
Poster

Using The Barnes-Hut Approximation For Fast N-Body Simulations
In Computer Graphics

Peter Dravecky and Ian Stephenson

Bournemouth University

Figure 1: a) Octree Visualisation b) Simulation Results

Abstract
Particle systems in CG often encounter performance issues when all the particles rely on mutual influence, producing an
O(N2) performance. The Barnes-Hut approximation is used in the field of astrophysics to provide sufficiently accurate results
in O(Nlog(N)) time. Here we explore a hardware accelerated implementation of this algorithm, implemented within SideFX
Houdini — the commercial tool typically used for particle work in film. We are able to demonstrate a workflow with integrates
into the existing artist friendly environment, with performance improved by orders of magnitudes for typically large simulations,
and negligible visual change in results.

CCS Concepts
• Computing methodologies → Scientific visualization; Massively parallel and high-performance simulations; Massively
parallel algorithms; • Applied computing → Media arts;

1. Introduction

Particle simulations simulating mutual influence on each other,
often called n-body systems, are nothing new for the VFX in-
dustry, being used in anything from flocking to fluid dynamics.
Nowadays, these methods often rely on a mix of Eulerian and La-
grangian methods to achieve adequate quality to performance ra-
tio, particle-only methods being considered too demanding in large
scale simulations due to the complexity of the base N-Body algo-
rithm. Although performant, these simulations can be considered

inaccurate in some niché cases, like fluid simulations with a high
Reynolds number. [Cas88]. These specific cases are common in the
field of cosmological simulations (the simulation of dark matter
and baryons on cosmological scales is almost entirely inviscous),
where different methods have been researched to achieve efficient
particle-only approaches. Although the performance boost they of-
fer makes large simulations viable for use by 3D artists on standard
hardware, there are no public implementations of them in any pop-
ular 3D software.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

EG UK Computer Graphics & Visual Computing (2023)
D. Hunter and P. Vangorp (Editors)

DOI: 10.2312/cgvc.20231197 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/cgvc.20231197

P. Dravecky & I. Stephenson / N-Body Acceleration

Figure 2: Tree-Code Method Visual Examples (red dots = parti-
cles)

In this paper we explore a version of The Barnes-Hut Approxi-
mation [JB86], which decreases the complexity of the original al-
gorithm from O(N2) to O(Nlog(N)), while also using hardware ac-
celeration to achieve best performance possible for a particle-only
method. We implement this method in an artist-friendly way into
SideFX Houdini, a popular 3D software often used for procedural
geometry and visual effects, improving the performance of the im-
plementation to the original algorithm while offering more artistic
control over the final result.

2. Background

2.1. Gravitational N-Body Simulation

The dynamics used in the cosmological context for a system of N
particles interacting gravitationally is typically an alternative for-
mulation of Newton’s law of universal gravitation, which accounts
for the solid angle effect [HE88]:

F⃗i =−∑
j ̸=i

Gmim j (⃗ri − r⃗ j)

|⃗ri − r⃗ j|2 + ε2

Where F⃗i is the force acting on a particle i with mass mi and a
position vector r⃗i, with j representing each iterated particle. This
equation also contains a softening length ε > 0, which avoids the
gravitational force rising infinitely when particles get too close to
each other.

2.2. Barnes-Hut Approximation

Among the different methods for approximating the base n-body al-
gorithm (referred to as Particle-Particle (PP)), The Barnes-Hut Ap-
proximation is a Tree Code (TC) method. In the tree-code method,
particles are grouped into clusters or nodes, and the forces be-
tween nodes are approximated using a multi-pole expansion. The
tree structure is constructed dynamically, with nodes further away
from a given particle being merged together until a predetermined
level of accuracy is reached (figure 2). This tree hierarchy in 3-
dimensional simulations is referred to as an octree, since every 3-
dimensional section is separated by subdivision into 8 smaller parts.
This approach reduces the number of force calculations needed, im-
proving the computational efficiency of the simulation. [JB86]

In the Barnes-Hut approximation, the level of accuracy is set by

a ratio of the cell’s width and the distance between the point and
the cell. If this ratio falls below a custom threshold (often referred
to as theta), we treat the cell as a center of force and don’t traverse
down the octree any further.

Other notable methods include Particle-Mesh Method (PM), Fast
Multipole Method (FMM), Self-consistent Field (SCF) or the Sym-
plectic Method. [TH08] The FMM and the Barnes-Hut generally
offer the biggest performance increase over the PP method [BN97],
thought the performance boost largely depends on specific imple-
mentation techniques, hardware used, and the scale and purpose of
the simulation.

2.3. Parallelisation

Burtscher and Pingali propose a parallelized version of the algo-
rithm [BP11], which allows a significant performance boost specif-
ically when running the parallel processes on the GPU. It efficiently
gets rid of the recursive nature of the tree-building algorithm and
deliberately exploits some of the architectural features of the GPU
to speed-up the computation even more. Since it performs the entire
computation on the GPU, the exchange of data between the CPU
and the GPU is only performed at the start and the end of the algo-
rithm, with most buffers not having to transfer any data from or to
the CPU at all, which offers a significant performance boost.

2.4. Houdini

SideFX Houdini is a popular software used in the 3D industry for
achieving large scale visual effects, such as procedural geometry,
fluid and cloth dynamics or muscle simulation. It offers unprece-
dented artistic control and editability by using a node-based ap-
proach, allowing the user both the option to use pre-made, more
abstract subnetworks, while also allowing scripting and the creation
of your own nodes using various programming languages.

3. Implementation

Implementation of the BH algorythm consists of four steps:

1. Calculate the bounds of the simulation.
2. Construct a top-down octree hierarchy which connects all the

bodies within the simulation.
3. Calculate the center of mass and total mass of each node in the

octree.
4. Calculate the forces acting on each body with the help of the

octree.

Each of these is implemented as a seperate Houdini OpenCL node,
based on Burtscher and Pingali’s approach (figure 3).

3.1. Houdini

3.2. Bouding Box Calculation

The first kernel performs the bounding box calculation, which is
done by simple comparison of all position values. To optimize this,
each work-group first performs a reduction operation between all
its work-items to find the local bounds. When all the work-groups

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

78

P. Dravecky & I. Stephenson / N-Body Acceleration

Figure 3: Houdini node setup

have finished, the last one to finish then computes the global maxi-
mum and minimum. To accurately pick the work-group which fin-
ishes last, an integer attribute is used, which is atomically incre-
mented every time a work-group finishes. When this number equals
the total number of work-groups, we know that we are in the fi-
nal work-group. Side Note: This process might be more efficient
by counting down to zero instead of counting up to the number of
work-groups, allowing us to have one less global variable.

3.3. Octree Generation

3.3.1. The Base Algorithm

To parallelize the recursive nature of an octree construction, the
cells are allocated to a 1-dimensional array representing the octree
in a round-robin fashion.

Each work-item travels down the octree according to the particle
position until it finds an unoccupied cell (-1).

When it gets to an unoccupied cell it tries to lock it by atomically
writing a lock value (-2). If it succeeds, the work-item inserts a new
body. The work-items which fail retry within the while loop until
they succeed. To prevent swamping the main memory with while
loop iterations, each failed work-item waits until the work-items
that succeeded in the current iteration are finished.

If the work-item finds a cell that’s occupied already, it locks the
cell and inserts new cells into the octree until the two bodies each
belong to a separate cell. To know where in the 1-D array a new cell
is created, a global variable keeps track of the bottom index, which
is atomically decremented every time a new cell is created.

3.3.2. Implementing Maximum Depth

In an optimal situation there would never be more cells in the octree
than there are particles in the simulation due to its hierarchical na-
ture – this is unfortunately not the case when the particles are spread
out unevenly. Since the particles in a base n-body simulation are
collisionless, a situation may arise when 2 particles have the same
position vector – which would make the kernel function run until it
passes the bottom of the array and crashes. To mitigate this, a max-
imum depth parameter was implemented. Whenever a work-item

Figure 4: Houdini Visulisations

reaches an occupied cell which is at the maximum depth, instead of
subdividing the cell further, it sums the masses of the body and the
cell and computes the new center of gravity.

3.4. N-Body Octree Summarization

The 3rd kernel traverses the octree from bottom up. For each cell, it
computes its center of mass and the total mass of all the bodies in-
cluded in the cell. All cells start with negative mass, which makes it
easy to check which cells have been calculated. When a work-item
is processing a cell, whose children cells haven’t been calculated
yet, it waits for them to be ready in a similar fashion to the locking
mechanism used in the 2nd kernel.

3.5. Force Calculation

At the start of the final kernel, the 1st work-item in each work-group
pre-computes the maximum radius for each level in the octree ac-
cording to theta, the accuracy ratio set at the start of the simula-
tion - with each level the radius threshold gets 2x smaller. Subse-
quently, each work-item representing one body traverses down the
octree and computes its squared distance to each cell. If this cell
falls within the precalculated radius, it continues down, if not, it
calculates cell’s gravitational potential on the body.

The implemented algorithm works as a DOP network sub-solver
node containing four OpenCL nodes bound in a compile block
- each OpenCL node in Houdini represents one kernel function,
and the compile blocks allows them to share data blocks sent to
the GPU, preventing any unnecessary communication between the
CPU and the GPU.

This implementation is then abstracted away by an user inter-
face that allows the user to change virtually any parameter that gets
passed down to the simulation, the base Barnes-Hut Approxima-
tion being complemented by additional parameters like Maximum
Depth and Relative Mass, the latter preserving the same total mass
of the simulation independent of particle count, allowing the artist
to block out the simulation with a smaller particle count, a tech-
nique often use in prototyping visual effects.

Additional guide geometry has also been created to provide a
visual representation of some harder-to-grasp concepts of the algo-
rithm, like the function of the theta parameter show in in figure 4
or the octree visualization in figure 1.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

79

P. Dravecky & I. Stephenson / N-Body Acceleration

No. of Points Timer per step (ms)
P-P Barnes-Hut

θ = 1.5 θ = 1 θ = 0.5 θ = 0.25 θ = 0.125
5,000 9.84 34 37.1 38.82 39 43.25

15,000 17 35.84 41 41.23 43 44
50,000 23.95 42.73 43.27 44.95 49.07 53.37

150,000 108 58 59.02 66 84.77 130
500,000 1,225 122.6 141.4 200.6 346.1 699.11

1,500,000 9,886 293.6 341.1 503.3 890.8 1,761
5,000,000 119,836 941 1,186 1,970 3,872 8,332

Table 1: Performance comparison table

Figure 5: Performance comparison graph

4. Results

4.1. Performance

A simple particle-particle implementation was also created in Hou-
dini and compared to the Barnes-Hut approximation. Results are
show in figure 5 and table 1

Up until 50,000 particles, the PP algorithm performs better than
the implemented Barnes-Hut algorithm, as expected as there is an
overhead in creating the octree. Above this threshold, the perfor-
mance signifigantly improves, its solve time being 20-times faster
at 1.5 million particles and about 100-times faster at 5 million. This
makes the Barnes-Hut algorithm preferred choice for particle sim-
ulations with N > 50,000.

4.2. Effect of Theta

The performance difference between various Theta values was also
measured, with the performance increasing further as this param-
eter is increased. In terms of accuracy, the visual difference be-
tween the various approximations was negligible. A theta of 0.5
has been often recommended to provide good performance/accu-
racy ratio for scientific applications, and can be relaxed further for
visual use. [Hee17]

4.3. Artistic Controls

In terms of artistic control, the n-body algorithm is implemented as
a subsolver node – this allows it to interact with any other forces
and control nodes already included inside HoudiniFX. This, to-
gether with the parameter menu to control the smoothing and the
scale of the simulation offers great artistic control. Most of the ex-
periments included some sort of repulsive force to keep particles
from merging in the center of the simulation – This was either POP
Axis Force or POP Attract. These settings combined with changing
the world scale produced quick simulations of singular star clusters
or entire networks of galaxies, as seen in fig 1

5. Conclusions

Our implementation offers an significant performance boost com-
pared to the base algorithm. It also provides artistic control over the
result and the option to combine it with other useful tools inside the
Houdini environment.

References
[BN97] BLELLOCH G., NARLIKAR G.: A Practical Comparison of n-

body Algorithms. In Parallel Algorithms, Series in Discrete Mathemat-
ics and Theoretical Computer Science. American Mathematical Society,
1997. 2

[BP11] BURTSCHER M., PINGALI K.: An efficient CUDA Implementa-
tion of the Tree-based Barnes Hut N-Body Algorithm. 2

[Cas88] CASULLI V.: Eulerian-lagrangian methods for the navier-
stokes equations at high reynolds number. International Journal
for Numerical Methods in Fluids 8, 10 (1988), 1349–1360. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/
fld.1650081016, arXiv:https://onlinelibrary.
wiley.com/doi/pdf/10.1002/fld.1650081016,
doi:https://doi.org/10.1002/fld.1650081016. 1

[HE88] HOCKNEY R. W., EASTWOOD J. W.: Computer Simulation Us-
ing Particles. CRC Press, 1988. 2

[Hee17] HEER J.: Interactive explanation of the Barnes-Hut approxima-
tion. https://github.com/jheer/barnes-hut, 2017. 4

[JB86] JOSH BARNES P. H.: A hierarchical o(n log n) force-calculation
algorithm. Nature 324, 6096 (Dec. 1986), 446–449. doi:10.1038/
324446a0. 2

[TH08] TRENTI M., HUT P.: N-body simulations (gravitational). Schol-
arpedia 3, 5 (2008), 3930. revision #91544. doi:10.4249/
scholarpedia.3930. 2

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

80

https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650081016
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650081016
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.1650081016
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.1650081016
https://doi.org/https://doi.org/10.1002/fld.1650081016
https://github.com/jheer/barnes-hut
https://doi.org/10.1038/324446a0
https://doi.org/10.1038/324446a0
https://doi.org/10.4249/scholarpedia.3930
https://doi.org/10.4249/scholarpedia.3930

