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A B S T R A C T   

We combined multivariate pattern analysis (MVPA) and electroencephalogram (EEG) to investigate the role of 
edge, color, and other surface information in the neural representation of visual objects. Participants completed a 
one-back task in which they were presented with color photographs, grayscale images, and line drawings of 
animals, tools, and fruits. Our results provide the first neural evidence that line drawings elicit similar neural 
activities as color photographs and grayscale images during the 175–305 ms window after the stimulus onset. 
Furthermore, we found that other surface information, rather than color information, facilitates decoding ac
curacy in the early stages of object representations and affects the speed of this. These results provide new in
sights into the role of edge-based and surface-based information in the dynamic process of neural representations 
of visual objects.   

1. Introduction 

It is well known that people can easily recognize objects in line 
drawings, even though they contain only edge-based information. In the 
real world, however, objects are defined not only by their edges, but also 
by surface information such as color, texture, and luminance gradient. 
So how does the human brain readily recognize objects in such different 
forms as being the same objects? What are the roles of edge-based and 
surface-based information in neural representation of objects? 

There are two competing theories about object coding. The edge- 
based theory proposes that edge information alone is sufficient for ob
ject recognition and discrimination, while surface information serves as 
a secondary source for recognition (Biederman and Ju, 1988). Indeed, 
some studies have demonstrated that color and textures of objects do not 
improve recognition accuracy when images are presented briefly (Cave 
et al., 1996; Fu et al., 2016). Moreover, line drawings and color pho
tographs of natural scenes seem to elicit similar patterns of activation in 
the brain areas, such as the parahippocampal place area (PPA) and the 
retrosplenial cortex (RSC) (Walther et al., 2011). These findings provide 
evidence for the edge-based theory and suggest that edge-based infor
mation plays a primary role in neural representation of objects. 

However, others have argued that both edge-based and surface- 

based information are equally important (Parron and Washburn, 
2010). For example, when objects or scenes have no color or inconsistent 
color, recognition accuracy could be compromised (Gegenfurtner and 
Rieger, 2000; Goffaux et al., 2005; Schyns and Oliva, 1994; Wurm et al., 
1993). Changing the texture of scene images can also impair the judg
ments of scene layout (Robin et al., 2017). Moreover, an fMRI study 
revealed that both edge-based and surface-based information are 
equally weighted in the PPA, indicating that both types of information 
play equally an important role in scene recognition (Lowe et al., 2017). 
These findings contradict the edge-based theory but provide supporting 
evidence for the surface-based theory. 

Moreover, it remains controversial whether the edge information 
receives higher priority in object recognition. Some studies have sup
ported the idea that edge-based information receives higher priority in 
object recognition and surface-based information does not affect or slow 
down the speed of recognition (Fu et al., 2016; Martinovic et al., 2008). 
On the other hand, others have found that when the objects devoid of 
color or with inconsistent color can slow down the speed of recognition 
performance (Goffaux et al., 2005). 

There may be three reasons for these seemingly contradictory find
ings. Firstly, the type of objects can determine the level of contribution 
from surface-based and edge-based information (Laws, 2001). For 
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example, color and surface information play a more prominent role in 
recognizing fruits than recognizing animals or tools, whereas 
edge-based information is more important for recognizing animals than 
for recognizing fruits (Cree and McRae, 2003; Rossion and Pourtois, 
2004). Secondly, the stimulus exposure time can modulate the role of 
edge-based and surface-based information. A longer exposure time re
sults in higher recognition accuracy for color photographs than for line 
drawings (Fu et al., 2016; Laws and Hunter, 2006). Finally, the level of 
abstraction can also influence the role of the two types of information. 
For example, edge information is sufficient for the processing at a su
perordinate level (e.g., identifying a bird as an ‘animal’), while surface 
information is needed for the processing at a basic level (e.g., ‘bird’) or 
subordinate level (e.g., ‘eagle’) (Price and Humphreys, 1989; Zachariou 
et al., 2018). Thus, these three factors need to be factored while inves
tigating the roles of edge-based and surface-based information evolve 
over time. 

Crucially, neural representation of objects is a dynamic process. 
However, it remains unclear how the two information types play 
different roles during the time courses of object processing. Previous 
studies mainly conducted univariate analysis of EEG data and focused on 
specific event related potentials (ERPs). For example, the information 
about shape and color can regulate the P1 and N1 amplitudes at 80 and 
170 ms after stimulus onset over the occipital lobe (Redmann et al., 
2014; Scholl et al., 2014). The combination of shape and color infor
mation can affect the P2 amplitude at 225 ms over the occipital lobe 
(Lloyd-Jones et al., 2012), and the complexity of stimulus pictures can 
influence the P3 amplitude at 250-500 ms over the parieto-occipital lobe 
(Hu et al., 2022). However, it has been argued that the focuses on a few 
prominent ERP components may provide an incomplete or possibly 
misleading view of the dynamic processing of objects in the brain 
(Rousselet and Pernet, 2011). Therefore, it remains unclear how the 
neural activity elicited by edge- or surface-based information evolves 
over time in object neural representations. 

Recently, to investigate the dynamic development of neural repre
sentations in the brain, more and more studies have used the MVPA on 
time-sensitive neuroimaging data such as EEG or MEG (Cichy et al., 
2014; Grootswagers et al., 2017; Proklova et al., 2019; Sanchez et al., 
2020; Smith and Smith, 2019). The MVPA possesses a higher sensitivity 
compared to traditional univariate analysis in that MVPA can analyze 
the whole brain activation patterns corresponding to different condi
tions and detect the differences in activation. These differences might be 
lost in univariate analysis methods which rely on averaged signals 
(de-Wit et al., 2016; Hatamimajoumerd et al., 2022). Importantly, the 
MVPA enables exploration of object representations across the entire 
brain, providing a more comprehensive understanding of neural pro
cessing (Contini et al., 2017). It has been found that visual objects can be 
decoded from full channel MEG about 80-100 ms after the stimulus 
onset (Carlson et al., 2013; Cichy et al., 2014), color features can be 
decoded from about 70 ms after the stimulus onset (Teichmann et al., 
2020). The MVPA analysis can thus provide important insights into the 
role of edge-based and surface-based information in the dynamic 
development of the neural representation of visual objects. 

Therefore, the present study combined MVPA with EEG to explore 
how neural representations for edge-based and surface-based informa
tion evolve over time. We adopted images of animals, fruits, and tools as 
stimuli because of prior finding that edge-based and surface-based in
formation may play different roles in recognizing these categories. Also, 
because surface-based information plays a greater role at the subordi
nate level of categorization with brief stimulus exposure (Fu et al., 2016; 
Laws and Hunter, 2006), we presented subordinate-level stimuli for 200 
ms in each trial of this study. Participants completed a one-back task, in 
which they were asked to press a button when an image repeated a 
previous trial. To distinguish the role of contour, color, and other surface 
information, each object was shown in three versions: color photo
graphs, grayscale images, and line drawings (Boshyan et al., 2018; 
Teichmann et al., 2020). Line drawings contained only edge-based 

information, while grayscale images and color photographs consisted 
of both edge- and surface-based information but varied only in color. 

We used time-resolved decoding to explore the neural representa
tions for different versions of stimuli. If all three versions of stimuli 
elicited comparable neural activities at different time courses, it would 
suggest that a similar neural representation was involved in decoding 
these stimuli, and the edge-based information was likely to be sufficient. 
Alternatively, if the stimuli created different neural activities at certain 
time points, it would indicate that color or other surface information 
influenced object representations at those points. Further, we also used 
the time generalization analysis to verify whether neural activities for 
grayscale images were similar to those for color photographs and line 
drawing over a range of time courses. If generalization accuracy were 
better than the chance level, it would indicate that the structure of the 
multidimensional space for different types of images was comparable at 
these time courses. Moreover, if the significant points shifted away from 
the diagonal, it would indicate that the time of information processing 
for the two types of images was asynchronous, and vice versa. 

2. Methods 

2.1. Participants 

Twenty participants (10 female, mean age 23.5 years, SD = 2.0) with 
normal or corrected-to normal vision participated in the study. The 
sample size was determined according to similar studies conducted in 
the past (Cichy et al., 2014; Proklova et al., 2019; Smith and Smith, 
2019; Teichmann et al., 2020). All were paid for their participation and 
provided informed consent before the experiment. The experiment was 
approved by the Institutional Review Board of the Institute of Psychol
ogy, Chinese Academy of Sciences. 

2.2. Stimuli and Apparatus 

The stimuli consisted of three categories of animals, fruits, and tools, 
with 12 objects in each category. Each object had three versions: color 
photographs, grayscale images, and line drawings, resulting in a total of 
108 images (see Fig. 1A). All images had a resolution of 480 × 480 
pixels. Grayscale images were generated from color photographs using 
MATLAB R2021b (www.mathworks.com), while line drawings were 
produced by trained artists who traced neutral the contours in color 
photographs with neutral gray lines using a customized graphical user 
interface. Stimulus presentation was controlled using Psychtoolbox 3 for 
MATLAB (Brainard, 1997; Kleiner, 2010). 

2.3. Procedure 

The participant’s viewing distance was 60 cm from the screen. Each 
stimulus image subtended 5 × 5 degrees of visual angle. A fixation cross 
was presented on a neutral gray background in the center of the screen 
throughout the trials. On each trial, an object image was presented for 
200 ms followed by a variable interstimulus interval of 900-1100 ms 
(see an example in Fig. 1B). Participants performed a one-back task, in 
which they were instructed to view the images and press a button when 
an image was repeated. The next trial began, regardless of whether there 
was a response. To avoid artifacts caused by eye movements, partici
pants were required to fixate on a central fixation cross in the center of 
the screen throughout the experiment. 

The experiment consisted of 30 blocks, with a total of 4,050 trials. 
Each block contained 135 trials, in which the 108 object images were 
presented in a random order, and 27 of them were randomly selected to 
appear twice in two consecutive trials. The 27 target trials were used to 
maintain the participant’s attention and were not included in the EEG 
data analysis. 
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2.4. EEG acquisition and preprocessing 

EEG data were collected using a 64-channel neuroscan system with a 
1000 Hz sampling rate. The left mastoid was used as an online reference, 
and the right mastoid was used as an offline re-reference. Data were pre- 
processed offline using MATLAB and EEGLAB Toolbox (Delorme and 
Makeig, 2004). We extracted trials from -100 to 800 ms relative to 
stimulus onset. Each trial was baseline-corrected by subtracting mean 
amplitude during the period 100 ms prior to stimulus onset. Data were 
filtered using a 0.1-30 Hz pass. The ICA was used to detect and remove 
blink shadows and other motion related shadows. The trials of excessive 
artifacts (peak-to-peak deflection exceeding ±100 μV) and wrong 
response were rejected, accounted for 7.9 % of all the trials. The EEG 
data were down-sampled to 200 Hz to reduce the processing time and 
improve the signal-to-noise ratio (Grootswagers et al., 2017). 

2.5. Behavioral performance 

The false alarms, sensitivity index (d’), and bias (c) scores were 
calculated according to the signal detection theory (Macmillan and 
Creelman, 1991). The response time (RT) was defined as the duration 
from the stimulus onset to a key press in hit responses. We conducted a 
two-way repeated-measures analysis of variance (ANOVA) with 3 (ob
ject types: animals, fruits, and tools) × 3 (image versions: color photo
graphs vs. grayscale images vs. line drawings) for these measures. The 
Greenhouse-Geisser correction was used to correct the P-value, and 
the Bonferroni correction was used for post-hoc comparisons. Simple 
effect analysis was conducted on interaction effects. 

2.6. EEG analysis 

Time-resolved decoding. To examine the role of edge-based and 
surface-based information in neural representation of objects, the time- 
resolved decoding was conducted through the linear support vector 
machine (SVM, libsvm) classifier (Chang and Lin, 2011) as it is 
commonly used in previous studies (Cichy et al., 2014; Dobs et al., 2019; 
Smith and Smith, 2019) on the EEG data of color photographs, grayscale 
images, and line drawings. The classifier utilized the default parameters 

from the CoSMoMVPA toolbox (Oosterhof et al., 2016). For each version 
of image, there were 36 pictures, and each of them was paired with 
every other picture in the set. This resulted in a total of 630 pairs (36 ×
35/2 pairs). The cross-validated pairwise classification accuracy of the 
SVM was used to obtain the similarity measure of each pair. A time 
window of 10 ms and a step size of 5 ms were used when conducting the 
classification analysis (Grootswagers et al., 2017). The analysis was 
performed separately for each participant in a time-resolved manner 
(see Fig. 2). Firstly, we divided all the trials of each picture into ten 
groups. Nine groups were selected randomly as the training set and one 
group as the testing set (i.e., ten-fold cross-validation). Then, all 630 
pairs were binary classified, and the classification process was repeated 
100 times. The average decoding accuracy of 100 times was taken as the 
value of the 36 × 36 decoding matrix, which was called the represen
tation dissimilarity matrix (RDM). This matrix was symmetrical, and the 
diagonal was not defined. Each participant and each time point needed 
an RDM. Like other prior research that employed this method (Cichy 
et al., 2014; Proklova et al., 2019; Teichmann et al., 2020), our aim was 
not to achieve the highest possible decoding accuracy but to evaluate 
whether the classifier can decode information from neural signals better 
than chance. 

Spatial decoding classification analysis. To assess which electrodes 
contributed to the classification performance of color photographs, 
grayscale images, and line drawings within which time windows, an 
additional spatial classification analysis was conducted. In the analysis, 
binary decoding analysis was carried out for each electrode indepen
dently. With a time window of 60 ms and a step of 60 ms, we created a 
topographic map to display the decoded object information under a 
specific time window (Nemrodov et al., 2016; Smith and Smith, 2019). 

Time generalization analysis. This was used to further investigate 
whether there was a similar activity pattern for the three types of im
ages. At each time point of the activated EEG signal, a classifier was 
trained using the grayscale images and tested with the EEG for the same 
objects of color photographs and line drawings at all time points sepa
rately. This resulted in two 900 × 900 matrices (-100–800 ms to stim
ulus onset) that captured the classifier generalization performance 
across time. If the classifier trained at one time point could predict the 
class labels of test data at other time points, it would indicate a similar 

Fig. 1. Stimuli and experimental procedure. (A) All stimuli were used in this experiment. There were three categories of objects: animals, fruits, and tools. Each 
object had three versions: color photographs, grayscale images, and line drawings. (B) An example sequence of the trial procedure. Participants viewed object images 
and were asked to press a button when an image was repeated on two consecutive trails (such as the rabbit in this example). 
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structure of multidimensional space between training and testing. 
Otherwise, it would suggest a qualitative difference in the multidi
mensional space. The diagonal of the matrices corresponded to the 
standard time-resolved decoding results. The decodable non-diagonal 
effect reflected the temporal asynchrony of information processing in 
the training set and the testing set. 

Statistical analysis. For the EEG data analysis, we employed 
threshold-free cluster enhancement (TFCE) (Smith and Nichols, 2009) to 
identify the periods when decoding accuracy was significantly above 
chance. This method used a cluster-based approach for multiple com
parison correction and was implemented in the CoSMoMVPA toolbox. 
First, we conducted permutation tests, shuffling the trial labels, and for 
each participant, we re-ran the decoding analysis with these shuffled 
labels 100 times, thereby creating a null distribution for each partici
pant. Then, we used Monte Carlo sampling to create a group-level null 
distribution by performing 1000 permutations with shuffled labels 
(Stelzer et al., 2013). The TFCE constructed an empirical distribution of 
the maximum cluster size in a threshold-free manner, with the threshold 
set at the 95th percentile of the distribution (i.e., equivalent to p < 0.05, 
one-tailed). 

We employed bootstrap test to estimate the onset latency of object 
representations (i.e., the first significant time point post-stimulus), the 
peak latency (i.e., the time at which the maximum value) in the time- 
resolved decoding, and the training and testing times corresponding to 
the maximum decoding accuracy in the time-generalization decoding. 
To achieve this, we first bootstrapped the decoding accuracy of partic
ipants 10,000 times for both time-resolved analysis and time- 
generalization analysis. This yielded empirical distributions for onset 
latency and peak latency, from which the 95 % confidence intervals 
(CIs) were determined. To compare the variations in the onset and peak 
latencies among different image versions and the differences between 
training and testing times corresponding to the maximum decoding 
accuracy in the time-generalization decoding, we calculated the differ
ences in latency across these 10,000 bootstrap samples between data
sets, yielding an empirical distribution of latency differences. The p- 
value of a two-tailed test was defined by the number of differences lower 
or greater than 0 in the empirical distribution, divided by the number of 
permutations. Using false discovery rate (FDR) correction, a latency 
difference was considered significant if the 95 % CI did not encompass 0. 

3. Results 

3.1. Behavioral results 

Results for false alarms, d’, c, and RTs are shown in Fig. 3. False 
alarms were of particular interest because we wanted to find out 
whether consecutive presentation of same object identity in a different 
image version was the main cause of the errors. ANOVA for these data 
showed significant main effects of object type, F(2,38) = 9.546, p =
0.001, ηp

2 = 0.334, and of image version, F(2,38) = 7.378, p = 0.002, ηp
2 

= 0.28. These were qualified by a significant interaction (see Fig. 3A), F 
(4,76) = 3.588, p = 0.014, ηp

2 = 0.159. Further analysis revealed that the 
main cause of the false alarms was due to consecutive presentation of the 
same object with a different image version, accounting for 59 % of all 
false alarms. For example, presenting an object in color followed by the 
same object in grayscale or vice versa constituted 42 % of all false 
alarms, with tools accounting for 24 %, animals 15 %, and fruits for 3 %. 
This demonstrates that color is less diagnostic for tools and animals than 
for fruits. In addition, consecutive presentation of the same image 
version and object type accounted for 13 % of all false alarms, while 
same object type alone accounted for 9 %, and same image version alone 
accounted for 8 %. These results suggest that it was the recognition of 
the object’s identity rather than low-level features, that affected the false 
alarm results. Specifically, the recognition of identical objects with 
different image versions contributed significantly to this behavioral 
measure. 

For the d’, there were significant main effects of object type, F(2, 38) 
= 7.408, p = 0.003, ηp

2 = 0.281, and image version, F(2, 38) = 3.516, p =
0.043, ηp

2 = 0.156. Post-hoc comparison showed that animals scored 
higher than tools (p < 0.001), but no significant difference was observed 
between fruits and the other two object categories (ps > 0.05). Color 
photographs scored higher than grayscale images (p = 0.034), but no 
significant difference was found between line drawings and color pho
tographs or between line drawings and grayscale images (ps > 0.05). 
The interaction between these did not reach significance, F(4,76) =
1.89, p = 0.14, ηp

2 = 0.09. 
For the c, we also found significant main effects of object type, F 

(2,38) = 14.237, p < 0.001, ηp
2 = 0.428, and image version, F(2,38) =

8.626, p = 0.001, ηp
2 = 0.312. Post-hoc comparison showed a more lib

eral response bias for animals than for fruits (p = 0.001) or tools (p =
0.001), but results for fruits and tools were comparable (p = 1). 
Response bias for Color photographs was more liberal than grayscale 
images (p = 0.001) or line drawings (p = 0.01), but results for grayscale 
images and line drawings comparable (p = 1). Again, the interaction 

Fig. 2. For each participant, the time-resolved decoding was performed on the principal components (PCs) extracted from all EEG electrodes. For each time point t, 
the response pattern across PCs was extracted for each trial in each condition, followed by pairwise cross-validated SVM classification. The resulting decoding 
accuracy values resulted in a 36 × 36 representational dissimilarity matrix (RDM) for each time point. 
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between these did not reach significance, F(4,76) = 0.2604, p = 0.056, 
ηp

2 = 0.121. 
Similarly, an ANOVA on RTs revealed significant main effects of 

object type, F(2,38) = 6.086, p = 0.006, ηp
2 = 0.243, image version, F 

(2,38) = 23.726, p < 0.001, ηp
2 = 0.555, as well as a significant inter

action, F(4,76) = 4.217, p = 0.009, ηp
2 = 0.182. Simple effect analysis by 

object type showed faster RTs for fruits than for animals (p < 0.001) and 
tools (p = 0.012) for color photographs only. Moreover, simple effect 
analysis by image version revealed faster RTs for color photographs than 

for line drawings for all three object types (all ps < 0.05). 

3.2. Results of time-resolved decoding 

To examine the role of edge-based and surface-based information in 
object representations, the time-resolved decoding method was used to 
analyze the EEG responses to color photographs, grayscale images, and 
line drawings. As shown in Fig. 4A, all types of object pictures were 
decoded accurately. The decoding accuracy grew significantly above 

Fig. 3. Boxplots of behavioral results: (A) Results for False alarm rate, (B) Results for Sensitivity, (C) Results for Bias, and (D) Results for RT as a function of object 
type and image version. *p < 0.05, **p < 0.01, ***p < 0.001. 

Fig. 4. The time courses of picture decoding for All objects (A), Animals (B), Fruits (C), and Tools (D). The red, green, and blue points below the plots indicate the 
time points when decoding accuracy was significantly better than chance (TFCE, corrected significance level p < 0.05). The yellow, magenta, and cyan line segments 
represent significant differences in decoding accuracy between color photographs and grayscale images, color photographs, and line drawings and grayscale images 
and line drawings, respectively. The shaded areas represent one SE about the means. 
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chance from 80-85 ms after the stimulus onset, peaked at 130-140 ms, 
and remained significant for a prolonged period. Specifically, the 
decoding accuracy reached significance at 80 ms for color photographs, 
80 ms for grayscale images, and 85 ms for line drawings. The accuracy 
reached the peak at 135 ms for color photographs, 130 ms for grayscale 
images, and 140 ms for line drawings. 

To test whether there was any difference in the time course of 
decoding of color photographs, grayscale images, and line drawings, the 
TFCE was used to compare the decoding accuracy between any two 
types of images (all ps < .05). Results revealed that the decoding accu
racy for color photographs was significantly higher than grayscale im
ages (yellow points in Fig. 4A) in the time windows of 105-110 ms, 335- 
345 ms and 640-650 ms. Decoding accuracy for color photographs was 
also higher than line drawings (magenta points) in the time windows of 
90-135 ms, 170-175 ms and 305-425 ms. Decoding accuracy for gray
scale images was significantly higher than line drawings during the 90- 
105 ms and 310-330 ms. No significant difference was found among the 
three versions of images during the time window of 175-305 ms, indi
cating that similar neural representations were elicited by the three 

versions of images during this period. Interestingly, a second peak at 
315-335 ms was observed, where decoding accuracies for color photo
graphs and grayscale images were again higher than the line drawings, 
indicating that surface information further improved decoding accuracy 
at this processing stage. 

To assess the role of surface-based and edge-based information in 
different types of objects, we calculated decoding accuracy separately 
for each version of images for different types of objects (see Fig. 4B, C, 
and D). Results showed that in the early stage of object recognition 
(about 100 ms), decoding accuracy for animals, fruits, and tools was 
significantly higher in color photographs than in line drawings, but no 
significant difference was found between color photographs and gray
scale images, or between line drawings and grayscale images. During the 
second peak, animals were decoded more accurately in color photo
graphs than in line drawings. 

The bootstrap test was used to estimate the onset and peak latency of 
time-course decoding for different types of images (Fig. 5A). There was 
no significant difference among the three image versions. We also esti
mated the onset latency and peak latency for different object categories 

Fig. 5. (A) Onset latency (left) and peak latency (right) of the time-course decoding for three versions of images. (B) Onset latency and peak latency for different 
objects. Error bars depict bootstrapped 95 % CI. *p < 0.05 (two-tailed, FDR corrected). (C) Linear correlation between the RT, onset latency (left), and peak latency 
(right). The onset latency was not correlated (Pearson’s R = 0.439, p = 0.237), while the peak latency was positively correlated (Pearson’s R = 0.765, p = 0.019). 
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(Fig. 5B). This revealed a faster peak latency for fruits in color images 
than for fruits in line drawings (p = 0.038; two-tailed bootstrap test, 
FDR-corrected). No other significant differences were observed. Addi
tionally, we correlated onset latency and peak latency with participants’ 
RTs for the behavioral task, using the bootstrap test to assess significance 
(Fig. 5C). Although no correlation between the onset latency and RTs 
was found (Pearson’s R = 0.439, p = 0.237), the peak latency was 
positively correlated with RTs (Pearson’s R = 0.765, p = 0.019). 

To evaluate the role of color information, we also examined neural 
activities involved in decoding individual object from a grayscale image 
versus that from a color photograph (Fig. 6A). To this end, we trained a 
classifier to discriminate neural activities elicited by a color photograph 
or the grayscale version of the same object. As color was the only dif
ference between the two versions of the same object, if the decoding 
accuracy is significantly above chance, it would indicate that color in
formation played a role in object recognition. When all object categories 
were analyzed together, the results revealed that the decoding accuracy 
was significantly above chance between 110-145 ms for color informa
tion (see Fig. 6B). However, separate analysis for each object category 
revealed that the decoding accuracy was significantly above the chance 
around 85-440 ms only for fruits, but not for animals and tools, sug
gesting that color information did not influence neural representations 
for animals and tools (Fig. 6C). 

Using the same method, we also evaluated how other surface infor
mation contributed to object representations by decoding neural activ
ities for grayscale images versus those for line drawings at the individual 
object level. As the two versions of stimuli only differed in the other 
surface information, an above chance decoding accuracy would suggest 
a contribution of this information. When all object categories were 
analyzed together, results showed above-chance decoding accuracy 
around 75-480 ms for surface information (see Fig. 6B). Similar results 
were found when the three object categories were analyzed separately. 
All object types surpassed chance-level decoding accuracy around 80- 
425 ms (Fig. 6D), indicating a similar role of other surface 

information across the time course for all three object categories. 

3.3. Results of spatial decoding analysis 

To investigate which electrodes contributed to the significant 
decoding of the three versions of pictures, we used the time window of 
60 ms to analyze each electrode independently. Fig. 7 shows the 
decoding accuracy distribution in each sliding time window. As can be 
seen from this figure, the electrodes throughout the entire brain during 
the early time window of 81-140 ms contributed to decoding. This 
persisted until the time window of 441-500 ms. Compared with the time 
window of 261-320 ms, the decoding accuracy of the electrodes over the 
posterior occipital lobe was higher in the time window of 321-380 ms, 
where color photographs created the highest decoding accuracy 
whereas line drawings created the lowest decoding accuracy. 

3.4. Results of time generalization analysis 

To examine whether there was a similar neural activity for three 
versions of images, the time generalization analysis was conducted. 
Fig. 8 shows the results of this in a time-time matrix of -100-700 ms. The 
diagonal of the matrices corresponded to the standard time-resolved 
decoding results. The decodable non-diagonal effect reflected the tem
poral asynchrony of information processing in the training set and the 
testing set. When grayscale images were used as the training set and 
color photographs were used as the testing set (see Fig. 8A), the best 
decoding accuracy did not shift from the matrix’s diagonal, indicating 
that color did not influence the speed of object neural representations. 
However, when the grayscale images were the training set and the line 
drawings were the testing set (see Fig. 8B), there was a shift in the best 
decoding accuracy relative to the matrix’s diagonal. Specifically, the 
time corresponding to the best decoding accuracy for grayscale images 
was 10 ms earlier than for line drawings. The results suggest that 
although color photographs, grayscale images, and line drawings 

Fig. 6. (A) A classifier was trained to discriminate neural activities elicited by color photographs and grayscale images or by grayscale images and line drawings. 
Results of decoding accuracy for color photographs vs. grayscale images and grayscale images vs. line drawings for total (B). Results of decoding accuracy for color 
photographs vs. grayscale images for each category (C) and for grayscale images vs. line drawings for each category (D). Color points below plots indicate time points 
when decoding accuracy was significantly (TFCE, corrected significance level p < 0.05). The shaded areas represent SE about the means. 
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elicited similar neural activities, surface information other than color 
accelerated the object processing speed. Fig. 8C shows the decoding 
accuracy for the same training set time and testing set time. When color 
photographs were used as the testing set, significant decoding began at 
80 ms, while with line drawings as the testing set, significant decoding 
began at 95 ms. 

4. Discussion 

We combined MVPA and EEG methods to investigate the roles of 
edge-based and surface-based information in the dynamic development 
of neural representations of visual objects in the brain. The results 
revealed no significant difference in time-resolved decoding of the 
neural activities elicited by the three versions of images in the 175-305 
ms time window, indicating similar neural representations for all three 
versions of images during this period. We also found that the surface 
information from grayscale images modulated neural representations 
for all three types of objects at the initial stage, but color did not affect 
the representations of animals and tools. Interestingly, although neural 
activity decoding could be generalized from grayscale images to either 
color photographs or line drawings, the best decoding accuracy for the 
former was on the diagonal, while the latter was offset from diagonal of 
the matrices, indicating slower neural activity for line drawings than for 
grayscale images. These results demonstrate how the neural 

representation of edge-based and surface-based information evolves 
over time. 

Our results provide neural evidence that line drawing elicits similar 
neural activities to color photographs and grayscale images in a dynamic 
time course. The time-resolved decoding of three versions of images 
reached significance from 80-85 ms and reached the first peak at 130- 
140 ms, which is consistent with the previous MEG/EEG findings on 
decoding of neural activities of object recognition (Cichy et al., 2014; 
Contini et al., 2017; Proklova et al., 2019). Peak latency and behavioral 
response times were positively correlated, indicating that peak latency 
can predict the speed of one-back performance. Importantly, we found 
no significant difference in time-resolved decoding of the three versions 
of images in the 175-305 ms time window, indicating that similar neural 
representations were elicited by the three types of images during this 
period. 

To further examine whether there were similar neural activities for 
the three versions of images, we trained a classifier on the neural ac
tivities elicited by grayscale images, then generalized the classifier to 
recognize the three object types in color photographs or line drawings in 
a time generalization analysis. The results showed that the neural ac
tivity pattern could be generalized from grayscale images to both line 
drawings and color photographs in the entire time process of object 
representations, providing direct evidence that the three versions had 
similar the structures in multidimensional space. This finding is 

Fig. 7. Decoding accuracy distribution for color photographs (A), grayscale image (B), and line drawings (C). Each distribution map shows the decoding accuracy for 
each electrode in a given time window. White stars indicated electrodes which decoding accuracy was significantly (TFCE, corrected significance level p < 0.05). 
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consistent with the prior finding that line drawings and color photo
graphs of six natural scene categories elicit the same activation pattern 
in the brain areas PPA and RSC (Walther et al., 2011), suggesting that 
the structural information stored in the line drawings is sufficient to 
evoke neural representations similar to that of color or grayscale images. 

Moreover, our time-resolved decoding results revealed that color 
might have played a limited role in object representations. We found no 
significant differences between color photographs and grayscale images 
in decoding accuracy over different time courses and in neural repre
sentations speed in the time generalization analysis results. This finding 
was consistent with a previous MEG finding showing no difference 

between the decoding time course of congruently and that incongruently 
colored objects (Teichmann et al., 2020). Consistently, it was also found 
that color does not affect object recognition in some previous studies 
(Bramao et al., 2012; Martinovic et al., 2008; Redmann et al., 2014). 
However, other research has found that when the shape of the object is 
ambiguous, color information plays an important role in object recog
nition (Bramao et al., 2010; Mapelli and Behrmann, 1997; Teichmann 
et al., 2020). It has also been demonstrated that color is processed in the 
early stage (P1, N1 components) of object recognition. These results 
suggest that the role of color in object representations might be modu
lated by some factors. 

Fig. 8. Results of time generalization analysis for color photographs, grayscale images, and line drawings. (A) Grayscale images were used as the training set, and 
color photographs were used as the test set. The middle figure shows classification accuracy for each time point combination. The right figure shows the time point 
combinations (yellow) when decoding accuracy was significant (TFCE, corrected significance level p < 0.05), The right shows the bootstrapped differences between 
the time of training and testing sets corresponding to the best decoding accuracy. (B) Classification accuracy (left), significance (middle) at each time point com
bination and the bootstrapped difference time (right) in best decoding accuracy when grayscale images were the training set and line drawings were the testing set. 
(C) Decoding accuracy for the same training set time and testing set time. The line segments below the plots indicate the time points when decoding accuracy were 
significant (TFCE, corrected significance level p < 0.05). Shaded areas represent one SE about the means. 
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To examine how color may influence neural activity for object pro
cessing, we decoded neural activities for grayscale images versus color 
photographs. As color was the only difference between them, if the 
decoding accuracy is significantly higher than chance, it would indicate 
that color information played a role in object representations. The re
sults showed that the decoding accuracy for fruits was significantly 
higher than chance at around 85-440 ms, but this was not the case for 
animals and tools. This is consistent with the previous finding which also 
demonstrated the diagnostic value of color for fruits (Rossion and 
Pourtois, 2004). The reason for this might be that the fruits often have 
similar shapes (such as roundness) and hence their recognition tends to 
depend on a diagnostic color. In contrast, animals or tools are more 
easily distinguished by their shapes. Their colors are often not very 
useful because many different animals can have very similar colors, such 
as brown. Hence color information only played a limited role for animals 
and tools (Price and Humphreys, 1989; Wurm et al., 1993). 

We found that surface information other than color plays a role in 
object representations. When we decoded EEG signals for grayscale 
images versus for line drawings, the results showed that the decoding 
accuracy was significantly above the chance level in the time window of 
75-480 ms. The onset latency when the other surface information played 
a role was the same as that of time-resolved decoding of grayscale im
ages, which indicates that the surface information is processed at the 
initial stage of object recognition. This is consistent with the previous 
finding that surface information, such as texture modulates P1 compo
sition (Martinovic et al., 2008). Moreover, when comparing the 
time-resolved decoding results of color photographs, grayscale images, 
and line drawings, we found that the decoding accuracy for color pho
tographs and grayscale images was significantly higher than that for line 
drawings at the initial stage (about 90-105 ms) of object representations. 
These findings suggest the early involvement of surface-based infor
mation in object representations. 

The time generalization analysis of grayscale images and line 
drawings also demonstrates that surface information can accelerate the 
speed of object representations. The results indicate a shift in the best 
decoding accuracy relative to the diagonal. Specifically, the time cor
responding to the best decoding accuracy for line drawing was 10 ms 
later than for grayscale images. Previous research found that the higher- 
level visual areas of the temporal lobe were involved in part of the 
neuronal circuit of object recognition (Albright, 2012; Miyashita, 2004), 
and the stored conceptual knowledge has an impact about 100 ms after 
the object presentation (Mudrik et al., 2014; Rahman and Sommer, 
2008). The slower processing speed of the line drawings might be due to 
the lack of surface information in the visual objects, more time was 
needed to compare the visual stimuli with concept templates in the 
higher-level brain region and to return feedback signals to the primary 
visual cortex. Our results provide new electrophysiological evidence 
that surface-based information influences speed of neural representation 
of objects. 

Interestingly, we found the decoding accuracy of neural activities for 
line drawings, grayscale images, and color photographs all reached a 
second peak at 315-335 ms with a posterior scalp distribution. Prior 
research suggested that the neural activity of 250-400 ms (P3 compo
nent) was due to delimit task-extraneous events to focus on attention 
and promote the memory operation (Polich, 2007). Especially, the 
neural activity at 315-335 ms with a posterior scalp distribution is called 
the P3b component, which is caused by attention resources that promote 
memory operations (Katayama and Polich, 1998; Volpe et al., 2007). 
Thus, the second peak in our finding could be related to comparing the 
incoming stimuli with the memory of previously seen stimuli in the 
working memory. Furthermore, our results indicated that accuracy at 
the second peak was highest for color photographs, followed by gray
scale images, and lowest for line drawings. This might be because color 
photographs contain more feature elements with greater complexity, 
which required more attentional resources and elicited a stronger neural 
response. Previous study have found that the P3b component can be 

modulated by the stimulus complexity (Hu et al., 2022), which depends 
on the number and types of constituent elements and the way those 
elements are organized (Nadal et al., 2010). 

5. Conclusion 

The present study combined MVPA and EEG methods to investigate 
how neural representations for edge-based and surface-based informa
tion evolve over time. We found that line drawings elicited similar 
neural representations to those of color photographs and grayscale im
ages between 175-305 ms. Furthermore, all three versions of the images 
had similar multidimensional spatial structures in the brain throughout 
the object representations process. We also discovered that other surface 
information rather than color information facilitated decoding accuracy 
at the initial stage and affected the speed of neural representation of 
objects. These results provide new insights into the role of edge-based 
and surface-based information on the dynamic process of neural repre
sentations of visual objects. 
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