.62 1.59 1.42 1.99 1.73

PCN [39] 2.03 1.64 1.49 1.34 2.02 1.70

TopNet [40] 2.09 1.67 1.49 1.34 1.81 1.68

PMPNet [42] 1.73 2.34 1.75 1.63 1.47 1.78

Disp3d [41] 5.58 2.71 2.76 5.47 3.93 4.09

TreeNet-multiclass 1.88 1.33 1.20 1.13 1.57 1.42

TreeNet-binary 1.73 1.11 1.34 1.02 1.39 1.32

TreeNet 0.98 0.85 0.77 0.62 0.90 0.82

Table 4.8 Evaluations on computational time for each completion when the input
number of points increases from 1,024 to 16,384. This evaluation has been
tested on 8 classes of testing datasets with 800 3D point clouds and the average
computational time for each completion has been calculated and displayed.

Methods
Computational Time (s)

1,024 4,096 8,192 16,384

FoldingNet [38] 0.006644 0.008724 0.010075 0.013188

PCN [39] 0.005407 0.007779 0.010128 0.012389

TopNet [40] 0.008054 0.009938 0.011651 0.014097

PMPNet [42] 0.021583 0.033593 0.049685 0.080932

Disp3d [41] 0.053951 0.065234 0.103138 0.206863

TreeNet-multiclass 0.005357 0.007574 0.009813 0.012687

TreeNet-binary 0.007568 0.009755 0.011250 0.015332

TreeNet 0.007901 0.009818 0.012404 0.015540
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4.4 Discussion and Limitation

In this section, the performance of computational time, completion
results on unknown datasets and the limitations of the proposed
TreeNet are discussed.

To evaluate the computational time when the input number of
points increases, all networks are tested on 8 classes of the testing
dataset and the average computational time for each completion
is shown in Table 4.8. Disp3d takes the longest computational
time, while the computational times for the other networks are close
to each other. Most importantly, the computational time linearly
increases from 1,024 points to 16,384 points for all networks.

To show the common features that can be shared among sub-
trees, six types of car models are tested using a single sub-tree in
the decoders of TreeNet-multiclass and TreeNet. The results show
that the proposed networks can handle the six types of 3D car
models with better performance than the other five state-of-the-art
networks (FoldingNet [38], PCN [39], TopNet [40], PMPNet [42] and
Disp3d [41]), as shown in Figure 4.13. This experiment indicates
that a single sub-tree can share common features for different types
of 3D models in one class. Also shown in the experimental results on
unknown classes, the sub-trees can share common features among
different classes, as shown in Figures 4.12 and 4.11.

For datasets from unknown classes with unknown shapes, all
networks have certain generalizations to generate complete shapes
under such challenging conditions. Although the TreeNet ranks first
and achieves the best completion results on all five unknown classes,
which shows the strong generalization and robustness evaluated on
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Fig. 4.13 Qualitative completion results tested on a trained class (cars) with
unknown shapes.
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Table 4.9 The number of network parameters in each method. ’-’ means the
number of network parameters does not increase when the number of training
classes increases.

Methods Network Parameters Network Parameters

(trained on 8 classes) (trained on 50 classes)

FoldingNet [38] 2,402,054 -

PCN [39] 5,286,659 -

TopNet [40] 9,965,117 -

PMPNet [42] 5,435,163 -

Disp3d [41] 100,318,976 -

TreeNet-multiclass 15,515,904 59,599,104

TreeNet-binary 22,869,248 -

TreeNet 30,216,448 74,299,648

unknown classes, all networks fail to generate detailed information
in missing areas, as shown in Figure 4.12 and Table 4.7. The missing
points generated from the TreeNet are randomly distributed in the
missing area, which loses finely detailed information. One possible
reason could be that the current loss function measures geometrical
features based on the global shape information, which lacks local
feature information, thus, resulting in insufficient features for fine
details locally. This limitation will be addressed in future work.

One limitation of the TreeNet-multiclass and TreeNet is that the
model size is linearly correlated with the number of training classes,
as shown in Table 4.9. However, the number of parameters is still
much smaller than that of Disp3d [41]. It is worth noting that the
number of parameters in the TreeNet-binary does not increase when
the number of training classes increases, which is similar to the
state-of-the-art networks (FoldingNet [38], PCN [39], TopNet [40],
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PMPNet [42] and Disp3d [41]). Although the number of parameters
of the TreeNet-multiclass and TreeNet is around 3 (8 classes) to
10 (50 classes) times bigger than that of FoldingNet [38], PCN [39],
TopNet [40] and PMPNet [42], the result of TreeNet is 40.28%
better on 8 classes than the next best method TopNet [40], and
44.76% better on 50 classes than TopNet [40]. This limitation will
be addressed in the feature work.

4.5 Evaluations on Endoscopic Data

In this section, TreeNet-multiclass, TreeNet-binary and TreeNet are
evaluated in the proposed computational framework (Chapter 3) for
endoscopic scenes as an additional application. TreeNet-multiclass,
TreeNet-binary and TreeNet are trained and tested on five endoscopic
3D point cloud datasets generated in Section 3.7.1.2.

For each group of endoscopic 3D point cloud datasets, 90% of
3D point clouds are randomly selected as the training data and
the remaining 10% as the testing data. To evaluate the trained
TreeNet-multiclass, TreeNet-binary and TreeNet models on partial
3D point clouds, the remaining 10% of testing data is used to create
partial 3D point clouds with different missing rates. First, a point
from each testing 3D point cloud with the size of N × 3 is randomly
selected, where N is the total number of points in a 3D point cloud.
Second, the nearest N ∗ delete_rate points around that selected
point are deleted to create partial 3D point clouds with different
missing rates, where delete_rate is the rate of deletion, i.e., 0.3, 0.5,
etc. Third, each partial 3D point cloud is randomly sub-sampled to
4096 points. Finally, for each class of testing datasets, six groups
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Fig. 4.14 3D point cloud completion of endoscopic datasets: (a) Original 3D point
clouds in endoscopic datasets; (b) Ground-truth; (c) Partial 3D Point cloud; (d)
Completion results from TreeNet.

of partial 3D point clouds testing data are generated with various
missing rates of [25%, 30%, 35%, 40%, 45%, 50%]. The examples
of partial 3D point clouds with different missing rates are shown in
Figure 4.14.

The average chamfer distances of TreeNet-multiclass, TreeNet-
binary and TreeNet are shown in Table 4.10, with qualitative results
in Figure 4.14, which indicates that the less missing data, the more
accurate the completion results. TreeNet outperforms TreeNet-
multiclass and TreeNet-binary on partial 3D point cloud datasets
with missing rate ranges from 25% to 50%. The K-nearest neighbour
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Table 4.10 Quantitative comparison of the TreeNet-multiclass, TreeNet-binary
and TreeNet on five endoscopic 3D point cloud testing datasets.

Missing Rates TreeNet-multiclass TreeNet-binary TreeNet

25% 0.038077 0.019125 0.017576

30% 0.038229 0.020286 0.018452

35% 0.038606 0.022137 0.020070

40% 0.039473 0.024176 0.021887

45% 0.040067 0.026772 0.024355

50% 0.041460 0.030560 0.027160

(KNN) is calculated to find the corresponding points between the
ground-truth 3D point cloud and the generated 3D point cloud, where
K is 1. After finding the nearest neighbour between them, the colour
of each point is extracted from the ground truth and duplicated to
the corresponding point in the generated 3D point cloud, as shown
in Figure 4.14. This experiment shows the effectiveness of TreeNet
for medical data.

4.6 Conclusion

In this chapter, TreeNet-multiclass, TreeNet-binary and TreeNet
have been proposed for 3D point cloud completion. The proposed
networks can produce high-quality 3D point clouds on multi-class
datasets for point cloud completion, and these novel network struc-
tures outperform the state-of-the-art learning-based methods in
terms of the quality of the 3D point cloud completion results on
trained and unknown classes. TreeNet-multiclass is for multi-class
training and assigns a specific class of the 3D completion task to each
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sub-tree, while TreeNet-binary preserves the original partial input
and generates points in missing areas. three forward propagation
methods are proposed to train TreeNet-multiclass, TreeNet-binary
and TreeNet separately. The proposed models achieve high-quality
completion results and show remarkable generalization and robust-
ness to unknown classes that are not trained. The proposed networks
also show effectiveness in endoscopic scenes.
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Chapter 5

Iterative BTreeNet: Unsupervised
Learning for Large and Dense 3D
Point Cloud Registration

In this chapter, a novel unsupervised deep learning network - Itera-
tive Binary Tree Network (IBTreeNet) is proposed to continuously
improve the registration accuracy for large and dense 3D point
clouds, which learns features for the rotation separately from the
translation and avoids the interference between the estimations of
rotation and translation in one single matrix. Experimental results
show that BTreeNet and IBTreeNet outperform six state-of-the-art
learning-based and three traditional methods on clean, partial and
noisy point clouds and also exhibit remarkable generalization and
robustness to unseen large and dense scenes that have been never
trained.
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5.1 Introduction

Point cloud rigid registration is a task that aligns two point clouds,
captured by various sensor technologies (i.e. laser and RGB-D
scanners and depth cameras), by estimating the rigid transformation
between them. Point cloud registration is a well-known problem and
has been used in many computer vision applications, for example,
3D reconstruction [116] [117] [25] and localization [118] [58] [119].

Traditional methods [43] [44] [45] have considered 3D point cloud
registration as an optimization problem and they are sensitive to
the initialization of 3D point clouds and can be computationally ex-
pensive and time-consuming. Deep learning-based approaches learn
features from the neural networks and estimate the transformation
matrix for the alignment. However, the state-of-the-art learning-
based methods, PointNetLK [46], DCP [47], RPM [48], FMR [50],
DeepGMR [51] and RGM [49] share three common problems. First,
the ground-truth transformation matrix or point-to-point correspon-
dences are used to supervise the training process in PointNetLK [46],
DCP [47], RPM [48], DeepGMR [51] and RGM [49]. Second, these
methods [46] [47] [48] [51] [49] perform poorly and show the poor gen-
eralization abilities on partial 3D point clouds without training in this
scenario (Section 5.3.4). Third, these methods [46] [47] [48] [50] [49]
often perform poorly in dealing with large and dense scenes and
shapes that are not trained, resulting in poor generalization abilities
(see Section 5.3.6).

In this chapter, a novel unsupervised deep learning network -
Binary Tree Network (BTreeNet) is proposed. The BTreeNet con-
sists of a novel forward propagation, which learns features for the
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rotation separately from the translation and avoids the interference
between the estimations of rotation and translation in one single
matrix. Specifically, the root node of the tree is a global feature vec-
tor generated from a PointNet-based encoder [1], and the BTreeNet
follows a binary tree structure that has a left sub-tree and a right
sub-tree. The left sub-tree learns features for rotation and the right
sub-tree learns features for translation. The left leaf node estimates
the rotation matrix and the right leaf node estimates the translation
matrix. To continuously improve the registration accuracy between
two 3D point clouds, an Iterative Binary Tree Network (IBTreeNet)
is then proposed, which iteratively rotates and translates the reg-
istration results of BTreeNet to the target 3D point cloud through
the reuse of the trained IBTreeNet model. Note that IBTreeNet has
an identical architecture to BTreeNet, but it is trained based on
the registration results of a trained BTreeNet model. The objective
of IBTreeNet is to extract features of the rotated and translated
3D point cloud from the BTreeNet for the next alignment iteration.
Once trained, IBTreeNet can be used repeatedly and iteratively to
improve the registration accuracy between two 3D point clouds. The
chamfer distance and the Earth Mover’s Distance are adopted as the
loss function for unsupervised learning. The proposed IBTreeNet
exhibits remarkable generalization and robustness to unseen large
scenes and shapes that are never trained, as shown in Figure 5.1.
This generalization and robustness performance can be attributed
to the proposed forward propagation that avoids the interference
between the feature extraction of rotation and translation.

The registration results of the BTreeNet and IBTreeNet have
been compared with traditional methods [43] [44] [45] and state-
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Fig. 5.1 3D point cloud registration on the unseen KITTI, 3DMatch and Stanford
Bunny datasets that are not trained. IBTreeNet can iteratively align the source
3D point clouds to the template, even though it was not trained on these scenes
and shapes. Refer to Section 5.3.6 for more details.

of-the-art learning-based methods [46] [47] [48] [50] [51] [49]. The
comparison experiments are evaluated on testing datasets, including
clear data (Section 5.3.3), partially visible data (Section 5.3.4), data
with Gaussian noise (Section 5.3.5) and data with large rotations
(Section 5.3.7). Moreover, the comparison experiments are also
tested on unseen scenes and shapes that are not trained to evaluate
the generalization and robustness of each method (Section 5.3.6).

5.2 Methods

Let PT and PS define the target and the source 3D point clouds,
respectively, where each point in a 3D point cloud is defined as
Pi = (x, y, z). The purpose of the proposed method is to estimate the
rigid transformation that best rotates and translates PS to PT . The
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Fig. 5.2 BTreeNet architecture. The source and the target 3D point clouds are
given as input through a shared PointNet-based encoder. The global features from
the encoder are concatenated and provided as input to a fully connected layer
to achieve the root node of the binary tree. The binary tree learns features for
rotation separately from the translation through several group layers of 1D Conv,
BN and ReLU to generate the rotation matrix separately from the translation
matrix to align two 3D point clouds.

rigid transformation includes a rotation matrix R and a translation
matrix t, where R ∈ SO(3) and t ∈ R3. BTreeNet (Section 5.2.1),
as shown in Figure 5.2, is used to estimate R and t that align PT and
PS. An iterative BTreeNet (IBTreeNet) (Section 5.2.2), as shown
in Figures 5.3 and 5.4, is to iteratively improve the registration
accuracy between PT and PS. The BTreeNet and IBTreeNet are
trained using a chamfer distance and an Earth Mover’s Distance as
loss function (Section 5.2.3) for unsupervised learning.

5.2.1 BTreeNet

The novelty of the BTreeNet, as shown in Figure 5.2, compared to the
latest state-of-the-art learning-based methods [46] [47] [48] [50] [51] [49]
is the hierarchical binary tree-based forward propagation that leans
features for the rotation separately from the translation and es-
timates the rotation matrix separately from the translation ma-
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trix. Specifically, in these state-of-the-art learning-based meth-
ods [46] [47] [48] [50] [51] [49], the combination of rotation and trans-
lation in the output layer makes the network deal with two tasks
(e.g. estimating the rotation and the translation) simultaneously.
Thus, the two tasks interfere with each other on feature learning
based on all different initial rotations along any arbitrary axes and
any random translations. As a result, these methods converge to a
local optimum, which leads to lower precision of registration results.

Following the definition of state-of-the-art methods [46] [47] [48] [50]
[51] [49] for 3D point cloud registration, let PT ∈ RN×3 and PS ∈
RN×3 are two rigid 3D point clouds that need to be aligned. Both
PT and PS are given as input to a shared PointNet-based encoder
that consists of several group layers of 1D Conv, BN and ReLU
and a symmetric max-pooling function at the end to extract global
features. The combination of 1D Conv, BN and ReLU extract point-
wise features fT ∈ RN×d and fS ∈ RN×d, where d is the dimension
for point-wise features. Weights and biases are shared in feature
extraction models for PT and PS. The symmetric max-pooling func-
tion aggregates point-wise features fT and fS to extract the global
features FT ∈ R1×d and FS ∈ R1×d, as defined in Equation 5.1.

F = MAX
pi∈P

{h(p1), ..., h(pn)} (i = 1, ..., n) (5.1)

where F represents either FT or FS. pi is a point in either PT or
PS. h is the combination of 1D Conv, BN and ReLU layers. The
MAX represents the max-pooling that returns a new vector of the
element-wise maximum and guarantees that the input 3D point
clouds are invariant to any permutations.
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The state-of-the-art learning-based methods [46] [47] [48] [50] [51]
[49] adopt the standard forward propagation, as defined in Equa-
tion 5.2, to learn the features of rotation and translation from the
global features F in the same neuron at each layer. The final output
in these methods is a transformation matrix with a size of 7, where
the first three output values represent the translation matrix and
the last four values represent the rotation quaternion.

z
(l+1)
i = w

(l+1)
i y

(l)
i + b

(l+1)
i ; y

(l+1)
i = f(z(l+1)

i ) (5.2)

where l indexes the hidden layer and i indexes the hidden neuron
in each layer. y

(l)
i is the i-th features of PT and PS at the layer l.

w
(l+1)
i and b

(l+1)
i denote the i-th weight and bias at layer l + 1. z

(l+1)
i

denotes the i-th feature vector of inputs at the layer l + 1. f (·) is
an activation function ReLU.

Unlike PointNetLK [46], DCP [47], RPM [48], FMR [50], Deep-
GMR [51] and RGM [49], the proposed novel forward propagation,
as defined in Equation 5.3, aims to learn features for the rotation
separately from the translation and avoids the interference of feature
extraction between them. Thus, a hierarchical binary tree-based
structure is proposed for the novel forward propagation. The global
features of FT ∈ R1×d and FS ∈ R1×d are concatenated and given
as an input to a fully connected layer to achieve the root node
Froot ∈ R2×d of the binary tree. The binary tree has two sub-trees,
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including left and right sub-trees.

Flst = Frootidx
(idx = 0, ..., d); Frst = Frootidx

(idx = d, ..., 2d)

z
(l+1)
i_lst = w

(l+1)
i_lst F

(l)
lst + b

(l+1)
i_lst ; y

(l+1)
i_lst = f(z(l+1)

i_lst )

z
(l+1)
i_rst = w

(l+1)
i_rstF

(l)
rst + b

(l+1)
i_rst; y

(l+1)
i_rst = f(z(l+1)

i_rst)

(5.3)

where Flst ∈ R1×d and Frst ∈ R1×d represent the features are given as
input to the left sub-tree and right sub-tree, respectively. l indexes
the hidden layer of the binary tree and i indexes the hidden neuron
in each layer. w

(l+1)
i_lst and b

(l+1)
i_lst denote the i-th weight and bias for

left sub-tree at layer l + 1, and w
(l+1)
i_rst and b

(l+1)
i_rst denote the i-th

weight and bias for right sub-tree at layer l + 1. z
(l+1)
i_lst denotes the

i-th feature vector of inputs for left sub-tree at the layer l + 1, and
z

(l+1)
i_rst denotes the i-th feature vector of inputs for right sub-tree at

the layer l + 1. f (·) is any activation function, e.g. ReLu. y
(l+1)
i_lst

denotes the i-th feature vector of left sub-tree outputs at the layer
l + 1, and y

(l+1)
i_rst denotes the i-th feature vector of right sub-tree

outputs at the layer l + 1.
The final output in left sub-tree y

(l+1)
i_lst is a rotation quaternion q

with the size of 1×4, and the final output in right sub-tree y
(l+1)
i_rst is a

translation matrix t with the size of 1 × 3. The rotation quaternion
q, defined by Equation 5.4, is transformed into a rotation matrix R

with the size of 3 × 3, as defined in Equation 5.5. Finally, the PS is
rotated and translated using Pest = R ∗ PS + t.

q = [q0, q1, q2, q3]T

q0 = cos
θ

2; q1 = nxsin
θ

2; q2 = nysin
θ

2; q3 = nzsin
θ

2
n = [nx, ny, nz]T

(5.4)
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where θ is the rotation angle (i.e. 45 degrees) and n is the axis of
rotation.

R =


1 − 2q2

2 − 2q2
3 2q1q2 + 2q0q3 2q1q3 − 2q0q2

2q1q2 − 2q0q3 1 − 2q2
1 − 2q2

3 2q2q3 + 2q0q1

2q1q3 + 2q0q2 2q2q3 − 2q0q1 1 − 2q2
1 − 2q2

2

 (5.5)

5.2.2 Iterative BTreeNet

Although three random Euler angles and translations on each axis
are sampled and applied to source point clouds during the training,
networks still cannot extract the generalized and effective features
for every pose of point cloud pairs. As shown in Figure 5.10, eight
iterations have been applied for all networks to reuse their trained
models repeatedly for further alignments. These networks cannot
achieve accurate registration in the following iterations once it fails
to align two 3D point clouds in the first iteration, which indicates
that the trained models cannot extract the generalized and effective
features of PT and Pest for the next alignment. Refer to Section 5.3.6.1
for more details. Thus, further alignments are needed to improve
registration accuracy.

To extract effective features of PT and Pest for further alignment
and continuously improve the registration accuracy in the following
iterations, an iterative BTreeNet (IBTreeNet) is trained based on
the result of BTreeNet, as shown in Figure 5.3. The architecture
of IBTreeNet is the same as BTreeNet, but they are trained un-
der different conditions. The differences between BTreeNet and
IBTreeNet can be divided into two parts, including the training
and testing processes. During the training, IBTreeNet is trained
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Fig. 5.3 Iterative BTreeNet training mode. The BTreeNet needs to be completely
trained before training IBTreeNet. The input 3D point clouds are the Pest from
the trained BTreeNet and the PT . The architecture of IBTreeNet is identical to
BTreeNet.

based on the registration results from a pre-trained BTreeNet model.
Thus BTreeNet needs to be trained in advance before training IB-
TreeNet. As shown in Figure 5.3, the first transformation for PS

from the trained BTreeNet model gives a transformed 3D point cloud
Pest_iter.1. The transformed point cloud Pest_iter.1 and the target 3D
point cloud PT are given as input to IBTreeNet that learns features
of PT and Pest_iter.1 for the next alignment. Thus, two iterations
are adopted in the training process. During the testing, the trained
BTreeNet is used for the first iteration, and the trained IBTreeNet
can be used repeatedly and iteratively to improve the registration
accuracy between two 3D point clouds, as shown in Figure 5.4. Thus,
infinite iterations can be adopted during the testing. In practice,
four iterations are used for data similar to the training data (Sec-
tion 5.3.3), and ten iterations are used for unseen datasets that are
not trained. (Section 5.3.6).

The objective of IBTreeNet is to extract effective features of
the rotated and translated 3D point cloud from the BTreeNet for
the next alignment iteration. Once trained, IBTreeNet can be
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Fig. 5.4 Iterative BTreeNet testing mode. Once BTreeNet and IBTreeNet have
been trained, the trained IBTreeNet model can be repeatedly used to iteratively
rotates and translates PS to PT .

used repeatedly and iteratively to improve the registration accuracy
between two 3D point clouds. The IBTreeNet exhibits remarkable
generalization and robustness to unseen large scenes and shapes that
are never trained (Section 5.3.6). This generalization and robustness
performance can be attributed to the proposed forward propagation
that avoids the interference between the feature extraction of rotation
and translation.

5.2.3 Loss Function

The loss function for 3D point cloud registration measures the dif-
ference between the target 3D point cloud PT and the transformed
3D point cloud Pest. The loss is defined to be invariant to any
permutation of 3D point clouds in both PT and Pest. Therefore, the
chamfer distance [91] is used as the loss function.

The chamfer distance calculates the average nearest point distance
between PT and Pest by finding the closest neighbour with O(nlogn)
complexity. In addition, PT and Pest can be at the different sizes of
3D point clouds.
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The Earth Mover’s distance [112] is adopted as the second term
in the loss function. The EMD finds a bijection ϕ and minimizes
the distance between corresponding points based on ϕ with O(n2)
complexity.

The final loss function, as defined in Equation 5.6, consists of two
terms, CD and EMD. Note that both CD and EMD only require
the 3D point clouds as input for unsupervised learning.

Loss(PT , Pest) = CD(PT , Pest) + EMD(PT , Pest) (5.6)

5.2.4 Implementation Details

BTreeNet and IBTreeNet are trained for 300 epochs with a batch size
of 32, a learning rate of 0.005, and an adagrad optimizer. The filter
sizes for the PointNet-based encoder are [64, 64, 64, 128, 256, 512].
The features extracted from PT and PS are concatenated and given
as input to a fully connected layer to generate the root of the binary
tree with the size of [1 × 1024]. The filter sizes for the left sub-tree
in each level are [512, 256, 128, 64, 4]. The filter sizes for the right
sub-tree in each level are [512, 256, 128, 64, 3]. The level of the tree,
the weights for the loss function and the feature extraction modules
are illustrated from the ablation studies in Section 5.3.8. BTreeNet
and IBTreeNet are trained with the input size of N × 3, where N

can be any number and N = 1024 is set during the training. Once
trained, the size of the input 3D point cloud is not constrained to
1024. For example, 1024, 20480 and 121210 points have been used
when evaluated on the testing dataset (Sections 5.3.3 and 5.3.6).
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5.3 Evaluation of Registration Performance

An Nvidia Geforce 2080Ti GPU with 12G memory is used for network
training. BTreeNet, IBTreeNet and the state-of-the-art learning-
based methods [46] [47] [48] [50] [51] [49] are trained on ModelNet40
training dataset. Based on these trained models, comparison experi-
ments are conducted to compare the BTreeNet and IBTreeNet with
the traditional registration methods [43] [44] [45] and state-of-the-art
learning-based methods [46] [47] [48] [50] [51] [49]. First, comparison
experiments on ModelNet40 clean testing datasets (Section 5.3.3) are
conducted. Second, the generalization of these methods is evaluated
on partial and noisy point clouds without training them in such
scenarios (Sections 5.3.4 and 5.3.5). Third, the generalization and
robustness ability of all learning-based methods are evaluated on
large and dense unseen KITTI [120], Whu-TLS [121] [122] [123],
3DMatch [124] and Stanford 3D datasets [125] that are not trained
(Section 5.3.6). Fourth, comparison experiments are conducted on
3D point clouds with large initial rotations (Section 5.3.7). Finally,
the ablation studies are conducted to evaluate the effectiveness of
each component in the BTreeNet (Section 5.3.8).

5.3.1 Datasets

ModelNet40 Clean Training Data. For a fair comparison, the
ModelNet40 [126] dataset is used as the training dataset following
PointNetLK [46], DCP [47], RPM [48], FMR [50], DeepGMR [51]
and RGM [49]. ModelNet40 [126] is composed of 12,311 meshed
CAD object models from 40 object categories (e.g. bookshelf, chair,
desk, etc.). It contains official train/test splits (9,843 for training
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and 2,468 for testing). The 2,048 points are uniformly sampled from
the CAD 3D mesh surfaces, and then further processed by moving
to the origin and scaling into a unit sphere. All networks in the
experiments are trained on the official train split in ModelNet40 [126].
Specifically, 2,048 points are sampled as the source point cloud PS

from each object model in the train split and normalize PS into a
unit sphere. The source point clouds PS are randomly rotated and
translated to obtain the target point clouds PT . For the rotation and
translation applied, three Euler angles are randomly sampled in the
range of [0, 45] degrees and translations in the range of [−0.5, 0.5] on
each axis during the training. Finally, the point orders are shuffled
in PS and PT , respectively. During the training, all point cloud
pairs are clean data without noise and missing data. Thus, exact
point-to-point correspondences exist between PS and PT in training
data.

Testing Data. To evaluate the robustness and generalization
ability of a network, the training and the testing sets should be in dif-
ferent scenarios. Thus, all networks are trained only on ModelNet40
Clean Training Data and test them on clean, partial, noisy and
unseen point clouds, respectively. The testing data contains seven
different groups of 3D point cloud datasets, including ModelNet40
Clean (Section 5.3.3), ModelNet40 Partial (Section 5.3.4), Model-
Net40 Noise (Section 5.3.5), Unseen KITTI (Section 5.3.6.1), Unseen
Whu-TLS (Section 5.3.6.2), Unseen 3DMacth (Section 5.3.6.3) and
Unseen Shapes (Section 5.3.6.4).

The ModelNet40 training datasets are sparse 3D objects, whereas
the unseen scene testing datasets are large and dense and captured
from real-world outdoor and indoor scenes, which contain huge dif-
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ferent scales and point distributions from the ModelNet40 training
datasets. Unseen KITTI is the testing dataset from KITTI odome-
try LiDAR 3D point cloud datasets. This dataset is large-scale and
outdoor scenes from different cities, which are captured with realistic
sensor noises. The points are dense for objects and scenes near the Li-
DAR sensor and the points are very sparse for faraway objects. Thus,
the point distribution varies by the distance between objects and
the LiDAR sensor. Unseen Whu-TLS is also a large-scale, outdoor
and real-world scene captured from different 3D scanner systems
with different sensor noise and variations in the point density, field
of view, clutter and occlusion, which contains similar point distri-
butions because they are all captured by LiDAR sensors. Unseen
3DMacth is an RGBD-reconstruction indoor dataset, the points are
evenly distributed in the 3D surface, which contains the different
point densities and distribution compared with Unseen KITTI and
Unseen Whu-TLS. Unseen Shapes dataset consists of the Stanford
3D scanning models from different 3D scanners. The 20,480 points
are randomly down-sampled from the 3D meshes. The shapes are
totally different from the ModelNet40 Clean Training Data. These
four unseen datasets are not trained and have been used to evaluate
the generalization ability of each network.

5.3.2 Evaluation Metrics

The registration by computing six evaluation metrics is evaluated.
First, the chamfer distance is adopted, to measure how close the two
point clouds are brought to each other. Second, the transformation
matrix is further evaluated through the Frobenius norm based on
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the Special Euclidean Group for the overall registration errors, as
defined in Equation 5.7.

F (T) = ∥Tgt − Test∥F ; T =
R t
0T 1

 ∈ R4×4 (5.7)

where R ∈ SO(3) and t ∈ R3.
Finally, the mean isotropic rotation and translation errors (MIE)

proposed in RPM [48] and the mean absolute errors (MAE) of
rotation and translation proposed in DCP [47] are used, as defined
in Equation 5.8.

MIE(R) = ∠(R−1
gt Rest); MIE(t) = ∥tgt − test∥2

MAE(R) = 1
m

m∑
i=1

|∠(Rgt − Rest)| ;

MAE(t) = 1
m

m∑
i=1

|tgt − test|

(5.8)

where Rgt and tgt denote the ground-truth rotation and translation,
and Rest and test represent the estimated rotation and translation.
∠(·) denotes the angle of the rotation matrix in degrees.

5.3.3 ModelNet40 Clean Test

In this experiment, the registration performance is evaluated on
ModelNet40 Clean testing dataset that contains 2,468 clean point
cloud pairs. ModelNet40 Clean testing dataset is generated from the
official test split in ModelNet40 [126] that includes 2,468 clean point
clouds. 1,024 points are randomly sampled and normalized into a
unit sphere. To obtain target point clouds during the testing, the
random rotations are in the range of [0, 45] degrees and translations
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Fig. 5.5 Registration results on two clean 3D point clouds. Each 3D point cloud
contains 1,024 points.

Fig. 5.6 IBTeeNet illustration. (a) Input 3D point clouds. (b) - (e) Iteration 1 to
4.

114



Table 5.1 Evaluations on the ModelNet40 Clean testing dataset with [0, 45] degrees
of initial rotations. Bold denotes the top four performing measures.

Methods CD ↓ F Norm ↓ MIE ↓ MIE ↓ MAE ↓ MAE ↓

(T) (Rot.) (Trans.) (Rot.) (Trans.)

ICP 0.053823 0.408176 15.926107 0.095590 8.106933 0.048669

NDT 0.060876 0.520965 21.684867 0.043825 10.500771 0.022000

CPD 0.015127 0.090626 3.749195 0.002207 1.784223 0.001123

PointNetLK 0.016350 0.235991 10.447890 0.013864 5.581651 0.006875

DCP 0.016620 0.071662 2.874782 0.008266 1.469114 0.004150

RPM 0.000709 0.007587 0.309407 0.002072 0.160725 0.000947

FMR 0.014335 0.075151 3.171169 0.002772 1.561003 0.001385

DeepGMR 0.000104 0.003671 0.240103 0.000024 0.115103 0.000013

RGM < 0.000001 0.001464 0.057414 0.000785 0.023415 0.000399

BTreeNet 0.012294 0.065951 2.618611 0.007907 1.379738 0.003988

IBTreeNet 0.010008 0.059417 2.346349 0.007623 1.119935 0.003796

in the range of [−0.5, 0.5] on each axis are applied to the official test
split without noise and missing data with exact point-to-point corre-
spondences. All learning-based network models (PointNetLK [46]
DCP [47], RPM [48], FMR [50], DeepGMR [51], RGM [49] TreeNet-
multiclass, TreeNet-binary and TreeNet) are trained on the same
ModelNet40 Clean Training Data.

Figure 5.6 illustrates the iteration process of the IBTreeNet, which
shows that the IBTreeNet can iteratively improve the registration
accuracy between two 3D point clouds. Note that the first iteration
(b) in Figure 5.6 is the result of BTreeNet, and other iterations (c),
(d) and (e) are the results of IBTreeNet.

The average registration errors of BTreeNet and IBTreeNet against
three traditional methods [43] [44] [45] and six state-of-the-art
learning-based methods [46] [47] [48] [50] [51] [49] are shown in
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Table 5.1 with qualitative results in Figure 5.5. Lower average errors
indicate lower registration errors. Although the proposed networks
do not achieve the best registration performance in ModelNet40
Clean testing set, BTreeNet and IBTreeNet still outperform three
traditional methods [43] [44] [45] and three learning-based network
models [46] [47] [50]. DeepGMR [51], RGM [49] and RPM [48]
achieve top measures on clean data. However, they perform poorly
on partial and noisy 3D point clouds without training them in such
scenarios, and detailed information is described in Sections 5.3.4
and 5.3.5.

Furthermore, the number of parameters, supervision method,
iterations and computational time are also essential for each net-
work. Since the traditional algorithms [43] [44] [45] do not provide
the GPU acceleration, a 32GB memory card is used with an In-
tel i7-9700 3.00GHz CPU for a fair comparison of computational
time. The computational time is collected on two testing datasets
with different numbers of points, including ModelNet40 Clean (1,024
points) and Unseen KITTI (20,480 points) (Section 5.3.6.1) test-
ing datasets. As shown in Table 5.2, PointNetLK [46] DCP [47],
RPM [48], DeepGMR [51] and RGM [49] are fully-supervised, which
needs ground-truth rotation and translation as the supervision signal
while FMR [50] and the proposed BTreeNet and IBTreeNet are
unsupervised, thus, can largely reduce the training cost.

For sparse 3D point clouds with 1,024 points, DCP [47], RPM [48]
and RGM [49] require a longer computational time on a single
instance, respectively. The proposed BTreeNet only takes around 0.1
seconds and ranks first in computational time. For dense 3D point
clouds with 20,480 points, CPD [45] and RPM [48] require the longest
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Table 5.2 Quantitative comparison on parameters, number of iterations and
computational time. OOM means 32GB memory with an Intel i7 CPU or a 12GB
NVIDIA GPU out of memory with a forward pass on a single instance.

Methods Supervision Network Iterations Computational Time on CPU(s)

Parameters (1,024 points) (20,480 points)

all iter. per iter. all iter. per iter.

ICP - - 20 1.450 0.073 1.436 0.072

NDT - - 30 0.230 0.008 1.539 0.051

CPD - - 20 0.700 0.035 259.712 12.986

PointNetLK Yes 151,686 10 0.797 0.080 2.895 0.290

DCP Yes 5,568,905 1 6.414 6.414 22.200 22.200

RPM Yes 905,154 5 4.881 0.976 264.246 52.849

FMR No 3,440,006 10 0.168 0.017 9.193 0.919

DeepGMR Yes 1,527,440 1 1.532 1.532 2.282 2.282

RGM Yes 25,000,836 2 2.685 1.343 OOM OOM

BTreeNet No 1,483,463 1 0.141 0.141 0.806 0.806

IBTreeNet No 1,483,463 4 1.114 0.279 4.225 1.056

computational time on dense point clouds and take approximately 4.5
minutes for a single instance. The proposed BTreeNet requires less
than 1 second on dense 3D point clouds with 20,480 points, ranking
first in computational time. The proposed IBTreeNet requires 1.056
seconds for one iteration and also takes less time than others.

RMG [49] contains the most significant number of network pa-
rameters and has the out-of-memory issue on processing dense 3D
point clouds, which requires a high computational cost and relies on
powerful commodity GPU or CPU processors. DCP-v2 [47] contains
the second largest number of network parameters, which requires a
high computational cost and has the out-of-memory issue on dense
3D point clouds. Thus, DCP-v1 [47] is used to evaluate dense point
clouds with 20,480 points and DCP-v2 [47] on sparse point clouds
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Fig. 5.7 Registration results on partial 3D point clouds. Each 3D point cloud
contains 1,024 points.

with 1,024 points. Traditional methods [43] [44] [45] take a maxi-
mum of 20 or 30 iterations for 3D point cloud registration whereas
learning-based methods PointNetLK [46] and FMR [50] require max-
imum 10 iterations. RPM [48] and RGM [49] need 5 and 2 iterations
during the testing. DCP [47], DeepGMR [51] and the BTreeNet only
require 1 iteration (see Table 5.2).

5.3.4 Partial Visibility

To generate partial point clouds that do not fully overlap in extent,
the protocol in RPM [48] and RGM [49] are followed and the Mod-
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Table 5.3 Evaluations on ModelNet40 partial 3D point clouds with 30% missing
data. All networks are trained on Modelnet40 Clean Training Data without
missing and noisy points. Bold denotes the top-performing measures.

Methods CD ↓ F Norm ↓ MIE ↓ MIE ↓ MAE ↓ MAE ↓

(T) (Rot.) (Trans.) (Rot.) (Trans.)

ICP 0.068601 0.559043 21.683043 0.154110 11.064304 0.077339

NDT 0.078709 0.625850 25.139421 0.135835 12.272863 0.065737

CPD 0.064756 0.435410 15.968742 0.162647 8.067676 0.081858

PNLK 0.098572 0.919244 40.113300 0.181374 21.456369 0.091555

DCP 0.102747 1.043511 46.917641 0.001283 25.693749 0.000646

RPM 0.126092 1.284177 60.215692 0.207321 33.902779 0.103731

FMR 0.058666 0.413444 15.552787 0.139811 8.057808 0.069266

DeepGMR 0.149778 2.022872 104.408779 0.202822 60.829105 0.101588

RGM 0.061925 0.380452 12.045048 0.215026 6.335146 0.215026

BTreeNet 0.027250 0.164416 6.679313 0.000063 3.392343 0.000029

IBTreeNet 0.025889 0.150333 6.105696 0.000049 3.037774 0.000024

elNet40 Partial testing dataset is generated from the ModelNet40
Clean, which is more realistic and closer to real-world applications.
For each source point cloud in the ModelNet40 Clean, a random
clipping plane passing through the origin is created and shifted to
retain 70% of the points. In ModelNet40 Partial, the initial rotations
and translations are the same as the ModelNet40 Clean, but exact
point-to-point correspondences have been broken and do not exist.

Most importantly, to evaluate the robustness and generalization
ability of each network, all networks are only trained on Model-
Net40 Clean Training Data (Section 5.3.1) without missing points
and directly tested on ModelNet40 Partial. For a fair comparison,
following DCP [47], RPM [48] and RGM [49] and the average regis-
tration errors are reported on the group with 30% missing rate in
Table 5.3 with qualitative results in Figure 5.7. Three traditional
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algorithms [43] [44] [45] outperform the four learning-based methods
including PointNetLK [46], DCP [47], RPM [48] and DeepGMR [51].
FMR [50] outperforms the traditional algorithms [43] [44] [45] and
other learning-based methods [46] [47] [48] [51] [49]. The BTreeNet
and IBTreeNet are significantly more accurate than both traditional
and learning-based methods, which indicates remarkable generaliza-
tion on partial 3D point clouds.

The two possible reasons are analysed for the failure registration
of the state-of-the-art learning-based methods [46] [47] [51] [48] [49]
on partial 3D point clouds. These methods perform poorly on partial
3D point clouds without training them in this scenario, indicating the
poor generalization of each network on partial visibility with broken
point-to-point correspondences. A trained network model should
extract generalized features for different datasets and scenarios.
Otherwise, it can only perform well on a specific dataset or a scenario
and needs to be retrained under different conditions. Second, these
networks apply the ground-truth transformation labels (rotation
and translation) as supervision during the training, which forces
the network to output a certain transformation based on a certain
pattern of input 3D point cloud pairs. Since the broken point-to-
point correspondences have changed the pattern of input 3D point
cloud pairs during the testing, the trained network models cannot
recognize the changed pattern and generate wrong transformations.

FMR [50] and BTreeNet are all trained in an unsupervised manner
and find the global registration on input 3D point cloud pairs without
ground-truth transformation, which avoids the limitation of the
supervised manner and outperforms other learning-based methods
on partial 3D point cloud registration.
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Fig. 5.8 Registration results on 3D point clouds with Gaussian noise. Each 3D
point cloud contains 1,024 points.

5.3.5 Gaussian Noise

To evaluate the robustness and generalization ability of each method
to noise, the ModelNet40 Noise is generated from the ModelNet40
Clean. Specifically, noise from Gaussian distribution is sampled for
the source 3D point cloud in ModelNet40 Clean with 0 mean and a
standard deviation of 0.05. In the ModelNet40 Noise, the Gaussian
noise is added to all source 3D point clouds in the ModelNet40 Clean,
and these noises destroy the original point-to-point correspondences.
The initial rotations and translations are the same as the ModelNet40
Clean.

Most importantly, all networks are only trained on ModelNet40
Clean Training Data (Section 5.3.1) without noise and directly tested
on ModelNet40 Noise. The average registration errors of each method
to noise with a standard deviation equal to 0.05 are reported in
Table 5.4 with qualitative results shown in Figure 5.8. BTreeNet
and IBTreeNet are much more accurate than the state-of-the-art
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Table 5.4 Evaluations on Gaussian noise with the standard deviation equals to 0.05.
All networks are trained on Modelnet40 Clean Training Data without missing and
noisy points. Bold denotes the top-performing measures.

Methods CD ↓ F Norm ↓ MIE ↓ MIE ↓ MAE ↓ MAE ↓

(T) (Rot.) (Trans.) (Rot.) (Trans.)

ICP 0.049258 0.413435 16.154294 0.096340 8.241147 0.049071

NDT 0.058998 0.518387 21.541951 0.044982 10.476870 0.022424

CPD 0.016864 0.140918 5.753399 0.006682 2.750101 0.003356

PNLK 0.032994 0.332014 14.352293 0.037295 7.654664 0.018523

DCP 0.050837 0.463393 20.397403 0.001136 10.807378 0.000572

RPM 0.083747 1.079716 51.637915 0.003194 29.808305 0.001602

FMR 0.020769 0.151866 6.166866 0.022762 3.141542 0.011399

DeepGMR 0.067272 0.803346 37.094805 0.006741 22.525591 0.003408

RGM 0.050613 0.586429 29.838333 0.000880 15.885876 0.000443

BTreeNet 0.013962 0.081754 3.317700 0.000070 1.700144 0.000034

IBTreeNet 0.012318 0.069757 2.829888 0.000060 1.389002 0.000031

learning-based methods [46] [47] [48] [50] [51] [49] and traditional
methods [43] [44] [45].

Similarly to the results on partial 3D point clouds, DeepGMR [51],
RGM [49] and RPM [48] do not provide accurate registration on
noisy point clouds if these networks are not trained in this scenario,
which indicates the poor robustness and generalization ability of
these networks with noise. Traditional method CPD [45] outperforms
the state-of-the-art learning-based methods [46] [47] [48] [50] [51] [49]
on noisy point clouds, which indicates that CPD [45] can tolerate
large noise on point clouds.

Unsupervised learning-based method FMR [50] and IBTreeNet
still outperform other supervised learning-based methods [46] [47] [48]
[51] [49] on noisy 3D point clouds, which demonstrates the effec-
tiveness of the unsupervised manner on the network generalization
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ability. The possible reasons for the failed registration of the state-
of-the-art learning-based methods on noisy 3D point clouds are the
same as that on partial 3D point clouds (see Section 5.3.4).

5.3.6 Generalization across Unseen Datasets

Several comparison experiments are extensively conducted to eval-
uate the generalization and robustness capability of the proposed
method. All learned models including PointNetLK [46], DCP [47],
RPM [48], FMR [50], DeepGMR [51], RGM [49] and ours are trained
on the same ModelNet40 Clean Training Data (Section 5.3.1), and
directly tested on the completely unseen datasets that are never
trained. Note that the ModelNet40 Clean Training Data consists
of sparse 3D point clouds (e.g. table, bookshelf and guitar), and
the unseen datasets are the large and dense outdoor and indoor
scenes captured from various sensors and totally different from the
ModelNet40 Clean Training Data. This large domain gap between
these datasets poses a significant challenge to the generalization of
all learning-based methods.

5.3.6.1 Generalization on Unseen KITTI Scenes

To evaluate the generalization of each network on unseen datasets
that are not trained, Unseen KITTI testing dataset is generated,
including 1,146 KITTI odometry [120] LiDAR 3D point cloud pairs
with realistic sensor noise for the evaluation. KITTI odometry [120]
is an outdoor dense point cloud dataset acquired by Velodyne-64 3D
LiDAR scanners. Every six frames are selected in the sequence of
outdoor scans to ensure that the selected 1,460 point clouds can fully
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Table 5.5 Evaluations on the unseen KITTI dataset that is not trained. All
networks are trained on the Modelnet40 Clean Training Data without missing
and noisy points. Bold denotes the top three performing measures.

Methods CD ↓ F Norm ↓ MIE ↓ MIE ↓ MAE ↓ MAE ↓

(T) (Rot.) (Trans.) (Rot.) (Trans.)

ICP 0.030695 0.505911 16.626091 0.260118 8.847980 0.130960

NDT 0.030422 0.877822 36.667289 0.102342 16.307743 0.051711

CPD 0.001883 0.086971 3.557581 0.009284 1.241874 0.004788

PNLK 0.002546 0.085499 3.672698 0.006742 2.088179 0.003364

DCP 0.003720 0.181936 3.151685 0.143950 1.624810 0.073790

RPM 0.010139 0.360977 17.587084 0.029334 8.679858 0.014839

FMR 0.008252 0.245331 10.790774 0.031303 7.057602 0.015883

DeepGMR 0.000039 0.000580 0.027025 0.000036 0.011429 0.000018

RGM 0.005711 0.155436 6.258668 0.015307 3.305840 0.007752

BTreeNet 0.006533 0.256744 7.235349 0.144797 3.510368 0.074197

IBTreeNet 0.005452 0.235064 5.982500 0.144624 2.783603 0.074102

represent the scenario and difficulty in this dataset. 20,480 points are
sampled from each selected dense 3D point cloud and normalized into
a unit sphere. Note that, the number of the down-sampled KITTI 3D
point cloud is still 20 times larger than that in the ModelNet40 Clean
testing dataset. The settings of initial rotations and translations are
the same as the ModelNet40 Clean testing dataset. Since the target
point clouds are rotated and translated from the source point clouds,
thus exact point-to-point correspondences exist in Unseen KITTI.

In this experiment, all networks are trained on ModelNet40 Clean
Training Data (Section 5.3.1) and directly tested on Unseen KITTI.
RGM [49] requires significant memory and has the out-of-memory
issue with a forward pass on a single instance tested on a 32GB
memory with an Intel i7-9700 3.00GHz CPU and a 12GB NVIDIA
RTX 2080Ti GPU. By this hardware setting, RGM [49] can only
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Fig. 5.9 Qualitative registration results on unseen large and dense KITTI LiDAR
3D point clouds. Each 3D point cloud contains 121,210 points for display. (a)
Input 3D point clouds. (b) - (d) Registration results of non-learning based methods
ICP, NDT and CPD. (e) - (h) Registration results of learning-based methods
PointNetLK, DCP, RPM and RGM. (i) Registration results of IBTreeNet. (j) and
(k) Details of input and registration results of IBTreeNet.
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Fig. 5.10 Iteration illustration on unseen KITTI LiDAR 3D point clouds. Each
3D point cloud contains 111,989 points for display.
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process approximately 3,078 points. Thus, all point cloud pairs in
Unseen KITTI are down-sampled to 3,078 points only for RGM [49].
Once the transformation matrix has been obtained from RGM [49],
the estimated transformation matrix is applied to the original source
point cloud with 20,480 points.

The performance of each method on Unseen KITTI is reported
in Table 5.5. DeepGMR [51] ranks first in all performing measures
and achieves the best registration performance on Unseen KITTI.
Traditional method CPD [45] outperforms all learning-based methods
except DeepGMR [51], which shows the strong generalization of the
CPD algorithm. The IBTreeNet outperforms PRM [48], FMR [50],
RGM [49], ICP [43] and NDT [44].

Figure 5.9 shows the qualitative registration results of each
method on KITTI datasets. Figure 5.10 shows the iteration il-
lustration of each learning-based method. It is worth noting that,
the iteration methods proposed in DCP [47], RPM [48] and RGM [49]
are limited in improving the registration accuracy, whereas the IB-
TreeNet iteratively achieves precise registration and shows great
generalization and robustness to unseen KITTI LiDAR points.

5.3.6.2 Generalization on Unseen Whu-TLS Scenes

To evaluate the generalization of each network on different unseen
datasets that are not trained, Unseen Whu-TLS testing dataset
is generated, including 1,000 Whu-TLS [121] [122] [123] 3D point
cloud pairs with realistic sensor noise for the evaluation. Whu-
TLS [121] [122] [123] dataset, captured by terrestrial laser scanners
(TLS), is a large-scale 3D point cloud dataset, which includes 10 differ-
ent 3D point cloud scenes (i.e., subway station, residence, riverbank,
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Fig. 5.11 Qualitative registration results on unseen large-scale 3D point clouds.
Each 3D point cloud contains 20,480 points.

Table 5.6 Evaluations on the Unseen Whu-TLS datasets that are not trained. All
networks are trained on Modelnet40 Clean Training Data without missing and
noisy points. Bold denotes the top three performing measures.

Methods CD ↓ F Norm ↓ MIE ↓ MIE ↓ MAE ↓ MAE ↓

(T) (Rot.) (Trans.) (Rot.) (Trans.)

ICP 0.030002 0.870613 36.191176 0.337518 19.398201 0.170002

NDT 0.048445 0.702454 27.452705 0.165263 13.076433 0.082384

CPD 0.003510 0.057525 2.313392 0.007674 0.888502 0.004049

PNLK 0.009444 0.456522 13.951705 0.278294 7.738035 0.129433

DCP 0.009758 0.351936 9.775516 0.344886 5.153150 0.162643

RPM 0.024656 0.466777 21.402695 0.069478 11.701789 0.034369

FMR 0.022515 0.390340 18.571252 0.062369 11.474063 0.030415

DeepGMR 0.000128 0.022431 0.679253 0.014806 0.399354 0.007705

RGM 0.008434 0.175065 6.893064 0.026624 3.693086 0.013407

BTreeNet 0.012251 0.378394 9.169036 0.277799 4.697491 0.139201

IBTreeNet 0.008388 0.142164 6.251942 0.277579 2.882725 0.139073
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etc.) with variations in the point density, clutter and occlusion1.
The Whu-TLS dataset is challenging because multiple laser scanner
systems (i.e., VZ-400, ScanStationC5, Leica HDS6100, etc.) with
differences in terms of the measurement range, accuracy and field of
view are used to capture the 3D point clouds. For each scene in 10
different scenes, 100 point cloud pairs with the same settings as the
Unseen KITTI testing dataset are generated.

In this experiment, all networks are still trained on ModelNet40
Clean Training Data (Section 5.3.1) and directly tested on Unseen
Whu-TLS. As illustrated in Section 5.3.6.1, the same settings for
RGM [49] are used.

The performance of each method on Unseen Whu-TLS is reported
in Table 5.6 with qualitative registration results of each method in
Figure 5.11. Learning-based method DeepRGM [51] ranks first in
all performing measures, and the traditional method CPD [45] out-
performs all learning-based methods except DeepGMR [51], which
shows the strong generalization of the DeepRGM [51] and CPD [45]
on Unseen Whu-TLS. The IBTreeNet outperforms RGM [49], Point-
NetLK [46], DCP [47], FMR [50], RPM [48], ICP [43] and NDT [44]
based on the overall registration errors.

5.3.6.3 Generalization on Unseen Indoor Scenes

The comparison experiments are then conducted on unseen indoor
scenes and generate Unseen 3DMatch testing dataset, including
433 3DMatch [124] 3D point cloud pairs with the same settings as
the Unseen KITTI testing dataset. 3DMatch [124] is an RGB-D
reconstruction dataset, which contains 433 reconstructed dense 3D

1Whu-TLS generates 11 different scenes and 10 scenes are publicly available for researches.
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Fig. 5.12 Registration results on unseen 3DMatch datasets.

Table 5.7 Evaluations on the unseen 3DMatch datasets that are not trained. All
networks are trained on modelnet40 clean data without missing and noisy points.
Bold denotes the top three performing measures.

Methods CD ↓ F Norm ↓ MIE ↓ MIE ↓ MAE ↓ MAE ↓

(T) (Rot.) (Trans.) (Rot.) (Trans.)

ICP 0.073672 0.480146 18.846508 0.128525 10.100460 0.064284

NDT 0.079254 0.521475 21.268932 0.109614 10.633771 0.056268

CPD 0.018102 0.112831 4.536769 0.019583 2.186277 0.009842

PNLK 0.029412 0.223548 9.839967 0.030038 5.330842 0.014840

DCP 0.057605 0.499294 14.018398 0.312191 7.619330 0.156427

RPM 0.051456 0.401897 12.399297 0.045833 6.329186 0.023072

FMR 0.031666 0.454459 10.464576 0.036622 5.778973 0.018512

DeepGMR 0.005068 0.017258 0.678505 0.002990 0.360289 0.001487

RGM 0.042781 0.439900 10.011215 0.041061 5.486697 0.020612

BTreeNet 0.039944 0.398068 8.667772 0.310266 4.306098 0.155422

IBTreeNet 0.028588 0.221609 6.914699 0.310182 3.353310 0.155365
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point clouds from eight sets of 2D scene images created from the
official testing split of the RGB-D reconstruction datasets [124]. The
data distribution of the reconstructed 3D point cloud is different
from the data captured by the LiDAR and laser scanners. In this
experiment, all networks are still trained on ModelNet40 Clean
Training Data (Section 5.3.1) and directly tested on Unseen 3DMatch.
As illustrated in Section 5.3.6.1, the same settings for RGM [49] are
still used.

The average registration errors of BTreeNet and IBTreeNet against
ICP [43], NDT [44], CPD [45], PointNetLK [46], DCP [47], RPM [48],
FMR [50], DeepGMR [51] and RGM [49] on Unseen 3DMatch are
shown in Table 5.7, with qualitative results shown in Figure 5.12.

Similarly to the results on Unseen Whu-TLS, the learning-based
method DeepGMR [51] ranks first in all performing measures, and the
traditional method CPD [45] outperforms all learning-based methods
except DeepGMR [51]. The IBTreeNet outperforms RGM [49],
PointNetLK [46], DCP [47], FMR [50], RPM [48], ICP [43] and
NDT [44] based on the overall registration errors. By comparison,
the IBTreeNet also achieves remarkable generalization to unseen
indoor scenes.

Note that for all learning-based methods and traditional methods
except CPD [45], the registration performance decreases to some
extent on Unseen 3DMatch compared to the evaluation on Unseen
KITTI and Unseen Whu-TLS. One possible reason is that the data
distribution and density of the reconstructed 3D point clouds from
2D images are different from the LiDAR and laser scanners.
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Table 5.8 Evaluations on the Unseen Shapes testing datasets that are not trained.
All networks are trained on Modelnet40 Clean Training Data without missing and
noisy points. Bold denotes the top three performing measures.

Methods CD ↓ F Norm ↓ MIE ↓ MIE ↓ MAE ↓ MAE ↓

(T) (Rot.) (Trans.) (Rot.) (Trans.)

ICP 0.064974 0.445631 17.599977 0.103102 9.721335 0.052357

NDT 0.050633 0.410507 16.808854 0.065777 8.472930 0.033677

CPD 0.014910 0.078536 3.070854 0.017432 1.340475 0.008933

PNLK 0.023981 0.232628 10.280659 0.029590 6.199633 0.014813

DCP 0.079755 0.663195 25.690459 0.196156 13.536360 0.095452

RPM 0.084928 0.653797 26.749477 0.073703 13.512754 0.035491

FMR 0.026686 0.253822 11.499332 0.045954 5.902958 0.023032

DeepGMR 0.000121 0.000404 0.020372 0.000026 0.007894 0.000013

RGM 0.049332 0.356896 14.399312 0.045966 7.821818 0.022589

BTreeNet 0.026233 0.267393 6.878716 0.196028 3.622638 0.095358

IBTreeNet 0.019934 0.243259 5.151717 0.195974 2.528907 0.095340

5.3.6.4 Generalization on Unseen Shapes

Additionally, the performance of each method on unseen shapes
is evaluated including the Stanford Dragon [125], Bunny [125],
Hand [127] and Children2 that are not trained. An Unseen Shapes
testing dataset is created, including 1,000 3D point cloud pairs
with the same settings as the Unseen KITTI testing dataset. All
networks are still trained on ModelNet40 Clean Training Data (Sec-
tion 5.3.1) and directly tested on Unseen Shapes. As illustrated in
Section 5.3.6.1, the same settings for RGM [49] are still used.

The performance of each method on Unseen Shapes is reported
in Table 5.8. Similarly to the results on Unseen Whu-TLS and
Unseen 3DMatch, DeepRGM [51] ranks first in all performing mea-

2http://visionair.ge.imati.cnr/
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Fig. 5.13 Registration results on unseen shapes datasets. Each 3D point cloud
contains 20,480 points.

sures and CPD [45] outperforms all learning-based methods except
DeepGMR [51] on Unseen Shapes. The learning-based method
PointNetLK [46], FMR [50] and the BTreeNet achieve approxi-
mately similar registration results based on the overall evaluation
metrics. The IBTreeNet outperforms all learning-based methods
except DeepGMR [51]. The qualitative registration results are shown
in Figure 5.13.
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Fig. 5.14 Registration results on 3D point clouds with large rotations.

Table 5.9 Evaluations on 3D point clouds with the initial rotation ranges from 0
to 180 degrees. Bold denotes the top three performing measures.

Methods CD ↓ F Norm ↓ MIE ↓ MIE ↓ MAE ↓ MAE ↓

(T) (Rot.) (Trans.) (Rot.) (Trans.)

ICP 0.105312 2.463621 141.334273 0.162676 74.069710 0.079737

NDT 0.143004 2.472329 139.066895 0.113671 76.105349 0.056608

CPD 0.068746 2.386553 143.228976 0.053039 78.755450 0.026269

PNLK 0.126135 2.415207 137.081225 0.173611 79.806911 0.086528

DCP 0.137270 2.418509 134.438871 0.095526 74.231256 0.048041

RPM 0.055095 1.012850 59.677372 0.010019 50.646270 0.005000

FMR 0.090998 2.363750 137.574644 0.127406 77.094416 0.063657

DeepGMR 0.000010 0.000050 0.015365 0.000002 0.001595 0.000001

RGM 0.115444 2.642357 137.574520 0.737000 84.700130 0.365891

BTreeNet 0.067034 1.22952 64.790884 0.008188 57.402523 0.004077

IBTreeNet 0.040702 0.920210 55.247189 0.007913 47.852112 0.003916
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5.3.7 Registration with Large Rotations

Large rotation is a challenging task for 3D point cloud registration.
In this experiment, all networks are trained on ModelNet40 Clean
Training Data (Section 5.3.1) with random rotations from 0 to 180
degrees. All trained models are then tested on ModelNet40 Clean
testing dataset with random rotations from 0 to 180 degrees. Note
that, the random rotations from [0, 45◦] to [0, 180◦] are only changed
in ModelNet40 Clean Training Data (Section 5.3.1) and ModelNet40
Clean testing dataset, respectively. Other settings are not changed
in these datasets.

As can be seen in Tables 5.9 and 5.1, even if all networks are
trained on point clouds with large initial rotations, registration errors
of all learning-based methods increase dramatically when the initial
rotation ranges from 0 to 180 degrees, except DeepGMR [51]. Deep-
GMR [51] significantly outperforms other learning-based methods
and traditional methods with large rotations and ranks first in all
performing measures. DeepGMR [51] proposes a correspondence
network and two differentiable computing blocks for solving the prob-
lem on large rotations. Although the IBTreeNet suffers on the large
rotations, it still outperforms ICP [43], NDT [44], CPD [45], Point-
NetLK [46], DCP [47], FMR [50] and RGM [49]. The qualitative
comparisons are shown in Figure 5.14.

PointNetLK [46], FMR [50], DCP [47] and RGM [49] do not
converge during the training whereas RPM [48] and BTreeNet and
IBTreeNet converge to the local optima. One possible reason is
that more point cloud pairs are needed to be trained under [0, 180◦]
compared with that under [0, 45◦], which increases the variety and
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Table 5.10 Ablation studies on the proposed binary tree and loss functions.

Methods CD ↓ F Norm ↓ MIE ↓ MIE ↓ MAE ↓ MAE ↓

(T) (Rot.) (Trans.) (Rot.) (Trans.)

without BT 0.021145 0.152280 7.028391 0.008171 4.090947 0.004103

BT-FC 0.016139 0.087589 3.511191 0.008165 1.771228 0.004099

BT-1DConv 0.012294 0.065951 2.618611 0.007907 1.379738 0.003988

BT-Supervision 0.019359 0.096562 3.885027 0.008143 1.984579 0.004091

CD 0.015577 0.085754 3.434221 0.636930 1.735888 0.004100

CD+EMD 0.012294 0.065951 2.618611 0.007907 1.379738 0.003988

complexity of training point cloud pairs and is challenging to extract
the generalized features for the increased varieties.

5.3.8 Ablation Studies

In this section, the results of the ablation studies are presented
to analyse the effectiveness of each component in BTreeNet. In
particular, all ablated models are trained on the ModelNet40 Clean
Training Data (Section 5.3.1) and test them on the ModelNet40
Clean testing datasets. The initial rotations in this analysis are in
the range of [0, 45] degrees, and the initial translations are in the
range of [−0.5, 0.5]3.

The effectiveness of the proposed binary tree-based forward prop-
agation with the standard forward propagation without using a
binary tree (without BT) is first analysed, as reported in Table 5.10.
BT-FC and BT-1DConv denote the fully connected layers and the
combination of 1D Conv, BN and ReLU layers that are adopted in
the binary tree, respectively. It is obvious that both BT-FC and
BT-1DConv outperform the standard forward propagation without
using a binary tree, which shows the effectiveness of the proposed
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Table 5.11 Ablation studies on the weighted loss function. λ1 and λ2 denote the
weights of CD and EMD, respectively.

Methods CD ↓ F Norm ↓ MIE ↓ MIE ↓ MAE ↓ MAE ↓

(T) (Rot.) (Trans.) (Rot.) (Trans.)

λ1 = 0.1; λ2 = 0.9 0.014545 0.078982 3.158734 0.008142 1.601008 0.004088

λ1 = 0.2; λ2 = 0.8 0.013478 0.074375 2.967007 0.008142 1.490887 0.004089

λ1 = 0.3; λ2 = 0.7 0.012810 0.071483 2.847388 0.008142 1.425907 0.004089

λ1 = 0.4; λ2 = 0.6 0.013562 0.075923 3.031684 0.008141 1.523975 0.004089

λ1 = 0.5; λ2 = 0.5 0.014778 0.080827 3.234577 0.008142 1.626481 0.004089

λ1 = 0.6; λ2 = 0.4 0.013858 0.076176 3.043757 0.008141 1.536414 0.004089

λ1 = 0.7; λ2 = 0.3 0.014435 0.079602 3.182555 0.008141 1.599607 0.004089

λ1 = 0.8; λ2 = 0.2 0.013205 0.073918 2.947582 0.008141 1.483749 0.004090

λ1 = 0.9; λ2 = 0.1 0.015058 0.084448 3.383622 0.008141 1.703698 0.004090

λ1 = 1.0; λ2 = 1.0 0.012294 0.065951 2.618611 0.007907 1.379738 0.003988

Table 5.12 Ablation studies on the feature extraction modules.

Methods CD ↓ F Norm ↓ MIE ↓ MIE ↓ MAE ↓ MAE ↓

(T) (Rot.) (Trans.) (Rot.) (Trans.)

BT-V1 0.012294 0.065951 2.618611 0.007907 1.379738 0.003988

BT-V2 0.066103 2.822350 174.840489 0.009611 100.515426 0.004796

BT-V3 0.045849 0.310504 12.621608 0.008175 6.370999 0.004105

Table 5.13 Ablation studies on the level of the binary tree.

Methods MIE ↓ MIE ↓ MAE ↓ MAE ↓ F Norm ↓ CD ↓

(Rot.) (Trans.) (Rot.) (Trans.) (T)

BT-L2 3.624825 0.008165 1.824710 0.004099 0.090332 0.016149

BT-L3 3.068289 0.008164 1.536206 0.004099 0.076868 0.013486

BT-L4 2.830392 0.008165 1.416922 0.004099 0.071089 0.012618

BT-L5 2.618611 0.007907 1.379738 0.003988 0.065951 0.012294

BT-L6 13.380222 0.008176 7.443230 0.004106 0.286715 0.035227

BT-L7 19.369034 0.008166 8.403775 0.004099 0.406013 0.043825
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binary tree. Since BT-1DConv outperforms BT-FC, the combination
of 1D Conv, BN and ReLU layers are adopted in the binary tree.
The loss function of the CD shows a lower registration accuracy by
comparing it with the combination of the CD and the EMD. The
BTreeNet is still evaluated in a supervised manner following the
supervised loss function in DCP [47], which minimizes the difference
between the estimated transformation matrix and the ground-truth
transformation matrix and is denoted as BT-Supervision. The com-
bination of the CD and the EMD loss function also outperforms
the supervised manner on BTreeNet. Thus, the combination of the
CD and the EMD is used as the final loss function. The weighted
test of the final loss function is reported in Table 5.11. The best
performance is selected in all performing measures with λ1 = 1.0
and λ2 = 1.0 for CD and EMD, respectively.

The effectiveness of three state-of-the-art feature extraction mod-
ules in PointNet [1], PointNet++ [70] and DGCNN [72] are then
analysed to select the most effective feature extraction module for
the BTreeNet, and the resulting methods are denoted as BT-V1,
BT-V2 and BT-V3. As reported in Table 5.12, the feature extraction
module in PointNet [1] outperforms others with the lowest average
registration errors. PointNet++ [70] is a representative of the class of
hierarchical feature extraction networks that aggregate local features
before global pooling. PointNet [1] outperforms PointNet++ [70] in
the encoder using global pooling. This is because local pooling is
less stable than global pooling due to suboptimality in the selection
of local neighbourhoods for the whole point cloud. Aggregating local
features before global pooling results in unstable global features
for the binary tree-based decoder to estimate the optimal rotation
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and translation. DGCNN [72] learns local geometric features via
constructing the k points for each point and also aggregates local
features using local pooling, which is also not suitable for the bi-
nary tree-based decoder. In addition, PCN [39] and TopNet [40]
achieve a similar conclusion for the problem of local pooling in
PointNet++ [70] on the 3D point cloud completion task.

The number of binary tree level L in BTreeNet is examined by
varying L in 2, 3, 4, 5, 6, 7. The results are reported in Table 5.13,
which shows 5 levels in BTreeNet have a good trade-off between
alignment accuracy and computational performance. As shown in
the table, after a certain level the increase of the tree depth does not
increase the accuracy of the registration. The reason is that 5 levels
in BTreeNet already sufficiently include the majority of features in
the alignment in this experiment.

5.4 Discussion and Limitation

Two prominent failure cases have been identified for the proposed
BTreeNet and IBTreeNet.

First, the models fail to transform 3D point clouds with large
missing data. As shown in Figure 5.15, 50% of the points are missing
in the input source 3D point cloud. The partial point clouds should
be transformed into the same parts in target point clouds rather than
the centre of the target point clouds, as shown in Figure 5.15 (k), (l),
(w) and (x). Because the loss function of the combined CD and EMD
finds the global registration between two shapes without considering
the local to global registration. However, other supervised learning-
based methods still meet this problem because they force the network
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Table 5.14 Evaluations on 3D point clouds with the large rotations, Gaussian
noise and partial visibility together. The initial rotation ranges from 0 to 180
degrees. The standard deviation of Gaussian noise is 0.01. 70% of the points are
retained in the source 3D point cloud. All networks are trained on Modelnet40
Clean Training Data with the [0, 180◦] rotations without missing and noisy points.
All networks are tested on ModelNet40 Partial & Noise with random rotations
from 0 to 180 degrees. Bold denotes the best-performing measures.

Methods CD ↓ F Norm ↓ MIE ↓ MIE ↓ MAE ↓ MAE ↓

(T) (Rot.) (Trans.) (Rot.) (Trans.)

ICP 0.127023 2.478114 140.039088 0.232349 73.982576 0.116232

NDT 0.163471 2.491908 138.536217 0.227821 76.550642 0.111283

CPD 0.097589 2.419856 140.816336 0.187100 80.316289 0.093111

PNLK 0.166495 2.438380 133.998653 0.264212 81.443547 0.131969

DCP 0.143335 2.418145 133.654160 0.096254 74.054247 0.048559

RPM 0.132424 1.384155 66.200785 0.205663 54.264680 0.102969

FMR 0.121134 2.395068 135.549886 0.215384 80.910621 0.106631

DeepGMR 0.140693 1.896580 97.199968 0.196313 72.883297 0.098153

RGM 0.446829 2.645025 136.359483 0.766860 84.548646 0.382923

BTreeNet 0.074901 1.310750 68.201930 0.008189 61.199467 0.004077

IBTreeNet 0.058597 1.211751 60.334884 0.007321 50.298829 0.003508

to output a certain transformation based on a certain pattern of
input 3D point cloud pairs by using the supervised manner and still
do not consider the local to global registration in their loss function.

Second, the proposed models fail to transform the 3D point cloud
with the combination of partial overlap, noise and large initial rota-
tions. To evaluate the robustness of all algorithms on 3D point cloud
pairs with the combination of these scenarios, a ModelNet40 Partial
& Noise testing dataset is generated from ModelNet40 Clean. Specif-
ically, for each source 3D point cloud in ModelNet40 Clean, noise is
firstly sampled from Gaussian distribution with a standard deviation
of 0.01 and then a random clipping plane is created passing through
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Fig. 5.15 Failure cases on partial point clouds with 50% of missing data. The
partial 3D point clouds should be transformed into the same parts in target point
clouds rather than the centre of the target point clouds.

the origin and is shifted to retain 70% of the points. All networks
are trained on ModelNet40 Clean Training Data (Section 5.3.1) with
random rotations from 0 to 180 degrees. All trained models are
tested on ModelNet40 Partial & Noise with random rotations from
0 to 180 degrees. The performance of each method on ModelNet40
Partial & Noise with the large rotation is reported in Table 5.14.
Both traditional and learning-based methods fail to achieve accurate
registration, which indicates the poor robustness and generalization
ability of each network under such challenging conditions.

DeepGMR [51] shows the best performance on 3D point clouds
with point-to-point correspondences (Sections 5.3.3, 5.3.6 and 5.3.7),
however, it shows poor robustness and generalization ability on
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partial visibility and noise with broken point-to-point correspon-
dences, as reported in Tables 5.3 and 5.4. Thus, DeepGMR [51]
fails under the combination of partial overlap, noise and large rota-
tions. Although the BTreeNet and IBTreeNet still do not achieve
accurate registration in this challenging condition, they achieve the
best-performing measures based on the overall registration errors.
The possible reasons: (i) BTreeNet and IBTreeNet can tolerate noise
and partial overlap to some extent without training them in these
scenarios (Sections 5.3.4 and 5.3.5); (ii) Although BTreeNet and IB-
TreeNet suffer on the large rotations, they still outperform ICP [43],
NDT [44], CPD [45], PointNetLK [46], DCP [47], FMR [50] and
RGM [49] (Section 5.3.7).

5.5 Conclusion

A novel unsupervised deep learning network – BTreeNet has been
proposed for 3D point cloud registration. BTreeNet consists of a hi-
erarchical binary tree-based forward propagation that learns features
for the rotation separately from the translation and avoids the inter-
ference between the estimations of rotation and translation in one
single matrix. Based on the BTreeNet, IBTreeNet is proposed to it-
eratively rotate and translate the source 3D point cloud to the target.
With an identical network architecture to BTreeNet, the IBTreeNet
is trained based on the registration result of a trained BTreeNet
model. Once trained, the IBTreeNet model can be reused and it-
eratively improve registration accuracy. The proposed IBTreeNet
achieves precise registration and shows remarkable generalization
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and robustness to unseen outdoor and indoor scenes that are not
trained.
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Chapter 6

Deform3DNet: A Unified Deep
Learning Network for Non-rigid
Deformable 3D Point Cloud
Registration and Correspondence

In this chapter, an end-to-end learning-based network (Deform3DNet)
for non-rigid 3D point cloud registration is proposed, which also leads
to finding the point-to-point correspondence. The Deform3DNet
learns features from non-rigid 3D point clouds and generates a
point-to-point transformation matrix through a point-to-point trans-
formation module that considers the non-rigid registration as rigid as
possible. A novel non-rigid registration loss is proposed to guarantee
each point in one point cloud can be transformed to its corresponding
point in the other, which leads to finding the point-to-point corre-
spondence. A structure preservation loss is proposed to keep the
internal structure for the transformed 3D point cloud. Experimental
results show the improvement in the quality of the registration and
correspondence by comparing Deform3DNet with state-of-the-art
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Fig. 6.1 Registration on two non-rigid 3D point clouds with small and large
deformations. (a) Input non-rigid 3D point clouds with small (above) and large
(bottom) deformations. (b) (c) (d) Registration results of Non-rigid ICP, CPD
and BCPD. (e) Registration results of Deform3DNet.

non-rigid 3D point cloud registration and correspondence methods
across large deformations, partiality and topological noise.

6.1 Introduction

Non-rigid 3D point clouds registration and correspondence are fun-
damental challenges in computer vision and computer graphics, with
applications in shape analysis [52] [128], deformation transfer [54],
3D reconstruction [129] [25], and 3D object tracking [130].

Previous non-learning based methods [59] [45] [60] for non-rigid
3D point clouds registration and correspondence heavily depend
on the initial poses and the transformation of the points is con-
strained by the adjacent points, which results in a misalignment
between two non-rigid 3D point clouds with large and multiple de-
formations. These methods are also computationally expensive and
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time-consuming. Figure 6.1 (a) shows non-rigid 3D point clouds
with small and large deformations, respectively. Figure 6.1 (b), (c)
and (d) show registration results produced by non-rigid 3D registra-
tion methods Non-rigid Iterative Closest Point (Non-rigid ICP) [59],
Coherent Point Drift (CPD) [45] and Bayesian Coherent Point Drift
(BCPD) [60], respectively. It is worth noting that Non-rigid ICP [59]
and BCPD [60] perform poorly on large and multiple deformations,
for example, the deformations in arms and legs. CPD [45] only
successfully aligns the arms without the body and legs, whereas
Deform3DNet achieves successful registration with both small and
large deformations, as shown in Figure 6.1 (e).

Without considering 3D shape alignment, many state-of-the-art
non-learning and learning-based approaches [61] [62] [63] [64] [65]
have been proposed to find correspondence between non-rigid 3D
shapes. However, these methods are limited when handling large and
multiple deformations between 3D shapes. The results of non-rigid
shape correspondence (indicated by colour transfer) produced by
these methods are shown in Figure 6.2. FMNet [63], SURFMNet [64]
and CorrNet3D [65] find the incorrect correspondence between arms,
body and legs, as shown in Figure 6.2 (f), (g) and (h). Figure 6.2 (i)
indicates that ZoomOut [61] produces the vertically symmetric point-
wise correspondence and does not provide the correct correspondence
between two 3D meshes, whereas Figure 6.2 (j) shows that Fast
Sinkhorn Filter [62] provides the proper correspondence. The point-
to-point correspondences of Deform3DNet results are visualized in
the form of a 3D point cloud and a mesh, respectively, as shown
in Figure 6.2 (k) and (l). The registration results produced by
non-rigid 3D registration methods Non-rigid ICP [59], CPD [45]
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Fig. 6.2 Correspondence between two non-rigid 3D point clouds with large defor-
mations. The point-to-point correspondences are visualized via colour transfer.
(a) Reference non-rigid 3D point cloud. (b) Ground-truth correspondence. (c)
(d) (e) Results from Non-rigid ICP, CPD and BCPD. (f) (g) (h) Results from
learning-based FMNet, SURFMNet and CorrNet3D. (i) (j) Results from non-
learning based methods ZoomOut and Fast Sinkhorn Filter. (k) (l) Results of
Deform3DNet in the form of 3D point cloud and mesh.
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and BCPD [60] are also shown in Figure 6.2 (c), (d) and (e), which
indicates that these methods are limited when handling large and
multiple deformations. Most importantly, these state-of-the-art
learning-based methods [63] [64] [65] do not provide the non-rigid
3D registration after finding the point-wise correspondences.

To achieve high-performance non-rigid 3D point clouds registra-
tion and correspondence, two main concerns are observed. (i) The
transformation of non-rigid 3D point clouds can be done through a
point-to-point rigid transformation (rotation and translation); (ii)
If each individual point in one 3D point cloud is transformed to
its corresponding point in the other, it will lead directly to the
correspondences between the two non-rigid 3D point clouds. There-
fore, in this chapter, an end-to-end deep learning-based network
(Deform3DNet) for non-rigid 3D point cloud registration is proposed.
In Deform3DNet, the combination of 1D Conv, BN and ReLU layers
is used to extract point-wise features that are then aggregated to
the global features via a max-pooling operator. The global features
of two non-rigid 3D point clouds are given as the input to a point-
to-point transformation module that applies as rigid as possible for
the non-rigid transformation to generate a transformation matrix
for each point in a point-to-point transformation layer. A novel
non-rigid registration loss is proposed to guarantee that the effective
features can be learned to generate the point-to-point rigid trans-
formation for optimal correspondence. The non-rigid registration
loss is differentiable and minimizes the Frobenius norm between
the transformed 3D point cloud and the target. A novel structure
preservation loss is then proposed by maximizing the similarity of
grouped points between the transformed and the target 3D point
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Fig. 6.3 Deform3DNet architecture. The source and the target non-rigid 3D point
clouds are given as input to the shared encoder to generate the global features
for each 3D point cloud. A point-to-point transformation module is proposed to
generate the point-to-point rigid transformation.

clouds, keeping the internal structure in the transformed 3D point
cloud.

6.2 Methods

Let PS and PT define the source and the target non-rigid 3D point
clouds, respectively. A 3D point cloud is represented as a set of
3D points {pi | i = 1, 2, ..., N}, where each point in PS and PT is
defined as pi = (x, y, z). The main purposes of this method are:
(i) Considering the non-rigid 3D point cloud registration as rigid
as possible and generating a point-to-point rigid transformation
matrix (rotation and translation) for each point in PS to align with
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PT ; (ii) Designing a loss function that makes each individual point
in PS to transform to its corresponding point in PT and finds the
correspondences between non-rigid 3D point clouds. Deform3DNet
(Section 6.2.1), as shown in Figure 6.3, is proposed to generate the
point-to-point rigid transformation. A non-rigid 3D registration loss
and a structure preservation loss (Section 6.2.2) are proposed to find
the optimal registration for point-to-point correspondences and keep
the internal structure for the transformed PS, respectively.

6.2.1 Deform3DNet

As illustrated in Figure 6.3, two non-rigid 3D point clouds PS ∈ RN×3

and PT ∈ RN×3 are given as input and need to be aligned. PS and PT

pass through the shared encoder that takes each point independently
and generates the high-dimensional point-wise features fPS

∈ RN×d

and fPT
∈ RN×d, where d is the dimension for point-wise features.

The max-pooling is applied to aggregate point-wise features fPS
and

fPT
to extract the global features FPS

∈ R1×d and FPT
∈ R1×d by

using the Equation 6.1.

FP = MAX
pi∈P

{h(p1), ..., h(pn)} (i = 1, ..., n) (6.1)

where pi is a point in either PS or PT . h is a combination of 1D Conv,
BN and ReLU layers that aims to extract fPS

and fPT
, and MAX

represents the max-pooling operator that returns a new vector of
the element-wise maximum.

The features FPS
and FPT

are given as input to the proposed
point-to-point transformation module that considers the non-rigid
transformation as rigid as possible and generates the point-to-point
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rigid transformation matrices. Specifically, FPS
and FPT

are con-
catenated and passed through a fully connected layer to obtain the
global feature vector Fj ∈ R1×2d (j = 1, ..., 2d) for the non-rigid
3D registration. The global feature vector Fj is decoded from two
layers of h(h(·)) to generate the point-to-point rigid transformation
T ∈ RN×7 form a point-to-point transformation layer by using the
Equation 6.2.

T = {h(h(F1), ..., h(Fj))} (j = 1, ..., 2d)

= {T1, ..., TN} (TN ∈ R1×7)
(6.2)

where N is the number of points in PS, 1 × 7 represents a size of
1 × 7 transformation matrix for each point in PS, including a size
of 1 × 4 rotation quaternion qi (i = 1, ..., N) and a size of 1 × 3
translation ti ∈ R3.

Each rotation quaternion qi, defined in Equation 6.3, is trans-
formed into a rotation matrix Ri ∈ SO(3) (i = 1, ..., N) with the
size of 3 × 3, as defined in Equation 6.4.

qi = [qa, qb, qc, qd]T ; qa = cos
θ

2; qb = nxsin
θ

2;

qc = nysin
θ

2; qd = nzsin
θ

2; n = [nx, ny, nz]T
(6.3)

where θ is the rotation angle, and n is the axis of rotation.

Ri =


1 − 2q2

c − 2q2
d 2qbqc + 2qaqd 2qbqd − 2qaqc

2qbqc − 2qaqd 1 − 2q2
b − 2q2

d 2qcqd + 2qaqb

2qbqd + 2qaqc 2qcqd − 2qaqb 1 − 2q2
b − 2q2

c

 (6.4)
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Fig. 6.4 Non-rigid 3D point cloud registration analysis. Each point in PS needs to
be transformed to its correspondence in PT . The global alignment without finding
its correspondence results in incorrect non-rigid 3D point cloud registration.

Finally, each point in the PS is rotated and translated by Equa-
tion 6.5, and the transformed 3D point cloud P

′

S is obtained.

P
′

S = (R1p1 + t1, ..., Ripi + ti) (pi ∈ PS) (6.5)

Once the point-to-point transformation matrices are estimated,
the point correspondence between PS and PT is computed by finding
the nearest point between P

′

S and PT using Euclidean distance 6.6.

Eucli_dist(P ′

S, PT )=MIN
pi∈P

′
S

(pi−PT )2 (6.6)

The index of the point with the minimum Euclidean distance is
the estimated correspondence between input PS and PT .

6.2.2 Loss Function

The loss function in non-rigid 3D point cloud registration needs to
guarantee that each individual point in PS can be transformed to
its corresponding point in PT , as illustrated in Figure 6.4. To this
end, a differentiable Lossdeform is proposed, defined in Equation 6.7,
to minimize the Frobenius norm between the transformed 3D point
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cloud P
′

S and target 3D point cloud PT . The Frobenius norm is the
matrix norm, which maximizes the similarity of two matrices of two
3D point clouds. The Frobenius norm loss and the commonly used
CD loss for 3D point cloud processing are illustrated and compared
in ablation studies in Section 6.3.4.

Lossdeform =
∥∥∥PT − P

′

S

∥∥∥
F

(6.7)

Note that, the point-wise correspondences for the Deform3DNet in-
put PS and PT are required as the prior knowledge, which guarantees
that the output point-to-point rigid transformation matrix T learned
by Lossdeform can align each point in PS with its corresponding point
in PT .

To keep the internal structure of the transformed 3D point cloud
P

′

S, a structure preservation loss Losssp is proposed, as defined in
Equation 6.8.

PT_stru =
N∑

i=1

∑
k∈K

(pk − pi)2 (pi ∈ PT )

PS′_stru =
N∑

i=1

∑
k∈K

(pk − pi)2 (pi ∈ PS′ )

Losssp =
∥∥∥PT_stru − PS′_stru

∥∥∥
F

(6.8)

where K is the index set of k nearest points of a point pi.
The k nearest points {pk | i = 1, 2, ..., K} from pi are found in PT

and P
′

S, respectively. The quadratic sum of the Eucliden distance
is calculated between pk and pi in both PT and P

′

S, which results
in PT_stru and PS′_stru, respectively. The structure preservation
loss Losssp is designed to minimize the Frobenius norm between
PT_stru and PS′_stru, which maximizes the similarity between the
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transformed 3D point cloud P
′

S and target 3D point cloud PT to
keep the internal structure.

Finally, the overall loss function for Deform3DNet is defined as
Equation 6.9.

Loss = Lossdeform + Losssp (6.9)

6.3 Experiments

6.3.1 Evaluation Datasets

For non-rigid 3D point cloud registration, four different non-rigid
3D datasets are adopted, including MPI-FAUST [53], DFAUST [52],
TOSCA [131] and SHREC16 [132]. These datasets consist of males,
females, kids and animals with different poses and also provide
point-to-point correspondence between each pose. Both TOSCA
and SHREC16 datasets are more challenging since such datasets
contain large and multiple deformations between each pose. To train
the Deform3DNet, more than 4,000 training pairs and 400 testing
pairs are randomly selected, respectively, where each dataset consists
of around 1,000 training pairs and 100 testing pairs. Each mesh
vertices are randomly down-sampled to 2297 points in a 3D point
cloud and the point-to-point correspondence is still kept. The 2297
points in each 3D point cloud are randomly distributed on the 3D
surface.

For a fair comparison of non-rigid 3D point cloud correspondence
with the state-of-the-art learning-based FMNet [63], SUPERFM-
Net [64] and CorrNet3D [65], the same training and testing pairs
are adopted in such methods.
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6.3.2 Evaluation Matrix

To quantitatively compare different methods on non-rigid 3D point
cloud registration, chamfer distance [91] is used to evaluate the
registration results. The chamfer distance calculates the average
nearest point distance between the target PT and the transformed
P

′

S, which is commonly used as the evaluation matrix for 3D point
cloud processing [48] [49] [50] [41] [40] [91] [25] [133].

The state-of-the-art 3D shape correspondence methods [61] [62] [63]
[64] are based on 3D mesh and adopt geodesic distance as the eval-
uation matrix requiring edges for 3D shape. However, such edges
are not available for 3D point clouds. A corresponding evaluation
matrix is defined based on 3D point clouds, defined in Equation 6.10,
to measure the correspondence error.

Eucli(PS, PT ) =
∑

x∈PS ,y∈PT

(x − y)2

Eucli(P ′

S, PT ) =
∑

x∈P
′
S ,y∈PT

(x − y)2

Corres =
∥∥∥Eucli(PS, PT ) − Eucli(P ′

S, PT )
∥∥∥
F

(6.10)

where the sum of the Euclidean distance Eucli(PS, PT ) between PS

and PT is calculated as the ground-truth. The sum of the Euclidean
distance Eucli(P ′

S, PT ) between P
′

S and PT is calculated as the
estimated output from each method. The final correspondence error
is the Frobenius norm between Eucli(PS, PT ) and Eucli(P ′

S, PT ).

6.3.3 Implementation Details

An Nvidia Geforce 2080Ti GPU with 12G memory is used for network
training. The Deform3DNet is trained for 600 epochs with a batch
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size of 64, an adam optimizer and a learning rate of 0.001. Two
non-rigid 3D point clouds PT and PS with 2297 points are given as
input for the network during the training. Following the filter sizes
in PointNet, the filter sizes for feature extraction in 1D Convolution
layer are [64, 64, 64, 128, 1024]. Both features with 1024 dimensions
from PT and PS are concatenated and given as input to a fully
connected layer to generate the global features with the size of
[1 × 2048]. The detailed comparison between three different feature
extraction modules is illustrated in ablation studies in Section 6.3.4.
The filter sizes for decoding the global features are [2048, 2048 × 2].
The point-to-point transformation layer generates the point-to-point
transformation matrix with the size of [2297 × 7] from the features
with the size of [2048 × 2].

Table 6.1 Feature extraction analysis. Quantitative comparison of Deform3DNet
against state-of-the-art methods using different Feature extraction modules.

Methods CD Corres error Computation Time(s) Parameters

PointNet 0.010180 0.452496 0.199(CP U); 0.027(GP U) 78, 625, 999

PointNet++ 0.042001 2.276731 0.907 (CPU); 0.198 (GPU) 788,899,999

DGCNN 0.067470 5.940949 0.549 (CPU); 0.251 (GPU). 79,049,807

6.3.4 Ablation Studies

In this section, the results of the ablation studies are presented to
analyse the effectiveness of each component in Deform3DNet.

First, the design of Deform3DNet is validated by analysing the
state-of-the-art 3D point cloud feature extraction modules in Point-
Net [111], PointNet++ [134] and DGCNN [135] to select the most
effective feature extraction module. The chamfer distance, corre-
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spondence error, computation time and the number of parameters
are reported in Table 6.1 based on these feature extraction modules.
The feature extraction in PointNet outperforms others with the
lowest chamfer distance, correspondence error, and less computa-
tion time and parameters. Thus, the feature extraction module in
Deform3DNet follows the PointNet structure.

PointNet++ [134] applies several hierarchical feature extraction
networks, which aggregate local features before the global pooling.
The feature extraction module in PointNet [111] outperforms Point-
Net++ [134] by using global pooling in this experiment. One possible
reason is that local pooling is less stable than global pooling due to
suboptimality in the selection of local neighbourhoods for non-rigid
3D point clouds. Aggregating local features before global pooling
results in unstable global features for the proposed point-to-point
transformation module to estimate the optimal rotations and transla-
tions. DGCNN [135] also extracts local features using local pooling,
which is also not suitable for Deform3DNet. Moreover, PCN [39]
and TopNet [40] achieve a similar conclusion for the problem of local
pooling in PointNet++ [134] on the 3D point cloud completion task.

Second, the effectiveness of the proposed Lossdeform and Losssp

are evaluated and compared with the commonly-used chamfer dis-
tance loss [91] in the 3D point cloud processing networks [50] [91] [133]
[39] [40]. In Table 6.2, the performance of Deform3DNet when trained
with different loss functions is compared. The results are calculated
from the 400 testing pairs in Section 6.3.1. Either registration er-
ror or Correspondence error is decreased by adding the proposed
Losssp, which shows the effectiveness of the structure preservation
loss Losssp.
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Fig. 6.5 Comparison with chamfer distance loss. (a) Input non-rigid 3D point
clouds. (b) Registration result of Deform3DNet. (C) Registration results by using
Deform3DNet with chamfer distance loss. (d) (e) The source and target 3D point
clouds with correspondences. Correspondence is visualized by colours mapped
from the source 3D point cloud. (f) Visual correspondence results of Deform3DNet.
(d) Visual correspondence results by using Deform3DNet with chamfer distance
loss.

Table 6.2 Loss analysis. Quantitative comparison of Deform3DNet loss against
chamfer distance loss.

Loss CD Corres error
Lossdeform 0.043065 0.461453
Lossdeform + Losssp 0.010180 0.452496
LossCD 0.023257 30.764978

It is worth noting that the chamfer distance loss can be used to
align one non-rigid 3D point cloud to the other with lower registration
error but with much higher correspondence error, which indicates
that chamfer distance loss focuses on the global shape registration
and does not find the optimal correspondence between two input
non-rigid 3D point clouds. Figure 6.5 (c) and (g) show the good
registration results and incorrect correspondences by using chamfer
distance loss, whereas Figure 6.5 (b) and (f) show the optimal
registration results and correspondences from Deform3DNet loss.

158



Table 6.3 Evaluations of 3D point cloud registration on the four different testing
datasets. The average chamfer distance errors have been calculated to evaluate
each method.

Methods MPI-FAUST DFAUST TOSCA SHREC16

Non-rigid ICP 0.067033 0.066303 0.134136 0.137583

CPD 0.033186 0.025576 0.044377 0.053272

BCPD 0.093096 0.087347 0.230031 0.175747

Deform3DNet 0.005533 0.007326 0.016152 0.011710

6.3.5 Evaluation of Registration Performance

To analyse the effectiveness of Deform3DNet on non-rigid 3D point
cloud registration, the Deform3DNet with Non-rigid ICP [59], CPD [45]
and BCPD [60] on MPI-FAUST [53], DFAUST [52], TOSCA [131]
and SHREC16 [132] testing pairs are compared.

Table 6.4 Quantitative comparison of Deform3DNet against previous works on
the number of iterations and computation time. The number of points in each 3D
point cloud is 2297 in this comparison.

Method Iterations Computation Time(s)

Non-rigid ICP 160 93.791 (CPU)

CPD 20 24.124 (CPU)

BCPD 200 61.706 (CPU)

Deform3DNet 1 0.199(CP U); 0.027(GP U)

The average chamfer distance error and the correspondence error
against Non-rigid ICP, CPD and BCPD are shown in Tables 6.3
and 6.5. The Deform3DNet outperforms Non-rigid ICP, CPD and
BCPD on non-rigid 3D point cloud registration and also achieves
a significant improvement in finding correspondences between two
input 3D point clouds. Figures 6.6 and 6.7 show the qualitative
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Fig. 6.6 Qualitative non-rigid 3D point cloud registration results of each method.
(a) Input non-rigid 3D point clouds. (b) (c) (d) Registration results of Non-rigid
ICP, CPD and BCPD. (e) Registration results of Deform3DNet.

160



Table 6.5 Evaluations of 3D point cloud correspondence on the four different
testing datasets. The average correspondence errors have been calculated to
evaluate each method.

Methods MPI-FAUST DFAUST TOSCA SHREC16

Non-rigid ICP 7.662257 6.867315 27.311985 29.354054

CPD 9.373883 3.275189 17.679979 25.350317

BCPD 8.306217 5.423714 22.126240 19.779131

Deform3DNet 0.152320 0.129198 0.916890 0.611596

results of each method on non-rigid 3D point cloud registration
and correspondence, which indicates that Non-rigid ICP, CPD and
BCPD constrain the transformations of points and are extremely
sensitive to the large and multiple deformations.

The maximum iterations and computation time for each method
are listed in Table 6.4. Deform3DNet requires only one transfor-
mation that is significantly lower than Non-rigid ICP, CPD and
BCPD. Deform3DNet requires 0.199 seconds on the CPU to align
one 3D point cloud to the other, which is significantly less than
Non-rigid ICP and BCPD which require around one minute. The
GPU acceleration is also provided and the Deform3DNet only takes
0.027 seconds for aligning two non-rigid 3D point clouds, whereas
Non-rigid ICP, CPD and BCPD do not provide GPU acceleration.

6.3.6 Evaluation of Correspondence Performance

To analyse the effectiveness of Deform3DNet on non-rigid 3D point
cloud correspondence, the Deform3DNet with state-of-the-art non-
learning and learning-based methods are compared including ZoomOut
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Fig. 6.7 Comparisons on finding correspondences after registration between non-
rigid 3D point clouds. Correspondence is visualized by colours mapped from the
leftmost Reference 3D point cloud. (a) Reference non-rigid 3D point cloud. (b) (c)
(d) Correspondence results of non-rigid ICP, CPD and BCPD. (e) Correspondence
results of Deform3DNet. (f) The ground-truth correspondences.
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Fig. 6.8 Comparisons on finding correspondences against non-learning and learning-
based methods between non-rigid 3D shapes in the form of meshes. Correspondence
is visualized by colour mapped from the leftmost Reference 3D point cloud. (a)
Reference non-rigid 3D meshes. (b) (c) Correspondence results of non-learning-
based methods ZoomOut and Fast Sinkhorn Filter. (d) (e) (f) Correspondence
results of learning-based methods FMNet, SURFMNet and CorrNet3D. (g) Cor-
respondence results in the form of 3D point clouds for Deform3DNet. (h) The
ground-truth correspondences.

[61], Fast Sinkhorn Filter [62], FMNet [63], SURFMNet [64], and
CorrNet3D [65].

Since ZoomOut, Fast Sinkhorn Filter, FMNet, SURFMNet and
CorrNet3D only provide the point-to-point correspondence and do
not provide the transformation matrix to align non-rigid 3D shapes,
the evaluation matrix of the chamfer distance for the registration
error cannot be calculated for such methods. 100 training pairs
and 100 testing pairs are selected to compare the effectiveness of
the learning-based methods FMNet, SURFMNet and CorrNet3D
with the Deform3DNet. The average correspondence errors for
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training and testing datasets, number of maximum iterations and
computation time against these methods are listed in Table 6.6.

The Deform3DNet outperforms ZoomOut, Fast Sinkhorn Filter,
FMNet, SURFMNet and CorrNet3D in finding the correspondences
either on training or testing pairs with the lowest correspondence
error. The non-learning methods ZoomOut and Fast Sinkhorn Filter
need around 20 iterations and 50 seconds, whereas the learning-
based methods FMNet and SURFMNet require one iteration and
approximately 10 seconds. Similarly to learning-based methods, the
Deform3DNet also needs one iteration but with less than 1 second
for finding correspondences on the CPU. FMNet and SURFMNet
also provide GPU acceleration and need around 4.5 seconds per
pair. The Deform3DNet takes less computation time than FMNet
and SURFMNet on the GPU with 0.097 seconds. CorrNet3D takes
the least computation time on GPU at only 0.048 seconds but with
higher computation time on CPU at 1.421 seconds. The K-Nearest
Neighbour (KNN) algorithm applied in the CorrNet3D requires more
computation time on the CPU than that on the GPU. In addition,
CorrNet3D shows the largest correspondence error on testing sets,
which indicates the poor generalization and robustness of CorrNet3D
on datasets that are not trained. Figure 6.8 shows the qualitative
results of each method on non-rigid 3D shape correspondence.

It is worth noting that, the learning-based methods FMNet,
SURFMNet, CorrNet3D and Deform3DNet achieve a lower per-
formance of finding correspondences on testing datasets compared
to that on training datasets. However, the Deform3DNet model
shows the optimal robustness on testing sets compared with FMNet,
SURFMNet and CorrNet3D models. Fast Sinkhorn Filter shows
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Table 6.6 Quantitative comparison of Deform3DNet against state-of-the-art non-
learning and learning methods on 3D shape correspondence. The number of
vertices in each 3D mesh is 6890 in this comparison.

Methods
Corres error Corres error Iterations Computation

(train sets) (test sets) Time(s)

ZoomOut 9.783099 6.587007 25 54.816 (CPU)

Fast Sinkhorn Filter 0.306198 0.295183 20 45.997 (CPU)

FMNet 0.895228 3.539739 1 12.738 (CPU); 4.737 (GPU)

SURFMNet 1.329879 2.137329 1 9.628 (CPU); 4.406 (GPU)

CorrNet3D 1.267763 11.472962 1 1.421 (CPU); 0.048 (GPU)

Deform3DNet 0.139297 0.215360 1 0.697(CP U); 0.097(GP U)

Fig. 6.9 Registration on one of the non-rigid 3D point clouds with Gaussian noise.
(a) Target non-rigid 3D point cloud with the standard deviation of Gaussian
noise equal to 0.05. (b) Target non-rigid 3D mesh with the standard deviation of
Gaussian noise equal to 0.05 and with colour for correspondence visualization. (c)
and (f) Source 3D point clouds. (d) and (g) Registration results of Deform3DNet.
(e) and (h) Correspondence results of Deform3DNet.

robust performance in finding correspondences, although, it requires
longer computation time and around 20 iterations.

6.4 Discussion and Limitations

In this section, the Deform3DNet on topological noise and non-rigid
partiality are evaluated and the limitations of the Deform3DNet are
analysed.
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Fig. 6.10 Qualitative non-rigid 3D point cloud registration results of each method
with multiple missing holes. (a) Source non-rigid 3D point clouds. (b) Target
non-rigid 3D meshes with multiple missing holes. (c) (d) (e) Registration results
of Non-rigid ICP, CPD and BCPD. (f) Registration results of Deform3DNet.

Fig. 6.11 Qualitative non-rigid 3D point cloud registration results of each method
with Gaussian noise. (a) Input non-rigid 3D point clouds. (b) (c) (d) Registration
results of Non-rigid ICP, CPD and BCPD. (e) Registration results of Deform3DNet.

Fig. 6.12 Registration on one of the non-rigid 3D point clouds that contain missing
data. (a) Source non-rigid 3D point cloud. (b) Source non-rigid 3D point cloud
with colour for correspondence visualization. (c) and (f) Target 3D point clouds
with 10% and 20% missing data. (d) and (g) Registration results of Deform3DNet.
(e) and (h) Correspondence results of Deform3DNet.
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The noise is sampled from Gaussian distribution for non-rigid 3D
point clouds with 0 mean and a standard deviation varying in the
range of 0.01 to 0.05, and the Gaussian noise is added to all testing
pairs. The average chamfer distance errors and correspondence
errors are shown in Table 6.7, which illustrates a slight increase
of the errors with the standard deviation increases from 0.01 to
0.05 on four different datasets and proves that the Deform3DNet
is robust to Gaussian noise. Figure 6.9 shows the registration and
correspondence results with the standard deviation equal to 0.05
from TOSCA datasets [131]. Figure 6.11 shows the comparison
experiments on Gaussian noise between each method.

The particularly challenging condition of non-rigid 3D point cloud
registration and correspondence occurs whenever one of the two 3D
point clouds contains missing geometry. To evaluate the robustness
of Deform3DNet to non-rigid partially visible data, missing holes are
created in the target non-rigid 3D point cloud PT with the different
missing rates ranging from 10% to 30%, and the missing holes
are created to all testing pairs. Figure 6.12 shows the registration
and correspondence results with 10% and 20% of missing data
from SHREC16 datasets [132]. Figure 6.10 shows the comparison
experiments on multiple missing holes between each method. The
average chamfer distance errors and correspondence errors are shown
in Table 6.8. However, the Deform3DNet can only tolerate 10% of
missing data, and large registration and correspondence errors occur
under large partiality. One of the reasons as being that the network
finds the global shape registration and correspondence. Once a large
number of points are missing in one shape, those corresponding
points in the other shape cannot find their correspondences to form
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the whole shape, which results in incorrect transformation and large
errors. Another limitation is that Deform3DNet requires the point-
wise correspondence of input non-rigid 3D point cloud pairs as prior
knowledge.
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6.5 Conclusion

This chapter has presented a novel end-to-end deep learning net-
work Deform3DNet for non-rigid 3D point cloud registration and
correspondence. It shows how deep learning is used successfully in
addressing the non-rigid registration and correspondence challenges
end-to-end with two non-rigid 3D point clouds. The Deform3DNet
requires less time to find the optimal alignment and correspondence
for 3D point clouds with large and multiple deformations. To align
one non-rigid 3D point cloud to the other, the Deform3DNet con-
siders the process of non-rigid alignment as rigidly as possible to
generate the point-to-point rigid transformation, including the point-
to-point rotation and translation. To align each point in one 3D
point cloud with its corresponding point in the other, a novel non-
rigid 3D registration loss function is proposed to learn the features
of point-to-point transformation. The structure preservation loss
function preserves the internal structure of the transformed 3D point
cloud, which further improves the registration results. Once the
point-to-point rigid transformation is found, the correspondence is
computed by finding the nearest point of each point between trans-
formed and target 3D point clouds. The effectiveness and robustness
of the Deform3DNet are demonstrated by comparing it with the
state-of-the-art non-learning and learning-based methods on different
non-rigid 3D point cloud datasets with challenging settings, such as
partially visible data and topological noise.
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Chapter 7

Augmented Reality Application

This chapter applies the previously proposed neural networks (TreeNet
and Iterative BTreeNet) to achieve stable and accurate 3D point
cloud registration in AR. The 3D point clouds are captured by Sony
IMX590 TOF 3D LiDAR scanner from iPhone 13 pro-Max. The 3D
point cloud completion network (TreeNet) can be used to achieve
high-quality 3D point clouds before the rigid 3D point cloud regis-
tration network (Iterative BTreeNet). The proposed Deform3DNet
requires the point-wise correspondence of two non-rigid 3D point
cloud pairs (the captured non-rigid 3D point clouds and the vir-
tual non-rigid 3D object) as prior knowledge and these point-wise
correspondences are difficult to obtain from the 3D LiDAR scan-
ner, therefore, the Deform3DNet cannot be directly applied to AR
applications.

The AR application is implemented using ARKit1, which is able to
combine the virtual 3D object with the real-world scene. Finally, the
AR application is deployed on an iPhone. Note that, the ARKit only
provides the technology that combines the virtual 3D object with

1https://developer.apple.com/augmented-reality/arkit/
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Fig. 7.1 The workflow for AR application with 3D point cloud registration.

the real-world scene without rotating and translating the virtual 3D
object to match the same pose of the target object in the real-world
scene. Therefore, the proposed networks (TreeNet and Iterative
BTreeNet) are used to achieve stable and accurate 3D point cloud
registration in AR.
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7.1 Virtual 3D Objects in AR Application

AR combines virtual 3D objects with real-world scenes. In this
section, four virtual 3D objects are captured and prepared for the
AR application, including a 3D chair, a 3D guitar, a 3D bottle and
a 3D pillow.

The 3D point clouds of a chair, a guitar a bottle and a pillow are
captured from Sony IMX590 TOF 3D LiDAR scanner, as shown in
Figure 7.1 (a). Since the LiDAR scanner performs poorly on texture-
less regions (e.g. water, transparent bottle, glass and etc.), the
captured 3D point cloud bottle is severely distorted and deformed,
as shown in Figure 7.1 (third row, first column). Thus, a 3D point
cloud bottle from Modelnet40 [126] is selected and used as the
virtual 3D object in the AR application, as shown in Figure 7.1
(third row, second columns). The ARKit 1 requires virtual 3D
meshes in AR applications for the visualization, thus, the Poisson
Surface Reconstruction algorithm [136] is used to reconstruct the
3D object meshes from the captured 3D point clouds, as shown in
Figure 7.1 (c).

7.2 AR Implementation using ARKit

This section illustrates how ARKit 1 is used to combine the virtual
3D object with the real-world scene for AR application.

Figure 7.2 (top) shows the AR application using ARKit without
3D point cloud registration. A virtual 3D chair is placed around the
target chair in the real-world scene in Figure 7.2 (top). Specifically,
the position of the virtual 3D chair is determined by the initial
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Fig. 7.2 AR application with and without using 3D point cloud registration.

position of the iPhone. By default, the iPhone is placed in front of
the target object at a fixed distance (one meter for the chair) and
then the AR application is launched at the initial position. The
virtual 3D object chair will be placed one meter away in front of the
iPhone camera, as shown in Figure 7.2 (top). The position of the
virtual 3D object chair will stay around the same position during the
movement of the camera. This is because the ARKit automatically
calculates the relative positions between the virtual 3D object chair
and the real-world target scene. The real-time AR video is captured
from the screenshot of the iPhone and the three images in Figure 7.2
(top) are randomly selected and displayed.

During the movement of the iPhone, the underlying target 3D
point cloud scene is also captured from the initial position of the
iPhone using ARKit Depth API 2 that can access to the LiDAR
scanner of iPhone. Once the underlying target 3D point cloud scene

2https://developer.apple.com/documentation/arkit/environmental_analysis/
displaying_a_point_cloud_using_scene_depth
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is captured, the underlying processes of 3D point cloud completion
and registration are used to align the virtual 3D object to the target
object in the target scene.

After the underlying 3D point cloud registration, the virtual
3D object chair is rotated and translated to the target object in
the target scene. The iPhone camera is still placed at the initial
position (one meter away in front of the target chair), and then
the AR application is refreshed at the initial position to display the
registration results in the AR application, as shown in Figure 7.2
(bottom).

Note that, launching the AR application at a fixed position in
front of the target object of the real-world scene can avoid using
3D object detection and tracking algorithms to find the position
of the target object in real-world 3D scenes. This thesis does not
focus on 3D object detection and tracking algorithms but on object
registration. Therefore, the position of the virtual 3D object is
assumed as the known information by launching the AR application
at the fixed initial position in front of the target object.

7.3 Rigid 3D Point Cloud Registration Results
in AR Application

In this section, rigid 3D point cloud registration is applied in the
AR application. The rigid 3D point cloud registration method used
is the proposed Iterative BTreeNet.
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Fig. 7.3 The workflow for AR application with 3D point cloud registration.
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7.3.1 Overview of Registration in AR Application

Figure 7.3 shows the workflow for AR application with 3D point
cloud registration. Virtual 3D object meshes and point clouds are
captured by a LiDAR scanner and displayed in real-world scenes
for the AR application. The virtual 3D point clouds are used for
underlying registration, and the virtual 3D meshes are used for AR
visualization.

During step one, the underlying target 3D point cloud scenes are
captured from a LiDAR scanner. Since this thesis does not consist
of 3D point cloud object detection, tracking and segmentation, the
target 3D point cloud objects are extracted manually from the
underlying target 3D point cloud scenes. This thesis focuses on
how stable and accurate 3D point cloud registration is used in AR
applications.

During step two, the virtual 3D point cloud and the underlying
target 3D point cloud object are given as input for the proposed
Iterative BTreeNet that transforms the virtual 3D point cloud to
the underlying target 3D point cloud object. Therefore, the virtual
3D point cloud is also aligned with the underlying target 3D point
cloud scenes.

During step three, the virtual 3D object mesh is transformed
using the transformation matrix estimated from Iterative BTreeNet.
Finally, the transformed virtual 3D object mesh is combined with
the real-world scene in the AR application using ARKit 1.
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Fig. 7.4 AR application with and without using 3D point cloud registration.
The proposed Iterative BTreeNet is used for 3D point cloud registration in AR
applications.

7.3.2 Registration Results and AR Application

In this section, four virtual 3D objects are combined and aligned
with real-world scenes in an AR application.

Figures 7.4, 7.2 and 7.5 show the AR application before and
after the 3D point cloud registration for the chair and guitar, which
indicates the stable and accurate 3D point cloud registration of
the proposed Iterative BTreeNet. Figures 7.6 and 7.7 show the
underlying processing for AR applications.

Figures 7.8 and 7.10 show the AR application before and after the
3D point cloud registration for the bottle and pillow. However, the
underlying 3D point cloud bottle is severely distorted and deformed,
as shown in Figure 7.9 (b), because of the LiDAR scanner technology,
which results in the misalignment for AR application. In addition,
the underlying 3D point cloud pillow contains the missing points,
as shown in Figure 7.11 (b) and (c), on the area of the top, the left
side and the bottom, which also results in the misalignment for AR
application.
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Fig. 7.5 AR application with and without using 3D point cloud registration.
The proposed Iterative BTreeNet is used for 3D point cloud registration in AR
applications. The images are randomly selected from the real-time AR videos
with different views.
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Fig. 7.6 Underlying processing of the chair for AR.

Fig. 7.7 Underlying processing of the guitar for AR.
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Fig. 7.8 AR application with and without using 3D point cloud registration.
The proposed Iterative BTreeNet is used for 3D point cloud registration in AR
applications. The images are randomly selected from the real-time AR videos
with different views.
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Fig. 7.9 Underlying processing of the bottle for AR.

Based on the problems of the LiDAR scanner and underlying 3D
point cloud with large missing data, the 3D point cloud completion is
used to achieve the high-quality 3D point clouds before registration,
as illustrated in Section 7.4.

7.4 Rigid 3D Point Cloud Completion and Reg-
istration Results in AR

In this section, the 3D point cloud completion method is used to
achieve high-quality 3D point clouds and improve the accuracy of
the 3D point cloud registration in the AR application.
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Fig. 7.10 AR application with and without using 3D point cloud registration.
The proposed Iterative BTreeNet is used for 3D point cloud registration in AR
applications. The images are randomly selected from the real-time AR videos
with different views.
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Fig. 7.11 Underlying processing of the pillow for AR.

7.4.1 Overview of Completion and Registration in AR
Application

Figure 7.12 shows the workflow of the AR application with 3D point
cloud completion and registration.

The step one in Figure 7.12 is similar to that of in Figure 7.3.
However, the 3D LiDAR scanner performs poorly on texture-less
regions (e.g. a bottle of water), which results in large missing data
and severe distortion and deformation. Therefore, the 3D point
cloud completion method can be used to achieve a high-quality 3D
point cloud.

During step two, the proposed 3D point cloud completion network
(TreeNet) is used to generate the high-quality 3D point cloud for
improving registration accuracy.
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Fig. 7.12 The workflow for AR application with 3D point cloud registration.
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Fig. 7.13 Underlying processing of the bottle for AR.

During step three, the completion result of the target 3D point
cloud object and the virtual 3D point cloud is given as input for
the proposed Iterative BTreeNet, transforming the virtual 3D point
cloud to the target one.

During step four, the virtual 3D object mesh is transformed
using the transformation matrix estimated from Iterative BTreeNet.
Finally, the transformed virtual 3D object mesh is combined with
the real-world scene in the AR application

7.4.2 Completion & Registration Results and AR Appli-
cation

Based on the misalignment of bottle and pillow in AR application
(see Section 7.3), the 3D point cloud completion network (TreeNet)
is used to achieve high-quality 3D point cloud bottle and pillow for
improving registration accuracy.
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Figure 7.13 (b) shows the distorted and deformed 3D point cloud
bottle, and Figure 7.13 (c) shows the completion result from the
proposed TreeNet that generates the complete 3D point cloud bottle
from (b). Figure 7.13 (d) displays the input 3D point cloud pair for
the proposed Iterative BTreeNet, and Figure 7.13 (e) displays the
registration result from Iterative BTreeNet. Comparing Figure 7.9
with Figure 7.13, the 3D point cloud completion network (TreeNet)
generates the complete 3D point cloud bottle and improves the
registration accuracy. Figure 7.14 shows the AR application for
bottles with the use of TreeNet and Iterative BTreeNet.

Figure 7.15 (b) and (c) show the underlying target 3D point cloud
chair in different views, which contains missing points on the area of
the top, the left side and the bottom. Figure 7.15 (d) and (e) show the
completion results from the proposed TreeNet, which indicates high-
quality completion results without large missing regions. Figure 7.15
(f) and (g) show the 3D point cloud registration of Iterative BTreeNet.
Figure 7.16 shows the AR application with and without using 3D
point cloud completion and registration. Comparing Figure 7.16 and
Figure 7.10, the proposed TreeNet for 3D point cloud completion
improves the registration accuracy for the stable and accurate AR
application.
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Fig. 7.14 AR application with and without using 3D point cloud registration.
The proposed Iterative BTreeNet is used for 3D point cloud registration in AR
applications. The images are randomly selected from the real-time AR videos
with different views.
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Fig. 7.15 Underlying processing of the pillow for AR.
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Fig. 7.16 AR application with and without using 3D point cloud registration.
The proposed Iterative BTreeNet is used for 3D point cloud registration in AR
applications. The images are randomly selected from the real-time AR videos
with different views.
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Chapter 8

Conclusions and Future Works

8.1 Conclusions

This thesis has mainly presented computational frameworks and
algorithms on 3D point cloud completion, rigid 3D point cloud
registration and non-rigid 3D point cloud registration, which aims
to improve the quality of 3D point clouds and further achieve stable
and accurate registration in AR applications.

The proposed computational framework focuses on recovering
dense and high-quality 3D point clouds from single monocular images
and has been evaluated on endoscopic scenes in minimally invasive
surgery. The computational framework combines two main networks
including a monocular depth learning network and a 3D point cloud
completion network. The framework generates depth information
from monocular images and repairs defects of 3D point clouds to
achieve high-quality 3D point clouds. Seven large medical databases
of 3D point clouds are generated from endoscopic video datasets and
have been made publicly available for researchers.
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The proposed TreeNet focuses on two main objectives, including
multi-class 3D point cloud completion tasks and the generation of
points in missing areas with the preservation of the original input
structures. For the multi-class 3D point cloud completion task,
the TreeNet-multiclass assigns each class of the 3D point cloud
completion task to a specific sub-tree of the root node in the tree.
For the generation of the missing points with the preservation of
the original partial input structures, the TreeNet-binary is designed
following a binary tree structure, where the left leaf node produces
the reconstruction of the original partial input and the right leaf node
generates points in missing areas. Once trained, the final output is
the combination of the original partial input and the output of the
right leaf node. Experiment results on public 3D real-world object
datasets have demonstrated that the proposed TreeNet has achieved
high-quality completion results and outperforms the state-of-the-art
networks. The TreeNet has been also evaluated on medical data in
the proposed computational framework as an additional application,
which proves that TreeNet can also be used in endoscopic scenes in
minimally invasive sugary.

The proposed BTreeNet and IBTreeNet are unsupervised deep
learning networks for rigid 3D point cloud registration. They learn
features for the rotation separately from the translation, which avoids
the interference between the estimations of rotation and translation
in one single matrix. IBTreeNet rotates and translates the source
3D point cloud to the target iteratively to improve registration
accuracy. BTreeNet and IBTreeNet outperform state-of-the-art
learning-based and traditional methods on partial, noisy, unseen
large and dense point clouds, which shows that the proposed methods
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exhibit remarkable generalization and robustness to 3D point clouds
that are not trained.

The proposed Deform3DNet is a learning-based network for non-
rigid 3D point cloud registration and correspondence. Deform3DNet
considers the process of non-rigid alignment as rigidly as possible to
generate the point-to-point rigid transformation. A novel non-rigid
3D registration loss function is proposed to learn the features of
point-to-point transformation, which aims to align each point in the
source 3D point cloud with its corresponding point in the target.
The structure loss function preserves the internal structure of the
transformed 3D point cloud and further improves the registration
results. Deform3DNet outperforms the state-of-the-art non-learning
and learning-based methods on different non-rigid 3D point cloud
datasets.

The developed AR applications show the effectiveness of the
proposed 3D point cloud completion and registration networks that
can achieve high-quality 3D point clouds and further achieve accurate
3D point cloud registration between virtual 3D objects and real-world
scenes in AR.

8.2 Future Works

Although the proposed networks have been evaluated on public
datasets with promising results, there are still some issues that need
to be solved in the future.

• Future works on 3D point cloud completion
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The model size for TreeNet in Chapter 4 is gradually increasing
when the number of classes increases. In future work, data
in each class can be gathered semantically not geometrically,
and shapes with similar semantic features pass through their
corresponding sub-trees of the root node. Each sub-tree will
focus on shapes with similar semantic features. This may largely
reduce the number of sub-trees when the number of training
classes increases drastically. The loss function for calculating
the semantic features can also be considered to generate detailed
information in the missing areas.

• Future works on rigid 3D point cloud registration

The registration results in Chapter 5 show that state-of-the-
art learning-based methods perform poorly on unseen large
and dense scenes that are never trained, whereas Iterative
BTreeNet exhibits remarkable generalization and robustness to
this situation. However, although Iterative BTreeNet outper-
forms state-of-the-art learning-based methods and traditional
optimization algorithms on the partial 3D point cloud, these
methods still result in misalignment under large missing data.
Thus, more accurate registration of partial 3D point clouds with
large missing rates would be an interesting direction to pursue.

• Future works on non-rigid 3D point cloud registration
and correspondence

The registration results in Chapter 6 show that the traditional
optimization algorithms and the proposed Deform3DNet are
not able to handle non-rigid registration under large partial-
ity. In future work, more accurate registration under large
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partiality would be interesting directions to pursue. Another
limitation of Deform3DNet is that it requires the point-wise
correspondence of input non-rigid 3D point cloud pairs as prior
knowledge. However, these point-wise correspondences are diffi-
cult to obtain from the 3D sensors (e.g. 3D LiDAR scanner).
The Deform3DNet cannot be directly used in the real-world
scene unless point-wise correspondences are achieved. Therefore,
an unsupervised network for non-rigid 3D point cloud registra-
tion without prior knowledge of the point-wise correspondences
would be necessary to pursue.
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