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Abstract

This paper proposes an anticipative transformer-based
model for short-term solar irradiance forecasting. Given a
sequence of sky images, our proposed vision transformer
encodes features of consecutive images, feeding into a
transformer decoder to predict irradiance values associated
with future unseen sky images. We show that our model ef-
fectively learns to attend only to relevant features in im-
ages in order to forecast irradiance. Moreover, the pro-
posed anticipative transformer captures long-range depen-
dencies between sky images to achieve a forecasting skill of
21.45 % on a 15 minute ahead prediction for a newly intro-
duced dataset of all-sky images when compared to a smart
persistence model.

1. Introduction
Solar energy has emerged as one of the most promis-

ing alternatives to non-renewable energy sources. As the
photovoltaic (PV) industry grows at pace from gigawatt to
terawatt scale, the need for more accurate and efficient fore-
casting of PV output becomes ever more critical. Grid scale
solar based power generation poses challenges for grid op-
erators due to the intermittent nature of the supply [2, 23].
Since solar irradiance is a key predictor of PV output, irra-
diance forecasting on a sub-hour level can greatly support
stable and economical power generation. Even forecasting
5 minutes into the future is critical in PV systems to bal-
ance storage and load for intermittency as well as having
benefits in energy minute by minute trading. The level of
solar irradiance seen in a particular location varies based on
the cyclical changes of the season, the sun position through-
out the day and the weather conditions. While the first two
factors are consistently predictable, weather conditions, es-
pecially the level of cloud cover make purely time based
predictions inaccurate [30].

Two common approaches for short term irradiance fore-
casting are the use of statistical methods derived from past
irradiance measurements and image based forecasts using
either ground based sky images or satellite imagery [6].

Figure 1. High level overview of model operation. The backbone
encodes features from each sky image and the head predicts future
irradiance.

Common deep learning (DL) based approaches make use
of convolutional neural networks (CNNs) to extract features
from images that can then be used to give an associated irra-
diance value [23]. Ordinarily to predict irradiance, a series
of consecutive images are used in either a 3 dimensional
CNN or a combination of a CNN and a long short term
memory (LSTM) based architecture [26]. This is ultimately
based on the temporal information contained in the series
of images. In contrast to LSTM based models, transformers
offer both the ability to process sequences in parallel as well
as excellent modeling of long-term dependencies [21]. The
recent application of the self-attention based transformer ar-
chitecture to computer vision tasks combined with the high
performance of transformer-based networks for tasks where
long term dependencies are crucial, makes this type of net-
work attractive for solar irradiance forecasting [23, 36]. We
propose utilizing a self-attention based backbone network
that creates feature representations for each frame in a se-
quence of all-sky images and then using a Generative Pre-
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trained Transformer 2 (GPT-2) based decoder on the result-
ing sequence of encoded feature vectors to produce solar ir-
radiance predictions [7, 29]. We refer to our model as Solar
Irradiance Anticipative Transformer (SIAT). A high level
overview of our approach is depicted in Fig. 1.

Our contributions are 1) introduction of a purely atten-
tion based forecasting framework that only uses images
without any auxiliary data and outperforms previous mod-
els on three timestep prediction task, 2) evaluation of our
model on three datasets and 3) introduction of three stage
training procedure and multiple loss components supervi-
sion scheme for strong supervision signal.

2. Related Work
Due to the importance of solar irradiance forecasting,

many different approaches have been reported in the litera-
ture with classical irradiance modelling being based on me-
teorological input data such as humidity, rainfall and tem-
perature [22]. The general success and the increasingly low
barrier of entry to machine learning, it has seen broad adop-
tion in the physical sciences [4, 24]. DL based approaches
have become increasingly popular for tackling previously
intractable or poorly addressed problems.

For computer vision based irradiance forecasting ap-
proaches a range of different datasets are used in literature.
Irradiance predictions are commonly made based on a se-
quence of past sky images, often combined with auxiliary
data or input from a classical prediction model. Typically, a
dataset consists of a large collection of all-sky images that
can be temporally aligned with irradiance values collected
at the same site. The National Renewable Energy Research
(NREL) dataset was collected in the state of Colorado in
the USA and it is publicly available [34]. The newly intro-
duced Chilbolton dataset was collected in a south England
based location and is available upon request [31, 33]. The
SIRTA dataset was collected by the SIRTA Atmospheric
Research Observatory, a meteorological institute near Paris
in France and the institute makes the dataset available upon
request [15]. The EDF dataset was collected on La Reunion
Island and is not publicly available as it was collected by a
private company [14].

Le Guen et al. have shown that a time series of all-sky
image data in combination with past irradiance data can be
used to predict 5 minutes of irradiance data given 5 min-
utes worth of past data [14]. The images in their dataset
were spaced only one minute apart, offering dense temporal
information about changes in sky condition. Their dataset
was collected in-house at an EDF test site on La Reunion
Island. Their model consists of two sub-models, a convolu-
tional LSTM and PhyDNet, which uses partial differential
equations for video prediction tasks. The output of the sub-
models is combined to produce an irradiance prediction as
well as a sky image prediction. They utilise a very large

dataset of 6 million images at a size of 80 by 80 pixels and
achieve a nRMSE of 23.5 % for a 5 minute ahead irradiance
forecast.

Wen et al. show that solar forecasting can be achieved
without using a sequential model [37]. They utilise a
ResNet18 architecture with the red channel of the past im-
ages stacked as input to their network. On the NREL dataset
and another California based dataset they report a forecast-
ing skill (FS) up to 17.7 % for a 10 minute ahead prediction
compared to a smart persistence (SP) model. Please see
Sec. 3.2 for details on how the FS is calculated from the SP
model.

Gao and Liu utilise a vision transformer (ViT) to encode
the information contained in sky images from two NREL
datasets as well as auxiliary meteorological data [11]. A se-
quence of encoded images and auxiliary information is then
fed into another transformer encoder together with a learn-
able embedding. The output of this encoder is then concate-
nated with the prediction from a clear sky model and fed
into an MLP with residual connections to produce the irra-
diance forecast. Using one hour worth of past images they
report a normalized absolute percentage error of 22.6 % for
a one hour forecast.

Paletta et al. present a benchmarking study of different
DL based models with the convolutional LSTM giving the
best results [26]. All presented models take as an input ei-
ther a sequence of images or a single image pair, the latter
consisting of all-sky images taken at the same time but with
different exposure settings. They report a RMSE based FS
of 20.4 % for their best model with a SP model used as a
comparison. The same group further improved their predic-
tions by implementing the ECLIPSE, a model that has both
irradiance and image segmentation as an output [27]. For
both studies they utilise a dataset collected and provided by
SIRTA laboratory in France which contains all-sky images
captured every 2 minutes at 2 different exposure levels [15].
They achieve RMSE of 83.8, 98.5, 109.1W/m2 which cor-
responded to a RMSE based FS of 8.7, 23.7 and 24.8 %
for 2, 6 and 10 minute ahead irradiance prediction respec-
tively. Since the authors of the ECLIPSE model report that
they outperform previous studies we compare our model’s
performance to this method.

From the presented reports in the literature it is clear that
a large variety of prediction approaches exist but that there
is a lack of standardisation in the reporting of prediction re-
sults as well as in the chosen prediction time horizon. This
makes direct performance comparisons difficult. Compar-
isons are further complicated by the fact that the locations
of data collection vary significantly and thus differences in
local weather patterns result in datasets of varying difficulty.
We will therefore present multiple different performance
metrics and evaluate both our model as well as the compet-
ing ECLIPSE model on three datasets. Most of the reported
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Figure 2. Model flow for SIAT. The ViT backbone encodes the
projected flattened image patches into feature vectors z for each
image in the input sequence. Together with temporal positional
embeddings the feature vectors z are fed into the GPT-2 based de-
coder. The decoder produces future feature vectors ẑ from which
irradiance values ŷ are produced through a linear layer. For illus-
trative purposes only 9 image patches and only 3 images are shown
as the past context for the model. For visualisation purposes time
steps are unfolded; otherwise the same set of weights are used for
the ViT backbone and projections to process frames.

works utilize LSTM based networks, which struggle with
longer term dependencies. We address this issue by relying
on a self-attention mechanism.

3. Proposed Framework
Fig. 2 depicts the proposed model architecture. Inspired

by anticipative video transformer [13], our model utilises a
ViT as a backbone B which operates on linearly projected
flattened image patches xt to produce an encoding zt for
each of the s input images in the sequence [35]. The input
images are split into 16 by 16 patches which are flattened
and linearly projected. A class token is prepended to the
patch features and a spatial position embedding is added.
The output associated with this class token is then used as
the image feature representation zt.

zt, zt+1, ... = B(xt),B(xt+1), ... (1)

From each input image in the sequence, a feature rep-
resentation is extracted. Together with temporal positional
embeddings, this sequence of features is then used by the
GPT-2 based decoder D [29]. The decoder consists of four
layers of masked multi-head attention, a layer norm and a

multi layer perceptron (MLP). The decoder produces one ẑ
for each timestep in the sequence of s images, which are
then put through a linear layer L to produce an irradiance
value ŷt+1. The linear layer is a fully connected layer with
the number of input neurons depending on the dimensional-
ity of the ẑ and the output being a single value, representing
the predicted irradiance.

ẑt+1, ..., ẑt+s+1 = D(zt, ..., zt+s) (2)
ŷt+1 = L(ẑt+1) (3)

ẑt+1 here represents the predicted image features one
timestep ahead of the past image feature zt. The masked
attention of the GPT-2 decoder ensures that the model can
only attend to past features to make the prediction. To pre-
dict multiple timesteps into the future, the predicted feature
vector is appended to the past context and this is then fed
into the head decoder network to predict another step into
the future. The proposed framework is both purely atten-
tional in nature and purely image based with no auxiliary
data such as past irradiance values, cloud cover or sun loca-
tion being utilized to make the irradiance predictions. This
significantly reduces the requirements for deployment as the
equipment needed to collect such auxillary data can present
a significant expense.

3.1. Training

As Fig. 2 shows, the GPT-2 decoder produces predicted
image features which are then fed through a linear layer to
give an irradiance prediction. During training of the full
model the presented architecture allows for optimization us-
ing two loss metrics.

Lirr =
1

n

∑
(yt − ŷt)2 (4)

Lenc =
1

n

∑
(zt − ẑt)2 (5)

Lirr represents the difference between the predicted ir-
radiance ŷt and ground truth irradiance yt, and Lenc the
difference between the encodings zt and ẑt. Lirr can be fur-
ther separated into the loss associated with the intermediate
irradiance predictions and the final prediction, the latter of
which is ultimately what is of interest.

The GPT-2 based decoder utilizes masked multi-head at-
tention and hence only attends to encoded features before
the time of the prediction. This allows the model to simul-
taneously predict irradiance values for all input timesteps.
Thus an input sequence of four images will produce five
irradiance values with all but the first irradiance resulting
from the decoder output. If more than one future timestep
is to be predicted, the model can be unrolled to predict fu-
ture image encodings by iteratively adding the intermediate
predictions to the past context. Supervising the difference
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between ẑt and ẑt+1 ensures that the decoder is able to pre-
dict future encoded features. During training the model su-
pervision is based on a weighted sum of both loss Lirr and
Lenc as follows.

Ltotal = αLirr,f + βLirr,i + γLenc (6)

Here, α, β and γ represent the weight of the loss associ-
ated with the final (Lirr,f ) and intermediate (Lirr,i) irra-
diance predictions and the encoding (Lenc) prediction, re-
spectively. We train the model in three stages. The first
stage consists of training the backbone ViT to map a single
image to a single irradiance value. During this training stage
the ViT is only supervised by Lirr. During the second stage
of training, the mapping trained ViT model has its regres-
sion head removed and the remaining model is frozen and
used as the image encoding backbone of the overall archi-
tecture. With this frozen backbone, the head GPT-2 based
decoder is then trained to predict future encodings which are
turned into irradiance value predictions via a linear head.
During this and the following stage all loss components are
used to supervise the model. In the third stage the backbone
model is unfrozen and the model is fine-tuned back to back.

3.2. Model evaluation

Since every solar irradiance model ultimately aims to
give an accurate prediction of a continuous value, error met-
rics commonly used for regression tasks such as mean ab-
solute error (MAE), mean squared error (MSE) and RMSE
can be employed. However, since irradiance values are
strongly weather dependent the mean and variance of a
given dataset can vary substantially for different measure-
ment locations. A region with largely clear skies will pro-
duce irradiance values that vary smoothly over time and are
therefore much easier to predict. A simple difference based
error metric would not take the differences in prediction dif-
ficulty into account. To improve comparability of model
performance on different datasets, evaluation metrics can
be normalised by dividing them by the mean of the train-
ing irradiance values [14]. A normalised RMSE will be ab-
breviated by nRMSE. While this improves comparability,
it is generally recommended to use a FS metric that com-
pares the error achieved by the presented model to the error
achieved by a reference model [39]. An overview of the loss
metrics is given below.

MAE =
1

n

∑
|y − ŷ| (7)

RMSE =

√
1

n

∑
(y − ŷ)2 (8)

FS = 1− RMSEmodel

RMSEreference
(9)

A FS above 0 indicates that the model in question outper-
forms the reference model. The FS can be calculated based
on any loss metric that can be computed for both models.
However, the RMSE based FS is the most commonly used
metric. Clear sky irradiance and SP are the most commonly
used reference models [19, 20, 39]. Clear sky irradiance
models use meteorological data such as aerosol optical den-
sity and air pressure in combination with the location and
time of year to model what the irradiance would be without
cloud cover. SP models use the most recent observation in
the data as a prediction with the value being adjusted by a
clear sky index, as shown in Eq. (10). This index can either
be derived from a clear sky irradiance model or be based on
measured data.

ŷt+T =
yt

yclear,t
yclear,t+T (10)

Here, ŷt+T represents the predicted irradiance at time
t + T , yt the real irradiance value at time t and yclear the
clear sky model prediction for time t+ T . We use the sim-
plified Solis model to calculate the clear sky index needed
for the SP reference model [17, 18]. The Solis model re-
quires meteorological data such as air pressure, aerosol op-
tical depth and precipitable water as input, which is sourced
from [8–10, 12, 32]. Since the SP model’s predictions sim-
ply shift the ground truth irradiance by a multiple of the
timestep (5 minutes in the case of the Chilbolton dataset)
with a small adjustment based on a clear sky index, the SP
model’s prediction appear to follow the ground truth rela-
tively well for very short term predictions. However, this
method still results in a large average error as is illustrated
in Fig. 5c. The FS expresses how much a model outper-
forms this approach.

4. Datasets
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Figure 3. Raw irradiance data for an example day as well as the
distributions of values after pre-processing and filtering for the
Chilbolton dataset.

In addition to evaluating our SIAT model’s performance
on two datasets previously used in literature, we introduce
the new Chilbolton dataset. In contrast to previously used
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datasets the Chilbolton dataset was collected in the chal-
lenging weather patterns of the south of the UK. The sky
images were provided by the National Centre for Atmo-
spheric Science (NCAS). Both images and irradiance mea-
surements were taken at Chilbolton UK Facility for At-
mospheric and Radio Research [31, 33]. The Chilbolton
dataset consists of the cloud images and radiometer mea-
surements. A pyranometer collected total global solar ir-
radiance in W/m2 with a temporal resolution of 1 second
and about 8000 measurement points per day. Since the im-
ages were taken roughly every 5 minutes, the data were pre-
processed such that the radiometer data was averaged over
a time window of 30 seconds with the resulting value being
assigned to one image. The data were aligned based on the
timestamps so that the time window for averaging the ra-
diometer data always started at the time stamp of the image.
Fig. 3a shows the raw measurement data that were avail-
able for a single day. As can be seen, the data varies with
time of day but shows strong drops in irradiance related to
change in cloud conditions. To exclude very dark images
data points taken between midnight and 3 am data points or
with irradiance values below 2 W/m2 were removed from
the dataset. Additionally images were removed where ob-
jects or animals were blocking the view of the camera and
where excessive frost or rain blocked the view. The tar-
get data distribution is depicted in Fig. 3b. The data was
split into a training and evaluation dataset as well as a sep-
arate testing dataset. This split was done by using days 5
to 9 of each month as the fixed testing dataset while us-
ing days 15 to 19 for evaluation during training. This left
125000 images from the Chilbolton dataset for training. To
facilitate comparison to other works we also train and test
our model on the the NREL-TSI and SIRTA datasets. The
NREL-TSI dataset consists of all-sky images taken every
10 minutes [34]. From the NREL-TSI dataset 106000 im-
ages taken between 2015 and 2022 were used for training.
The SIRTA dataset contains all-sky images captured every
2 minutes at 2 different exposure levels [15]. To allow for
a direct comparison the data from the SIRTA dataset was
filtered and split into train, test and evaluation sets as de-
scribed in [27]. This resulted in 180000 samples being used
for model training. The images from all datasets were pre-
processed by cropping and resizing them to a size of 224 by
224 pixels. Furthermore, due to the presence of fixed ob-
jects in the camera’s field of view, a mask of black pixels
was applied to the Chilbolton images. All target data were
normalised to have a mean of 0 and a standard deviation of
1 using the mean and standard deviation of the training set.

5. Implementation
The backbone of the proposed model consisted of a ViT,

that had its weights initialized from a model trained on the
ImageNet dataset [5, 35, 38]. The backbone was configured

to split the 224 by 224 pixel images into 16 by 16 pixel
patches which then get flattened and projected to the em-
bedding dimension of 768. The model has a depth of 12 and
uses 12 attention heads. To have the model learn to extract
task-relevant features, it was trained separately from the full
model by having it map single images to the associated ir-
radiance values. To use the backbone in the full model, the
final fully connected layer was removed so that the output
of the backbone would be the extracted feature vector. To
use a transfer learning based approach for the backbone on
the SIRTA dataset, it was necessary to add an additional
2d-convolutional layer with a kernel size of 3 and a stride
of 1 to the model. Since the SIRTA dataset offers two im-
ages with different exposures for each irradiance value and
the ViT backbone expects images to have only 3 channels,
this convolutional layer takes in the channel-concatenated
images and projects them to the required channel number.

The head model was configured to use 8 attention heads,
to have a depth of 4 and use an internal encoding dimen-
sion of 512. Since the time between images varied between
2 and 10 minutes depending on the dataset in question, the
prediction horizon varied accordingly. Randomized image
augmentation was applied during all training by varying the
brightness, contrast, saturation and hue of the images by
1 % and rotating the images up to 15 degrees. For training
the backbone to map images to irradiance values, we use a
batch size of 64 and the Adam optimizer with a weight de-
cay of 1·10−6 and a learning rate of 1·10−4 and a scheduled
cosine anneal being applied to the learning rate every step.
The backbone is trained for 11 epochs. For training and test-
ing of the full model, we use a sequence of 5 sequential im-
ages to predict 3 timesteps into the future with the reported
RMSE being based on the future prediction for the timestep
in question. We use a batch size of 16 and the Adam opti-
mizer with a weight decay of 1 · 10−6 and a learning rate
of 5 · 10−5 with an exponential learning rate warm up and
a scheduled cosine anneal being applied to the learning rate
every step. The full network is trained for 11 epochs with
the backbone staying frozen for 10 epochs. The network is
supervised by using intermediate as well as final Lirr and
Lenc loss components. Empirically we found that an equal
weighting of all loss components shown in Eq. (6) gives the
best performance. All models were implemented using Py-
Torch [28] and the code is available at [25]. All training
was carried out on a machine equipped with a Nvidia RTX
3090 with 24 GB of memory and a i7-7700K with 64 GB
of memory.

6. Results and Discussion
We report RMSE, nRMSE, MAE and FS for two dif-

ferent prediction tasks, a single timestep ahead and a three
timesteps ahead prediction both using 5 images as the past
context. For the newly introduced Chilbolton dataset our
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Figure 4. Comparisons of ground truth irradiance with 15 minute ahead predictions by our SIAT model, the competing ECLIPSE model
and the SP approach. The example days are taken from the unseen test set of the Chilbolton dataset.

Table 1. Comparison of our SIAT model to the competing models for all three datasets. All training scenarios use 5 images as past context.
The time between images is 2 minutes for SIRTA, 5 minutes for Chilbolton and 10 minutes for NREL-TSI. The future steps indicates how
many timesteps into the future the model predicts. While the results for ECLIPSE model are based on unofficial model implementation,
due to code unavailability, with a reported RMSE of 83.8 and 98.5 for 1 and 3 timesteps ahead prediction the results here closely match
what the authors report in their publication. In addition to the results we computed ourselves we pull further comparisons for the SIRTA
dataset directly from the publication [27].

Future Steps
1 3

Dataset Model MAE
(W/m)

RMSE
(W/m)

nRMSE
(%)

FS
(%)

MAE
(W/m)

RMSE
(W/m)

nRMSE
(%)

FS
(%)

SIRTA Smart Persistence 39.01 93.33 25.02 - 62.10 129.77 34.78 -
SIRTA SIAT(ours) 42.05 76.94 20.62 17.57 54.26 97.60 26.16 24.79
SIRTA ECLIPSE [27] 48.94 78.90 21.15 15.46 57.61 98.64 26.44 23.99
SIRTA PhyDNet [14, 27] - 87.70 23.51 6.00 - 102.00 27.34 21.10
SIRTA TimeSFormer [3, 27] - 93.10 24.95 0.20 - 105.00 28.14 18.80
SIRTA ConvLSTM [26] - 95.60 25.62 -2.40 - 107.20 28.73 17.10

Chilbolton Smart Persistence 51.96 116.09 46.28 - 73.45 142.58 56.84 -
Chilbolton SIAT(ours) 57.51 98.12 39.11 15.48 68.15 112.00 44.65 21.45
Chilbolton ECLIPSE [27] 68 103.69 41.34 10.68 76.33 117.35 46.78 17.69
NREL-TSI Smart Persistence 88.87 169.02 43.81 - 151.72 241.04 62.48 -
NREL-TSI SIAT(ours) 66.20 113.71 29.47 32.73 82.08 139.71 36.21 42.04
NREL-TSI ECLIPSE [27] 67.17 112.91 29.27 33.20 86.63 142.60 36.96 40.84

SIAT model achieves an RMSE of 112 W/m2 for the 15
minute or three timesteps ahead prediction. For the same
data the SP reference model achieves an RMSE of 142.58
W/m2, this corresponds to an FS of 21.45 %. Tab. 1
gives on overview on how our model performs on differ-
ent datasets and compared with competing models. As
can be seen our model outperforms the competing model
on all datasets for the three timestep ahead prediction set-
ting while for the single timestep ahead prediction, we
outperform the competing model only on the SIRTA and
Chilbolton datasets. While ECLIPSE shows slightly higher
FS for this dataset and scenario, the MAE of our model is
still better. It is notable that for the very short term pre-
diction of a single timestep for the Chilbolton and SIRTA
datasets, the MAE for the SP approach is lower than that of
both the ECLIPSE and our SIAT model. The much higher
MAE for the SP model on the single timestep ahead predic-

tion for the NREL-TSI can be expected since the time be-
tween images is double that of the Chilbolton dataset. Due
to the code not being officially available for the compet-
ing ECLIPSE model, the presented results are based on an
unofficial implementation. For the SIRTA dataset the au-
thors of the ECLIPSE model report an RMSE of 83.8 and
98.5 W/m2 for the one and three timestep predictions, re-
spectively. Using the unofficial implementation we find the
RMSE to be 78.9 and 98.64 W/m2 for the same forecast-
ing scenarios. Since these results either beat or match the
ones the authors report themselves the implementation can
be considered faithful and the computed results for the other
two datasets valid. Notably, we also outperform the models
for which the results in Tab. 1 were pulled directly from lit-
erature. The authors did not report MAE. We attribute the
high performance of our model to the transformers ability
to use the temporal and spatial information contained in the
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series of images used for the prediction.
Comparisons of predictions for the 15 minute ahead case

to ground truth for three randomly selected days from the
unseen test set of the Chilbolton dataset are shown in Fig. 4.
On the example data shown in Fig. 4a, the model outper-
forms the SP reference model with a FS of 12.91 % for a
day with relatively low variability. Here it can also be seen
that unlike the ECLIPSE model, our SIAT model avoids the
overestimation of the peak irradiance. However, both mod-
els fail to predict the sharp rise between 6 and 8am and the
dip between 4 and 6 pm.

Fig. 4b shows an example day where the model does very
well, reaching a FS of 51.92 %. It successfully predicts the
rise in irradiance around 11 am as well as the sharp drop
between 1 and 2 pm. While the ECLIPSE model also an-
ticipates the rise, it overall suffers from underestimating the
irradiance values as well as anticipating changes that do not
occur, as seen in the anticipated dip in irradiance between 3
and 4 pm.

Fig. 4c shows an example day with low irradiance val-
ues for most of the day with sharp peaks between noon and
2 pm. While the SIAT model follows the overall shape of
the curve it is still results in a negative FS. In this partic-
ular case the SIAT model underestimates the irradiance up
to 10 am while the ECLIPSE model initially overestimates
them. Both models are unable to predict the rise in irradi-
ance between 9 and 10am. As a general observation both
the ECLIPSE model and our SIAT model give predictions
that result in an overall smoother curve than the ground truth
irradiance, however the SIAT model does a better job of
predicting changes and of avoiding large over- and under-
predictions.
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Figure 5. Density plots comparing predicted irradiance values to
ground truth with the grey dashed line representing the ideal case.
We show predictions for the SIAT model as well as for both persis-
tence approaches based predictions for 15 minute ahead forecast-
ing task on the Chilbolton dataset. Darker blue indicates higher
density. Both persistence approaches yield a much broader distri-
bution compared to our SIAT model.

A comparison of predicted irradiance values and ground
truth for all samples in the Chilbolton test set is shown in
Fig. 5a. The two-dimensional histogram shows that there
is no significant bias in the model’s predictions. However,
the model avoids predictions of very high irradiance values

Figure 6. Attention maps for the fine-tuned backbone model for
a variety of sky conditions. The overlaid heatmap visualises the
areas of the image that the model learns to pay attention to with
red signifying higher attention activation and blue signifying low
activation. It can be seen that the fine-tuned backbone learns to at-
tend to the areas surrounding the sun and nearby cloud formations.
All attention maps were produced using attention rollout [1].

above 900W/m2, since these are rare in the data and as can
be seen in the examples days in Fig. 4, our SIAT model does
sometimes underestimate the irradiance values, especially
for very brief peaks in the irradiance curves.

We show that the feature encoder model successfully
learns to attend to irradiance relevant features of the sky
images as can be seen in the example attention maps shown
in Fig. 6. The backbone’s attention predominantly falls on
the sun as well as cloud formations near it as these are the
most important features for making irradiance predictions.
Furthermore, the attention maps show that the model is able
to extract relevant features under a variety of sky conditions
from clear skies with the sun clearly visible to strongly over-
cast days with the sun barely shining through. The attention
maps were produced using attention rollout [1].

In the following paragraphs we show the results of
a range of ablation studies analyzing the SIAT architec-
ture using the 15 minute ahead forecasting task on the
Chilbolton dataset. To evaluate by how much the GPT-2
based decoder outperforms a simple persistence prediction,
we use the ViT backbone with a densely connected layer
on top to map each image in the Chilbolton testset to an ir-
radiance value (as is done in the backbone training stage)
and shift this value by three timesteps. We refer to this
as the backbone persistence (BP) approach. This results in
an overall RMSE of 139.58 W/m2 and an MAE of 79.98
W/m2. Since our full model achieves an RMSE of 112
W/m2 and an MAE of 72.35 W/m2, this clearly demon-
strates that the GPT-2 based decoder performs much better
than a simple persistence model. This is also borne out in
Fig. 5b as the BP approach results in a large spread around
the ideal.

To gauge the effect that the attention based backbone has
on the overall performance of the model, we replaced the
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Table 2. Comparison of training the model with a convolution
based backbone, a ResNet152, and a transformer based back-
bone [16]. Evaluation metrics are reported for 15 minute ahead
irradiance prediction using the Chilbolton dataset.

Backbone RMSE (W/m2) MAE (W/m2) FS (%)

ResNet152 114.28 73.03 19.85
ViT 112 68.15 21.45

ViT backbone with a ResNet152 [16, 38], with the compar-
ison being shown in Tab. 2. The three stage training pro-
cedure was kept the same with the backbone being trained
separately. For the 15 minute ahead forecasting task the
model using the ViT based backbone performed better than
the ResNet152 on all evaluation metrics, with the FS drop-
ping from 21.45 to 19.85 %.

Table 3. Comparison of model performance with and without the
first stage of training where the backbone gets trained to map an
irradiance value to a single image. Evaluation metrics are reported
for 15 minute ahead irradiance prediction using the Chilbolton
dataset.

Training stages RMSE (W/m2) MAE (W/m2) FS (%)

2 113 71.75 20.75
3 112 68.15 21.45

Since we utilize a three stage training process where the
backbone is first trained to map an all-sky image to an ir-
radiance value with the linear head network then being re-
moved to allow the backbone to act as a feature extractor
for the all-sky images, we also ran the training of the full
model without this first stage of training with the results
shown in Tab. 3. As can be seen utilizing a three stage
training procedure rather than a two stage procedure boosts
performance on all evaluation metrics with the model’s FS
increasing from 20.75 to 21.45 %.

Table 4. Comparison of results of training the model using either
MAE or MSE as the supervision loss function. All results shown
are for the 15 minute ahead forecasting task for the Chilbolton
dataset.

Training Loss RMSE (W/m2) MAE (W/m2) FS (%)

MAE 116.02 66.41 18.63
MSE 112 68.15 21.45

Tab. 4 shows how the model performs when the MAE
loss function is used to supervise the model during training.
As can be seen the performance as measured by the over-
all RMSE and FS suffers with the FS falling from 21.45 %
to 18.63 %, however the overall MAE sees some improve-
ment. As Tab. 5 shows, including the encoding loss compo-

Table 5. Evaluation results of supervising the SIAT model using
different loss components. All results shown are for the 15 minute
ahead forecasting task for the Chilbolton dataset.

Loss components RMSE (W/m2) MAE (W/m2) FS (%)

Lirr,f 113.8 70.1 20.19
Lirr,f + Lenc 113.16 72.35 20.64
Lirr,f + Lirr,i 113.65 69.68 20.29
Lirr,f + Lirr,i + Lenc 112 72.35 21.45

nent in the supervision of the model brings the largest im-
provement in FS. Notably, including the encoding loss com-
ponent results in worsening of the MAE metric. While only
using the intermediate and final irradiance loss components
results in the lowest MAE, the FS is significantly worse.
Fig. 7 shows how the FS changes when different number of
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Figure 7. Evaluation results for varying past context lengths while
keeping the number of predicted timesteps fixed at 3. Results
shown for the Chilbolton dataset.

images are used as past context. For the 15 minute ahead
prediction task on the Chilbolton dataset a past context of 5
images is found to be ideal.

7. Conclusion

We present SIAT, a transformer based framework for the
task of forecasting solar irradiance using a sequence of all-
sky images without the use of auxiliary data. A ViT back-
bone serves as a feature extractor to create a feature vector
for each frame in the sequence. Our approach then utilizes
the temporal relationship contained in the extracted features
via a GPT-2 based decoder network. Our training scheme
first has the backbone learn to map images to irradiance
values to ensure the backbone learns to extract task rele-
vant features. This backbone remains frozen for the first
part of the training of the full model. We supervise the
model by both its ability to predict future features as well
as irradiance values. In the last stage of training the back-
bone is unfrozen to allow for further fine-tuning of the full
architecture. We show that the model successfully learns
to attend to important features in the sky images. For the
15 minute ahead forecasting task achieve an RMSE of 112
W/m2 on the Chilbolton dataset, which corresponded to
an FS of 21.45 %. For the three timestep prediction we
demonstrate that SIAT outperforms competing models on
all datasets.
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