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Abstract

Concealed threat detection is at the heart of critical security systems designed to en-

sure public safety. Currently, methods for threat identification and detection are primarily

manual, but there is a recent vision to automate the process. Problematically, developing

computer vision models capable of operating in a wide range of settings, such as the ones

arising in threat detection, is a challenging task involving multiple (and often conflicting)

objectives.

Automated machine learning (AutoML) is a flourishing field which endeavours to dis-

cover and optimise models and hyperparameters autonomously, providing an alternative

to classic, effort-intensive hyperparameter search. However, existing approaches typ-

ically show significant downsides, like their (1) high computational cost/greediness in

resources, (2) limited (or absent) scalability to custom datasets, (3) inability to provide

competitive alternatives to expert-designed and heuristic approaches and (4) common

consideration of a single objective. Moreover, most existing studies focus on standard

classification tasks and thus cannot address a plethora of problems in threat detection

and, more broadly, in a wide variety of compelling computer vision scenarios.

This thesis leverages state-of-the-art convolutional autoencoders and semantic seg-

mentation (Chapter 2) to develop effective multi-objective AutoML strategies for neural

architecture search. These strategies are designed for threat detection and provide in-

sights into some quintessential computer vision problems. To this end, the thesis first

introduces two new models, a practical Multi-Objective Neuroevolutionary approach for

Convolutional Autoencoders (MONCAE, Chapter 3) and a Resource-Aware model for

Multi-Objective Semantic Segmentation (RAMOSS, Chapter 4). Interestingly, these ap-

proaches reached state-of-the-art results using a fraction of computational resources re-

quired by competing systems (0.33 GPU days compared to 3150), yet allowing for mul-

tiple objectives (e.g., performance and number of parameters) to be simultaneously op-

timised. This drastic speed-up was possible through the coalescence of neuroevolution

algorithms with a new heuristic technique termed Progressive Stratified Sampling. The

presented methods are evaluated on a range of benchmark datasets and then applied to

several threat detection problems, outperforming previous attempts in balancing multiple

objectives.

The final chapter of the thesis focuses on thread detection, exploiting these two mod-
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els and novel components. It presents first a new modification of specialised proxy scores

to be embedded in RAMOSS, enabling us to further accelerate the AutoML process even

more drastically while maintaining avant-garde performance (above 85% precision for

SIXray). This approach rendered a new automatic evolutionary Multi-objEctive method

for cOncealed Weapon detection (MEOW), which outperforms state-of-the-art models for

threat detection in key datasets: a gold standard benchmark (SixRay) and a security-

critical, proprietary dataset.

Finally, the thesis shifts the focus from neural architecture search to identifying the

most representative data samples. Specifically, the Multi-objectIve Core-set Discovery

through evolutionAry algorithMs in computEr vision approach (MIRA-ME) showcases how

the new neural architecture search techniques developed in previous chapters can be

adapted to operate on data space. MIRA-ME offers supervised and unsupervised ways

to select maximally informative, compact sets of images via dataset compression. This

operation can offset the computational cost further (above 90% compression), with a

minimal sacrifice in performance (less than 5% for MNIST and less than 13% for SIXray).

Overall, this thesis proposes novel model- and data-centred approaches towards a

more widespread use of AutoML as an optimal tool for architecture and coreset discov-

ery. With the presented and future developments, the work suggests that AutoML can

effectively operate in real-time and performance-critical settings such as in threat de-

tection, even fostering interpretability by uncovering more parsimonious optimal models.

More widely, these approaches have the potential to provide effective solutions to chal-

lenging computer vision problems that nowadays are typically considered unfeasible for

AutoML settings.
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Chapter 1

Introduction

Computer vision algorithms have always enjoyed tremendous attention in the machine

learning community and have been in high demand in general ever since Sussman’s suc-

cessful Summer project (Papert 1966), through the birth of convolutional neural networks

with the Neocognitron (Fukushima and Miyake 1982) and LeCun’s successful LeNet Le-

Cun et al. (1998).

Despite presented almost 10 years ago, InceptionNet(Szegedy et al. 2015b) and

ResNet(He et al. 2015) remain some of the most popularly used architectures to date

(Miao et al. 2019, Wu et al. 2019b) . The problem is that these architectures, like many

others, were designed for specific tasks and while achieving good results in plenty of dif-

ferent settings, they are far from optimal solutions in many cases (Miao et al. 2019) and

it is not advisable to be taken as the silver bullet of computer vision (Guo et al. 2019a,

Castilla et al. 2022).

On the other hand, hiring a team of data science engineers to tailor networks for

each new industrial application is unfeasible. Hence, researchers have started exploring

the possibility of using automated systems that, given an objective and data, can gen-

erate fully-fledged models capable of achieving competitive performance with systems

designed by experts (Liu et al. 2018, Real et al. 2017, Tan and Le 2019a, Qin and Wang

2019).

While these automated machine learning (AutoML) methods represent the new state-

of-the-art in computer vision, they do not come without their caveats. First and fore-

most, the current state-of-the-art methods are extremely slow, even for low-dimensional

datasets- taking thousands of GPU days to discover a good architecture (e.g. 3150 GPU

days (Real et al. 2017) and 9000 GPU days (Qin and Wang 2019))(Real et al. 2018, Qin

and Wang 2019). The vast majority also focus on a single, performance-related objective,

which negatively affects the models’ size and the needed run time for sensible results.

Moreover, they are mainly used for small-scale, low-dimensional problems and are de-

signed in a way that limits their scalability to larger or simply different datasets (Stanley

et al. 2019a).

1
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The current AutoML state-of-the-art primarily focuses on simple binary or multi-class

classification tasks (Stanley et al. 2019a). However, the rapidly-evolving field of machine

learning research requires AutoML solutions that are more representative of real-world

applications and adaptable to various modifications. This advancement is necessary to

enable researchers to quickly explore different ideas without having to build new methods

from scratch. This gap can be addressed by proposing a novel AutoML approach that

is more flexible and suitable for a broader range of applications. Hence, in Chapter 5.1,

the plasticity of the presented approaches is demonstrated by restructuring the neuroevo-

lution algorithm from Chapter 4 to operate on the data scape and discover critical data

points in a dataset instead of convolutional architectures.

A considerable portion of the AutoML approaches is highly specialised at a specific

task (which is usually a benchmarking dataset) instead of being a general solution which

they should be by design. While such attempts are a prerequisite for the success of

AutoML since they provide much-needed findings about the feasibility of particular ap-

proaches, the potential for industrial applications of AutoML remains largely unexplored

and has recently attracted the attention of, e.g., Google (Bisong 2019) or Alibaba (Li et al.

2021) among many other corporations.

Among the myriad potential applications of AutoML, security and, more specifically,

concealed weapon detection is of particular interest in this thesis. More specifically, one

of the main goals of this work is to develop an automated approach for X-ray computer

vision in concealed weapon detection to be applied in a range of industrial applications.

The efforts towards this goal are presented in Chapter 5.1 where the proposed efficient

methods from Chapters 3 and 4 are applied to concealed threat identification, and the dis-

covered convolutional architectures achieve state-of-the-art results in two different such

datasets. Interestingly, some of the work done towards this thesis has been used by the

award-winning project.

Concealed weapon detection is usually achieved through either millimeter-waves (Ros-

tami 2014), radar (Goenka and Sitara 2022) or X-ray scanners (Miao et al. 2019). Out

of these, only X-ray detection is within the scope of this thesis and is discussed in more

detail in Appendix A.

In essence, imagery data from X-rays differ significantly from the one coming from

visual sources such as CCTV and present novel challenges that need to be addressed

with specialised solutions (Miao et al. 2019, Mery 2015). For example, items in close-

packed bag X-ray scans are typically difficult to detect for many reasons, including the

fact that stacked items are not fully occluded but rather overlayed (Mery 2015). Moreover,

X-ray imagery captures the density of a certain object rather than just its exterior (Henzler

et al. 2018). This property causes many conventional methods and models to fail in these

tasks and showcases the necessity for domain-specific model architectures.

Moreover, most approaches in this area are manual, and the rest phrase the problem
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as a binary classification (they are concerned with only detecting if there is a threat or

not (Mery 2015, Dimanov 2019)). This method is sub-optimal since different threats need

to be handled differently (Bolz Jr et al. 2016). For example, security should approach

a person of interest suspected of carrying a firearm and one of having a bomb in two

distinctive ways. In many cases, multiple conflicting objectives need to be considered.

For example, the performance for a specific class might be more important than the

overall performance, or computational constraints (e.g. size or speed of the model) need

to be considered.

Concealed weapon detection is just an example of an area in need of simultaneous

optimisation of multiple, often conflicting, objectives. More broadly, multi-objective opti-

misation has a wide range of applications in finance and economics (Tapia and Coello

2007) (e.g., in investment portfolio optimisation, stock ranking, stock-return prediction or

in any other form of economic modelling), decision-making in design and engineering

Domingo-Perez et al. (2016), Pllana et al. (2019), energy forecasting (Tomoiagă et al.

2013, Liu et al. 2020a), and in many other areas (Ellefsen et al. 2017, Björnson et al.

2013, Ogbolumani and Nwulu 2021, Bagheri-Esfeh et al. 2020).

In short, multi-objective optimisation attempts to improve the balanced performance

of the chosen method over several different objectives (represented by different objective

scores) (Deb 2014), as discussed in further detail in Chapter 2. The need for multi-

objective optimisation for AutoML may seem obvious (Stanley et al. 2019a), yet some

of the early attempts to achieve this (Real et al. 2018) have been replaced by single-

objective reinforcement learning approaches (Tan and Le 2019a). One of the hypotheses

of this thesis is that the potential of multi-objective evolutionary algorithms for automated

machine learning has not been fully harnessed yet.

Moreover, with the rise in popularity of representation learning and explainability, there

has been an increasing interest in unsupervised and manifold learning methods in gen-

eral (Bengio et al. 2013, Dimanov 2021, Venkataramanan et al. 2022) . Consistent with

this trend, this thesis contributes to bridging the two fields by proposing a way to conduct

unsupervised machine learning in an automated fashion.

1.1 Aims and objectives

This thesis aims to provide a stepping stone towards the widespread use of AutoML in

research and industry, emphasising case studies in threat identification. The novel meth-

ods, designed to be applicable to various computer vision problems, should automatically

identify potential threats in X-ray screening with high enough speed and performance to

constitute an effective prevention approach.

Moreover, this work aims to accelerate AutoML while preserving (or improving) its

effectiveness. In short, the proposed approaches can boost AutoML availability and its
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growth as a research field while reducing the carbon footprint of these highly computa-

tionally demanding deep learning methods. Overall, the societal benefits derived from a

more efficient AutoML can contribute to broadening the scope of the next generation of AI

approaches (Doke and Gaikwad 2021). Towards this goal, the objectives of this thesis

are to:

1. Identify key strengths and limitations of the state-of-the-art in AutoML for computer

vision, with an emphasis on neuroevolution and threat detection.

2. Design an efficient AutoML approach for computer vision, capable of simultane-

ously optimising multiple objectives (image reconstruction, dimensionality reduc-

tion, model complexity) to discover convolutional autoencoder architectures.

3. Develop a novel multi-objective optimisation AutoML strategy of discovering flexibly

connected convolutional networks for semantic segmentation which can dynami-

cally adjust to computational requirements.

4. Adapt the newly developed method to real-world dataset using concealed threat

detection problem as a case study to showcase potential field applications.

5. Develop a heuristic approach to bolster the feasibility and efficiency of AutoML in

both model and data optimisation, facilitating its broader adoption in industrial ap-

plications, exemplified through a case study in concealed threat detection.

1.2 Contributions

1. Aligning with Objective 1, an extensive literature review is presented in Chapter

2 that identifies the key strengths and weaknesses of the current state-of-the-art

approaches in computer vision, AutoML and multi-objective optimisation.

2. Addressing the challenges highlighted in Objective 2, A multi-objective neuroevolu-

tion neural architecture search method for convolutional autoencoders (MONCAE)

is presented in Chapter 3. The approach, also presented at an ICLR 2021 work-

shop, has the potential to impact a wide range of applications due to the increasing

popularity of autoencoder-based generative methods.

3. In accordance with Objective 3, a resource-aware multi-objective neuroevolution

approach for semantic segmentation - RAMOSS is designed, developed and eval-

uated in Chapter 4. The encoding of RAMOSS allows for flexible connections be-

tween different layers by giving the ability of each layer to connect to each other

layer. The speed-up achieved by the approach makes AutoML feasible for segmen-

tation problems and demonstrates the value of multi-objective optimisation. The
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approach was presented at the UKCI 2022 conference and has been awarded a

prize - Best Presentation in UKCI 2022.

4. Fulfilling Objective 3, a new strategy called Progressive Stratified Sampling - PSS

was devised in Chapter 4, which aims to provide a way to sample segmentation

and multi-label datasets in a stratified fashion. The strategies allow for substantial

acceleration in the training of networks while conserving their performance ranking.

5. In line with Objective 4 and partly Objective 5, the application of Neuroevolution

methods to threat identification problems is explored in Chapter 5.1. Through some

added heuristics, an automatic evolutionary multi-objective concealed weapon de-

tection (MEOW) is devised that can discover architectures better than the state-of-

the-art in a single GPU hour.

6. As a result of pursuing Objective 5 and partly Objective 4, Multi-objective evolution-

ary coreset discovery technique is developed that allows for a fully-unsupervised

search of important samples in a dataset. The approach discussed in Chapter 5.1

(Section 5.2) presents a unique opportunity to discover a small subset of samples

from a dataset that a given model can train on and achieve similar performance to

the same model training on the whole dataset. With big datasets, this approach can

unveil some out-of-distribution or mislabelled samples and implicitly inform the user

of the ”important patterns” in the dataset.

1.2.1 Publications

The following publications are a result of this work:

1. D.Dimanov, S. Rostami, C.Singleton and E. Balaguer-Ballester - ”MONCAE: Multi-

Objective Neuroevolution for Convolutional Autoencoders”(Dimanov et al. 2021)

[Published in the ICLR 2021 workshop for AutoML which became a stand-alone

conference in 2022]

2. D.Dimanov, S. Rostami, C.Singleton and E. Balaguer-Ballester - ”RAMOSS - Resource-

Aware Multi-Objective neuroevolution for Semantic Segmentation” (Dimanov et al.

2022) [Published in UKCI 2022 conference] - Awarded Best Presentation in UKCI

2022

3. D.Dimanov, S. Rostami, C.Singleton and E. Balaguer-Ballester- ”MEOW: - Auto-

matic Evolutionary Multi-Objective Concealed Weapon Detection”[Published in Au-

toML 2023]

4. D.Dimanov, S. Rostami, C.Singleton and E. Balaguer-Ballester- ”MIRA-ME: Muli-

objectIve coReset discovery through evolutionAry algorithMs in computEr vision”

[In preparation for ICML 2024]
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5. S.Rostami, A.Kleszcz, D. Dimanov, V. Katos ”A Machine Learning Approach to

Dataset Imputation for Software Vulnerabilities” (Rostami et al. 2020)[Published in

MCSS 2020]

1.2.2 Others

1. Delivered a lecture for MSc students on Neuroevolution

2. Presented ”MONCAE: Multi-Objective Neuroevolution for Convolutional Autoencoders”

at BU PGR conference 2021

3. Presented early results of ”Neuroevolution applied for concealed weapon detection”

at BU PGR Sci-tech conference 2020

4. Presented a poster for ”MIRA-ME: Muli-objectIve coReset discovery through evolu-

tionAry algorithMs in computEr vision” in the BU PGR conference 2022

1.3 Thesis structure

The rest of the thesis is comprised of five themed chapters.

Chapter 2 progressively introduces some core concepts in deep learning, computer

vision and multi-objective optimisation. First, the inner workings of neural networks, con-

volutional neural networks, and autoencoders are discussed. Then, the chapter sets out

to establish the state-of-the-art as well as popular datasets in computer vision. Next,

multi-objective optimisation is explained with an emphasis on evolutionary algorithms,

Pareto-front of solutions and the hypervolume indicator. What follows is a bridge be-

tween all three topics discussed so far with the idea of AutoML in computer vision and

presents some state-of-the-art models in the field while reviewing their main limitations,

such as the enormous computational requirements, lack of experiments on different prob-

lems and datasets, single-objective centrism and unfeasibility to be used for real-world

applications. One such area for application described lastly in the chapter is concealed

threat detection with a specific focus on X-ray imagery data.

Following the discovered research gaps in Chapter 2, Chapter 3 presents a novel

neuroevolution approach for discovering convolutional autoencoder architectures named

MONCAE. It starts with a motivation study highlighting the importance and potential appli-

cations of the discovered convolutional autoencoders from MONCAE. This study demon-

strates that autoencoders can be fine-tuned to perform supervised tasks more effectively

by leveraging the learned representations in their encoder layers after being trained in an

unsupervised manner. Then, the chapter presents the automated way of discovering con-

volutional autoencoders, which efficiently achieves the best balance between bottleneck

compression and classification performance on several different datasets.
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Using the findings and the methodology of MONCAE as an inspiration, Chapter 4

addresses some of the limitations of MONCAE (the lack of layer connections in the

genome encoding and incompatibility with segmentation problems) by introducing a novel

resource-aware multi-objective neuroevolution-based semantic segmentation approach

in the face of RAMOSS. RAMOSS is evaluated using a popular segmentation dataset-

Cityscapes- and complementary experiments with a prevalent classification task for bench-

marking AutoML methods (CIFAR-10). On both problems, the RAMOSS architectures

achieve the best balance between the number of parameters, performance and search

time. Together with RAMOSS, chapter 4 also proposes a new stratified sampling method

compatible with multi-label and segmentation datasets. The strategy is aimed towards au-

tomated machine learning approaches and plays a vital role in the efficiency of RAMOSS.

Chapter 5 seeks to assess the feasibility of using the presented approaches in Chap-

ter 3 and Chapter 4 for real-world concealed threat identification. In line with the rest

of this work, the chapter introduces some heuristic scores, which are then utilised to

speed up the approaches further. This improved version of the neural architecture search

methods is then employed to two concealed threat identification datasets (SIXray and a

proprietary dataset called ”Residuals”) and beats all state-of-the-art approaches used for

comparison. The chapter continues by exploring the idea of porting the model-space

contributions (discussed in the previous chapter) and creating an evolutionary-based crit-

ical dataset discovery method named MIRA-ME. MIRA-ME has two different versions -

”naive” and fully ”unsupervised”- both demonstrate promising results on standard com-

puter vision and domain-specific datasets.

The final chapter (Chapter 6), reflects on the extent to which the objectives outlined in

the current chapter have been met through the research presented in this thesis, including

a discussion of the main findings and contributions of the work, as well as the implications

of the results and recommendations for future research.



Chapter 2

Deep Computer Vision Meets
Neuroevolution

This chapter describes the main concepts, techniques and open problems discussed in

the thesis. It begins with a brief introduction to the field of deep learning. Since the

problems addressed in this work are all in the remit of computer vision, an overall view

of the field is presented next. As presaged by the Introduction, a core focus of this the-

sis is multi-objective optimisation. Hence, the chapter proceeds to discuss the field in

conjunction with evolutionary computation. Finally, the niche topic of this thesis, auto-

mated machine learning (AutoML), is introduced, which presents a bridge between deep

learning and multi-objective optimisation.

2.1 Deep Learning

To contextualise deep learning, it is convenient to start more broadly by discussing ma-

chine learning, which dates back to at least 18th century (Bayes 1763). Mitchell (2006)

describes the field of machine learning as the approach which attempts to answer an

essential question: ”How can we build computer systems that automatically improve with

experience, and what are the fundamental laws that govern all learning processes?”.

It is a widely held view that the main characteristic of machine learning is that knowl-

edge is acquired from experience rather than being specified explicitly by humans (Mur-

phy 2012, Goodfellow et al. 2016b). Moreover, it provides a way of conducting automated

methods for data analysis (Murphy 2012).

As machine learning continues to evolve, it may be argued that the natural next step

is the adoption of AutoML (Stanley et al. 2019a). This approach to model generation and

optimisation allows for the further automation of the knowledge extraction process. By

leveraging experience-based algorithms, AutoML represents a logical progression in the

field, moving us closer towards a fully autonomous approach to machine learning (He

8
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et al. 2021, Li et al. 2021).

Due to the enormous size of this research field, only a small part of it, which is integral

for the complete understanding of this thesis, is reviewed. More information is provided

in Appendices B and B.4.1.

Neural Networks: Neural networks are biologically inspired representations of how

many scientists believe our brains work (Goodfellow et al. 2016b) and while it can be

argued that the field is a multi-disciplinary symbiosis, the working principle of these

networks is mainly based on linear algebra (Cochocki and Unbehauen 1993), calculus

(Rashid 2016) and statistics (Weiss and Kulikowski 1991).

Feedforward neural networks are typically represented by composite functions, which

are arranged in a directed acyclic graph (DAG) and represent a chain of operations that

needs to be applied to the input (Goodfellow et al. 2016b). DAG is also what is used

as part of the decoding in all of the following core chapters. For example, Equation 2.1

illustrates a composite function g of five nested functions (f1 through f5), where the input

is passed to f1 (which is often referred to as the first layer), then to f2 (second layer), until

it reaches f5, which is also the last layer (Goodfellow et al. 2016b).

g(x) = f5(f4(f3(f2(f1(x))))) (2.1)

The depth of the network is determined by the number of layers, which also means

the number of functions in the chain from the example above (Goodfellow et al. 2016b). In

the provided example, f1 would also be called the input layer, and f5 would be the output

layer. All of the layers represented by f2 to f4 are called hidden layers.

Convolutional Neural Networks: The unique properties of Convolutional Neural Net-

works (CNNs)and the fact that convolutional as well as pooling layers use kernels instead

of fully dense connections allows them to be especially good at learning representa-

tions with multiple levels of abstraction (Yang et al. 2017a) and effectively process high-

dimensional and complex data (Pereira et al. 2009).

Aside from traditional convolutional and pooling layers, CNNs can use other opera-

tions to complete data-specific operations, such as dilated convolutions (Hamaguchi et al.

2018), which have benefited segmentation models.

In contrast, the upsampling layer aims to reverse the operation of the pooling layer

(Goodfellow et al. 2016a). Upsampling is usually done to restore the image’s original

dimension, which is an integral part of convolutional autoencoders and segmentation

models (Ronneberger et al. 2015a). The upsampling layer uses a kernel similar to the

pooling layer, but instead of mapping to a lower-dimensional representation space, it

maps to a higher-dimensional one. There are two general ways to achieve this in a
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Figure 2.1: The process of upsampling with a transposed convolution with a 2x2 kernel
and a stride of 1.
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convolutional neural network. The first one uses an upsampling layer, which scales up a

data representation using the nearest neighbour or bilinear upsampling.

The way representations are decompressed is through the use of a transposed con-

volution, the inverse operation of a strided convolution. Transposed convolutions came

to light as a means to upsample features using a kernel with weights (Zeiler and Fergus

2014). These are also termed ’deconvolutions’ or ’fractionally strided convolutions’. Fig-

ure 2.1 presents an example of a transposed convolution. The figure depicts the iterative

process of the kernel (top left 2x2 grid) going over the input (the bottom 2x2 grid). Each

cell from the input is multiplied by the kernel at each step. Then, all produced feature

maps are added using a specified step size (stride). In the example, the stride is 1, so

each cell where there is overlap represents the sum of all produced overlapping cells.

More information and a detailed discussion of the inner workings of CNNs and their

operations can be found in Appendix B.

Autoencoders: One of the contributions of this thesis and the focus of Chapter 3

is the automatic discovery of convolutional autoencoders. Autoencoders are neural net-

works that have symmetric input and output layers and usually contain a bottleneck layer

(as illustrated in Figure 2.2) (Schmidhuber 2015). Usually, they are trained to minimise

the reconstruction loss, which is calculated based on the difference between the original

and the reconstructed (output) ones.

The general working principle of these networks is that they ”are simple learning cir-

cuits which aim to transform inputs into outputs with the least possible amount of distor-

tion.” (Baldi 2012). The fact that this approach utilises the data in an unsupervised way

allows for various applications ranging from style transfer (Qian et al. 2019) and gener-

ative techniques (Dosovitskiy and Brox 2016) to semi-supervised learning (Akcay et al.

2018), data denoising (Gondara 2016) and image compression techniques (Charte et al.

2020) that utilise the intrinsic representation learning of these approaches and exploit it.

The simplest form of an autoencoder is a three-layered MLP with a single hidden layer,

which represents the encoding, and the difference between the output and the input is
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Figure 2.2: General structure of symmetrical convolutional autoencoder
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then calculated, which serves as a reconstruction loss (Sereno 2018). Usually, autoen-

coders are made up of two parts: the encoder, which is the subnetwork that condenses

the input to a small representation (chokepoint) and the decoder, which is the rest of the

network, which uses this representation to upscale and reproduce the input (Goodfellow

et al. 2016b). For sophisticated datasets, convolutional layers can substitute the simple

dense ones. These autoencoders are referred to as convolutional autoencoders (Azarang

et al. 2019). The difference with simple autoencoders is that they achieve compression

through convolutional and pooling layers instead of simply having fewer neurons. The

upsampling is achieved through deconvolutions (Baldi 2012) discussed above. Autoen-

coders are powerful representational learning models, but some aspects, such as their

explainability and required representational capacity, remain unsolved, as discussed in

Appendix C.

The state-of-the-art in autoencoders is composed of architectures designed by ex-

perts, which are optimised for the specific scenarios required (Charte et al. 2020). Cur-

rently, given the increasing popularity of Automated machine learning(AutoML) (He et al.

2021, Real et al. 2019, Lu et al. 2019, Yan et al. 2020), approaches for automatically

designing and optimising autoencoder architectures are starting to appear(Charte et al.

2020), as will be further discussed in Chapter 3.

Model complexity: In Chapter 3,an operational measure of model complexity specif-

ically designed for deep convolutional models is definied, given that

there is generally no established consensus on the way to quantify the complexity

of a deep architecture (Lorena et al. 2019). To estimate it works in the field, use the

computational complexity (including the size of the model in terms of layers and parame-

ters) (Lorena et al. 2019, Real et al. 2018), representational complexity (Goodfellow et al.

2016b) or how fast an algorithm is at runtime (Lu et al. 2019). It is crucial to determine the

complexity of models not only because specific scenarios require rapid predictions (Mor-

ris et al. 2018, Miao et al. 2019), but also because the complexity of a model is proven to

be linked to the representational or classification capacity of a given model (Goodfellow

et al. 2016b)

A classic approach consists of exploring the geometrical complexity of a dataset by



12 CHAPTER 2. DEEP COMPUTER VISION MEETS NEUROEVOLUTION

embedding it in a constructed measurement space, which in turn ”can guide the static and

dynamic selection of classifiers for specific problems as well as subproblems formed by

confinement, projection, and transformations of the feature vectors” Ho and Basu (2002).

This approach raises awareness of the critical importance of exploring classifiers’ de-

pendency on data and a way to devise a metric that measures data complexity. It also

reveals a significant gap in the literature: while good and accurate models are presented

each year, a small part of the papers, if any, focus on the actual reasons why the chosen

method was successful (Arrieta et al. 2020). This open problem is also one of the central

questions in the rapidly growing field of XAI (explainable AI), which has gained traction

over the last years (Došilović et al. 2018, Gunning et al. 2019, Dimanov 2021).

Works like the Lottery-ticket hypothesis (Frankle and Carbin 2018) and Kazhdan et al.

(2020) present heuristics and methods to better understand the black-box nature of deep

learning models and as the author of Dimanov (2021) has put it: ”To shine a light and

observe the black-boxes from the inside”. Thus, one of the central themes in the new

field of XAI is an evolution of the efforts to estimate models’ capacity and complexity and

the findings of 20-year-old studies ”that many classification tasks arising naturally from

real-life processes do contain learnable structures” (Ho and Basu 2002) are currently

reincarnated in XAI as ”concepts” (Kazhdan et al. 2020).

2.2 Computer Vision

The idea to make computers able to perceive the world like the human eye has sparked in-

terest for decades (Huang 1996). Although the field of computer vision is interdisciplinary

and encompasses a multitude of integrally different approaches, the term describes sys-

tems that are capable of achieving some high-level understanding of digital images or

videos (Huang 1996, Forsyth and Ponce 2002).

Computer vision is a branch of machine learning that deals with translating digital

input data (in the form of images and videos) into valuable information (Lawrence et al.

1997) (Dimanov and Rostami 2019). There are different types of computer vision prob-

lems (image classification (Khan et al. 2018) , object detection (Cyganek 2013) , seman-

tic segmentation (Long et al. 2015)) and numerous methods that address them (Szeliski

2011, Borkowski et al. 2019).

The field is composed of two main parts. The first one is feature engineering, which in-

cludes feature extraction, feature selection and various preprocessing techniques (Szeliski

2010). The second one depends on the exact problem at hand, but in essence, it consists

of using the discovered features to solve a particular problem. For instance, in image clas-

sification, the discovered features are associated with a set of classes through classifier

models (Varano 2017).

At first, the field relied on hand-crafted features, including HAAR-like (Viola and Jones
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2004) and HOG (Dalal and Triggs 2005) ones. With the work of Krizhevsky et al. (2012),

this changed, and feature extraction together with feature classification was delegated to

CNNs (Lang et al. 1990, LeCun et al. 1998). This new revolutionary, yet old, idea could

work much better than its predecessor because of the vast increase in computational

power and available data in 2012 compared to the 1960s (Alom et al. 2018). Please

check Appendix D for more details.

Significant advancements: What follows is a short description of some of the central

related works used throughout this thesis. A more verbose and detailed version with

additional approaches can be found in Appendix E. All of the following discussed methods

use unique architectural and overall design decisions, which is encoded as part of the

design of the presented search space in the following chapters. One of the first and

most popular architectures for computer vision to date is the VGG method Simonyan

and Zisserman (2014). The approach was initially designed for a fixed size 224x224

RGB images, which are passed to a series of convolutional layers with only the smallest

possible receptive fields that can capture direction (3x3) (Simonyan and Zisserman 2014).

Then, some of the convolutional layers are followed by max-pooling layers with a 2x2

kernel and a stride of 2. The output is then flattened and passed to two fully connected

layers; the first has 4096 channels, and the last one has 1000 channels, representing

the 1000 classes of ImageNET. Multiple models exist based on the VGG architecture

based on the number of layers (Liu and Deng 2015). Some of the most popular ones

are VGG-16 and VGG-19. The idea of flattening the features of the last convolution and

then putting auxiliary classification layers has how the classification version of RAMOSS

in chapters 4 and 5 work.

Between 2014 and 2016 InceptionNet (Szegedy et al. 2015a) and ResNet He et al.

(2015), which featured skip-connections that allowed for a better flow not only of infor-

mation during a forward pass but also proved to have a positive impact on the flow of

gradients during a backpropagation. Even though multiple variations exist of both base

architectures (Jin et al. 2016, Szegedy et al. 2016a 2017a), the main working principle

is that instead of following the previously standard sequential stack of layers, these ar-

chitectures skip and aggregate over multiple operations. Soon after, an architecture with

all layers interconnected called DenseNet was proposed Huang et al. (2017). Unlike

ResNet, DenseNet concatenated the residual feature maps instead of summing them.

One of the decision variables in the encoding in RAMOSS is exactly which operation to

use with skip connections, and the available choices stem from these architectures.

Focusing on segmentation, one of the most popular family of models is U-Net Ron-

neberger et al. (2015b). This group of architectures use two mirrored pathways for first

”capturing context” and then expansion to facilitate precise localisation. It is based on

how autoencoders work, explained earlier, with the only difference being that layers in

the encoder have skip connections to the ones with the exact dimensions in the decoder.
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As computer vision encompasses so many different problems, approaches and tech-

niques, it is challenging to generalise all concepts as applicable to each problem. Yet,

an immense amount of transferable knowledge can be applied from one computer vision

problem to another (Torrey and Shavlik 2010). One concept that exploits this postulate is

the use of backbones, which are neural network architectures or parts of architectures,

which are taken and used as part of some larger pipeline (Ren et al. 2015). An example

of such an application is the use of ResNet (He et al. 2015) backbones in the construc-

tion of UNets (Huang et al. 2020) or the use of InceptionNet (Szegedy et al. 2015b) and

ResNet (He et al. 2015) as part of object detection, where they are only used to classify

the object in a region, which is separately discovered by a regression model (in the case

of R-CNN with such backbones) (Li et al. 2018) . More information about these models

and architectural designs can be found in Appendix E.
1 Over the last decade, deep learning has become a flourishing field, capable of pro-

viding solutions to problems that were previously arduous or unforeseeable (Goodfellow

et al. 2016b, Li et al. 2023). Deep learning typically scales well with the abundance of

available data(Goodfellow et al. 2016b); however, there are scenarios where the data is

of overwhelming quantity and training an algorithm on the whole raw dataset becomes

infeasible (Miao et al. 2019).

In these cases, two approaches are usually undertaken. They are either based on

reducing the number of samples by selecting the most representative ones (Triguero et al.

2015, Jankowski and Grochowski 2004) or reducing the dimensionality of the dataset

(Charte et al. 2020), which is especially prevalent in fields like computer vision.

As CNNs have achieved exceptional results and have become the ”golden standard”

for most computer vision problems (Shen et al. 2023, Wu et al. 2023, Simonyan and Zis-

serman 2014, He et al. 2015, Szegedy et al. 2015b) . CNNs offer a black-box solution

that addresses both feature engineering and the classification itself(Liu et al. 2023, Zhang

et al. 2023b) . In this setting, it is common to rely on the universal approximation theo-

rem (Hornik et al. 1989) to find a model capable of reasonably capturing the input data

distribution conditioned to each class label. If that is not the case, the natural, heuristic

approach is to look for deeper models and intuitively experiment with hyperparameters

until satisfactory performance is achieved (Goodfellow et al. 2016b).

CNNs can successfully map complex and obscure input/output patterns (Deng et al.

2023b) allowing for new techniques such as attention mechanisms to emerge Vaswani

et al. (2017). Moreover, in contrast to earlier methods where features had to be manually

specified (ex., HAAR-like features), they automatically discover such optimal features

through their optimisers that sometimes carry extra semantic value Jha et al. (2023).

Even though CNNs are potent tools for computer vision problems (Aggarwal et al.

1VIVA change comment: Moved from MEOW-related works with some updated references and added
new techniques
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2021), constructing them involves several critical design decisions that can significantly

affect the performance of the network (Real et al. 2017). These decisions include choos-

ing the right architecture for the network, determining the appropriate size and stride for

the convolutional filters, and selecting the proper activation functions and pooling layers,

which all need to be optimised in order to achieve optimal results. Until recently, re-

searchers relied mainly on trial and error intuition to determine the best hyperparameters

and network architecture (Stanley et al. 2019a).

However, discovering the state-of-the-art itself often relies on approaches like brute-

force grid search or random search(Liashchynskyi and Liashchynskyi 2019, Nalçakan

and Ensari 2018, Liashchynskyi and Liashchynskyi 2019).

To address this, recently, there has been an increase in effective approaches for au-

tomated convolutional network design, such as evolutionary algorithms (Lu et al. 2019,

Miikkulainen et al. 2019, Real et al. 2019, Stanley et al. 2019a), reinforcement learning

(Qin and Wang 2019, Tan and Le 2019b) and other automated approaches (He et al.

2021). These methods have been able to match and sometimes surpass manually de-

signed architectures by domain experts and are discussed in further detail in Section 2.4

and then utilised in Chapters 5.1, 4 and 5.

Reducing the computational complexity of these algorithms is a significant research

challenge (Zhou et al. 2020). A promising approach is to leverage dimensionality re-

duction techniques to simplify the underlying data and enable more efficient processing.

Interestingly, Charte et al. (2020) discovered that ”choosing a curated set of attributes, or

building a new one from the original features, tends to produce better results than using

raw variables”. Standard statistical choices for dimensionality reduction in the literature

include Principal Components Analysis (PCA), Linear Discriminant Analysis (LDA) and

Factor Analysis. However, more advanced work explores the possibility that the distribu-

tion of variables in the original dataset lies in lower-dimensional space (also known as a

manifold (Talwalkar et al. 2008)). Manifold learning is used to compress the raw data (us-

ing non-linear transformations) to its lower-dimensional representations that essentially

contain all the necessary information to complete the task at hand successfully (Charte

et al. 2020). This concept has served as key motivation behind Chapter 5.1 and the

MIRA-ME technique described in Chapter 5.2. These new techniques of manifold learn-

ing have motivated recently reemerging vector databases (Girdhar et al. 2023), which

in combination with embedding models (Barkan et al. 2020) offer a unique new way of

accessing and searching for dataset-level operations (Rodriguez et al. 2023). This allows

users to quickly find similar items in a database or develop context-specific queries that

are key for managing machine learning datasets at scale (Babenko and Lempitsky 2016,

Deng et al. 2023a).

Typical problems: Having discussed ”how” different techniques work, now some of

the core problems in computer vision are introduced. Image classification is one of the
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most mature and fundamental computer vision problems (Nath et al. 2014). It is usually

associated with a problem where a single image should be classified to belong to one

of two (binary classification (Parkhi et al. 2012) ), one of many (multiclass classification

(LeCun et al. 1999) ) or multiple different (multilabel classification (Miao et al. 2019) ).

Each specific dataset is introduced as part of the experimental setup of the first chapter

it is utilised in.

In difference to pure image classification, where one image is just associated with a

label, the object localisation task takes this one step further by requiring the system

to provide information not only by a single label but rather give context as to where the

actual entity is positioned (Tompson et al. 2015). In contrast to object detection, however,

object localisation is just concerned with finding one particular entity, thus is more similar

to image classification with some auxiliary regression over four parameters which define

a single bounding box (Harzallah et al. 2009).

In contrast to image classification, where each image is given a label, in semantic

segmentation problems, each pixel of the image has its own label (He et al. 2017). Con-

trary to object detection, where there are multiple defined regions and bounding boxes

which can dynamically (Ren et al. 2015) or statically (Redmon et al. 2016) determine

whether there is an object in a particular region or object localisation which builds upon

image classification with the addition of localising one particular object (Haralick and

Shapiro 1985) , semantic segmentation takes this further.

Tasks are based on image masks that give a separate label to each input image pixel.

In this particular problem, metrics such as accuracy are not widely used since they are not

highly informative (Fenster and Chiu 2006) . Since background classes usually occupy

most of the image and other classes are imbalanced, some of the used metrics for this

type of problem are intersection over union (Shaban et al. 2017, Liu et al. 2019a) and

dice score (Bertels et al. 2019).

Effective semantic segmentation is fundamental for capturing the main characteristics

of the scene (Paszke et al. 2016, Chen et al. 2014). For instance, in medical and security

domains, semantic segmentation is a crucial part of multiple critical systems, including di-

agnosis (Taghanaki et al. 2021), health monitoring (Yang et al. 2017b), ensuring people’s

safety (An et al. 2019) and many others (Alonso et al. 2020, Sagar and Soundrapandiyan

2020). However, the vast majority of the state-of-the-art algorithms and approaches for

semantic segmentation are still typically designed manually (He et al. 2021) and require

profuse domain expertise to be constructed (Liu et al. 2010, Singaravel et al. 2020);

which is expensive both in terms of computational and human resources (Siam et al.

2018, Cordts et al. 2015, Geiger et al. 2013).

A popular approach to tackle semantic segmentation problems is to use architectures

of the so-called UNet type (Ronneberger et al. 2015a), which have a similar structure

to an autoencoder but incorporate extra skip connections from the downsampling stage
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to the upsampling one (Zhang et al. 2017a). UNet architectures are constructed man-

ually following a specific set of rules that can be potentially automated through Neural

Architecture Search (Ronneberger et al. 2015a) discussed later in this chapter.

Anomaly Detection and Imbalance: Another significant aspect of computer vision is

anomaly detection, which deals with the ”detection of deviation and divergence of anoma-

lous samples from the normal ones” Minhas and Zelek (2019). It is concerned with

recognising patterns of data(called anomalies), which appear to be out of the ordinary

distribution (Chandola et al. 2009). Recognising these anomalies is crucial for various

problems from a multitude of domains, including threat detection 2 (Minhas and Zelek

2019).

Identifying anomalies can be especially hard in scenarios where the natural distribu-

tion of data involves high variance since most anomalies can be well concealed to look

like natural outliers of the original distribution (Mery 2015). There exist anomaly detection

algorithms that use supervised, semi-supervised and unsupervised learning, where the

ability of unsupervised learning techniques is believed to be limited for analysing images

(Minhas and Zelek 2019).

There are two major challenges when using supervised learning for anomaly detec-

tion: the lack of labelled data and low anomaly instances compared to the benign ones

(Minhas and Zelek 2019).In the ”data space”, a popular way to deal with massive data im-

balance, if possible, is to over-sampling the data in favour of the misrepresented class or

classes using approaches such as SMOTE (Chawla et al. 2002), MWMOTE (Barua et al.

2012) or many others. As a result, new data points are generated, which follow the distri-

bution of the presented dataset. With imagery data, oversampling is usually done using

data augmentation (Taqi et al. 2018). More recently, generative AI such as MidJourney

and DALLE provide even more creative and novel ways of upsampling data (Seneviratne

et al. 2022, Bandi et al. 2023)

Another option is to undersample the benign examples, such that the distribution of

anomalies is similar to that of benign ones (Anand et al. 2010). Researchers have re-

cently addressed these questions with the idea of a critical dataset, which is the minimum

number of samples needed for a model to capture the underlying distribution of data gen-

eration (Goodfellow et al. 2016b) using coreset discovery which is what is also employed

in MIRA-ME (Chapter 5 (Har-Peled and Mazumdar 2004, Guo et al. 2022).

In the ”model space”, numerous techniques also exist to address limited data avail-

ability and data imbalance (Miao et al. 2019, Minhas and Zelek 2019). The model can be

fine-tuned to the dataset at hand using transfer learning with an already trained model for

a different dataset (Vercruyssen et al. 2017). A dataset often used for transfer learning

is ImageNet (Appendix G) since it is one of the most extensive image datasets available

(Deng et al. 2009, Torrey and Shavlik 2010). Transfer learning allows the model to begin

2https://deeper-scan.com (Accessed on 12.05.2020)
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training at a potentially good starting point while training on the new data points to reach

the global optimum more efficiently and effectively.

Another technique used to combat class imbalance is adjusting the biases of the

output neurons for some of the classes (Givnan et al. 2022) or using weights in the loss

functions to steer the model in giving underrepresented classes more attention (Zhu et al.

2018) as well as using loss functions like the Focal loss (Lin et al. 2017b), which are

specifically designed to be as invariant as possible to class imbalance. For instance,

adding weights to categorical cross-entropy loss for n classes can be done by changing

the conventional categorical cross-entropy:

L = − 1

n

n∑
i=1

(yi)
T · log(ŷi), (2.2)

to include a weight term α for the n different classes:

L = − 1

n

n∑
i=1

(α⊙ yi)
T · log(ŷi), (2.3)

where yi is a c × 1 target vector containing a one for the ci entry corresponding to the

class of the ith input image, and zero otherwise (that is, yi ≡ Ici , where Ici is the indicator

function), ŷi is the output of the network (a c × 1 vector of probabilities for the ith input

pattern to belong to each class), α is the c×1 vector of class weights correcting the class

imbalance, and ⊙ is the Hadamard (element-wise) product.

Semi-supervised approaches for this problem usually attempt to estimate the under-

lying distribution and density function (Akcay et al. 2018). For example, Generative Ad-

versarial Networks (GANs) minimise the difference between the images from the dataset

and their generated reconstructed counterparts. This way, a larger distance from this

learned data distribution at inference time ”is indicative of an outlier from that distribution”

(Akcay et al. 2018), which is an anomaly. This concept is utilised during the design of the

unsupervised pipeline of the data selection approach shown in Chapter 5.

2.3 Multi-Objective Optimisation

Multi-objective optimisation refers to the process of optimisation of a system to solve

a problem constituting two or more objectives, which is often the case with real-world

problems (Deb 2001a)(Deb 2014). In the domain of computer vision and especially the

one of defence, this is of immense importance since every single objective might be

mission-critical and needs to be considered when an optimal solution is proposed and

deployed (Lee et al. 2019).

In single-objective problems, there is usually a single metric of the performance of a
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solution (Deb and Tiwari 2008). This metric is often called the ”fitness score” of a solution.

In the case of problems with two or more objectives, a single-objective optimisation is

inappropriate since a proxy of all would be required to represent the complexity of the

problem.

On top of that, the objectives might be conflicting; thus, optimising for one may also

mean compromising the other. This problem would require a solution that weights them in

some way while ensuring the approach is not susceptible to getting stuck in local optima

(Hwang and Masud 2012, Deb 2014).

Addressing this caveat requires the conversion of the solution to be an approximation

set which consists of multiple candidate solutions with different combinations of objec-

tive values, instead of a single solution (Rostami 2014, Dimanov 2019). The quality of

this approximation set is generally determined using the following three characteristics:

proximity, diversity and pertinence (as displayed in Figure 2.3) (Rostami and Neri 2016).

Figure 2.3: The main characteristics of an approximation set, the dominated objective
space and the Pareto front can be observed. The Pareto front in the image is represented
by the line drawn between the solutions (black and green dots)

Pareto optimality: These properties are used to describe Pareto optimality, which is

a term that describes the front (collection) of non-dominated solutions in a multi-objective

space that depicts the trade-off of objectives (Censor 1977).

The concept of Pareto optimality originated in the domain of economics as a way

to achieve a balance between maximisation of societal ophelimity and exhaustion (Luc

2008). It soon became applicable to many other use cases, including multi-objective

optimisation (Ngatchou et al. 2005).

In multi-objective optimisation, Pareto optimality denotes the optimal trade-off of so-

lutions considering multiple different (and often conflicting) objectives (Ngatchou et al.
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2005). The solutions on the Pareto front are all non-dominated in the objective space.

Numerous summative measures have been used to describe the performance of a

frontier of solutions compared to a known set of optimal solutions (the Pareto front) (San-

dler and Smith 1982). These metrics measure the distance from the known Pareto front

using metrics that reflect the three attributes of an attribution set (described at the begin-

ning of sub-chapter 2.3).

A solution lies in the dominated space if at least one other solution fully dominates

it. The other(dominant) solution has better values for all observed objectives. Thus,

since the dominant one is better across all objectives, the dominated solution is usually

discarded.

All non-dominated solutions form a front which is called the Pareto optimal front. It

represents the most optimal approximation set for the given objectives (Censor 1977).

Many algorithms and methods use an estimation of the Pareto optimal front to guide the

process of optimisation, but this approach can often be deceitful since it is not usually

possible to know what this front is beforehand. Thus, approximations can be inaccurate.

Characteristics of the Pareto front: Moreover, if the Pareto optimal front is known

before the optimisation begins, the process may become superfluous since the process of

optimisation is attempting to discover an entity, which may be already defined (Zapotecas-

Martı́nez et al. 2018).

The first of the three characteristics in Figure 2.3 is called proximity. It serves as a

proxy of how close the solution is to the Pareto front. The second one - diversity - is used

to evaluate the distribution of solutions across the approximation set, which in Figure 2.3

illustrates as the distance between each solution (Woolley and Stanley 2014).

The last characteristic allows the decision-makers to specify a preference vector,

which defines a region of interest. In this way, the decision-makers can directly impact the

outcome of the process and influence it to look for solutions within the region of interest.

This characteristic is called pertinence, and it is represented by the green shaded area in

Figure 2.3 (Rostami and Neri 2016).

All three characteristics of an approximation set are designed to aid the decision-

making process and make it easier for decision-makers to select a solution or group of

solutions based on their requirements.

That is why multi-objective optimisation, in difference to single-objective optimisation,

explores the optimal set of solutions and accounts for the intrinsic trade-off of different

objectives, which in turn allows for a much more diverse and optimal set of solutions and

provides a collection of solutions from which the decision-maker or client can choose a

specific solution based on its objective values (Rostami and Shenfield 2012).
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Figure 2.4: The process followed by most evolutionary algorithms with the major steps
presented and an example of breaking steps into sub-steps is presented for Variation.
Splitting variation into Crossover and Mutation is usually done for a subset of evolutionary
algorithms called Genetic algorithms.

2.3.1 Evolutionary Computation

Next, let’s turn to evolutionary computation, which is a collective term used to address

a collection of biologically inspired optimisation algorithms, which often, to some extent,

depict the process of evolution (Coello et al. 2007). More precisely, evolutionary computa-

tion draws inspiration from modern genetics and natural selection (Deb 2001b) (Dimanov

2019) in an attempt to discover a population of individual solutions (approximation set),

which would be positioned as closely as possible to the global optima and ideally should

lie on the Pareto front of optimal solutions (Ishibuchi et al. 2016).

The algorithms usually have five general steps to achieve this ambitious task, which

can be subdivided into more detailed ones (Kachitvichyanukul 2012). The basic working

principle of these algorithms is that they start with a population of random solutions.

Then, through variation and selection, the solutions improve over time from generation to

generation until a termination criterion is met (Kachitvichyanukul 2012).

Each step is detailed in the following sections, which cover the process more in-depth,

as depicted in Figure.2.4.

Initialisation: In this step, a population of solutions is initialised, which usually in-

volves constructing a random population of individuals, which have random values for

each property from the search(often called ”decision”) space (Coello et al. 2007). The

search space encompasses all possible values for all variables.
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Evaluation: After the population of individuals has been initialised, it is evaluated

to see how the different solutions perform for the given problem. During this step, the

genome is transformed to its phenotype (Deb et al. 2002a), and then each individual (the

set of decision variables) is taken and used as an input to some sort of objective function,

which in case the problem is single-objective is often called the ”fitness” function. After

this is done, in most cases, a single value would be produced, which would be that

individual’s fitness score (objective score) for the problem (Liu et al. 2019b).

In the case of multi-objective problems, there will be more than one objective score,

which can either be summarised into a single value or optimised simultaneously (Deb

2001b, Coello et al. 2007).

Termination: A termination criterion is predefined, which may be a maximum num-

ber of iterations (generations), the time elapsed, the maximum number of evaluations

(objective functions executed) or simply a desired objective score (Safe et al. 2004).

Selection: Then, the selection step takes the evaluated individuals and chooses

which ones should continue and which should be discarded.

In this step, prevalent approaches include tournament selection (Blickle and Thiele

1996) , elitism (Yang 2007) , ranked selection (Blickle and Thiele 1996) and many more.

This step draws inspiration from the process of natural selection and survival of the

fittest in nature (Fogel 2000). Choosing the proper selection can enormously impact the

overall algorithm’s performance (Nayyar et al. 2018). This step is heavily reliant on the

chosen objective or objectives, and it also depends on the mechanism to treat these

objectives. There are two stages of selection since the parents that continue the cycle

are picked, but sometimes survivor selection also needs to be conducted (Nayyar et al.

2018).

Variation: Although selection is an essential step of the evolutionary process, ar-

guably the quintessential one for evolutionary computation is variation. The variation

process differs from one family of evolutionary algorithms to another, but there are two

main sub-operators of achieving variation.

The first one is called crossover. It is often seen in genetic algorithms since it aims

to simulate biological reproduction. It features the combination of genomes (chosen can-

didates from the selection) in various ways, including one, two or k-point crossover, which

means that the genome (genotype representation of the candidate) is split into one, two

or k-points.

Then, the offspring (new individuals produced as part of the updated population) are

created by recombining these pieces from different parent candidates. There are differ-

ent types of crossover. K-point crossover is just one way of achieving recombination.

It can also happen through uniform crossover (performed to sample genes and chromo-

somes from both genomes uniformly), , Edge Recombination Crossover (Deb et al. 2007)

, Differential evolution crossover (Pampara et al. 2006) and many more.
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In general, there exist two main approaches. These are:

1. Using just mutation, which means introducing random changes to the individual’s

genome (the set of all decision variables for the particular individual) (De Falco et al.

2002).

2. Using mutation in combination with crossover (or recombination), which is usually

done in genetic algorithms, which aim to depict how genetics work more closely

(Stanley et al. 2019a).

2.3.2 Evolutionary Multi-Objective Optimisation

Evolutionary algorithms, by design, use a scalar value which determines the fitness

score of an individual solution (Barbiero et al. 2019). To facilitate multi-objective op-

timisation in the context of evolutionary algorithms, the problem is usually stated as

maximiseF (x) = (f1(x), ..., fn(x))
T where x is the vector of decision variables making

up a proposed solution (Zhang and Li 2007).

So, a wrapped objective function is constructed, which uses the different scores for all

objectives and aggregates them into a single number. Since usually there is no point in

the decision space which maximises all objectives simultaneously, the best solutions can

be defined by their Pareto optimality (Zhang and Li 2007).

The approach of Zhang and Li (2007) uses decomposition and optimises each ob-

jective separately by defining each problem as a subproblem and then using information

about neighbouring subproblems during their separate optimisation. The crucial part

of this approach is that the population consists of historically the best candidates x for

each distinct objective, whereas the non-dominated solutions are stored separately (in

an archive-like structure), termed external population (EP).

On the other hand, NSGA-II (Deb et al. 2002a) filters similarly ranked solutions based

on crowding distance. The crowding distance for each non-dominated solution is cal-

culated based on predefined objective criteria reference points, similar to computing the

cHV.

2.4 Automated Machine Learning

As pointed out by Yao et al. (2018), the pivotal book for machine learning of Mitchell et al.

(1997) starts with: ”Ever since computers were invented, we have wondered whether

they might be made to learn. If we could understand how to program them to learn - to

improve automatically with experience - the impact would be dramatic”.

Automated machine learning(AutoML) is a field of machine learning which aims to

decide on machine learning models ”in a data-driven, objective, and an automated way”

(Hutter et al. 2019a).
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With the increase in available computation (Moore et al. 1965), researchers started

exploring the idea of automating the optimisation process of CNNs. Hence, the latest ad-

vancements in the state-of-the-art in computer vision are a product of automated machine

learning (AutoML) (Real et al. 2017, Tan and Le 2019a, Tanaka et al. 2020).

In the domain of neural computation, AutoML is a process of discovering the correct

hyperparameters(e.g. layers, number of neurons per layer, order of layers, types of layers)

and parameters (weights and biases) of a neural network (Hutter et al. 2019b).

2.4.1 Neural architecture Search

Even though the use of machine learning has grown drastically in the last decade, the

need for experts and computational resources to design, evaluate and train these ma-

chine learning models has also risen dramatically, which ”hinders the development of

deep learning in both industry and academia” (He et al. 2021).

The rise in popularity of AutoML is a natural response to address the high demand for

expertise and computational resources for deep learning in industry and academia (He

et al. 2021, Stanley et al. 2019a). The automation involves not only the NN training but

also the design of architectures, which is known as Neural Architecture Search (NAS)

(Stanley et al. 2019a, Elsken et al. 2018b). Many different types of algorithms are used

for neural architecture search, but the two most popular ones are reinforcement learning

and neuroevolution (Stanley et al. 2019a).

Multiple different algorithms and approaches have been proposed to do just that. The

first significant one is the work of Zoph and Le (2016) . Soon after, various reinforcement

learning (Qin and Wang 2019, Tan and Le 2019b) , Neuroevolution ones (Lu et al. 2019,

Miikkulainen et al. 2019, Real et al. 2019, Stanley et al. 2019a) and other approaches

started to emerge.

While most NAS approaches treat neural network optimisation as a black-box pro-

cess, DARTS uses gradient descent optimisation over a continuous search space of ar-

chitectures. They aim to find complex building blocks with intricate graph topologies that

are not restricted to any family of blocks (Liu et al. 2018). To do so, the authors represent

the connectivity of the different layers using a directed acyclic graph, which has inspired

the encoding design in Chapter 4.

One of the more significant breakthroughs in the field was in 2017 when Real et al.

(2017) reached state-of-the-art performance on a widespread computer vision problem

and outperformed domain expert-designed models. To do this, the authors used a simpli-

fied graph to represent architectures during encoding, meaning mutation could be used

on each node separately and could happen more than once. However, with this break-

through, some standard NAS caveats became even more apparent. Mainly the compu-

tational hunger of these algorithms.
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Finding an architecture is an essential step in both research and development when a

researcher or practitioner attempts to tackle a novel problem (Perez et al. 2019) . A severe

limitation for both industry and research is the 3150 GPU days requirement of AmoebaNet

(Real et al. 2017 2019) and the 9000 GPU days one of NASNet (Qin and Wang 2019).

Furthermore, these massively computational hungry algorithms are aimed at performing

NAS on a relatively low-dimensional dataset known as CIFAR-10 (discussed and used in

Chapter 3.

Moreover, the main computational power of the algorithm is not even used for search-

ing for the architecture, but rather it is soaked up by the expensive evaluation process,

which includes training the architecture to a good standard before being able to score it

(Real et al. 2018).

This problem has spawned an entirely new NAS sub-field dedicated to developing

proxy scores that can potentially allow such algorithms to run exponentially faster (Ab-

delfattah et al. 2021) and evaluate an architecture by requiring only one batch evaluation

(Abdelfattah et al. 2021, Mellor et al. 2021) or in some cases, the proxies can be data

agnostic and not need the architecture to see the data it will be trained with (Tanaka et al.

2020). These scores are discussed in more detail in Section 2.4.3.

2.4.2 Neuroevolution

Neuroevolution is a type of AutoML approach (dating back to the 20th century), which

relies on evolutionary optimisation to optimise neural networks (Lehman and Miikkulainen

2013). Neuroevolution algorithms are a specific type of evolutionary algorithms which aim

to optimise neural networks in some way (Stanley et al. 2019a) . Some Neuroevolution

approaches focus more on neural architecture search (finding an optimal neural network

architecture) (Real et al. 2017) while others attempt to optimise the weights (Jenkins

2006, Lehman and Miikkulainen 2013) or hyperparameters of the network (Real et al.

2018).

At first, researchers were looking at optimising weights and other parameters of neural

networks. However, with the increase of available computational resources, research

started focusing on looking for hyperparameters and neural architectures (Floreano et al.

2008). Soon Stanley et al. (2009) came out. It allowed researchers to consider even

bigger neural networks and to explore the use of neuroevolution in computer vision as well

(Real et al. 2017) . In 2018 Real et al. (2017) was published. It showed the potential of

neuroevolution to optimise large CNNs. Even though it used the evolutionary approach to

optimise a vast number of hyperparameters, the parameters themselves (the weights and

biases) were still using a conventional gradient-based approach, which made AmoebaNet

(Real et al. 2018) unfeasible to train in a normal research setting, since for grayscaled

CIFAR-10 it took 3150 GPU days to discover the best architecture. Some other examples
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have attempted to apply neuroevolution in the context of computer vision, like Genetic

CNN (Xie and Yuille 2017).To the best of the author’s knowledge, very few, if any, have

attempted to optimise both hyperparameters and parameters only through the means of

neuroevolution before fine-tuning.

A significant breakthrough in the field occurred in 2017, when Real et al. (2019)’s

AmoebaNET reached state-of-the-art performance, outperforming architectures designed

by experts. The AmoebaNet is a Neuroevolution algorithm (Real et al. 2019). In such ap-

proaches, decoding the NN (the individual in an evolutionary algorithm context) is added

as an extra step before the evaluation, whilst encoding the individual back to genotype is

added after the evaluation (Stanley et al. 2019a). For its encoding, the authors use an

encoding similar to the one of DARTS (Liu et al. 2018).

The process of neuroevolution only differs from the usual evolutionary approach dis-

cussed in 2.3.1 by the addition of encoding and decoding as depicted in Figure 2.5.

In reality, the initialisation, variation and evaluation also have differences (Stanley et al.

2019a). They serve the same purpose as the steps in the standard evolutionary algo-

rithms, which makes possible the use of a neuroevolution algorithm using a library or set

of tools designed for typical evolutionary algorithms.

Recently, indirect encodings (Hadjiivanov and Blair 2016) (closely inspired by how

DNA works (Miikkulainen et al. 2019)) have shown promising results. Neuroevolution

has been successfully used for autoencoder optimisation in a range of studies (Charte

et al. 2020, Sereno 2018, Alvernaz and Togelius 2017); however, a limitation of these

approaches is that they typically focus on evolving a NN with dense activation layers

(e.g., in Charte et al. (2020)’s EvoAAA) instead of convolutional and pooling layers, which

have shown great potential for computer vision (Gu et al. 2018).

Next, some key concepts for neuroevolution are discussed. The subsection concludes

with a brief explanation of how everything ties together.

Neuroevolution, similar to other evolutionary algorithms, needs a search space to be

defined, which is the decision space which the algorithm will transverse in an attempt to

find the best decision variables (Elsken et al. 2018b) . This search space is defined by

the set of possible values for each decision variable, and it can grow to exorbitant size

(Elsken et al. 2018b) . If architectures need to be discovered, some constraints have

to be put to limit the search space because of its vast dimensions. Also, the available

computational resources to compile the genome of the actual neural network (Liu et al.

2018) . Usually, this is done through the incorporation of a maximum number of layers, a

predefined number of cells (which have a predefined maximum number of layers inside

them (Tan et al. 2019, Real et al. 2018) ) or other measures.

The initialisation step in neuroevolution is another possible caveat of the approach.

As discussed in Pretorius et al. (2018), Sun et al. (2019) neural network initialisation can

greatly impact the performance of the neural network even after it converges (Goodfellow
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Figure 2.5: A high-level view of the neuroevolution process.

et al. 2016b) . What is more, several strategies are common when attempting initialisa-

tion for neural architecture search, which include starting with fundamental structures and

then building to more complex ones (Sun et al. 2019) or splitting the process of optimi-

sation of the architecture into two stages (which is one of the most common approaches

Stanley et al. (2019a) ) and having micro and macro searches.

Micro search denotes the process of looking for the best neural architecture cell,

which includes looking for the best types of layers, how many nodes are in a layer, con-

nections between layers and much more (Lu et al. 2019) . Macro search, on the other

hand, attempts to optimise the whole network while searching for the right layers and

connections simultaneously (Zoph and Le 2016). (Lu et al. 2019).

There exists a hybrid search (sometimes referred to as block search and other times

just labelled as macro search also) which uses predefined blocks, usually discovered

by micro search and arranged them in order to (Real et al. 2017) find the best optimal

architecture based on stacked cells (finite in this case) (Lu et al. 2019).

The motivation behind this approach is based on most state-of-the-art human-designed

approaches which use a similar methodology. For example, looking at Resnet (He et al.

2015) , InceptionNet (Szegedy et al. 2015b) , VGG (Simonyan and Zisserman 2014) and

other popular architectures and their families of algorithms, what can be seen is that there

is some cell (as explored in more detail in 2.2), and then it is just stacked x amount of

times. For example, ResNet 18 has 18 ResNet blocks/cells, and ResNet 34 is the same,

except it has 34 ResNet blocks/cells.

In the case of using macro and micro architecture searches, there are two separate
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pipelines that require separate initialisations.

Encoding and decoding are required to use suitable genetic representations during

variation, initialisation and selection (Floreano et al. 2008). These representations should

allow the genetics operations to easily change single or multiple decision variables with-

out breaking the phenotype.

There are multiple different approaches to encoding and decoding, and in general,

the decision variables (that the genome is composed of) can be directly (Floreano et al.

2008) or indirectly (Hadjiivanov and Blair 2016) encoded. Recently, indirect encodings

have shown promising results, and they are modelled after our understanding of how

DNA works (Miikkulainen et al. 2019).

In direct encoding, the neural network parameters/hyperparameters are represented

by a single decision variable in a one-to-one mapping fashion (Floreano et al. 2008). For

example, if neuroevolution is only used for optimising weights and biases of a fixed archi-

tecture, then the concatenation of all parameters would represent the genome (Floreano

et al. 2008).

A popular approach for direct encoding is to use bit-encoding, which means encoding

all variables as a sequence of bits and then variation through bit-flipping (Back et al. 1997)

to conduct the optimisation. Several approaches have attempted adaptive encoding mo-

tivated by the vast search spaces available and the prerequisite of knowing all possible

decision variable values before the process begins.

The work of Schraudolph and Belew (1992) suggests using binary encoding to en-

code the crucial bits of the weights and, after they converge to reuse the same bits for

correcting and encoding the less critical parameters, thus implicitly staging the training

process. Motivated by this idea, RAMOSS (Chapter 4) aims to make encoded connec-

tions compatible with bit operations.

Evidence of the success of direct encoding is the NEAT algorithm (Stanley and Miikku-

lainen 2002a), which has been employed for classification tasks, reinforcement learning

problems, game development and many other scenarios.

While direct encoding has been widely utilised, more complex representations were

needed to depict complex architectures since, in literature, it is argued that direct encod-

ing has some drawbacks when applied for neuroevolution in larger networks (Floreano

et al. 2008).

At first, indirect encoding Kitano (1990) showed superior performance over compet-

itive direct representations, but it was later discovered that the causality of the different

performance had much more to do with the initialisation than the representations them-

selves (Siddiqi and Lucas 1998).

Some of the other approaches in indirect encoding include cellular encoding (Gruau

1994a), adaptive growth through differential equations (Husbands et al. 1994) and many

others. The recent advancements in the field have been focused on representing genetic
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processes and constructing digital DNA of the ANN through the encoding, which has

been attempted using gene regulatory networks (Kumar and Bentley 2003), analogue

genetic encoding (Mattiussi et al. 2008) and a popular one called connective composi-

tional pattern-producing networks (Stanley et al. 2009).

Evaluation: After the decoding is complete and the neural network is constructed,

follows the evaluation phase. Evaluation not only in the case of neuroevolution but also for

any evolutionary computation relies heavily on defining the objective function or functions.

This objective function or functions (in the case of multi-objective problems) are used to

determine the performance of any individual(solution).

They map an individual’s representation in the decision space to its position in the

objective space. There are different approaches as to how evaluations should be done

in a neuroevolution algorithm (Stanley et al. 2019a). One approach is to run the whole

network together with the weights as parameters of the evolutionary algorithm. This

way, the algorithm handles the training, neural architecture search and hyperparameter

optimisation (Miikkulainen et al. 2019).

However, by far the most popular approach is to train the constructed network for e

amount of epochs on the training set (Real et al. 2018, Lu et al. 2019) and then evaluate

it using the evaluation set.

This process produces a metric or metrics that can serve as objective scores, deter-

mining how good the particular genome is (Lu et al. 2019). Some works train for some

predefined number of epochs (Davison 2017) , others that spend a particular time on the

training or, in rare cases, wait until the architecture converges (Real et al. 2019, Zoph and

Le 2016).

Here, all hyperparameters of the network come into play during the training. Usually,

the loss or the accuracy serves as the objective or one of the objectives of the algorithm

(Aly et al. 2019), which is also the most expensive (in terms of computational resources)

step during the whole process (Real et al. 2019) and hence, there exist multiple different

methods to speed it up (Elsken et al. 2018b, Mellor et al. 2021) .

These methods range from using deep learning tricks like pruning the architecture

(Siebel et al. 2009) to reduce the number of parameters, using early stopping (Assunção

et al. 2019) to avoid spending too much time on unpromising architecture (Aly et al.

2019) or, in some cases, using a proxy score (discussed below) to determine how good

it is (Mellor et al. 2021).

After all individuals are evaluated based on their objective values, the selection phase

takes place. The purpose of selection is to exploit the search space. During this stage, a

portion of the evaluated individuals is selected to continue to the next generation (Stanley

et al. 2019b, Goldberg and Deb 1991).

Following the selection of the successors, variation is applied. The purpose of this

step is to explore the search space, and it does so by using mainly two operations (Fogel
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2000) , namely: crossover (Jansen et al. 2002) and mutation (Koenig 2002). Variation in

neuroevolution is slightly more complex than the one in normal evolutionary algorithms.

In this case, the chromosome is an encoded neural network, and there are certain con-

straints to consider when doing crossover and mutation Stanley et al. (2019a).

However, neuroevolution also has several profound drawbacks, which make it either

unfeasible or simply impractical for specific problems (Eaton 2015). It does not scale well

to high-dimensional representations (such as raw images) (Alvernaz and Togelius 2017).

Evolutionary algorithms by nature are computationally intensive even for small and

relatively simple problems (Zhou et al. 2020) . They usually utilise the parallelism of

tasks, which makes them substantially faster (Miikkulainen et al. 2019) . One problem

with neuroevolution, in particular, is that because the evaluation phase resorts to train-

ing neural networks, which also rely on large parallelisation of tasks, the evaluation of

different individuals needs to happen in an element-wise fashion. The algorithms exploit

multiple powerful GPUs and distribute the training of the models to them to make it fea-

sible while making neuroevolution extremely time and computationally-consuming (Real

et al. 2018).

Most NAS approaches focus on image classification - for instance, the AmoebaNet

family (Real et al. 2017 2018), NASNET (Zoph et al. 2018), LEMONADE (Elsken et al.

2018a) and many others (Real et al. 2017, Lu et al. 2019, Galván and Mooney 2021)-

but only a small percentage of them were indeed used for real-world applications (Galván

and Mooney 2021). This is mainly due to the enormous computational cost of the training

process in these approaches, even for relatively small datasets (Stanley et al. 2019b).

To overcome this drawback, some approaches split the process into two sub-problems.

First, they focus on finding a repeatable cell, like in the ResNet (He et al. 2016a) or in the

InceptionNet blocks (Szegedy et al. 2015c) (a process termed micro search); and then on

optimising how to stack these cells (macro search, (Lu et al. 2019, Qin and Wang 2019)).

Another popular approach is to use a SuperNet (Liu et al. 2018) containing all possible

optimisation operations; then, candidates are constructed as sub-graphs of this net (Chu

et al. 2021). This approach often implies weight-sharing; hence, network candidates

benefit from training their peers (Chu et al. 2021).

Regardless of the search strategy utilised, state-of-the-art methods for iterating over

the search space mainly consist of evolutionary algorithms (Galván and Mooney 2021),

reinforcement learning (Tan and Le 2019a), Bayesian optimisation (Shahriari et al. 2015)

and other gradient-based methods (He et al. 2021). Perhaps the two most popular ap-

proaches are neuroevolution and reinforcement learning (Stanley et al. 2019b). More

broadly, the application of evolutionary algorithms for AutoML, particularly for NAS, has

yielded encouraging results (Real et al. 2017 2018, Elsken et al. 2018a). These algo-

rithms are often considered one of the most promising directions in terms of efficiency for

this type of problem (Radiuk and Kutucu 2020, Stanley et al. 2019b).
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Notably, the most expensive step in current AutoML approaches, regardless of their

type, is the evaluation of the candidate nets since they have to be effectively trained to

generate realistic estimates (He et al. 2021). Avoiding the training step drawbacks has

been recently battled with the weight-sharing, and SuperNet approaches as mentioned

above (Liu et al. 2018). However, recently, some works suggested using pruning scores

for networks that can be used as proxies for the trained performance of a network (Ab-

delfattah et al. 2021, Mellor et al. 2021, Guo et al. 2019b). However, most of these proxies

are still only compatible with classification tasks and are only reliable to a certain extent

(Mellor et al. 2021).

In the case of one of the most popular algorithms, it took 3150 GPU days to dis-

cover a network for a standard benchmark dataset (Real et al. 2017) and unfortunately,

due to tight deadlines and demand for iterative improvements in industry, it has limited

applications.

2.4.3 Proxy scores

Solving any of the presented problems so far requires careful consideration for choosing

the right performance metric for the problem at hand. To do so, the chosen measure must

correctly assess how well the defined task is solved and account for the data distribution,

noise and other data-specific challenges.

In addition to the plethora of classic metrics it is worth stressing the emergence of new

metrics which are directly relevant for this thesis’ contributions, discussed in the following

chapters (Wu et al. 2021, Mellor et al. 2021).

A breakthrough in this niche area was recently presented in the paper ”Neural Ar-

chitecture Search Without Training” (Mellor et al. 2021), which explores the idea of us-

ing such custom performance proxy metrics to score neural architectures from NAS

search space without even training them. According to numerous studies (Abdelfattah

et al. 2021, Wu et al. 2021) the metric has a positive correlation when tested for similarity

with the performance of a trained network.

Studies leveraged the fact that the performance of a network can be estimated upfront

by employing it in the loop of neural architecture search. The most (computationally) step

in the whole neural architecture search process is the training of the networks until some

type of convergence. A proxy metric that can bypass this step and assign an objective

score to the given network without training can revolutionise the whole process by poten-

tially speeding up the process exponentially exponentially (Abdelfattah et al. 2021).

Such approach is NASWOT (Mellor et al. 2021) approach that uses a single batch of

data to determine how good an architecture is for a given dataset. The authors specify

that their approach best (if not only) works with rectified linear activations; using the single

batch, the approach consists of processing images through the network and identify linear
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binary activation regions.

Next, these binary regions are compared based on the Hamming distance between

them to determine how similar the activations for different inputs are. Their underlying

intuition of the approach is that the more different the activations for different inputs are,

the better the network is.

This difference score can then be fed to any NAS method, giving them a tremendous

speed advantage over conventional approaches. Although results might not reflect the

true performance precisely since the correlation is not above 90%, they still produce a

good estimation of the model’s performance. It can also be mitigated by using approaches

such as neuroevolution, where often the result is a population of solutions rather than a

single candidate network.

SYNFLOW: In difference to NASWOT and other proxies, Synflow (Tanaka et al. 2020)

relies on the synaptic flow of different neurons to estimate how important a specific neuron

is for the propagation of the signal in the network. Originally, authors employed this score

to prune the network by removing neurons with low scores for their inward and outward

signals. The calculation of the score takes seven straightforward steps.

The unique thing about this approach is that it is data agnostic, in the sense that to

calculate it no data is needed, but rather just the spatial dimensions (shape) of the batch

suffice. The first step is to map all weights through a modulus operator to convert them

to absolute values. Then, a vector of ones of the same shape as the expected input is

provided as an input. Next, all outputs of the selected layers are extracted and summed

up to result in a single number, which is the pseudo-loss function (step 4).

The fifth step consists of computing all gradients of the selected layers with respect

to this pseudo-loss for the different outputs. The final step (step 6) of the process is to

multiply the weights by the backpropagated signals. Lastly, the weights are reverted to

their original signs using the signs stored when the modulus operation from step one is

conducted.

In this way, the network is pruned dynamically decreasing the magnitude of unimpor-

tant weights and disregarding them, but avoiding layer collapse (Tanaka et al. 2020). To

use this pruning for NAS, some works sum up the average of the scores found from step

6 of the process and come up with a single number which can be used as a proxy for the

capacity of the model (Abdelfattah et al. 2021).

Having such approaches has long been one of the main problems in the field of NAS

and finally, having such proxies with a high correlation to performance is groundbreaking

and could allow researchers and practitioners to use many old and new algorithms more

efficiently and to produce results magnitudes of time faster.
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2.5 Applications to Concealed Threat Detection

The need for concealed weapon detection systems is rising, and security is currently a

significant global concern (Mahajan and Padha 2018). Researchers are attempting to

use various methods to identify, classify and detect threats in digital and X-ray images;

often, these threats are concealed, and detecting them is significantly more challenging

than other computer vision problems (Grega et al. 2016).

There are numerous ways to detect concealed weapons, such as millimetre wave

technology (Goenka and Sitara 2022, Li and Wu 2022), radar (Zhang 2022) and, most

often, X-ray machines (Miao et al. 2019, Akcay et al. 2018, Nguyen et al. 2022). The X-

ray machines used for this purpose are usually dual-channel with high and low-intensity

X-rays, which enables them to penetrate through different types of materials (Sidky et al.

2011). This allows images to be colour-coded based on their densities, which facilitates

visual inspections (Abidi et al. 2006). Recently, computer vision algorithms have been

tasked with automating the vast majority of the imaging data coming from these various

media sources, aiding human operators by automatically flagging potential threats or

enhancing the images to make a threat more visible (Miao et al. 2019, Akcay et al. 2018,

Rostami 2014).

This work focuses on the medium coming from X-Ray or CT scans. Usually, these

techniques are used in tandem with an image processing pipeline, which analyses the

scans and determines if a threat is present, sometimes what the threat is, and even

where it is (Miao et al. 2019). These generated images are significantly different from

the conventional RGB images generated from CCTV or other digital cameras(Mery and

Arteta 2017).

Multiple challenges must be considered to detect threats in such images, including,

but not limited to, the following. First, incorporation of information the colour hold (usually

colours in X-rays and CT either signifying density (Hayler et al. 2019) or an object, the

object material (Aichert et al. 2012) or some different physical property (Mery 2015)).

Second, objects in such scans are densely packed together, which makes it harder to

establish where one object ends, and another begins (Xia et al. 2021).

Moreover, there may be (and often are) overlapping objects, which appear to occupy

the same pixels owing to the way the X-ray waves penetrate through objects (Röntgen

1895). All these factors and many more contribute to the noisy and increasingly complex

background of such images and the data itself (Miao et al. 2019). Digital image process-

ing to identify such threats in the complex background has been considered in existing

literature (Hussein et al. 2016), and systems that assist operators are often considered

(Tiwari and Verma 2015), because their results are usually not reliable enough to allow

for a fully automated solution.

Some methods focus on these properties and attempt to use novel attention mech-
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anisms designed to negate their adverse effects on model performance, such as the

hierarchical refinement (Miao et al. 2019) and the Selective Dense Attention Network

(Wang et al. 2021). Alternatively, additional pre-processing steps aim to aid models in

”seeing” concealed objects by separating the different layers of the image and analysing

the features separately before piecing together a full prediction (Mery et al. 2015).

Standard convolutional neural networks (CNNs) are typically used in these scenarios,

often by simply naively applying already well-performing architectures with other types of

visual images distinct from X-ray ones (Akcay et al. 2018, Hassan et al. 2020). However,

some studies also leverage conditional generative adversarial network (GAN) to optimise

the generator and the discriminator in the network simultaneously. For example, (Akcay

et al. 2018) uses an encoder-decoder-encoder pipeline based on Deep Convolutional

Generative Adversarial Network (DCGAN) (Radford et al. 2015) to recognise anomalies

in X-ray images. Another popular approach is using transfer learning and retraining an

already well-performing architecture on the new X-ray domain (Hassan et al. 2020).

Overall, a caveat of these approaches is that insights and techniques used with visual

datasets may be suboptimal when used with other media types, such as X-rays (Mery

2015). An additional difficulty is the inherent imbalance present in the distribution of X-

ray data for anomaly detection (Dumagpi and Jeong 2020). Most datasets contain a

plethora of benign samples, and only a handful of anomalous ones (Miao et al. 2019,

Mery 2015, Akcay et al. 2018), posing challenges for models in optimal generalisation

while avoiding biased predictions in favour of the benign classes (Miao et al. 2019).

Creating entirely new models and techniques specifically for the x-ray domain is highly

time-consuming. Moreover, detaching X-ray vision research from the advancements

in the visual domain would hinder the joint progress of both fields. Thus, a potential

workaround is to use transferable automated machine learning (AutoML) methods dis-

cussed earlier in the chapter (Section 2.4) (Xue et al. 2019).

In particular, neural architecture search (NAS) approaches are neither bound to the

specific data at hand, nor to architectural paradigms used in visual datasets. Unfor-

tunately, many state-of-the-art NAS algorithms are only viable for small dimensional

datasets (such as MNIST and CIFAR 10), since they require a tremendous amount of

computational resources. Moreover, the data loading and processing techniques are in-

tertwined with the approach in some datasets, so they cannot effortlessly scale-up to

high-dimensional X-ray data in a “plug-and-play” fashion (He et al. 2021, Real et al. 2017,

Lu et al. 2018, Wang et al. 2021). As the interest in the field has grown, more and more

research has attempted to fill this research gap and provide alternative solutions to deal

with the problem, such as Dimanov et al. (2021), Zhou et al. (2020), Assunção et al.

(2019).

Radio frequencies (Nikolova and McCombe 2015), radars (Kim et al. 2018) and elec-

tromagnetic radiation detectors (Bassen et al. 2019) are also widely used for concealed
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weapon detection, but the problem with these approaches is that they are susceptible to

noise and interference. They also often require active use by an agent on people one by

one, which may hinder the traffic of people through secure locations and cause conges-

tion (Mery 2015). The use of handheld devices with radar and ultrasonic detection has

also been explored, but a limitation of this approach is that such devices could not work

for long-distance detection (Nacci and Mockensturm 2001).

According to Grega et al. (2016) the problem can be solved by deploying smart cam-

eras, which can identify an object in any given frame, then track that object and detect

any form of concealed weapon. Thus, the threat detection problem (concealed or not)

has become a computer vision problem.

The current limitations in the field are present mostly because threat detection in

moving objects and under various lighting conditions is still inaccurate and susceptible

to deception by different outside factors, such as types of clothing, lighting or continuous

movement (Parande and Soma 2015, Olmos et al. 2018, Hussin et al. 2012).

Researchers have tried to alleviate and tackle some of these problems by using auto-

mated or semi-automated systems, which, with the help of artificial intelligence in the form

of various machine learning approaches (Mery 2015), attempt to detect these threats

from different types of signals (Rostami 2014) or imagery data (Hayler et al. 2019, Miao

et al. 2019) and can promptly inform an operator of the given threat.

The need to process these immense data and the fact that many machine-learning

computer vision tasks have recently been delegated to neural computation and, more

specifically, the use of CNNs (Krizhevsky et al. 2012) has led to the idea of applying

these approaches to the problem of concealed weapon detection. Active research is

already underway to detect different threats, such as knives and guns (Olmos et al. 2018,

Gelana and Yadav 2019), bombs (Majeed et al. 2018) or others (Dutta et al. 2018) with

the use of CNNs. Based on the results, this research field shows tremendous prospects.

There are multiple different scenarios, where such computer vision algorithms may

be employed, which range from facial detection of people carrying threats (Kamble et al.

2020), behavioural analysis of people and body language (Yang et al. 2021) to auto-

matically discovering threats in X-ray and CT imaging (Miao et al. 2019). Some of these

scenarios deal with conventional imagery data, so transfer learning (Chouhan et al. 2020)

approaches are being employed to aid the overall performance of security systems, while

others (such as X-ray and CT scanning) rely on substantially different processes to extract

and analyse features most efficiently.

X-ray imaging enables the visualisation of the insides of objects (Mery 2015), which

allows operators to explore the contents of a scanned item in a non-intrusive manner.

Thus, this technology is largely used in airports (Liang et al. 2019b), crowded areas

(Bhargava et al. 2007) and other high-security places.

One of the most popular methods for X-ray imaging, as already mentioned, uses
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Figure 2.6: SIXray sample with multiple overlapping threats

dual-wave scans (Feder et al. 1977, Cherepennikov et al. 2015). In essence, three sep-

arate images are produced for each scan by shining a high-intensity and a low-intensity

wave (Martin and Koch 2006). The waves complement each other when producing an

X-ray scan, because they penetrate through different materials, thus producing a high-

resolution image using the whole composition of the scans (Wetter 2013).

Atomic number analyses complement the two X-ray views, and an entity known as a z-

map is generated, presenting a feature map containing the atomic value number per pixel

of the images (Mery 2015, Gil et al. 2011). Because the images contain three channels

(high and low intensity and the z-map), they can be integrated with conventional models

designed for digital RGB images(Abidi et al. 2005).

These values are usually then represented as RGB values when preprocessing the

input images, which eases human interpretation. Much of the geometrical and affine

transformations for optical, as well as X-ray imagery work in the same way; thus, numer-

ous transferable skills of computer vision experts work with optical data (Mery 2015).

Medium-specific processes and challenges exist especially in X-rays, including, but

not limited to, the ones discussed above. One such obscure challenge is the attenuation

of X-rays when passing through objects(Olmos et al. 2018). This is observed when X-

ray imaging provides an image that contains information on object thickness and density

(Mery 2015).

However, the choice of topology and other hyperparameters requires expertise in mul-

tiple different domains, so this neural network architecture is difficult to discover. Never-

theless, the increased research interest in using AutoML for computer vision problems

has already delivered state-of-the-art results for multiple problems (Stanley et al. 2019a).

Thus, to conclude this chapter, the use of Neuroevolution, reinforcement learning

and similar approaches to discover the correct CNN architectures seems promising and

insightful for dealing with problems in the context of threat detection (Real et al. 2018).

Moreover, researchers from Durham university Akcay et al. (2018) are already exploring

the use of highly complex GANs that compete with each other to detect anomalies, even

in unseen data.
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This interest has led to an influx of novel X-ray datasets featuring concealed threats

in recent years (Mery et al. 2015, Miao et al. 2019, Isaac-Medina et al. 2021). These

datasets are designed to foster the upcoming automation of security systems, which

would allow for security personnel to prevent potential disasters more efficiently and ef-

fectively (Mery 2015). A particularly relevant dataset is SIXray (Miao et al. 2019), which

contains multiple distinctive threats that can appear simultaneously and exhibit unique

properties, representing the domain’s real-world data. Some of these properties stem

from the penetrative nature of X-rays, such that some objects might be obscured by other

benign ones, or that multiple objects of interest can be stacked on top of each other (see

example in Figure 2.6) (Wang et al. 2021).



Chapter 3

MONCAE - Multi-Objective
Neuroevolution for Convolutional
Autoencoders

Before proceeding with the applications of AutoML to threat detection in Chapter 5, this

chapter explores how to foster the efficiency of AutoML algorithms for computer vision.

One of the main drivers of this field has been the tremendous amount of available

data, which has been stored and is accumulated daily worldwide (Oussous et al. 2018).

This paradigm, known as Big Data (Lee 2017), has enabled multiple areas (including

machine learning) to thrive by using this valuable resource. Chapter 2 suggested that

existing AutoML studies in computer vision mainly focus on discovering image classi-

fiers rather than other niche architectures, which seems to point to a major research gap

in AutoML since recent techniques such as vision transformers , stable diffusion , se-

mantic segmentation UNETsand even text-to-speech algorithms such as Whisper rely on

autoencoder-like structures. Hence, this chapter addresses the research gap by present-

ing a new Multi-Objective Neuroevolution method for optimising Convolutional Autoen-

coders (MONCAE).

Remarkably, this is the first attempt, to the best of the authors’ knowledge, to conduct

a neural architecture search in the context of convolutional autoencoders as well as the

first study to use a hypervolume indicator in the context of neural architecture search for

autoencoders.

Results show that images were compressed in the bottleneck layer of the autoencoder

by a factor of ×10+ while still retaining enough information to achieve satisfactory image

reconstruction and classification for the majority of the tasks. Thus, this new approach

can be used to speed up the AutoML pipeline for image compression. It can also be

integrated to discover autoencoders for newly surfaced stable diffusion, transformers or

even generative adversarial networks.

38
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This chapter focuses on one of the most promising approaches for automated ma-

chine learning - neuroevolution. Neuroevolution is chosen since it allows for a set of

solutions to be generated which can be used to explore the trade-off between several dif-

ferent objectives (Kelly et al. 2023, Lu et al. 2019).One of the downsides of this approach

and for neural architecture search in general, however, as discussed in Section 2.4.2 is

the long training time of these models, which makes it computationally infeasible for a

plethora of problems (Real et al. 2019).

Based on the promising results of Charte et al. (2020)’s approach in a range of com-

puter vision problems (e.g., LeCun et al. (1999), Frankle and Carbin (2018)) , first ways

of compressing images are explored while minimising the loss of information needed for

computer vision tasks such as classification and object detection. A prominent angle is

to use convolutional autoencoders (discussed in Section 2.1). A challenge with convo-

lutional autoencoders, however, is the complexity of their design, which involves a large

number of hyperparameters that must be carefully chosen and tuned in order to achieve

good performance on a given task. This challenge prevents inexperienced researchers

from using these models effectively and can hinder the transferability of trained models

to new problems.

Here, a novel neural architecture search approach is proposed based on neuroevo-

lution to approximate the Pareto-front of convolutional autoencoders to overcome these

challenges. This method is designed to optimise the trade-off between reconstruction

loss and image compression. The image compression is calculated based on the size of

the bottleneck layer, which is a key parameter in determining the model’s overall perfor-

mance.

The chapter continues with a preliminary study (Section 3.1) motivating the devel-

opment of MONCAE, which reveals that pre-training with autoencoders can improve the

performance of derived architectures. What follows is a detailed explanation of how MON-

CAE automatically discovers convolutional autoencoders in 3 different datasets (Sections

3.2 and 3.3). MONCAE achieves multi-objective optimisation by using the Hypervolume

indicator. Next, the results are presented (Section 3.5) where the benefits from the multi-

objective optimisation become apparent as MONCAE manages to beat the baselines

in terms of balancing task performance and compression while taking several orders of

magnitude less time than competitive approaches (ex. 93 GPU minutes compared to

1440 for MNIST). This is followed by a discussion and conclusion (Section 3.6) high-

lighting the implicit strengths of MONCAE, such as its ability to automatically adjust to

the complexity of a given dataset and balance the importance of the objectives. A sum-

marised version of MONCAE has been presented at the ”2nd Workshop on Neural Archi-

tecture Search at ICLR 2021” Dimanov et al. (2021).
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3.1 Motivation study

As discussed in Chapter 2, autoencoders enable researchers to achieve a variety of

tasks, including dimensionality reduction (Wang et al. 2014), image denoising (Gondara

2016) and many others. More importantly, in the context of this work, they can also be

used for image compression (Theis et al. 2017) and feature extraction (Goodfellow et al.

2016b), which is why a NAS for autoencoders is created in this chapter.

One of the key motivations behind MONCAE is that when a particularly effective con-

volutional autoencoder is discovered for a dataset (based on low reconstruction loss), this

implicitly means that the encoding from which the images were reconstructed contains

the information needed to complete the specified task (Goodfellow et al. 2016a). Conse-

quently, encodings created by the bottleneck layers can be potentially used by a classifier

or detector, which can complete the task at hand using only these encodings as inputs

rather than the whole image.

Therefore, the process would achieve extra byproduct objectives in addition to the

actual discovery of the autoencoder. The main three of these additional implications

would be:

1. Splitting the feature extraction and classification tasks - This would allow the en-

coder part to conduct the feature extraction first. Then, the whole network can be

reconstructed by adding the layers designed for classifying these features.

2. Performing unsupervised learning when the dataset labels are unavailable.

3. Facilitate transfer learning on different tasks for the same dataset using the ex-

tracted features.

In short, it can further foster already well-established training and machine learning

pipelines of procedures.

The first implication would mean that researchers can split the feature extraction and

problem-solving tasks during training, hyperparameter search or model search experi-

mentation. This task separation would render an easier verification of results and latent

representations comparison, which have traditionally been considered to be part of a

’black-box’ process (Guidotti et al. 2020) In addition, if the reconstruction error is low, the

latent representations can be used as a separate objective with an auxiliary output when

the model is trained. This reconfiguration would allow for more fine-grained control of

how the model is learning and can be easily achieved by the addition of auxiliary outputs

and losses to already existing models (Goodfellow et al. 2016b)

Moreover, a series of challenges can be alleviated by adding an extra objective, such

as selecting the right loss for training on some tasks. For example, problems with a signif-

icant imbalance present can incorporate an objective to foster class imbalance invariant

reconstructions based on separate class-specific metrics.
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3.1.1 Rationale

Training machine learning models is time-consuming and requires careful data collection

and labelling. The availability of labelled data is often a limiting factor in the design and

optimisation of model architectures for supervised learning tasks. As a result, the se-

lection of model architectures must usually be made before the completion of the data

labelling process, but the data is a prerequisite for the search. This prerequisite can re-

sult in suboptimal performance and a need for additional training and optimisation once

the labelled data is available (Cunningham et al. 2008).

The rapid pace of development in machine learning often leads to rushed architecture

search and model optimisation processes, which can be constrained by time limitations

(Munappy et al. 2019). This rush can compromise the overall performance of the resulting

model. It may also lead researchers or practitioners to neglect important aspects of the

system, such as obscure metrics or insufficient testing (Goodfellow et al. 2016b). As a

result, it is vital to carefully consider the various stages of the model development process

and ensure that best practices are followed to produce high-quality models.

Using a convolutional autoencoder (example visualisation of the general structure in

Figure 3.1) and optimising its reconstruction loss is not dependent on any labels, which

can allow for the use of a well-working autoencoder to compress and discover the features

of the dataset prior to the data labelling.

This unsupervised approach can improve the overall quality of the process and help

with early debugging, proving to be of paramount importance (Myers et al. 2011). More-

over, the effect of data augmentation and preprocessing can also be established earlier.

Figure 3.1: General structure of symmetrical convolutional autoencoder

Bottleneck

In addition to all that, if the feature extractor is discovered in advance, then the model

search is confined to looking just for the last couple of layers to complete the task at hand

instead of conducting neural architecture, hyperparameter or some other time-consuming

search or process on the whole model at a much later stage (Goodfellow et al. 2016b).

The research questions when approaching this problem are formulated as follows:
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1. Can representation learning be done in an unsupervised or semi-supervised fash-

ion using convolutional autoencoders?

2. Can the results discovered with unsupervised representation learning be transfer-

able to classification and other computer vision problems?

3. Is it more efficient to use conventional convolutional neural network classifiers, or

can one learn the representations in unsupervised learning and then train only the

classification layers?

4. What impact does training for unsupervised representations and then classification

training have on the overall classification performance?

Based on the research questions, a hypothesis is proposed:

Hypothesis 1 Feature extraction can be done before labelling a dataset. When the la-

bels are made available, the learnt features can be used to discover or apply transfer

learning to a classifier with competitive performance to the same classifiers being discov-

ered and trained in the conventional black-box method.

Null Hypothesis 1 Conventionally discovered and trained convolutional classifier signif-

icantly outperforms both a classifier trained only on the discovered features from a con-

volutional autoencoder and a classifier which uses the discovered features to conduct

transfer learning.

Alternative Hypothesis 1 Conventionally discovered and trained convolutional classi-

fier significantly outperforms a classifier trained only on the discovered features from a

convolutional autoencoder but fails to outperform significantly a classifier which uses the

discovered features to conduct transfer learning.

Alternative Hypothesis 2 Conventionally discovered and trained convolutional classi-

fier fails to significantly outperform a classifier trained only on the discovered features

from a convolutional autoencoder but outperforms significantly a classifier which uses the

discovered features to conduct transfer learning.

Alternative Hypothesis 3 Conventionally discovered and trained convolutional classifier

fails to significantly outperform both a classifier trained only on the discovered features

from a convolutional autoencoder and a classifier which uses the discovered features to

conduct transfer learning.

3.1.2 Methodology for testing Rationale

An experiment is designed to test this hypothesis using three different convolutional archi-

tectures across ten random seeds, and for each run, three separate experimental arms
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(a) Architecture 1 (b) Architecture 2 (c) Architecture 3

Figure 3.2: The three used architectures in the ”motivation experiment”. Architecture a)
is a simple convolutional autoencoder with only three layers before the encoding, b) has
four layers before the encoding as well as more than double the feature maps available
to a), and c) is significantly more complicated with having three resnet blocks (equivalent
to 15 layers as counted for the other architectures) before the encoding.
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are created. The three architectures are conventional neural architectures (displayed in

Figure 3.2) which have different depths and are made of different layers. Architecture

1 and 2 are similar but use different filter sizes in the convolutional layers. In contrast,

architecture 3 is substantially more different from the other by having ResNet blocks (dis-

cussed in E). The dataset used for this experiment is MNIST. The control arm is a con-

ventional sequential architecture constructed from feature-extracting convolutional and

max-pooling or strided convolutions followed by a couple of layers that classify the fea-

tures (refered to this model as the ’classification model’). The classification models are

displayed in Figure 3.2. The first experimental arm uses the feature extraction layers as

the encoder part of an autoencoder. Then the decoder is built with the same layers where

the max-pooling layers are substituted for upsampling ones, and the strided convolutional

layers are substituted for separable convolutions (covered in detail in Chapter 2). Then,

an auxiliary model takes as input the output of the autoencoder by the bottleneck layer

and adds the same classification layers as the control arm to produce what is referred to

as the ’latent model’. The third model (Experimental Arm 2) is the same as the ’clas-

sification model’ from the control arm. However, instead of training it from scratch, the

weights from the trained autoencoder described above are used as initial weights before

retraining(’transfer learning model’).

3.1.3 Experimental setup for testing Rationale

The batch size and epochs for all experiments are 64 and 100, respectively. These hy-

perparameters were chosen after some preliminary tests determined that with them fair

comparison between the approaches can be achieved and also it was the maximum fea-

sible batch size for the hardware the experiments were conducted with. The learning rate

is specified to be 0.001 which is suggested by multiple works to be a good starting learn-

ing rate for the optimiser used throughout the experiments (especially for this datasets)

(Smith 2018, Chrabaszcz et al. 2017, Liu et al. 2019c) with an additional callback, which

acts as a dynamic learning rate scheduler and reduces the learning rate when there has

not been any improvement of the value of the loss function for 2 epochs, in which case it

multiplies the learning rate by a factor of 0.5. This choice is made to avoid overfitting and

allow for fine-grained modifications by the optimiser (Adam) and is popularly used in the

form of cyclic learning rate with similar rule sets (Smith 2017, Rodellar et al. 2022, Wang

et al. 2023).

3.1.4 Results of testing Rationale

Figures 3.3 and 3.4 illustrate the results using these settings. A trend becomes apparent

from the results depicted by the box plots of the categorical accuracies. The experiments

on the Control arm seem to be better than Experimental arm 1 yet worse than Experi-
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Figure 3.3: Distribution of accuracies for each experimental arm

Experimental Arm s2 + k2 P-value

Control 0.792 0.673
Experimental 1 3.44 0.179
Experimental 2 3.17 0.204

Table 3.1: Normality test results for the three experimental arms, where s is the skew
test, and k is the kurtosis test. The test operates under the assumption that the null
hypothesis is that the data comes from a normal distribution and anything above 0.05
p-value is considered high enough to reject this hypothesis.

mental arm 2. This finding suggests a limited value of the autoencoder’s representations

since the latent representations-based classifier with the auxiliary added classification

layers did not perform as well as the control arm. On the other hand, the illustration pro-

vides evidence that the transfer learning approach in the second experimental arm might

contribute to an overall improvement of results.

Next, the hypothesis is further investigated using a normality test based on d’Agostino

(1971), and D’AGOSTINO and Pearson (1973) to evaluate the probability distribution of

each experimental arm being Gaussian (above p=0.05 threshold, the normality hypothe-

sis is considered rejected). Based on the results in Table 3.1 and Figure 3.3, it becomes

evident that none of the experimental arms follows a normal distribution. Thus, the statis-

tical significance between the sets cannot be accurately determined using statistical tools

that have a prerequisite for normality. Hence, the Mann-Whitney U rank test is used to

determine if the results for each arm dominate the other.

The Mann-Whitney U rank test fails to conclude that the first experimental arm re-

sults are greater than the control arm, signified by a score of U = 147.5 and a p-value

of 3.9996 × 10−6, which strongly indicates that the control arm outperforms the first ex-

perimental arm (the encoder). Thus, alternative hypothesis 2 and alternative hypothesis

3 have to be rejected. Interestingly, when the same test is performed for the control

arm and the second experimental arm, the Mann-Whitney score of 867 signifies an even
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Figure 3.4: Box plot of performance across the three experimental arms for motivation test
experiment for MONCAE. Notice how the Control arm does not outperform the second
experimental arm but seems to outperform the first experimental arm. This finding can be
attributed to the fact that both the decoder and the encoder are optimised during training,
but the decoder is subsequently discarded.

greater gap between the scores. However, the p-value denoting the probability of the

second experimental arm being better than the control arm is 0.9999999997, which means

that the probability of the control arm being better than the second experimental arm is

3.69 × 10−10. These results positively confirm that the second control arm outperforms

the control arm, which renders us unable to reject the first alternative hypothesis but is

enough to reject the null hypothesis.

A limitation of this preliminary study is that only one dataset (MNIST) is used in the

experiments. Thus, some of the findings might capture spurious correlations or be data-

specific, and more robust tests are required to explore if this hypothesis stands with other

datasets. While this limitation affects MONCAE, the results in Section 3.5 connote that

this hypothesis stands for Fashion MNIST and CIFAR-10.

3.1.5 Why is MONCAE important?

In short, this motivation study proves that having a well-working autoencoder is not only

important purely for reconstruction or denoising samples but the architecture of the au-

toencoder, and the learnt information can be transferred when the data is used to address

a multitude of problems. This finding opens up a door for a whole new methodology of

designing training cycles, architectures and algorithms for deep convolutional learning.

These new procedures can benefit from a preliminary unsupervised learning train-

ing step, which can help researchers and practitioners debug their models and overall

methodology early on but also help boost the final performance of the produced models.

Chapter 5 explores such an idea where an autoencoder built with MONCAE is used for

coreset discovery.
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3.2 MONCAE Methodology

Let’s now turn back to the automatic design of autoencoders. Several studies have

attempted employing neuroevolution to find optimal autoencoders before (Charte et al.

2020, Sereno 2018, Alvernaz and Togelius 2017).

Recently, researchers have demonstrated that one promising approach is to split the

problem into two stages: first, feature engineering and then using the extracted features

to solve the problem at hand (Sereno 2018). To achieve that, Sereno (2018), Charte

et al. (2020) and Alvernaz and Togelius (2017) have showcased the possibility of using

an automatically discovered autoencoder to tackle this.

The idea is that the produced autoencoder can compress the inputs by up to a factor

of 10 with just one full forward pass and still preserve enough information to achieve

satisfactory classification performance above 97% in the case of MNIST. Rather than

using the raw input for training or network discovery, encoding the inputs can be used

instead. As shown in the motivation experiment, the present transfer learning approach

appears to be more effective than using the encodings as inputs. Therefore, the transfer

learning approach is used in the experiments when finetuning to the specified task.

Approaches like Charte et al. (2020)’s EvoAAA mainly focused on evolving a simple

neural network with dense activation layers. Based on the results presented in these

works, the idea of using neuroevolution to optimise autoencoders looks promising. How-

ever, the problem with the current methods is their limitation of not using convolutional

and pooling layers, which is typically a powerful feature to consider (Gu et al. 2018).

In MONCAE, a Neuroevolution algorithm is built, roughly based on the principles of

DEvol (Davison 2017), a neuroevolution algorithm for neural architecture search intended

for image classification.

While retaining the basic working principle of the initialisation and variation, the search

space and the encoding are designed to allow for neural architecture search of convolu-

tional autoencoders.

Multi-objective optimisation through the use of the Hypervolume indicator discussed

above is added. To the best of the authors’ knowledge, this work is the first time in

which neuroevolution multi-objective optimisation has been used for automating

the design of convolutional autoencoder architectures.

To make any neuroevolution approach compatible with convolutional autoencoders,

this chapter first examines how convolutional autoencoders are structured. Convolutional

autoencoders usually have symmetrical encoder and decoder parts, in which the input

is compressed and reconstructed respectively (Goodfellow et al. 2016b). The motivation

behind them stays the same as non-convolutional autoencoders (discussed in Section

2.1). However, the big-picture goal is to make use of convolutions to compress big-image

datasets into more manageable and smaller representations.
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The underlying rationale of this approach is that if the decoder part of the network can

successfully reconstruct the images to a satisfactory extent, then the information needed

to complete the task should be present in the latent representations tested in the previous

section.

The two main objectives of MONCAE are to a) minimise the reconstruction loss while

b) compressing the latent representation vector as much as possible. In doing so, a third

objective is added to monitor the complexity of the model. This way, a preference for

models with a lower level of complexity is added.

The implementation of MONCAE 1 uses Devol (Davison 2017) as a foundation, and

the modular design allows for the heavy experimentation with each different operator in

the algorithm. To add multi-objective optimisation, MONCAE utilises the hypervolume

indicator (see below) and adjusts the encoding and decoding operators together with the

evaluation process.

The selection process in MONCAE is of tournament (TS) type, that is, TS(P ) =

{p1, p2, ..., pn} where P = {p1, p2, ..., pm}, p is an individual of the population P , and n

is the desired number of individuals to be selected. The tournament selection iteratively

chooses a pair of individuals, and based on their performance, one is kept and the other

discarded. For the specifics of each operation, please consult the code 1.

A severe limitation of AutoML approaches (and neuroevolution in particular) is that

these algorithms take a tremendous amount of time to discover optimal solutions, making

it infeasible for many modern-day scenarios (Lebedev and Lempitsky 2018, He et al.

2021, Kelly et al. 2023). . There are many different attempts to solve this problem,

focusing both on the ’data space’ (Wang et al. 2018, Singh and Lee 2017a) and the

’algorithmic space’ (Hinton et al. 2015, Frankle and Carbin 2018).

MONCAE follows a similar methodology to Charte et al. (2020), but the neuroevolu-

tion algorithm is allowed to search for convolutional and pooling layers instead of using

dense layers for the architecture. The search space also includes the depth of the net-

work rather than simply the width of a single layer. Moreover, the hypervolume indicator

(Rostami and Neri 2016, Guerreiro et al. 2020) (see details in Equation 3.2 below) is

used to find a trade-off between two main objectives: 1) the reconstruction loss and 2)

the level of compression, a metric reminiscent of the classic Bayesian information crite-

rion (Watanabe 2013), defined as

L(k) = log10

d∏
i=0

(ki), (3.1)

where k is the vector containing the size of each dimension (ki) of the linear map pro-

duced by the bottleneck layer of the convolutional autoencoder. The logarithm balances

the different components of the objective function, ensuring they are all effectively con-

1https://github.com/DanielDimanov/MONCAE
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sidered in the optimisation process.

As mentioned earlier, the main instrument for the selection in MONCAE is the Hyper-

volume (Hv) indicator, which is a well-established performance in multi-objective prob-

lems. The Hv indicator measures the volume of a particularly relevant region contained

in the m-dimensional space (m is the number of objectives), spanned by the objective

functions f1, ...fm (namely, the region ”covered” or ”dominated” by the population of solu-

tions X ≡ {x1, ...,xn} with respect to the reference point f ref ). It is typically defined as

(Guerreiro et al. 2020, Zitzler et al. 2007):

Hv(X ,f ref ) = Λ

 ⋃
∀xi∈X

(
[f1(xi), f

ref
1 ]× · · · × [fm(xi), f

ref
m ]

) , (3.2)

whereX contains all performance metrics for the whole population of solutions, f ref is the

reference vector of entries f ref1 , ..., f refm , the expressions in brackets [fi, f
ref
i ] indicate the

length lower-bounded by fi and upper-bounded by f refi , and Λ is the Lebesge measure

over the union of all the m-dimensional hyper-cube volumes (that is, the net volume in

euclidean space).

Thus, and remarkably, further objectives (beyond compression level and reconstruc-

tion loss) can be seamlessly added in MONCAE.

Based on the multiple objectives (and pre-specified reference points for each one),

first, theHv of the population at each generation is calculated and then evaluated through

the contribution of each individual solution xi to the overall Hv which is termed the con-

tributing hyper-volume indicator, cHv (aka incremental Hv indicator, δHv) which is used

as the fitness score,

cHv ≡ δHv(xi,X ) = Hv(X ∪ { xi})−Hv(X \ xi). (3.3)

The working principle behind cHv is that individuals xi from the optimal front of solu-

tions are removed one by one from the approximation set. Then the cHv is recorded for

each individual solution, which captures its contribution to the overall Hv. The process

of MONCAE follows the general Neuroevolution cycle, and details over each step are

discussed next.

3.3 MONCAE algorithm

First, some hyperparameters are set, namely the number of generations, the popula-

tion size, the maximum number of convolutional (and pooling) layers, the maximum filter

size in a convolutional layer and the maximum epochs (used when each architecture is

evaluated), determining the genome size. The general steps of the algorithm follow the

neuroevolution process depicted in Figure 3.5. In short, when the algorithm starts the
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Figure 3.5: High-level flowchart of neuroevolution with all steps from general evolutionary
algorithms with Decode and Encode operators added. The Variation operator can be
further split into Crossover and Mutation in the case of Genetic algorithms.

evolutionary process, all genomes are of known size, making it easier to reference and

allowing for Atavism (Rostami and Neri 2016) to occur. The idea of Atavism is that some

of the layers might be disabled. So, some of this layer’s properties (e.g., the kernel size,

the number of filters, etc.) will not be reflected in the phenotype (the actual neural net-

work). However, this genome continues to carry genetic information about these layers.

They become the equivalent of recessive genes in biology (Deb 2001b).

Table 3.2: MONCAE search space. Notice that these presets can be treated as high-level
hyperparameters and can be easily modified to construct new search spaces.

Parameters Range Description
Active {0,1} if the layer is active or not
Num filters

{∑log2max filters
i 2i

}
number of filters

Kernel {3,5,7} kernel size
BN {0,1} if batch normalisation should be applied

Activation a ∈
{ ′relu′

′sigmoid′
what activation function should be used

Dropout {0,1} should there be dropout after the layer after this one
Pooling {0,1,2} if max-pooling should be included

Following, the search space is defined. It comprises of all possible combinations

of chromosomes in the genome (Table 3.2 outlines the possible values for each search

parameter per layer).

Every single layer may be composed of convolution, max pooling, activation and

dropout operation. Compound layers are also allowed, consisting of more than one of

these operations. The only operation required is the convolution, which can also be

disabled, which in turn disables the rest of the operations in the given layer too. This

mechanism is triggered by zeroing the Active parameter. The total amount of parameters

is thus calculated by the number of parameters per layer times the maximum number of

layers + 1. The last added parameter determines the used optimiser during the training

of the networks. Four optimisers are included in the search space, but they can easily be

increased or decreased based on the given use case: ’Adam’, ’Adagrad’, ’RMSProp’ and



CHAPTER 3. MONCAE - MULTI-OBJECTIVE NEUROEVOLUTION FOR
CONVOLUTIONAL AUTOENCODERS 51

’Adadelta’.

For the initialisation (step 1), a random population is generated (of the specified

size). It is important to note that other strategies, like starting at the extremes or using

state-of-the-art architectures as a starting point, might yield even better results in prac-

tice, but towards a better experimental control, here, random initialisation is used. When

constructing the genomes, each parameter’s position matters, and based on the position

in the genome, the chosen parameter has a different range of possible values (as listed

in the example search space of layer parameters in Table 3.2).

The encoding (step 2) of the genome is of length (2 × f × k × 2 × â × 2 × 3)l + 1

where f is the number of filters available based on the specified maximum number of

filters, â is the number of available activation functions used, k is the number of kernel

sizes specified, and l is the maximum number of layers allowed.

After the population is initialised, the individuals are decoded into their phenotypes

(CNNs). The approach follows a conventional autoencoder design where the inputs are

first compressed using an encoder and then reconstructed from the latent space using a

decoder (Alvernaz and Togelius 2017).

The symmetrical nature of the autoencoder structure greatly enhances the approach’s

search strategy by automatically inferring the decoder from the constructed encoder. So,

this work only encodes the first part of the autoencoder responsible for compressing the

information. Then a series of convolutional and upsampling layers are used to restore the

original shape of the inputs and construct the decoder.

To achieve this, each layer from the encoder (the green and yellow layers from Figure

3.6) is constructed using the corresponding properties, and then for the decoder (the red

layers in Figure 3.6) the layers are added in reverse order by substituting the pooling

layers for upsampling ones. The compressed latent space is scaled up until the initial

input shape is restored to decode the upsampling part of the network.

The last dimension of the output vector is the number of initial channels. This property

will later allow for the use of the number of classes instead of colour channels, allowing

the allocation of a single neuron per class in the last layer. The output of a MONCAE

model is tasked to recreate the input from the highly compressed latent space. The

decompression is achieved through upsampling layers, but they can be substituted for

transposed convolutions also (Pons et al. 2021).

Achieving this requires the algorithm to iterate over the encoded convolutional layers

again but in reverse order and exchange the pooling layers for upsampling ones. This way,

the standard encoder-decoder structure of typical autoencoders is achieved (Azarang

et al. 2019). Exceptions can occur in two special cases. One of the exceptions happens

at the very end of the network, where a layer that fixes the number of filters is added to

equal the number of channels of the input.

The second one happens conditionally to a specific process during the construction
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of the encoder. If either of the two first dimensions of the output mask has been rounded

off during the encoding, the procedure depicted in Figure 3.6 takes place. The decoding

of the first part of the network stays the same, but when the upsampling is done, a new

convolutional layer is added to adjust the mirror side’s shape based on the rounding’s

position.

Figure 3.6: Decoding process if feature map with odd height or width appears. The
green(downscaling) and the yellow (bottleneck) layers are part of the encoding. The
red(upscaling) layers are generated based on the shape of the bottleneck and input size.

In the example, the input is of square shape, so in other terms, the shape goes from

14 - 7 - 4 - 8 - 16 - 14. The pooling that happens when the shape is 7×7 causes the next

shape to be 4×4. Upsampling by 2 of the 4×4 feature maps causes it to be 8x8, which

then causes a shape mismatch down the line. This phenomenon can happen anytime a

pooling operation occurs after the shape is not an even number. Feature maps’ shapes

are stored while constructing the encoder to alleviate this obstacle. Then, it is used to

come up with a rule that the shape should increase following this formula:

e =

{
s 7→ s/2 Oi ∈ P

s Oi /∈ P
| i ∈

{
0, 1...nl

}
Where n is the number of layers, O is the set of all operations in the encoder, P is the

set of pooling operations, and s is the current shape of the feature maps initialised to be

equal to the input shape k. e is used to store all feature map shapes. Then, upsampling

layers are used to facilitate the 2× increase of the shape and an extra convolutional

layer with valid padding and 3×3 kernel size to do the -2 subtraction, as shown in the

procedure below: This trick gives the algorithm full freedom in constructing the encoder

part. However, a hard limitation is set in place that prevents the model from pooling when

the shape of the feature maps gets below 4×4 to prevent the algorithm from searching

for architectures with excessive data loss due to compression.

In the experiments, the architectures are evaluated (step 3) by training for ê epochs.

Through experimentation, a good value for ê is determined to be 5, which allows for a

reasonable estimation of the performance while significantly reducing the needed time
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Algorithm 1: Constructing decoder part. Logical brackets are coloured for legi-
bility.

Data: e, n, s, k,O, P
Result: decoder operations
D ≡ ∅
for i = n-1 to 0 do

if Oi /∈ P then
D ← D ∪Oi

else
D ← D ∪ upsample
s← s× 2

end
if (s× 2 /∈ e) ∧ ( ((s− 2)× 2 ∈ e) ∨ ((s× 2 /∈ e) ∧ ((s− 2)× 2 = k))) then

D ← D ∪ conv((3, 3), valid)
s← s− 2

end
s← 1;

end

for training. While doing so, early stopping is used to avoid training models that are not

improving and conserve some resources for the rest of the process.

Then, results are verified by running the model on a pre-defined validation set that all

individuals use. Here, various metrics are tried to report the fitness of each individual.

The aim is to minimise the latent vectors in the bottleneck and the reconstruction loss.

Hence, a multi-objective metric such as the cHv was required.

As mentioned, the first objective is the reconstruction loss for which binary cross-

entropy between the output of the network and the input is used (as discussed in Chapter

2): H(p, q) = −
∑

x∈{0,1} p(x) log q(x). In this case, p(x) would denote the label for x and

q(x) would denote the output of a model q given input x.

The next step, (Terminate), checks if the termination criterion is met. If it is, then the

algorithm is stopped (in the context of MONCAE, this criterion is the number of genera-

tions).

The crossover is a one-point crossover, meaning a single point is randomly cho-

sen. The offspring of the selected individuals is generated by taking the first part of

one of the parents and the second part of the other one with respect to the chosen point

for crossover. In terms of mutation, a criterion roughly based on simulated annealing

(Van Laarhoven and Aarts 1987) decides when to apply a random chance of a random

parameter.

For the change of parameters, a valid random gene is chosen and substituted with a

new random one from the search space. The mutation is similar to simulated annealing in

that at the start of the neuroevolution algorithm, the process starts with a higher mutation

rate and decreases with the passing of generations.

Using multi-objective optimisation with a population-based approach such as neu-
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roevolution allows for the examination of the whole final approximation set of produced

solutions instead of being presented with one. Stakeholders are thus enabled to choose

the model that best fits the context of the problem at hand.

3.4 Experimental setup

In these experiments, the reference points are set to 4 and 12 for the error and level

of compression correspondingly. During development of the method various different

reference points have been tried and they this hyperparameter tends to be sensitive to

the desired output. Based on the determined ranges, these references points provide the

best balanced solutions. If the reference point for level of compression is pushed more it

starts generating smaller model but the sacrifice in performance is too big. On the other

hand, if the model only focuses on the error it tends to overparameterise the produced

network. Thus, by empirical analysis and to reflect the actual specified requirements in

this work, 4 and 12 were chosen. Thus, the algorithm might be biased to pick models with

better compression than ones with lower error. The process showcases how preference

articulation can be easily added to the approach by setting different reference points for

the hypervolume indicator.

Even though this is not the only way to add preference articulation in MONCAE, it is

possibly one of the easiest. Based on the picked reference points, some objectives might

be weighted differently (similar to how the loss minimisation is weighted more than the

level of compression). In all training stages, if not otherwise specified, a batch size of

256 and 20 epochs is used. These two hyperparameters are tied to the hardware and

available computation time. The batch size is picked to be the largest possible batch size

to facilitate training on the availabel hardware, while the 20 epochs were chosen based on

some influencial works that suggest it as a good point for estimating overall performance

(Bonet et al. 2021, Liang et al. 2019a, Emuoyibofarhe et al. 2020, White et al. 2023)

The discovered architectures are then fine-tuned by adding 2 auxiliary layers of 200

and 10 nodes from the bottleneck. The choice for picking 10 nodes is dictated by the

number of classes and the choice for 200 in the previous layer is motivated by early

universal approximation theorem works such as Huang et al. (2006). Then, they are

trained for 20 more epochs with the classification labels provided for the dataset at hand.

The same process is followed when comparing to benchmarks.

MONCAE is evaluated on three datasets: MNIST (LeCun et al. 1999), Fashion-MNIST

(Xiao et al. 2017) and CIFAR-10 (Krizhevsky et al. 2014). For each dataset, 10 runs

are conducted with different random seeds to allow for some statistical significance for

20 generations (motivated not only by previous evolutionary computation success and

potential diminishing returns after this point (Tan et al. 2009), but also from real-world

evolution, where ”mechanisms ... can influence rapid evolutionary change within 20 gen-
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erations or fewer (Prentis et al. 2008)) and a population size of 20, a maximum of 20

epochs and using early stopping. After the process is complete, the final population is

finetuned by training for an extra 20 epochs using the parameters, hyperparameters, op-

timiser and architectures discovered by the algorithm. Experiments were implemented in

Python, TensorFlow 2.4 and a single RTX 3090 NVidia GPU with CUDA 11.1.

CIFAR10 (Krizhevsky et al. 2014) is a dataset composed of 10 classes: aeroplane,

automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Usually, the dataset is used

as-is, and the task for the dataset is image classification, where each image is classified

as being a single class out of the ten. There are extensions of this task that group dif-

ferent classes together and redefine the classification to recognise the newly constructed

group instead of the original label (Wan et al. 2020, Ma et al. 2021). For more information

about any of the datasets mentioned, please refer to Appendix G These three datasets

are picked to make this work as comparable as possible to other similar state-of-the-art

approaches and showcase its performance on something that the domain reader will be

familiar with. Unfortunately, the three datasets do not represent the complexities of mod-

ern, more sophisticated data but simultaneously make it possible to compare to the most

significant amount of state-of-the-art works. Moreover, and more importantly, this work

introduces a novel approach that explores the feasibility of using multi-objective neuroevo-

lution in the problem and lays a potential stepping stone for new approaches. Hence, the

focus is on attempting to reject a null hypothesis with minimal possible experiments but

still ensuring it wasn’t purely lucky. For this reason, multiple widespread datasets are

used, and the experiments are run numerous times with different seeds. Using CIFAR-

10, in particular, is vital as most designed benchmarks for AutoML are designed, tested

and compared on this specific dataset, and there has been a trend to use it with any new

approaches to facilitate easier comparisons (Mehta et al. 2022, Siems et al. 2020, Ying

et al. 2019). Moreover, the only other similar approach at the time of the development of

MONCAE - EvoAA-Diff uses only these 3 vision datasets and using the same datasets

allows this work to showcase MONCAE’s competitive results.
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Figure 3.7: A population of solutions for MNIST. A single digit is used as an example
of the performance of every single model from a run picked randomly. For each model,
an example of the reconstruction of a single digit can be seen, as well as the achieved
reconstruction loss and level of compression.

3.5 Results

Turning now to the results, it is worth mentioning again that when interpreting the new

objective (level of compression), it is subject minimisation and not maximisation, meaning

that a lower level of compression is better than a higher one. The two objectives

are also listed below to compare the different solutions within the population and the

prediction of each model.

It can be observed that, while not all of the solutions lie on the Pareto-optimal front

and some models are dominated by others, there are some models with higher resolution

outputs and lower loss that have achieved higher levels of compression, as well as others

with lower resolution and higher loss but still relatively good compression.

Averaging the results over the entire population would not accurately capture the goal

of producing an approximation set from which to choose. Therefore, the results from the

runs in which the latent representations compress the input by at least a factor of 2 are

presented, as more accurate but larger representations are not the focus of this work,

revealing yet another way that preference articulation can be achieved with MONCAE.

A more detailed breakdown of the results for each dataset is discussed next, but

what is consistently apparent across all experiments is that the averaged results have

high variability and are, therefore, unreliable for evaluating individual solutions’ quality.

Consequently, the best architecture based on the cHv is chosen within the optimal set of

solutions and presented as MONCAE-s1.

Since this is the first work to create a NAS algorithm for convolutional autoencoders,
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Table 3.3: MNIST results from 10 independent runs using a conventional autoencoder
with variable bottleneck layer size, a simple convolutional autoencoder, one produced
from EvoAA, the best one from MONCAE and the MONCAE average. The + symbol
denotes that the method is manual, and that is why there is no score (-) for the total time.
Notice that the autoencoder discovered by MONCAE with the highest cHv (MONCAE-s1)
achieves the best classification loss and accuracy while compressing the data the most
out of the whole selection. MONCAE-average results are produced by running MONCAE
10 separate times, and because MONCAE aims to produce Pareto optimal solutions with
a high standard deviation (denoted by ±).

Approach Rec loss Layers Bottleneck LOC Cl loss Cl acc Total time w/o ft (min)
EvoAA-Diff 7% 1 162 2.21 12% 96.31% 1440

Autoencoder+ 6% 1 392 2.59 11% 96.59% -
Autoencoder+ 7% 1 196 2.29 12% 96.38% -

Conv Autoencoer+ 8 % 3 14-14-2(392) 2.59 10% 96.90% -
MONCAE-s1 9% 25 4-4-4 (64) 1.81 9% 97.29% 82

MONCAE-average 14.9±7.4% 22±12 83±91 1.92±1.95 39±50% 86.25±19.03% 93±22.1

the approach is compared to EVOAA(discussed above), an autoencoder compressing

the input dimensions to half, another one that does the same but compressing the input

to 25% and a shallow convolutional autoencoder suggested by some works to achieve

good results (Zhang 2018, Cheng et al. 2018).

To boost the clarity and legibility of the tables, the standard deviation is omitted where

it is below 0.5%, which turns out to be the case for all tested approaches except for the

averaged MONCAE runs.

Starting with MNIST, what stands out in Table 3.3 is the discrepancy between the

achieved reconstruction loss and the classification loss/accuracy. Interestingly, the sim-

plest autoencoder achieves the best reconstruction loss, which can be attributed to its

largest bottleneck layer. The bottleneck layer has allowed the model to keep enough

parameters to reconstruct the 28x28 image well but has seemingly had an adverse ef-

fect on its discriminative power compared to the convolutional approaches judging by the

classification results.

Strikingly, MONCAE’s best cHv architecture achieves the best classification accuracy

(and loss) while compressing the input more than 10×, compared to 2×-4× with other

approaches.

Figure 3.7 presents an image per model for one of the runs. Each set of two images

is a random sample taken from the validation set compared to the result of running it

through a model from one of the 20 models in the final population.

The figure illustrates a sample population from one of the runs, showcasing the variety

of available models produced. The total time in the table is the time for the whole algorithm

to do 1 run with the constraints specified above.

Next, this chapter focuses on Table 3.4 where the results for Fashion-MNIST are con-

sistent with the ones for MNIST. Notice again that the MONCAE-s1 architecture achieves

the best scores in terms of classification, but fails to beat the other approaches in terms
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Table 3.4: Fashion-MNIST results from 10 independent runs following the same conven-
tions as the MNIST table (3.3) presented above. The + symbol denotes that the method
is manual, and that is why there is no score for the total time. Again, the autoencoder
discovered by MONCAE with the highest cHv (MONCAE-s1) achieves the best classifi-
cation loss and accuracy while compressing the data the most out of the whole selection.
Similarly to the MNIST results, the standard deviation across the produced populations
from the 10 runs is high.

Approach Rec loss Layers Bottleneck LOC Cl loss Cl acc Total time w/o ft (min)
EvoAA-Diff 0.258 1 256 2.41 0.35 87.38 1440

Autoencoder + 0.255 1 392 2.59 0.35 87.49 -
Autoencoder + 0.26 1 196 2.29 0.35 87.28 -

Conv Autoencoer + 0.28 3 14-14-2(392) 2.59 0.36 87.10 -
MONCAE-s1 0.29 14 7-7-4(196) 2.29 0.34 87.56 844

MONCAE-average 0.27±0.04 18±8 166.92±168.9 1.64±0.4 0.40±0.24 85.13±9.42 91.2±23.1

of reconstruction loss.

An interesting finding is the close performance of the default autoencoders with heuris-

tic rules and EvoAA’s models (Charte et al. 2020). Even compared to the loss results

presented in their study, MONCAE still yields better results.

Notice that in the Fashion-MNIST experiments, the average bottleneck representation

is relatively larger than the one for MNIST, regardless of the use of the same hyperpa-

rameters and the equal size of the inputs.

In contrast to the earlier findings in this study, however, what can be seen in Table

3.5 is that the classification task with CIFAR-10 is progressively more difficult, which is

indicated by the significant decline in classification performance for all methods. In con-

trast to the other two datasets, in CIFAR-10, the compression achieved by MONCAE is

only 3x. However, the significant fluctuation in classification loss and accuracy makes

MONCAE clearly more favourable than the alternatives. Remarkably, EvoAA’s near 80×
compression leads to a classification accuracy of 35%, which is still better than random,

but the difference between the objective scores and the fact that there might be applica-

tions where 35% can be acceptable performance is precisely why MONCAE generates a

front of solutions for the user to choose the right architecture for their purpose.

While MONCAE-s1 is based on the highest cHv, this only means that this architecture

has achieved the best balance given the objectives and specified area of interest (through

the reference points). However, this doesn’t mean MONCAE-s1 is the best architecture

from the produced front of solutions for all purposes.

More broadly, the reconstruction and classification error is the lowest for MNIST. The

pixel reconstruction loss and accuracy indeed leave room for improvement, but remark-

ably, these architectures were discovered using only 20 generations with a population

size of 20 for around 1.5 GPU hours on average. Moreover, the autoencoders are trained

for only 20 epochs, and while in the presented experiments, this is sufficient for the mod-

els to converge, it can be argued that further hyperparameter optimisation (especially

learning rate scheduling), regularisation(e.g. l1 and l2) and data augmentation can also
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Table 3.5: CIFAR-10 results from 10 independent runs following the same conventions
as the MNIST table (3.3) presented above. The + symbol denotes that the method is
manual, and that is why there is no score for the total time. Notice that this time EvoAA’s
autoencoder offers the best compression but is severely outperformed by the other base-
lines as well as the MONCAE models, which again manage to achieve the best classifi-
cation accuracy.

Approach Rec loss Layers Bottleneck LOC Cl loss Cl acc Total time w/o ft (min)
EvoAA-Diff 0.61 1 39 1.51 1.8 34.95% 1440

Autoencoder + 0.56 1 1536 3.19 1.48 47.56% -
Autoencoder + 0.57 1 768 2.89 1.5 46.60% -

Conv Autoencoer + 0.57 3 16-16-2(512) 2.71 1.52 46.36% -
MONCAE-s1 0.57 21 8-8-64(1024) 3.01 1.09 62.20% 2457

MONCAE-average 57.84±0.03 22±7 702±797 2.85±2.9 1.6±0.25 43.5±9.35 123±26.1

potentially boost these results. A more detailed look at the outputs of MONCAE-s1 for

MNIST is available in Figure 3.8. The same can be found for F-MNIST and CIFAR-10 in

Figure 3.9 and 3.10, respectively.

Figure 3.8: MNIST autoencoder with bottleneck of 4x4x4 and reconstruction loss of
0.0817. Notice that the digits are almost indistinguishable from the original inputs de-
spite being reconstructed from a 12 times smaller representation.

Figure 3.9: Fashion-MNIST autoencoder with bottleneck of 4x4x4 and reconstruction loss
of 0.289. Notice that while some of the details are lost due to the high compression in the
bottleneck layer, the different clothing articles are still easily recognisable, meaning that
the salient information for classification is conserved in the 4x4x4 representation.

However, the fact that the algorithm managed to compress the dataset to represen-

tations that are (2x2x4) while still retaining enough information to reconstruct back the

images correctly, with 50% of the data being accurately reconstructed, shows that the

potential of the approach. With larger population sizes, more epochs, more generations

and expanding search space, this approach can be scaled to larger datasets. Neverthe-

less, scaling the approach to multi-channel inputs remains a challenge (Figure 3.10).
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Figure 3.10: CIFAR-10 autoencoder with bottleneck of 8x8x8 and reconstruction loss of
0.564. In difference to the MNIST and Fashion-MNIST results, here the convolutional
autoencoder attempts to capture more of the colours than the actual features or concepts
of what makes up a class. Speculation can be made that this is because colour can be a
”loud concept” (Kazhdan et al. 2021); thus, the loss function needs to consider this.

Figures 3.8, 3.9 and 3.10 present some of the best results obtained for all of the three

datasets, showcasing the balance between compression and reconstruction loss. From

the images, it can be seen that the MNIST reconstructions are hardly distinguishable from

the originals. The results for F-MNIST are also still recognisable, but most of the details

are lost during compression. Images for CIFAR-10, on the other hand, barely resemble

the original images for the most part, which illustrates how adding the extra colour chan-

nels and complex objects increases the complexity of the problem and hence limits the

extent to which a dataset can be compressed in lower-dimensional representations. An-

other plausible explanation is that this might be caused by the ”loudness” of the concept

of colour (Kazhdan et al. 2021). CIFAR-10 is also a fairly noisy dataset where the images

have already been compressed to 32x32 pixels.

Noteworthy, some of the objects in the last two images of 3.10 look similar, and a

general capture of the distribution of colours can be observed. This finding can mean

that the cross-entropy loss might be more sensitive to colour distribution change than

other important concepts (Kazhdan et al. 2020) being present in the reconstructions.

3.6 Conclusion and Future Work

This chapter presents a novel approach for automatically constructing convolutional au-

toencoders via neuroevolution architecture search methods to approximate the Pareto-

front of solutions. While some of the results, especially for CIFAR-10, are still sub-optimal,

this approach is designed to be a stepping stone towards automating the process and

making it considerably faster.

The main goal here is to speed up AutoML and allow decision-makers to articulate

preferences, offering them a set of models to choose from instead of just a single one.

However, the chosen generations and population size (for computational cost reasons)

might be still insufficient to thoroughly explore such an enormous search space.

In conclusion, MONCAE is an effective and efficient tool for searching for convolu-
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tional autoencoders. By allowing users to specify different reference points and choosing

from a set of generated solutions, MONCAE enables the selection of custom-tailored

autoencoders that are well-suited to specific scenarios. The autoencoders generated by

MONCAE can be used in a variety of generative models, including GANs, stable diffusion,

and transformers.

Future work should explore scaling the algorithm for significantly larger datasets and

expanding the search space available by adding new hyperparameters, as well as po-

tentially achieving end-to-end neuroevolution. Moreover, given the popularity of skip-

connections in recent computer vision state-of-the-art models, they can be added as part

of the encoding and allow for an even more flexible search of architectures while expand-

ing the approach to problems like semantic segmentation and object detection.



Chapter 4

RAMOSS - Resource-Aware
Multi-Objective Semantic
Segmentation

Recent advancements in Neural Architecture Search (NAS) enable the automatic discov-

ery of neural architectures that are competitive with state-of-the-art, manually designed

ones by experts (Guha et al. 2023, Kang et al. 2023, Elsken et al. 2019, Liu et al. 2021).

This new paradigm has been revolutionary since it allows the discovery of architectures to

be delegated to Automated Machine Learning (AutoML) approaches (He et al. 2021, Liu

et al. 2021). In addition, the combination of multi-objective optimisation with NAS meth-

ods such as neuroevolution (Real et al. 2020, Lu et al. 2019) or reinforcement learning

(Tan and Le 2019a) could potentially generate models that not only perform well but are

also optimised to run faster or to comply with additional constraints (Lu et al. 2019).

The previous chapter discussed the use of neuroevolution for neural architecture

search in autoencoders. As reported by Kang et al. (2023), Li et al. (2021) and He

et al. (2021), the use of AutoML (automated machine learning) has gained significant at-

tention in recent years as a means of streamlining the development process of machine

learning models. Moreover, neuroevolution approaches for NAS enable the exploration

of trade-offs between multiple objectives within the set of solutions provided by the al-

gorithm (Real et al. 2020, Lu et al. 2019). However, a significant limitation that has

hindered its widespread adoption is the time and computational resources required for

its implementation (Abdelfattah et al. 2021). The MONCAE algorithm presented in the

previous chapter demonstrated outstanding potential for accelerating the discovery of

convolutional autoencoders for popular low-dimensional computer vision datasets. Also,

it showed promise in reducing the time needed for the search. In addition, MONCAE

showcases the importance of using multi-objective optimisation often neglected in this

field (as discussed in Chapter 2). However, MONCAE has several limitations. Firstly, it

62
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does not address semantic segmentation problems, which constitute a significant portion

of current computer vision demand in industry (estimated to be around 40% by key in-

dustry companies, according to an interview with the CEO of Tenyks Limited). Secondly,

it lacks the ability to encode skip connections, which have been crucial for the success

of CNNs (as discussed in Chapter 2 and the appendix). Thirdly, it fails to exploit the

progress of evolutionary computation algorithms. Finally, like most NAS approaches, it is

designed for low-dimensional data, and additional heuristic methods would be required

to scale it to high-dimensional datasets.

Semantic segmentation, which is vital for critical systems in domains like medicine

(Dhamija et al. 2023, Khan 2023) and security (Zhang et al. 2023a) (discussed in more

detail in Chapter 2), largely relies on manually-designed algorithms requiring significant

domain expertise and computational resources. U-Net architectures are a predominant

solution, manually constructed (Alsabhan et al. 2022) and possibly automatable through

NAS (Weng et al. 2019). However, most NAS methodologies target image classification

Xu et al. (2019), Liu et al. (2022a), Tsamardinos et al. (2022), with computational cost

being a significant deterrent. Several strategies, including the use of a ’SuperNet’ and

weight-sharing, have been proposed to expedite the evaluation of candidate networks

(Yu et al. 2021, Liu et al. 2022b, Xu et al. 2023). Recent efforts seek to bypass the

intensive training process using pruning scores as performance proxies, although their

applicability remains primarily confined to classification tasks (Abdelfattah et al. 2021).

As discussed in Chapter 2, neuroevolution, like other AutoML approaches, is mainly

aimed at classification problems (with some exceptions, e.g. pose estimation (McNally

et al. 2020) or object detection backbones (Operiano et al. 2020)). Hence, it is often

unsuitable as a generic solution for other problems, particularly for semantic segmen-

tation (Nagarajah and Poravi 2019). Here, the aim is to address this gap in the liter-

ature as well as the caveats of MONCAE by proposing a novel resource-aware, multi-

objective neuroevolution-based NAS approach designed explicitly for semantic segmen-

tation (RAMOSS). The contribution of this chapter is three-fold:

1. A novel encoding-decoding strategy for discovering optimal convolutional architec-

tures in semantic segmentation problems is presented and evaluated.

2. One of the critical problems in AutoML, the high computational cost, is addressed,.

Towards this goal, a new sampling approach, progressive stratified sampling (PSS) for se-

mantic segmentation, is presented. This method allows for the reducing the training time

by several orders of magnitude while preserving the performance ranking of candidate

architectures obtained from training with the entire dataset. Thus, this is at a much higher

-suboptimal- computational cost. Overall, this sampling reduction approach renders an

optimal computational cost-test error trade-off with respect to previous approaches and,

hence, an efficient semantic segmentation.

3. Lastly, an open-source, multi-objective optimisation benchmarking framework based
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on the approach for testing NAS strategies on a wide range of computer vision tasks, is

introduced.

Furthering the quest for more efficient and effective AutoML that can handle high-

dimensional real-world datasets, this chapter endeavours to discover resource-aware ar-

chitectures through neuroevolution capable of performing well on semantic segmentation

tasks while also being efficient in terms of resource usage. To this end, a search space

is designed that is able to capture the various connections between layers. This makes

the search space contain 2.4 × 1064 possible architectures (compared to 4.4 × 1024 in

MONCAE).

This is, to the best of the authors’ knowledge, the first resource-aware multi-objective

neuroevolutionary architecture search (NAS) method for semantic segmentation. First,

one of the main caveats in NAS is addressed (their high computational cost) with a new

technique termed progressive stratified sampling (PSS) in Section 4.1.3. This strategy is

specifically devised to speed up the search by order of magnitude with a minimal sacrifice

in performance. The performance of the proposed approach is demonstrated in a range of

computer vision problems, including CIFAR10 and Cityscapes datasets. The choice for

these two datasets is motivated by their popularity as established benchmarks in literature

especially in the field of AutoML and NAS (Real et al. 2018, Liu et al. 2018, Lu et al. 2019,

Zhou et al. 2020, Chen et al. 2014, Shaw et al. 2019). This choice allows RAMOSS to

be easily compared with these state-of-the-art approaches without the need to redesign

and rerun the approaches from scratch on newly chosen ones. Moreover, in the scope of

this work, such extra experiments are rendered unfeasible because of the computational

requirements of some of them. Also, using CIFAR-10 allows the work to be used and

compared with NASBench and shows the general progression from Chapter 3 since it

was also used there.

Next, the methodology of RAMOSS is discussed (Section 4.1) with a detailed expla-

nation of how the encoding and decoding of the UNet architectures is done as well as the

connections between layers. Next, the results are presented using some standard bench-

marks and a high-dimensional dataset(Cityscapes) where RAMOSS generates state-of-

the-art competitive architectures (76.3% mean IOU, which is ± 4% compared to state-

of-the-art expert-designed models) at a significantly lower computational cost (more than

1000 times faster than some of the alternatives with up to 30 times fewer parameters with

up to 1.5% worse test error in CIFAR-10); and thus, it outperforms previous approaches

in terms of balancing performance and resources (Section 4.3). The chapter finishes with

some concluding remarks (Section 4.4) where RAMOSS is described as a stepping stone

towards more general, efficient and effective multi-objective AutoML. A summarised ver-

sion of this chapter has been published in UKCI 2022 (Dimanov et al. 2022), where it has

gained the ”UKCI 2022 Best Presentation Award”.
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Figure 4.1: Neuroevolution process stages. The main contributions are highlighted in the
shaded green boxes.

4.1 Methodology

Here, a novel multi-objective neuroevolution approach for an effective Semantic Segmen-

tation is presented, automatically providing UNet-based models in a resource-efficient

fashion.

The approach is built with flexibility in mind by allowing full freedom of connections

between layers and an option to search for different activation functions, different kernel

sizes of convolutional layers, types of pooling and beyond. This relaxation results in a

tremendously large search space, and thus, is shrunk by removing highly correlated en-

codings (see details in the next section). The genome is also compatible with multiple

optimisation libraries such as Pymoo (Blank and Deb 2020) PyGMO 1 and Platupys 2 3.

The architectural decisions allowed us to seamlessly compare different optimisation algo-

rithms and provided further control to the experiments. The source code of the approach

and all the scripts used to download, process, and load each dataset are publicly avail-

able and well-documented. Readers are encouraged to reproduce and improve upon the

results 4.

This work focuses on neuroevolution, hence refers to each encoded architecture as a

genome, and the collection of architecture in one generation (in the case of evolutionary

approaches) as population. The chapter follows the conventional neuroevolution skele-

ton process (Stanley et al. 2019b) illustrated by Figure 4.1, which highlights the area of

the main contribution. In addition, it is interesting to note that the encoding approach can

be adapted for optimisation with other methods, such as reinforcement learning.

4.1.1 Novel encoding and decoding approach

In order to encode an architecture, RAMOSS uses a flat list of values representing differ-

ent properties for the layers of the network, similar to the approach followed in Devol 5 and
1https://esa.github.io/pygmo/
2https://platypus.readthedocs.io/en/latest/
3Due to limitations on some of the libraries, it is recommended to use the approach with Pymoo.
4https://github.com/DanielDimanov/RAMOSS
5https://github.com/joeddav/devol
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Table 4.1: Layer parameters defining the search space. nc, nd are the number of convo-
lutional and dense layers, respectively (see main text).

Parameters Range
Active {0,1}
Num filters

{
2i
}log2max filters

i=1

Num nodes
{
2i
}log2max nodes

i=1
Kernel {3,5,7}
Batch Normalisation {0,1}
Dropout {0,1}
Pooling {0,1,2}
Connections {i}2

(nc+nd)

i=1

in Rostami (2014). For each convolutional layer, RAMOSS encodes all properties listed

in Table 4.1 with the exception of the number of nodes. For the dense layers (used in the

classification experiments), RAMOSS uses the following attributes: ’Active’, ’Number of

nodes’, ’Activation’ and ’Dropout’.

Table 4.1 also depicts the search space used in the experiments and illustrates the

default ranges for each of these variables in the genome. The value of ’connections’ for

each layer in the encoding translates to a binary upper triangular matrix row. The matrix

is (like in the NASBench (Ying et al. 2019) and DARTS (Liu et al. 2018) models) then

used to construct the network connections (see Figure 4.2).

Figure 4.2: The process of decoding integer parameters for connections to decoded
operations.

The start of the encoding of each layer is determined by each consecutive lth property,

where l is the layer size. In contrast to other encoding methods (Radiuk and Kutucu

2020), RAMOSS allows for macro and micro search of architectures simultaneously. As

pointed out in (Radiuk and Kutucu 2020), an essential property of neural architecture

search algorithms is that they do not only use repeatable structures but rather come

up with more flexible ones, like in the present study. In this work, each architecture is

encoded using (nc× sc)+ (nd× sd)+ 1 variables where nc is the number of convolutional

layers, sc is the convolutional layer shape, nd is the number of dense layers and nd is the
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dense layer shape.

For each dense layer(used only in classification problems), RAMOSS uses a similar

approach but with fewer variables and do not allow skip connections. Finally, the optimiser

used during the training stage is specified as a part of the evaluation co-routine.

While some of the parameters are straightforward, the parameter ’Active’ (Table 4.1),

which specifies if the layer should be ignored entirely during decoding, is critical for

RAMOSS like in other algorithms (Lin et al. 2011, Shenfield and Rostami 2017). This

parameter models a genetic mechanism, termed Atavism (Shenfield and Rostami 2017),

which operates like recessive genes in biology. In the encoding, Atavism allows for spe-

cific layer parameters to be optimised while the layer is disabled and re-enabled in any

succeeding generation.

Next, for decoding, the encoded genome is transmuted into a full-fledged TensorFlow

model, which is evaluated by training for a given number of epochs. Notably, for autoen-

coders and semantic segmentation problems, RAMOSS stores only the first part of the

architecture (the downsampling component) and then construct the upsampling part as

a mirrored subnetwork of the former, in line with the state-of-the-art UNet-like models

approach for these problems (Taghanaki et al. 2021). This is achieved by substituting the

pooling layers in the encoder with corresponding upsampling layers, such that the out-

put shape of the network is successfully adjusted. Thus, the output consists of a single

final convolutional layer with the same number of filters as the number of classes to be

discovered. However, two exceptional cases exist in which decoding deviates from the

approach discussed so far. To address these exceptions, extra operations were used to

adjust layers of incompatible shapes, as will be discussed in the next section.

Uneven filter map shape during the upsampling stage:

The first exception occurs when output mask dimensions are rounded off during the

construction of the encoder. In this situation, the decoding of the encoder part of the

network stays the same. However, a new convolutional layer is added after upsampling

to adjust the shape on the mirrored side based on the rounding-off result. Algorithm 2

depicts the process of adding the extra convolution, where n is the number of layers,

O is the set of all {Oi} operations in the encoder, P is the set of pooling operations, s

is the current shape of the feature maps, k is the input shape, D is the set of decoder

operations, m is the current size of D, and e stores all feature map shapes.

To avoid any shape mismatch, RAMOSS keeps track of the shapes of the feature

maps during the construction of the encoder (in vector e) using the following rule:

e =

{{
s 7→ s/2 Oi ∈ P

s Oi /∈ P
| i ∈

{
0, 1...nl

}}

In short, the shape of the feature maps is initialised to be equal to the input shape.



68
CHAPTER 4. RAMOSS - RESOURCE-AWARE MULTI-OBJECTIVE SEMANTIC

SEGMENTATION

Algorithm 2: Constructing decoder part. Logical brackets are coloured for leg-
ibility. Highlighted section shows how one of the limitations of MONCAE is
resolved, permitting the use in segmentation problems by adding UNET-specific
skip-connection in addition to the other per-layer connections discussed in this
chapter.

Data: e, n, s, k,O, P
Result: decoder operations
D ≡ ∅
for i = n-1 to 0 do

if Oi /∈ P then
D ← D ∪Oi

else
D ← D ∪ upsample
D ← D ∪ add(Oi, Dm)
s← s× 2

end
A ≡ (s− 2)× 2 ∈ e
B ≡ s× 2 /∈ e
C ≡ (s− 2)× 2 = k
if (s× 2 /∈ e) ∧ ( A ∨ (B ∧ C)) then

D ← D ∪ conv((3, 3), valid)
s← s− 2

end
s← 1;

end

Then the up-sampling layers are used to facilitate the 2x increase of the shape and an

extra convolutional layer with valid padding and 3x3 kernel size to do the -2 subtraction

from the shape.

Connections for layers with incompatible shapes:

The second exception happens when two layers with incompatible shapes should be

added together based on the encoding. Then, all inbound layer connections to the layer

currently decoded are taken together with the shape of the current layer as the reference

shape sr. Then, iterating over the layers for addition (la) the shape of each of them is

adjusted to match the reference layer using pooling operations for decreasing the shape,

up-sampling operations for increasing the shape and adjustment convolutional operation

in case the exception from Section 4.1.1 occurs.

4.1.2 Benchmarking framework

Pymoo framework (Blank and Deb 2020) is used to control the experiments better and

explore the benefits and caveats of different optimisation algorithms. Pym allows us to

plug-and-play a range of different optimisation algorithms like NSGA2 (Deb et al. 2002b) ,

NSGA3 (Yuan et al. 2014) , Differential evolution (Price 2013) and many more. Moreover,

to facilitate the adoption of the approach, the whole codebase and a means to change
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the optimisation algorithm easily is provided as well as the input datasets and means

to customise the method. In addition, some dataset loaders are included to be used

out-of-the-box, including MNIST (Deng 2012) , CIFAR10 (Krizhevsky 2009), Oxford Pets,

Cityscapes and more. The framework is modular, so adding new objectives or whole

objective functions can be easily performed.

Noticeably, although Pymoo is the main supported optimisation library, it can easily be

interchanged with any other optimisation framework with minor adjustments to the code.

Researchers are encouraged to use the tool and report the results of their experi-

ments. This new data would populate the benchmarking framework and foster the com-

parison approach’s robustness.

The multi-objective optimisation is based on the Hypervolume indicator metrics (HV

or Z-metric, (Guerreiro et al. 2020)) described in Chapter 3. To refresh it, it is defined as:

HV (X, r) = Λ

 ⋃
xj∈X
{f1(xj , f

ref
1 ), · · · , fm(xj , f

ref
m )}

 (4.1)

where f1...fm are the m specified objective functions, and f refi is the reference point in

the m-dimensional solutions space for the objective function fi. Finally, r is the vector

containing all reference points and X is the set of proposed solutions xj ∈ X, where

each xj is an m-dimensional vector characterising the model, and Λ is the Lebesgue

measure (Guerreiro et al. 2020).

The defined search space and hyperparameters are easy to adjust in the implementa-

tion. In contrast with some previous approaches (Real et al. 2017, Lu et al. 2019, Liu et al.

2019a), the space can be seamlessly expanded to search for other hyperparameters and

for using new datasets. In the experiments, a maximum of 12 layers is specified based

on the range resulting final layers and the average maximum number of layers used in

the selected approach for comparison. See Section 4.3 for further discussions on the

hyperparameters employed in each experiment. The size of the original search space of

possible parameters for the CIFAR-10 search is 2.4 × 1064, or 4.4 × 1024 excluding con-

nections. This vast search space suggests the need for a better initialisation technique to

facilitate the practical exploration of the optimal space regions.

An alternative approach is to first decrease the search space size to 1.8× 1028 by ig-

noring the parameters controlling the number of filters and number of nodes and building

architectures with the maximum number of filters. Then, pruning and dropout techniques

can be used to remove the unused parameters (Blalock et al. 2020). This idea is out of

the scope of this thesis, but it is a promising direction that should be addressed in future

work.
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4.1.3 Progressive Stratified Sampling (PSS)

Neural architecture search typically requires a vast amount of computational resources

(Stanley et al. 2019b). Thus, training NAS approaches, even for a few generations, can

result in GPU computational costs in the order of days (Real et al. 2018). For exam-

ple, consider one of the experiments consisting of computing 10-20 generations with a

population size of 20. Each model is trained for five epochs before it is evaluated on

the validation set. In this setting, reducing the training time per epoch by just 1 second

reduces the search cost by 2000 seconds. Motivated by this result, a new method is de-

vised that is termed Progressive Stratified Sampling (PSS), which allows us to effectively

train models on a subset of the data through downsampling the dataset by a customis-

able factor (5-10 in the experiments). The process, described in Algorithm 3, shows how

the dataset splits operate during training and validation.

In short, the models are trained by iteratively picking one of the predefined PSS splits

as the generations progress. This method allows models from each ith generation to

compete pretty by training on the same data Di
pss split but, at the same time, to be eval-

uated on unseen data before (the next PSS split Di+1
pss ). This technique would render a

good approximation of the model performance if it were trained with the entire dataset

(see results section).

For multi-class problems (such as CIFAR10), the strategy is easily implemented using

standard k-fold stratification sampling processes (such as the one provided by Scikit-

learn6). However, for semantic segmentation or multi-label problems stratification is not

defined. Thus, stratification in the context of semantic segmentation is implemented by

creating the dataset splits, as described in Algorithm 4, where cl is one of the target

classes, and rec is the record being processed.

Algorithm 3: Evaluation process with PSS, where Dpss is one of the PSS splits
of the dataset, and i is the generation index.

Data: Dpss ← dataLoader(Dpss)
Function Evaluate (model, Dpss):

for i← 0 to ngenerations do
m̂odel← train(model,Di

pss);

r ← eval(m̂odel,D
(i+1)%npss
pss );

. . . ;
end

6https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

StratifiedKFold.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
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Figure 4.3: Mean, standard deviation, maximum and minimum values of pixels of each
class compared between two PSS splits and the original dataset. Only two out of the ten
splits are shown to enhance legibility.

Algorithm 4: Generating PSS splits (cl: a target class, row: current image).
Data: D ← data

Dtable ← loadAsTable(D) ;

for cl← 0 to nclasses do

Dtable[cl]← countP ixels(D, cl) ;

end

while length of Dtable > 0 do

for i← 0 to nsplits do

for col← 0 to columns of Dtable do

row ← max(Dtable[col]);

split← split ∪ row ;

Dtable ← Dtable \ row ;

end

Dpss ← Dpss ∪ split;
end

end

As a representative example of this algorithm, Figure 4.3 shows the boxplot diagram

of two of the PSS splits for the Cityscapes dataset compared to the original data. The

x-axis (0-19) shows the 20 classes in Cityscapes, and the y-axis indicates the number

of labelled pixels for the corresponding class in each split. A small comparative study is

also conducted to examine the benefits of using PSS over random sampling (please refer
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Figure 4.4: Mean, standard deviation, maximum and minimum values of pixels of each
class compared between several random splits and the original dataset. Only 6 out of 10
splits are shown for legibility.

to the next section). As illustrated in Figures 4.4 and 4.3, the distribution of pixels per

class in each split is very close to the original one, with the exception of some outliers

for a minority of classes. However, although distributions are similar, the key remaining

question is how well PSS will integrate with RAMOSS. This will be discussed next in

Section 4.3.

4.2 Experimental setup

Before proceeding with the results, it is essential to define the experimental setup, the

used dataset and metrics. As mentioned in Chapter 2, one of the most popular metrics

for segmentation datasets is the Intersection-Over-Union(IOU) score (Cordts et al. 2015,

Chen et al. 2014, Liu et al. 2019a). For classification problems metrics such as accuracy,

precision and recall might be adequate to describe the performance, but for problems

such as object detection or semantic segmentation, they are not generally used as they

fail to capture salient information and successfully inform how well a given model is per-

forming overall and this crucial information is needed for decision making(Goodfellow

et al. 2016b). Such problems require more detailed metrics that can account for some

margin of error.

The intersection-over-union (IOU) (Nowozin 2014) metric calculates the base overlap
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of the predicted bounding box or segmentation mask with respect to the label. This is

one of the most popular metrics used in the field of segmentation (Cheng et al. 2021) The

first operation is the intersection calculation, and then it is divided by the union, signifying

a percentage of overlap. Completing the process over the whole dataset iteratively yields

a score for each class. The mean IOU is a single score, which is averaged over the

IOU scores of all classes. IOU and mean IOU serve as a more informative measure

to understand a model that is predicting roughly where different points of interest are

positioned as well as what part of these objects is correctly classified as opposed to

simply counting the number of pixels the model got correctly.

The data used here comes from a dataset called Cityscapes (Cordts et al. 2015)

(example from the dataset presented in Figure 4.5, which is a semantic segmentation

dataset composed of 30 different classes.

The dataset can be used for multiple tasks since the provided labels allow researchers

and practitioners to use not only the provided segmentation masks in different resolutions

but also in a variety of other formats, which are not the focus of this work. Cityscapes is

one of the most widely used tasks for semantic segmentation, and currently, state-of-the-

art performances on this dataset reach up to 80% mean IOU (Liu et al. 2019a).

The dataset provides high-resolution images (2048x2048 pixels) mainly from dash

cameras, and the photos depict everyday situations on-road or everyday life objects. The

data is collected from 50 different cities during different seasons, and all images are in

daylight with several weather conditions (Cordts et al. 2015). The dataset also provides

valuable metadata, such as GPS coordinates of each image, as well as preceding and

trailing frames from the video feed, but the use of the metadata is out of the scope of this

study. Labels for pixel-level, instance-level and even panoptic semantic segmentation are

provided, and there are 5000 images with fine labels (meaning the pixel-level masks are

pixel-perfect or near pixel-perfect) as well as 20000 coarse labelled masks.

The 30 classes in the dataset are split into 8 different categories - flat, human, ve-

hicle, construction, object, nature, sky and miscellaneous (also called void). During the

evaluation, not all of the classes are used, and only 20 out of the original 30 are, in fact,

responsible for determining how good models are according to the official benchmark

(Cordts et al. 2015).

PSS evaluation:

One of the main speed-ups of RAMOSS is achieved through the PSS strategy. Here,

the effectiveness of PSS is tested to determine if the training with PSS splits will yield

a similar performance ranking of solutions to training with the full dataset. This heuristic

will allow RAMOSS to train using PSS instead of the full dataset, which can speed up

the method proportional to the chosen number of PSS splits. Stratification is standard in

classification problems (Zhang and Wu 2012, Ye et al. 2013). Thus, to thoroughly validate

the PSS approach, the focused is shifted to semantic segmentation and, in particular, on
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Figure 4.5: A sample image from Cityscapes from the city of Zurich, where a) is repre-
sentative of the inputs for the model and b) presents what the labels look like.

(a) Raw input image

(b) Coloured semantic segmentation mask

the Cityscapes dataset instead. To this end, 3 common UNet backbone architectures are

employed: InceptionResNetv2 (Szegedy et al. 2017b) , InceptionNetv3 (Szegedy et al.

2016b) and EfficientNetb0 (Tan and Le 2019a) operating on the Cityscapes dataset. The

networks were first trained using the complete dataset for 25 epochs and then retrained

for 25 more epochs.

RAMOSS evaluation:

To test out RAMOSS, first, the search space, the objective functions and some hyperpa-

rameters need to be adjusted. Here, as in MONCAE (Chapter 3.4), the same hyperpa-

rameters are used following the same intuition discussed in the previous chapter.

The hyperparameters in these experiments are the following: maximum number of

convolutional layers = 8 (as this results in a maximum of 16 layers including the pooling

ones which is a common choice to have increments of 8 blocks like in ResNet-8 (Tang

and Lin 2018), ResNet-16 (Duan et al. 2023) and other recent small network success

(Gunasekaran 2023)),maximum number of dense layers = 3 (as this seems to work quite

well in recent studies (Balcioglu et al. 2023, Dhanya et al. 2023)), and both maximum

features and maximum nodes were set to 256 since it is a popular choice among recent

(Goldstein et al. 2023, Naseri and Mehrdad 2023, Sriram et al. 2023, Lee and Song 2023)

as well as some older foundational works (He and Sun 2015, Dai et al. 2017). The al-

lowed genome properties per each layer that determine the search space are defined in

Table 4.1, most of which were motivated by similar works such as Qin and Wang (2019),

Lu et al. (2019), Real et al. (2020 2018), Liu et al. (2018) in addition to some preliminary
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Figure 4.6: An example of different encoding approaches resulting in duplicate architec-
tures

experimentation done in the process of development that has helped in establishing the

computational limitations of the hardware used in the experiments and how close to that

limit the experiments can be pushed during the architecture search. Even more impor-

tantly, picking these hyperparameters allows for certain constraints to be imposed such

that the produced architecture will be comparable to the selected state-of-the-art models.

Some of the additional hyperparameters, such as the reference points mentioned in the

results tables, were discovered during preliminary experiments with the RAMOSS model

during development in an empirical fashion. While similar and possibly better results

can be achieved by adjusting these hyperparameters, the ones listed in this work should

provide a reasonably good starting point and reliable, reproducible results.

This experiment considered 2 objectives: the categorical cross-entropy loss and the

level of complexity, defined as C = min(log10(p),10)
10 in this study, where p represents the

number of model parameters. This working complexity measure is inspired by the works

of Real et al. (2017) and Dimanov et al. (2021). Thus, this index is based on the number

of parameters instead of the number of floating-point operations (like in, e.g., (Liu et al.

2019a)), but future work will explore if both can be used as distinct objectives. Future work

should explore the stong intuition behind a potential further improvement of the results by

allowing the algorithm to run for more generations or by increasing the population size,

but this would naturally result in a higher computational cost.

During the experiments, it was noted that in some cases, different encodings resulted

in the same decoded architecture due to the stripping of backward connections (as de-

picted in Figure 4.6). To address this redundant effect, an alternative was designed to

constrain the allowed connections for each layer separately. Specifically, the available

values for each layer’s connections ci were redefined as ci =
{
0, ...,max

(
0, 2mc−li − 2

)}
, where li = {1, ...,mc} is the layer index and mc is the maximum number of convolutional

layers.

Note that for the second to last layer, li = mc−1, as well as the last connections value

is 0. This heuristic is intentional because the second to last layer is always connected

to the last one since the parameter to disable the model can be used instead of having

it enabled and disconnected. This property enabled RAMOSS to drastically reduce the
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search space from 2.4 × 1064 to 1.8 × 1028. In this context, the maximum number of

convolutional layers was set to 12, the maximum number of dense layers to 3, and both

maximum features and maximum nodes were set to 512. The reason for doubling the

filters and the nodes from the discussed popular maximum of 256 is that 512 filters is

also a popular choice for more complex problems (Marcos et al. 2016, Pons et al. 2017,

Juefei-Xu et al. 2017, Masruroh et al. 2023, Sanida et al. 2023). Also, RAMOSS aims

to let the architecture better explore a bigger search space since thanks to the sizable

reduction this shouldn’t hinder the exploitation. Moreover, this showcases how these

hyperparameters can be adjusted. The allowed genome properties per each layer that

determine the search space are defined in Table 4.1.

4.3 Results and Discussion

Let us now turn to the results for PSS and RAMOSS by first discussing the PSS results.

PSS results:

Figure 4.7 displays the training of the different runs for each of the architectures. From

the training performance, it is evident that the training is stable, and they manage to

converge. Although, there is a general tendency for lower performance when using PSS,

the gap throughout the architectures appears consistent which is the success criteria of

the experiment. Next, using the same hyperparameters, they were trained again for 25

epochs, but this time, every five epochs, the training set corresponded to one of the 5

PSS splits of the dataset. Convergence and overall performance are then compared in

validation loss for each approach on the same validation set.

To observe the training more closely, the convergence of the models can be seen in

Figure 4.7. Remember that the PSS approach trains using just 20% of the data, while

control networks train on the full dataset. Thus, the PSS-trained nets’ performance is

expected to be lower, but this experiment specifically inquires if the architectures’ perfor-

mance ranking stays the same regardless of their precise performance. Consequently,

network architecture selection can use PSS splits instead of the whole dataset, drastically

reducing the computational cost. Figure 4.8 shows the results for 5 runs with different

random seeds, where the loss on a held-out test set is used for evaluating the perfor-

mance. While the runs with the full dataset take 8 minutes to complete per architecture

per seed, the ones with PSS take only 2.8 minutes, almost three times faster (note that

a 5x speedup is not observed since the full validation set was used for performance eval-

uation).

More importantly, the PSS approach did not compromise the ranking of architectures

based on their performance (Figure 4.8): although there is an expected performance

gap between the PSS-based runs and the ones without it, the overall ranking of the

architectures based on their mean performance remains. The standard deviation of the
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Figure 4.7: Convergence of models during training with and without PSS . Blue are the
training runs on the full dataset, whereas the red lines are the runs with PSS.

(a) Accuracy during training
with Inceptionresnetv2

(b) Accuracy during training
with InceptionNetv3

(c) Accuracy during training
with EfficientNetb0

Figure 4.8: Validation loss for PSS-5 and PSS disabled on Cityscapes with UNet with
three different backbone architectures.
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performance increased with the PSS splits, which is simply due to the fact that models

did not manage to converge for this amount of training steps.

To verify the value of the PSS approach, the approach is compared to generated ran-

dom splits instead of PSS ones. As evident from Figure 4.4, there is a severe discrepancy

between the distributions of the number of pixels per class in the different random splits

in contrast to the ones from Figure 4.3 where the distributions are substantially closer to

the original. Only 6 out of the ten random splits are displayed to enhance legibility. The

different architectures are then trained following the same sample size and methodology

from Section 3.3. The results are presented in Figure 4.8, where the benefits of PSS

can be clearly observed. Looking at the Figure, the ranking of the architectures is not

conserved; thus, random splits cannot be used to establish a stable proxy to determine

how good a particular architecture is without fully retraining it, which is not the case with

the PSS splits.

RAMOSS results:

Next, the performance of the new RAMOSS framework is demonstrated on the image

classification problem CIFAR10 (Table 4.2). Interestingly, the results in this table were

obtained after only 20 generations with a population size of 20 following the same moti-

vation and intuition discussed in Chapter 3.4 with MONCAE), rendering just 400 model

evaluations in less than 8 GPU hours.

During the search, an observation saw made that RAMOSS gains hypervolume with

each new model, suggesting that, in this search space, there are even more optimal

solutions than the ones discovered here (Figure 4.9).

Table 4.2: CIFAR10 results. RAMOSS runs for 400 model evaluations (20 generations
with a population size of 20) with reference points set to (25, 10, 10) for the evaluation of
solutions (Dimanov et al. 2021), see details in the main text. † is used to denote manual
architectures; hence, their cHV is undefined ”-”. The 0.33 GPU days for search operations
exclude the retraining of the network for 300 epochs, which took 2 additional Nvidia 3090
RTX GPU hours. RAMOSS achieves an excellent cost-error-parameters balance (bold
font: best values).

Architecture
Test Error

(%)
Lower is better

Parameters
(M)

Lower is better

Cost
(GPU days)

Lower is better

cHV

Higher is better
†Wide ResNet Zagoruyko and Komodakis (2016) 4.17 36.5 - -
ENAS Pham et al. (2018) 4.23 21.3 0.5 35
NAS Zoph and Le (2016) 4.47 7.1 10000+ -
AmoebaNet Real et al. (2017) 5.4 5.4 3150 0
NSGANet + marco Lu et al. (2019) 3.85 3.3 8 83
†Improved ResNet-38 Liu et al. (2020b) 5.83 1.39 - -
RAMOSS s1 5.49 1.37 0.33 715

It is worth noting that a natural upside of multi-objective optimisation in general, and

specifically of this approach, is that it generates a set of solutions instead of just one. This

set enables researchers to choose the ideal architecture for their specific needs since this

method informs of the trade-offs involved. The set of these approximate solutions gener-
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Table 4.3: Cityscapes results. RAMOSS uses 40,50 and 15 as reference points. ”*”
indicates multiple backbone architectures and ”-” for cHV means the solution is fully dom-
inated by another one and does not contribute to the overall hypervolume. Similar to
Table 4.2, this table presents the trade-off between the objectives using the cHV (see
Table 4.2 for further details).

Architecture Mean IoU Search Method Parameters Cost cHV
Auto-DeepLab-L Liu et al. (2019a) 80.3 Gradient-based 44.42M 3 267
DeepLabChen et al. (2014) 63.1 Manual 25M+* - -
DeepLabv3 Chen et al. (2017) 81.3 Manual 25M+* - -
ResNet-38Wu et al. (2019b) 78.4 Manual 24.46M - -
SqueezeNAS LAT XL Shaw et al. (2019) 75.19 Gradient-based 3M 11.5 0
SqueezeNAS MAC XL Shaw et al. (2019) 74.62 Gradient-based 1.8M 14.6 0
MobileNetV3 Large Howard et al. (2019) 72.6 Manual 1.51M - -
RAMOSS+PSS s1 76.3 Neuroevolution 1.14M 0.4 8327

ated from the CIFAR-10 runs is presented in Figure 4.9. Looking at the CIFAR-10 results,

Table 4.2 shows that, for a fraction of time, the RAMOSS error rate is still competitive with

results of highly computationally expensive methods while providing the best trade-off.

Crucially, RAMOSS lies on the optimal front of non-dominated solutions (Guerreiro et al.

2020), and thus it discovers an optimal architecture an order of magnitude faster than,

for instance, NSGANET. Moreover, the ENAS solution has over ten times the number

of parameters of the parsimonious architecture discovered by RAMOSS. The CIFAR-10

model produces 2.7 MFLOPs, which is several orders of magnitude faster than Amoeba-

NET’s 1-1.2 BFLOPs (1-1.2 billion multiplication operations), NSGA’s 1.2 BFLOPs and

even ENAS’s 533 MFLOPs. This optimal trade-off can be quantified by the contributing

hypervolume indicator (cHV) (Guerreiro et al. 2020) in Table 4.2. In short, the cHV mea-

sures the contribution of each non-dominated solution to the hypervolume (see details in,

e.g. Guerreiro et al. (2020), Rostami (2014), Dimanov et al. (2021), dominated solutions

have 0 cHV). The worst scores from the selected approaches per objective are used as

reference points to compute the cHIV, like in Chapter 3.

To further test the efficiency of the approach, it is tested on the popular benchmark

for NAS algorithms -NASBench-101. To do so, the encoding is adjusted to handle the

limits of NASBench. After removing the necessary hyperparameters from the search

space so that all architectures from the new search space comply with the constraints of

NASBench, Figure 4.10 presents the averaged results over 10 runs for 50 generations

with a population size of 20, which equals 1000 function evaluations.

As a reference, the approach is compared to Random Search, which uses the same

encoding, but is not subjected to evolutionary optimisation. Both methods achieve a test

error rate under 7%, but the NSGA-II error is 5.8% vs 6.2%, the best for Random Search

while keeping the number of parameters under 7 million.

Finally, RAMOSS is ran on Cityscapes for 20 generations with a population size of
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Figure 4.9: RAMOSS results on CIFAR10. Figure 4.9a shows the convergence of
RAMOSS on CIFAR 10 for 20 generations run with a population size of 20, and Fig-
ure 4.9b illustrates the non-dominated solutions in the objective space found during the
same run where f1 is the loss objective during the search and f2 is the level of complexity

(a) Convergence of RAMOSS on Cifar10 (b) Non-dominated solutions in the objective
space

20, while the maximum number of layers is set to 25 (again in an attempt to facilitate

better comparisons to the rest of the selected methods), which results in a 76.3% mean

Intersection-Over-Union (IoU). Note that, as shown in Table 4.3, this result is not only

competitive with the current state-of-the-art nets for this dataset, but it also surpasses

some of the expert-designed architectures. Even more strikingly, the optimal architecture

discovered by RAMOSS is over an order of magnitude smaller in terms of parameters

than all of the reference models (Table 4.3).

The total search time for the selected architecture was 9.5 GTX 1080 GPU hours,

with PSS set to 10 splits. The GPU resources were not used optimally during training,

and thus the data loading efficiency can be significantly improved to bring the computa-

tional cost down even further. Nevertheless, RAMOSS discovered an architecture that

is highly competitive with state-of-the-art in a fraction of the time compared to reference

approaches. To put how faster the discovered architecture is, and why the number of

parameters is an important objective, the number of FLOPs are tested and in line with

the number of parameters, the segmentation model that deals with the high-dimensional

Cityscapes data turns out to be faster than the CIFAR-10 model by having only 2.3 million

multiplication operations or 2.3 MFLOPs. As with the CIFAR-10 model, this is substan-

tially faster than the 80 BFLOPs required by DeepLabv3’s model and the 90-110 MFLOPs

of the similarly sized models. It is worth mentioning that the smallest SqueezeNAS has

similar amount of FLOPs, but it’s meanIoU is 68%. Altogether, results suggest that this

algorithm displays the ability to effectively conduct multi-objective optimisation by discov-

ering optimally parsimonious architectures, drastically reducing the computational cost.
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Figure 4.10: NASBench Pareto-front of found solutions. Since both f1 and f2 are
minimisation functions, notice that RAMOSS with NSGA-II(Blue) outperforms random
search(Red) by presenting a front of solution with a higher hypervolume.

4.4 Conclusion and Future work

This approach is devised to be a stepping stone toward the transition from manually de-

signed neural architectures to automated machine learning. RAMOSS achieved state-of-

the-art results while balancing computational cost and test error more effectively than ex-

isting semantic segmentation methods. These results showcase the importance of multi-

objective optimisation for AutoML. Expanding the open-source benchmark with other

datasets could facilitate research in NAS and AutoML areas, where the entry barrier for

practitioners is relatively high.

The results show that, despite the need for further improvements, RAMOSS com-

petes with the state-of-the-art and even outperforms it in some cases, offering a good

starting point for model selection when presented with new datasets and problems. More

importantly, it provides an optimal trade-off between performance and computational re-

sources with respect to the approaches analysed. However, for the NASBench case

study, random search is used as the baseline. Future work should compare RAMOSS to

a broader range of alternatives (such as, e.g., Real et al. (2018), Elsken et al. (2018a))

and with reinforcement learning strategies. It is also essential to study further the role of

two primary hyperparameters - the population size and number of generations; as well

as the effect of different optimisers.

To conclude, the framework presented here is a contribution to more effective cross-

algorithm, cross-encoding comparison approaches for NAS. More broadly, it can render a

general and efficient multi-objective methodology for NAS approaches in computer vision
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problems. The next chapter will explore how the process can be further optimised and

scaled, so it becomes compatible with real-world data and problems.



Chapter 5

Applications of RAMOSS and
MONCAE to Concealed Weapon
Detection

The two previous chapters discussed new effective neuroevolution methods designed for

addressing some quintessential computer vision problems from a holistic perspective.

This chapter, by contrast, focuses on how they can be applied in the context of real-world

practical security applications.

The chapter is semantically split into two sections, both of which aim to utilise one

of the most extensive concealed threat detection datasets available- SIXray (Miao et al.

2019) to examine and evaluate MONCAE (presented in Chapter 3) and RAMOSS (pre-

sented in Chapter 3).

The first one, Section 5.1, showcases the application of RAMOSS to two different

concealed threat detection problems via a new automatic evolutionary multi-objective ap-

proach specifically designed for concealed weapon detection (MEOW). Through the use

of some heuristics (explained in Section 5.1.2), MEOW manages to outperform the cur-

rent state-of-the-art for both datasets with smaller (ex. 11 million parameters for MEOW

vs 23 million parameters for ResNet50) and hence faster (ex. 8x speed-up of MEOW).

Moreover, despite this substantially more parsimonious description, it renders better-

performing models overall in some cases (e.g., 85% vs 77% mAP for SIXray).

Since the two presented datasets are complex classification tasks and not segmentation-

based, a supplementary task is used that is defined on one of them to showcase the per-

formance of MEOW on a real-world threat identification segmentation task. On this task,

MEOW achieves the third-best IOU score of 57.7% (in comparison to 59% and 61% for

the second and first place, respectively) and an f1 score of 40.58% (in contrast to 42.8%

and 43.98% for the second and first place respectively) but using only 530k parameters

(compared to 62 and 30 million for the second and first place respectively). Interestingly,

83
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MEOW is the only model to display similar performance during validation and testing,

suggesting that it might be a more robust model than the others.

These results (discussed in more detail in Section 5.1.4) represent a significant im-

provement over previous approaches and further align with the goal of this thesis to make

AutoML fast enough for practical deployments, such as in the context of concealed threat

identification. The findings also suggest that MEOW successfully demonstrates the fea-

sibility as well as the value of real-world applications of AutoML (discussed in Section

5.1.5).

Until this point in the thesis, the main focus has been on the models rather than

the data. However, both problems are not necessarily disconnected (Goodfellow et al.

2016b). For instance, through some relatively minor tweaks in the problem formulation,

RAMOSS and MONCAE can be turned into critical dataset discovery algorithms. This

is the rationale followed in Section 5.2, which presents a new multi-objective, neuroevo-

lutionary approach for discovering the fundamental set of images in a computer vision

dataset (the ”coreset” (Dubey et al. 2018)) that is termed MIRA-ME.

Both MEOW and MIRA-ME utilise one of the largest concealed threat detection datasets

available- SIXray (Miao et al. 2019). It is a relatively new publicly available security

threat dataset comprising over a million X-ray baggage scans. The data is split into 6

classes(Gun, Knife, Wrench, Pliers, Scissors and negative). The dataset was collected

from several subway stations (Miao et al. 2019). The dataset is described by the authors

(Miao et al. 2019) to have the following 4 important properties: 1. Presence of overlap-

ping objects 2. Inherent intra-class variation from the different shapes, scales, viewpoints

and styles 3. Noise from the heavily cluttered objects, and 4. Heavy class imbalance.

SIXray consists of 3 separate datasets (some extra information about the dataset is

presented in Figure 5.1): ”SIXray 10”, ”SIXray 100” and ”SIXray 1000”, denoting 1:10,1:100

and 1:1000 ratio of threats to begin images, respectively. This categorisation means that

in ”SIXray 1000”, for every image of a prohibited item, there are 1000 benign ones. Such

a huge class imbalance can easily overwhelm a classifier, and the class imbalance has

to be considered when designing a proper approach. More specifically, when choosing

the right loss and metrics.

In short, in the author’s view, the results of this chapter suggest not only the ”plasticity”

of the techniques proposed in this thesis to provide industrial impact but also attest to their

capacity to address some caveats of the state-of-the-art in the ”model space” (MEOW)

and in the ”data space” (MIRA-ME, section 5.2.1). Focusing on the latter, two variants

(supervised and unsupervised)of MIRA-ME are discussed in detail in Section 5.2.2, which

outperformed the state-of-the-art on coreset discovery methods by achieving 97.67% and

65% accuracy on MNIST and CIFAR-10 respectively, and 62.03% mAP on SIXRAY with

3536 images (compared to the second best of 46.68% mAP achieved by Glister with

14992 images) (see section 5.2.4).
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(a) Labels value count overview
(b) Detailed labels value count

Figure 5.1: Sixray class labels. Notice the severe imbalance between the ”Negative”
class and the rest. Also, the ” Scissors ” class is the most undersampled class, and the
training and testing samples seem to follow a similar distribution.

5.1 MEOW - Automatic Evolutionary Multi-Objective Concealed

Weapon Detection

Concealed weapon detection through screening procedures is a crucial component of

public security, especially in crowded areas Mahajan and Padha (2018), Xue and Blum

(2003). The need for such systems has significantly increased in the last couple of

decades due to, e.g., the rise in terrorism threats globally Sheen et al. (2001), as well

as the rising number of school shootings Freilich et al. (2022) and weapons trafficking

(Langlois et al. 2022) in some countries.

Many new systems have emerged, focusing on a wide range of different techniques

to overcome this uprising issue (e.g. Rostami et al. (2015), Agarwal et al. (2015)). The

fact that regulations and techniques to address this problem date back more than two

decades connotes the complexity and arduousness of practical solutions for detecting

concealed threats (Bartley and Cohen 1998). Most automated state-of-art algorithms in

this domain focus on identifying if there is a threat or not, which is a sub-optimal approach

since different threats require different security protocols (Morris et al. 2018, Petrozziello

and Jordanov 2019).

More recently, some new algorithms are starting to address this problem by combin-

ing the effectiveness of deep neural networks with evolutionary computation, which may

lead to a breakthrough allowing a system to successfully identify different threats with

sufficiently high accuracy (Rostami et al. 2015). Usually, millimetre wave detectors and

metal detectors, etc. (Rostami 2014) are used to carry out concealed weapon detection.

There are; however, specific use cases where computer vision algorithms have been

employed to analyse raw signals provided by these detection approaches (Mery et al.



86
CHAPTER 5. APPLICATIONS OF RAMOSS AND MONCAE TO CONCEALED

WEAPON DETECTION

2015). One medium of interest in this work is the one which comes from X-ray or CT

scans. Usually, these techniques work in tandem with an image processing pipeline,

which analyses the scans and determines if there is a threat, sometimes what the threat

is and even where it is (Miao et al. 2019). These generated images significantly differ from

the visual RGB images generated from CCTV or other digital cameras, as discussed in

Chapter 2.5. Hence, they require specific preprocessing to be applied before they can be

used as input to computer vision algorithms (Mery and Arteta 2017).

Moreover, conventional image processing and naive application of already established

computer vision algorithms often yield sub-optimal results for threat detection. Thus, pre-

vious studies agree on the compelling need for domain-specific architectures and proce-

dures (Miao et al. 2019, Mery et al. 2015).

Developing new architectures is typically a complex process, often requiring adaptive

tuning to make them fit a specific problem involving extra computational and human re-

sources. This motivated the development of recent techniques invariant to changes in

data distributions and other external settings He et al. (2021), Karmaker et al. (2021).

The idea of such approaches is to effectively harness the tremendous computational

power available nowadays to support and even partially replace a multidisciplinary team

of domain experts tackling the problem manually. Automated machine learning (AutoML)

allows all of this to be possible, and recently, the progress in the field has led to some re-

markable breakthroughs, e.g., Real et al. (2017), Lu et al. (2019), Zhou et al. (2020) . One

of the significant caveats of AutoML, however, is its extreme computational requirements

Lu et al. (2019), Real et al. (2017)

To alleviate these drawbacks, a potential approach to deal with the high computa-

tional demand of these algorithms is to incorporate optimisation heuristics in the form of

proxy scores, which promise a significant reduction in resource requirements Mellor et al.

(2021), Abdelfattah et al. (2021).

Here, the potential application of AutoML approaches for concealed weapon detection

is explored using two X-ray datasets that feature different threats and scenarios (samples

from these datasets are presented in Figure 5.2). The contributions of MEOW are the

following:

1. A novel application of state-of-the-art methods to industry problems in concealed

weapon detection.

2. A multi-objective optimisation of several heuristic proxy scores simultaneously, with

an up to a 200x speed up w.r.t. standard multi-objective AutoML algorithms.

3. A novel ensemble approach, utilising individual predictions from several optimal

models discovered by a multi-objective NAS to provide a final, more accurate pre-

diction.
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Figure 5.2: Sample images from the two datasets

(a) A benign SIXray
sample with no
threats

(b) SIXray sample
with multiple overlap-
ping threats

(c) Residuals sample
with threat modifica-
tions

(d) Residuals sample
with no modifications

5.1.1 Related work

As the interest in the field has grown, more and more research has attempted to fill

this research gap and provide alternative solutions to deal with the problem, such as

Dimanov et al. (2021), Zhou et al. (2020), Assunção et al. (2019). In particular, RAMOSS

(presented in Chapter 4 allows easy integration with datasets such as SIXRay.

However, RAMOSS, like most NAS algorithms White et al. (2023), spends most of

the computational time on training each constructed architecture for a certain amount of

epochs to evaluate its performance on a held-out validation set and compare it to the rest

of the produced architectures, which is sub-optimal. Real et al. (2017)

Thankfully, recent works have provided valuable shortcuts to alleviate this compu-

tational cost by allowing performance approximation proxy scores to be integrated into

these algorithms, such as Neural Architecture Search Without Training (NASWOT) Mel-

lor et al. (2021) and Iterative Synaptic Flow Pruning (SYNFLOW) scores Tanaka et al.

(2020) introduced in Chapter 2. Even though they do not display a perfect correlation with

the trained performance, they provide an accurate estimate of the model’s performance

Abdelfattah et al. (2021). Although SYNFLOW was initially designed to be a score used

for pruning architectures, a recent study Abdelfattah et al. (2021) suggested that it might

be an effective performance proxy score when used in unison with NAS approaches. In

this chapter, the RAMOSS algorithm is leveraged with these newly surfaced proxy scores

to establish the feasibility of using NAS approaches in concealed weapon detection and

test how well such approaches scale to real-world use cases.

5.1.2 MEOW Methodology

Here, the recent RAMOSS algorithm is upgraded with newly surfaced proxy scores Ab-

delfattah et al. (2021), Mellor et al. (2021), Tanaka et al. (2020) to foster its feasibility for

concealed weapon detection and test how well such approaches scale to real-world use

cases.
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Figure 5.3: The MEOW algorithm. The population of architectures are encoded using
lists of integers (a), and then they are decoded to architectures using RAMOSS (b).
Panel b) shows a condensed version of the MEOW-s1 architecture for SIXray. Sub-
figure c) presents the activations of a selected layer of the trained MEOW-s1 when a
sample input (d) is passed through the network. e) presents a sample objective scores
of an architecture in the population, which is used for selection. Finally, f) shows the raw
predictions of MEOW-s1 for input d).

[0, 2, 2, ..., 3, 1, 0]

[1, 3, 0, ..., 3, 1, 0]

...

 [1, 1, 0, ..., 1, 2, 1]

a) MEOW population
of encodings

b) Produced artchitecture
from an encoding

c) Heatmaps showing activations
at a layer of MEOW-opt

d) Sample input used to
generate heatmaps in c)

and output in f) using MEOW-opt

e) Sample objective scores

f) Produced probabilities
per threat type

using MEOW-opt
and the input from d)

ScissorsPliersWrenchKnifeGun

3.78x10-45.85x10-67.1x10-70.98150.9530

Level of
ComplexitySynflowNASWOT

0.68005692-14.773805-196.874244

In addition to the SIXray (multi-label) dataset, the pipeline is run on a proprietary

dataset containing different types of threats and modifications. In essence, this new

dataset was generated using an award-winning proprietary project, which uses a multi-

staged computer vision algorithm to match and identify anomalous devices and then

classify these anomalies together with the types of modifications in devices.

Next, using the Residuals dataset, the chapter explores how the current state-of-the-

art performs in multi-output scenarios where the model is requested not only to predict

the type of modification to a particular device but also to identify what type of threat (if any)

is present. Even though the Residuals dataset shares many similarities with SIXray and

both datasets make use of X-ray technology to generate the images, with the Residuals

one, a residual X-ray image of the discovered anomalies is utilised as input as opposed

to the raw pseudo-coloured X-ray scan as is the case with SIXray. However, a challenge

in using NAS approaches like RAMOSS for threat detection is their computational cost,

e.g., SIXray alone has over a million data points.

Thus, motivated by the promising results of ”Zero-cost NAS”Abdelfattah et al. (2021),

a rapid multi-objective neuroevolution approach capable of finding optimal architectures

in less than an hour of computational time called MEOW is devised (a general represen-

tation of process is available at Figure 5.3). More specifically, the approach uses two

of the proxy scores presented in Abdelfattah et al. (2021) - NASWOT Mellor et al. (2021)

(labelled jacob conv in Abdelfattah et al. (2021)) and SYNFLOW Tanaka et al. (2020). In
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contrast to ”Zero-cost NAS”, MEOW does not use a cumulative score to aggregate over

the selected proxies. Instead, MEOW uses them as separate objectives and optimises

for both simultaneously.

In short, the NASWOT and SYNFLOW scores are reformulated from a pruning metric

to a performance estimation proxy for assessing a specific architecture, like in Abdelfattah

et al. (2021). The overall NASWOT score (NS) per architecture is thus estimated as

NS = ln (|det(K)|) , (5.1)

where the symmetric matrix K of dimensions n×n (n = number of images for the current

input mini-batch X) represents the similarity between inputs for a given l-layered archi-

tecture to be assessed (see details in Mellor et al. (2021)). Its entries Ki,j are binary

values characterising each pair of input images i, j. The following score calculation only

considers layers of rectified units by the lth-layer activation function fl, and hence the

output (softmax-activated) layer is excluded. The underlying rationale of the approach is

that the more dissimilar the binary codes associated with each pair of inputs i, j are, the

easier it is for the network output layer to discern between them (Mellor et al. (2021)).

Such binary codes are computed as:

K =
L∑
l=0

((
gl(X ) · gl(X )T

)
+
(
(Il − gl(X )) · (Il − gl(X ))T

))
(5.2)

where X is the input to this layer (X ≡ X for l = 1). gl is a binary mapping gl : R+ ∪
{0} −→ Z2 operating over each single output of the layer l such that,

gl(x ∈ X ) :=

1 if fl(x) > 0

0 otherwise.
(5.3)

For simplicity, the full tensor containing mappings for layer l outputs is denoted as gl(X ).
This tensor is flattened such that K̂l := gl(X ) · gl(X )T is a n × n matrix. Likewise, Il is

a tensor of ones of the same dimensionality as gl(X ). Intuitively, equation equation 5.2

computes the similarity between each pair of images encoded in binary code {0, 1} ag-

gregated over layers 1, ... N . The final score summarises this similarity for the entire

architecture by computing the (log-) determinant of the matrix K (equation equation 5.1).

The next proxy score considered is SYNFLOW, a data-agnostic (training-independent)

index which focuses on weights values (instead of the rectified units outputs like NAS-

WOT), and hence it provides a complementary view to estimate the architecture perfor-

mance. Like in NASWOT, the final softmax layer l = N is also not considered in the

SYNFLOW computation.

In brief, the network is maximally stimulated with a responsive input (a ”white” im-
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age -tensor of ones). In this setting, a low dependency of the network output (at layer

l = N − 1) on weight magnitudes acts as a proxy for a high discrimination capability of

the architecture Abdelfattah et al. (2021). Intuitively, this proxy is indicative of the impor-

tance of parameters (weights) in determining the network output, such that sparseness

in relevant connections leads to more selective paths of information processing fed to the

classification layer N (see details in Tanaka et al. (2020)).

The score sl(θ) per-connection (that is, per-weight parameter) θ at layer l < N is

termed synaptic saliency Tanaka et al. (2020), which is simultaneously computed for all

layer connections θ ∈ Θl as

Sl(Θ) =
∂L
∂Θ
⊙Θ (5.4)

where L is the so-called pseudo-loss function, simply consisting of the aggregated acti-

vation for all units in layer N − 1 Tanaka et al. (2020), ⊙ is the Hadamard (element-wise)

product, and Sl(Θ) is a tensor of synaptic saliencies for all layer connections (note that

the derivative in equation 5.4 is computed over each input weight θ of the layer, and it is

represented in this compact fashion for simplicity in the description).

Next, following Abdelfattah et al. (2021), all individual scores per neuron i in layer l

are aggregated, where the subset Θi,l ⊂ Θl contains the neuron’s input weights, to obtain

Si,l =
∑

θ∈Θi,l
sl(θ). To conclude, the process is taken one step further by averaging these

summarised scores per layer and neuron, Si,l, into a scalar index characterising the entire

architecture as:

ln

∑N−1
l=1

(
1

(Θl,i)
·
∑(Θi,l)

i=1 ln(Si,l + 1)
)

N − 1

 (5.5)

Before the main experiments, an ablation study was conducted to explore different

backbone architectures and to determine which ones operate optimally for SIXray and

why. This can grant us an understanding of what design patterns should be included

in the search space for the ”ideal” architecture. The study will also establish baseline

models to compare with MEOW models.

The findings from this ablation study would not only serve to compare the performance

of different architectures/layer blocks but also provide insights into additional objectives

that can be considered when conducting the multi-objective optimisation for the problem

at hand. More broadly, this can open up the possibility of establishing methodological

guidelines for discovering such qualitative objectives when the approach is applied to

real-world scenarios, such as the ones shown next.
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5.1.3 Experimental setup

To conduct this study, an Adam optimiser is used with a learning rate of 0.001, β1 = 0.9,

β2 = 0.99, ϵ = 11̇0−8 and a conventional categorical cross-entropy loss. The motivation

behind these hyperparameters is based on the same reasoning as in Chapter 3. To adjust

the architectures to the given problems, the top layers are discarded for all architectures,

and the same five dense layers responsible for classifying the produced features from

the competing architectures are added to ensure a fair comparison. Categorical cross-

entropy is used as loss and also shuffle and fetch the dataset using the same random

seeds. Each architecture was trained for 50 epochs and evaluated on the same held-out

test set. Not augmentation is used during the study to keep as many control variables as

possible.

After setting up the corresponding data loaders and computing the benchmarks, the

general process can be described by the following steps: 1. Specify hyperparameters,

which include reference points for each of the objectives. The reference points for SIXray

and the Residual datasets are empirically chosen to be 600 and 80 (for NASWOT and

the SYNFLOW score, respectively) 2. MEOW algorithm runs for g generations with a

population size p. The specified maximum number of convolutional layers to be used

in all experiments in this work is set to 35. 3. Pareto front of produced solutions is

taken and the architectures are trained for 50 epochs following the same process as with

the other state-of-the-art methods. 4 The predictions of the models are taken and an

ensemble model is constructed that uses the probabilities of all discovered architectures

to take a final decision. 5 All architectures and the ensemble model are evaluated on

the dataset at hand. The results report the best-performing architecture score from the

MEOW generation (labelled ”MEOW-opt” in Tables 5.1 and 5.2) as well as the score from

the ensemble models (labelled ”MEOW-ens” in Tables 5.1 and 5.2).

The reason for the increase of maximum number of layers allowed when compared to

RAMOSS in Chapter 4 and MONCAE in Chapter 3 is mainly based on the dataset and

on the state-of-the-art models (Szegedy et al. 2015b, Tan et al. 2019, He et al. 2015). A

few runs with running the algorithm with more than 35 allowed layers were attempted but

unfortunately some hardware limitations were encountered with the available resources

for this project, thus the maximum feasibile 35 was finally chosen.

5.1.4 Results and Discussion

The results are reported based on the average precision in the case of SIXray and the two

separate accuracies for the two outputs for the Residuals dataset. The reason for using

precision for SIXray is not only to match the original SIXray paper Miao et al. (2019) but

also because of the massive imbalance in the dataset. With the Residuals dataset, the

ratio is relatively balanced. Hence, the section is first going to focus on accuracy and
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Table 5.1: SIXray-10 results. Notice that the MEOW-opt and MEOW-ens methods achieve
the highest mAP, and the state-of-the-art lags behind significantly. Interestingly, for the
most oversampled class, ”Pliers” (except ”Negative”) DenseNet is achieving better per-
formance, but the MEOW architectures balance the rest of the classes more effectively
and are especially good at classifying the most underrepresented class ”Scissors”.

Architecture AP Gun AP Knife AP Wrench AP Pliers AP Scissors mAP
ResNet34 89.71 85.46 62.48 83.50 52.99 74.83
ResNet50 90.64 87.17 64.31 85.78 61.58 77.87
ResNet101 87.65 84.26 69.33 85.29 60.39 77.38
Inception-v3 90.05 83.80 68.11 84.45 58.66 77.01
DenseNet 87.36 87.71 64.15 87.63 59.95 77.36
MEOW-opt 94.93 89.47 67.48 86.13 89.29 85.46
MEOW-ens 95.51 94.04 77.34 76.12 96.34 87.87

then dive deep into the different threat types and the corresponding f1 scores. First, the

SIXray results are discussed.

Table 5.1 shows that from the state-of-the-art architectures, the best ones are ResNet50

and ResNet101, which are mostly on par with DenseNet.Interestingly, most architectures

display consistent performance throughout all threat classes, although the number of im-

ages with the class ”Scissors” is the most undersampled one both in terms of training and

testing samples (Figure 5.1).

Moreover, DenseNet is the best architecture for detecting Pliers, which is the class

with the most samples, excluding the benign ones. However, the best-recognised classes

seem to be the Gun and the Knife throughout most architectures.

Further analysis shows a general increase in performance going from ResNet34 to

ResNet50, but at the same time, from ResNet50 to ResNet101, the performance drops

except for a single class. This phenomenon can be explained by the depth of ResNet101,

which may prevent it from converging for the same 50 epochs as ResNet50. Also, it is

possible that the model is overparameterised for this particular problem in line with the

findings of Pasupa and Sunhem (2016) and Malach and Shalev-Shwartz (2019).

Table 5.2: Residuals results. The residual problem consists of two separate tasks: de-
tecting the type of modification and the threat of the modification. The following table
displays the averaged results for both of these serape multi-class outputs and even
though marginally, MEOW architectures outperform the state-of-the-art. Remember that
the MEOW architectures are substantially smaller than the other ones.

Architecture Threat Accuracy Modification Accuracy
Inception-v3 77.52 79.21
Nasnetmobile 68.15 72.96
Inceptionresnetv2 89.06 88.22
Resnet50 88.82 87.26
MEOW-opt 89.18 88.34
MEOW-ens 91.23 89.06
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Table 5.3: Residuals results in % f-1 score per class. Here, the detailed per-class scores
of Table 5.2 reveal that MEOW architectures, consistently with the SIXray results, achieve
the best balance of different classes and are outperformed only for one type of modifica-
tion by a state-of-the-art model with less than 0.5%. Note that MEOW architectures are
substantially smaller than the other ones.

Architecture Threat Modification
Threat 1 Threat 2 Threat 3 Threat 4 None Type 1 Type 2 Type 3 Benign

InceptionV3 87.46 87.80 80.36 70.00 71.00 91.13 83.94 60.08 71.30
NasnetMobile 72.22 84.52 40.26 67.06 67.65 86.01 77.20 51.72 66.95
InceptionResNetv2 89.03 89.76 85.71 90.28 89.60 93.54 87.88 78.19 90.06
ResNet50 89.70 89.55 88.70 89.07 87.33 92.49 88.00 77.02 86.96
MEOW-opt 88.74 87.82 87.55 90.40 90.06 93.78 87.66 79.89 88.24
RANISSens 92.11 92.94 91.98 90.27 90.00 94.81 88.02 79.53 89.74

The analysis of the models produced by MEOW indicates that they effectively cap-

tured the imbalanced nature of the data, as demonstrated by their performance on under-

sampled classes and overall accuracy. This suggests that the multi-objective optimisation

process employed by the underlying RAMOSS during architecture search leads to the de-

velopment of well-discriminative models. This property can be attributed to the influence

of the proxy scores, which are designed to reward architectures that can discern distinct

or dissimilar features in the data. In this case, it has resulted in models that were par-

ticularly effective at differentiating between the various classes. In fact, the best MEOW

architecture outperforms state-of-the-art models on the SIXray dataset, even when the

class-balanced hierarchical refinement (CHR) technique described in Miao et al. (2019)

is used.

The gap between the architecture discovered through the MEOW method and the

state-of-the-art calls for further investigation into the importance of designing domain-

specific architectures. Further, the MEOW-opt architecture utilises just above 11 million

parameters, significantly fewer than the 23.5 million parameters used by ResNet50. It

is possible that the superior performance of the MEOW model can be attributed to its

unique architecture, which warrants closer examination of the architecture (See Figure

5.5).

One of the key steps in the CHR Miao et al. (2019) is the hierarchical refinement

which utilises low and high-level features by concatenating intermediate activations and

then filtering out noisy information based on the signals of the activations of the next

layer. Each selected layer for feature extraction thus becomes a separate stream of layer

l activations ãl that is fed into an auxiliary classifier f l(ãln; ξl) = yln where ξl is the hashing

vectoriser of the selected layer and finally all yl
n are averaged to obtain the final output

y. Looking back at the architecture discovered by MEOW in Figure 5.5, some large skip

connections can be seen. After the first convolutional layer, a skip connection is made to

a much lower dimensional representation layer.

Then, the signals are added inside what looks like an auxiliary feature extraction arm,
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which is effectively similar to what the CHR accomplishes with the separated streams.

Moreover, the architecture seems to be composed of ResNet-like blocks with various

degrees of skip connection depth, which, as evident from Table 5.1, seems to be working

better than InceptionNet or DenseNet-like blocks.

Interestingly, the models produced from MEOW excelled at recognising different classes,

which is attributed to the multi-objective optimisation underneath the algorithm. To utilise

a better portion of the generated front of solutions rather than just one (in the form of

MEOW-opt), four architectures with the highest contributing hypervolume were selected.

Then, a classifier is designed to use the outputs of these architectures y,y′...y′n in or-

der to make a final prediction yens, which can then be evaluated using the actual labels

y∗. The architecture of the ensemble model is custom-designed, and it is composed of a

custom layer, the aim of which is to do a weighted average of the predicted probabilities

y.

Figure 5.4: Hierarchical refinement process from Miao et al. (2019). al signifies the ac-
tivation a at layer l of the architecture. g is the function from CHR that determines and
filters the noise. The + denotes concatenation, and ã denotes the filtered activation after
g is applied.

The ensemble output naturally achieves the best overall scores, with the sole ex-

ception of the most out-of-distribution upsampled class in the testing set - the Pliers, in

which it does not outperform DenseNet. Overall, thanks to the ensemble approach, the

state-of-the-art was outperformed by more than 10%, which is more than five times better

improvement than the one derived from the incorporation of CHR Miao et al. (2019) (a

visual representation of the CHR approach may be seen in Figure 5.4).

Next, the state-of-the-art is explored in a real-world industrial proprietary problem and

the effectiveness of newly developed AutoML (such as RAMOSS) is tested. First, the

accuracy of the two different problems in the Residuals dataset defined in the previous

section is examined.

Succinctly, each scan has an associated threat type and a modification type. As this
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requires multiple different outputs, all models are fitted with the same top layers (similar to

the SIXray experiments). From Table 5.2, it can be observed that the MEOW architectures

are once again outperforming all chosen benchmark architectures. Interestingly, the gap

between the scores is significantly smaller but still consistent with the SIXray results.

Strikingly, judging by the overall results, NasNetMobile and Inception-v3 fail to capture

the features of the datasets, which reveals that conventional state-of-the-art architectures

should not be treated as a silver bullet to any computer vision problem. Having a 10%

drop compared to ResNet is also inconsistent with the results for SIXray. It uncovers

a gap in the ability to estimate their performance on a new dataset and the benefits of

tailoring an architecture to fit the particular problem.

To investigate the results more closely, the F1 scores for each class for both of the

outputs are explored as presented in Table 5.3. Unsurprisingly, the MEOW architectures

are taking up the top positions. However, in contrast to SIXray, the utility of the ensem-

ble technique here is limited as the best MEOW architecture outperforms the ensemble

method for Micro threat modifications as well as for samples with no threat modifications.

Even though the results are close and the ensemble method achieves the best overall

results, this discrepancy is attributed to lower diversity in the produced approximation set

of MEOW for the Residuals dataset. Since only 20 generations with a population size of

20 are used, it is fair to assume that the algorithm did not successfully explore the enor-

mous search space. Future work needs to address this caveat with an ablation study

over these two hyperparameters.

It is worth mentioning that using the advancements listed in the previous section (by

using the proxy score heuristic), the time needed to run the NAS part of MEOW was re-

duced to under 1 GPU hour for a population size of 20 for 20 generations, which is first a

drastic improvement over the 8 hours required for RAMOSS to discover a segmentation

model on Cityscapes with the same hyperparameters (as discussed in Chapter 4) (Di-

manov et al. 2022), but also this makes it one of the fastest NAS runs. Cityscapes is also

3 times smaller dataset, making the 8x speed-up even more salient.

Moreover, since there is no training during the discovery phase, it is now possible to

run the algorithm without the need of a GPU, since the CPU can handle inference on

most machines. This advancement makes the research field more accessible for new

practitioners and also feasible to use in a plethora of new domains and industry settings,

as suggested by the experimental results.

In this study, the ability of an improved version of RAMOSS (called MEOW) to conduct

multi-input/multi-output and multi-label classification problems is demonstrated. However,

as discussed in Chapter 4, the original purpose of RAMOSS is to address semantic

segmentation problems.

Hence, using a supplementary task provided by the residuals datasets, the problem

can be rephrased as a semantic segmentation one using the same multi-input sequence



96
CHAPTER 5. APPLICATIONS OF RAMOSS AND MONCAE TO CONCEALED

WEAPON DETECTION

Table 5.4: Results on Residuals dataset with segmentation masks. In each column the
top 3 approaches are highlighted ( first , second and third best). While MEOW-opt
does not achieve the best test IOU and F1, it remains the only architecture capable
of yielding a validation performance which can resemble its performance on an unseen
dataset. Another property making the MEOW architecture potentially the most favourable
out of the mix is that it uses only 0.53M parameters, compared to 62 and 30 for the other
better-performing alternatives.

Architecture Number of parameters (M) Validation IOU (%) Validation f1 (%) Test IOU (%) Test f1 (%)
MobileNet - UNet 8.34 53.27 69.51 21.60 35.52
VGG16 - UNet 23.75 55.49 71.38 33.48 50.16
ResNet18 - UNet 14.34 54.96 70.93 37.98 55.05
ResNet34 - UNet 24.46 64.46 78.39 37.73 54.79
ResNet50 - UNet 32.56 53.09 69.36 39.18 56.30
InceptionResNetv2- UNet 62.06 62.93 77.25 42.80 59.95
Inceptionv3 - UNet 29.93 59.49 74.60 43.98 61.09
MEOW-opt 0.53 40.04 57.19 40.56 57.72

(i.e., two input images are provided to the network).

The performance of MEOW is then compared with some state-of-the-art methods that

are compatible with the dataset, as shown in Table 5.4. Results from the segmentation

study are consistent with the ones from Chapter 4. The best-balanced MEOW architec-

ture (MEOW-opt) manages to achieve the third-best results in terms of test IOU and F1

score while being 30-60 times smaller in terms of the number of parameters compared

to the first and second methods. Notably, MEOW-opt is the only one that shows similar

results between the validation and the testing sets, indicating that its generalisation error

is lower and its training and validation results are more representative of its real-world

performance compared to the alternatives. In contrast, the results highlight the poten-

tially detrimental effect of using a well-performing generic architecture on a validation

set (e.g., ResNet34-Unet) when it is applied in a real-world scenario. It is possible to

speculate that this consistent performance is tied to the fact that MEOW-opt is not over-

parameterised like some of the alternatives, although the second least parameterised

architecture (MobileNet-UNet) fails to display this ability.

Although the causality of the consistent performance of MEOW has yet to be estab-

lished, its generalisation capacity is attributed to the fact that the architecture is custom-

tailored for the problem at hand. This serves as evidence for the effectiveness of the

neuroevolution-controlled optimisation happening in the background, as well as the need

for further research on using AutoML techniques for industrial problems.
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Figure 5.5: MEOW-opt architecture for SIXray (truncated after the last convolution to
enhance legibility).
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Figure 5.6: MEOW-opt architecture for the Residuals dataset.
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5.1.5 Conclusion and Future work

Traditional neural architecture search methods, a particularly fast-evolving, ”hot” research

topic, have limited use in the industry, given their extremely high computational cost. This

study, proposes a new NAS approach to feasibly address real-world problems in threat

detection with a substantially lower computational cost. Interestingly, from a practical per-

spective, the AutoML approach suggested is modularised and hence used in a reason-

ably straightforward fashion with new datasets, which is not the case with other AutoML

techniques (Real et al. 2017, Liu et al. 2018 2019a).

In short, an ensemble approach is designed that leverages multiple sub-optimally dis-

covered architectures instead of disregarding them (as is typically the case). Although the

ensemble strategy provides promising results, future work can explore using the collec-

tive knowledge of the generated networks to conduct knowledge distillation Hinton et al.

(2015).

The presented method typically improves the overall performance of the state-of-the-

art in both datasets used. Specifically, its behaviour in the most extensive public con-

cealed weapon detection dataset (SIXray) avows the importance of making AutoML scal-

able to real-world scenarios and designing such systems in a ”disentangled” fashion from

the dataset used for proof of concept.

Results in both datasets suggest that heuristic performance estimation can drastically

improve the computational time of such algorithms, effectively replacing highly resource-

greedy evaluation in these settings. A well-performing multi-objective approach is also

modified, to use multiple proxy scores to speed up the architecture search and show-

case how these proxies can be used in conjunction with multi-objective optimisation to

outperform state-of-the-art architectures. In summary, the results and the remarkably low

search time (about 1 hour) without the need to use GPUs provide further evidence of the

untapped potential of AutoML in industrial applications.

All in all, in this chapter and, more widely in this thesis, multiple datasets and deep

learning approaches have been explored. To conclude, albeit obvious, it is worth stress-

ing that understanding how a model operates is entangled with the understanding of the

dataset used to train and evaluate it (giving birth to the popular saying in the deep learning

community ”garbage in, garbage out” (Kilkenny and Robinson 2018, Rose and Fischer

2011, Sanders and Saxe 2017)). Along these lines, the next section in this thesis ex-

plores the idea of repurposing this thesis’ AutoML efforts to make a contribution to data

quality.
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5.2 MIRA-ME: Muli-objectIve coReset discovery through evo-

lutionAry algorithMs in computEr vision

With the new means for generating and collecting data in the last few decades, a plethora

of large datasets has recently appeared (Miao et al. 2019, Lin et al. 2014). Some are

publicly available (e.g., ImageNet (Deng et al. 2009), SIXray (Miao et al. 2019), and

many others Cordts et al. (2015), Lin et al. (2014) ) while others are considered valuable

intellectual property and are strictly confidential (Gervais 2019).

This influx of data is a great enabler of deep learning Goodfellow et al. (2016b), Surya

(2015) since it can potentially foster model accuracy more by considering a larger spec-

trum of dataset probability distributions. It makes models more robust since the impor-

tance of potential outliers during inference can be minimised by incorporating their rep-

resentative examples in the training set (Limna 2022). Also, the universal approximation

theorem generally thrives with more data, which can better describe the underlying dis-

tribution Goodfellow et al. (2016b).

However, a new caveat has recently surfaced. Deep learning architecture training is

computationally expensive, and each new adjustment typically requires to be tested using

the full datasets for optimal reliability Settles (2009), resulting in many GPU hours overall

Ju et al. (2022). Contemporary deep learning, especially in the computer vision domain,

requires an immense amount of data to perform well, which in turn requires a great deal

of human power to gather, label and pre-process this dataJu et al. (2022), Bhalgat et al.

(2018).

The process of building and training machine learning models can be time-consuming

and resource-intensive and can pose several limitations, including:

1. Difficulty in rapid prototyping: Quickly testing and iterating on different model ar-

chitectures and hyperparameter settings can be challenging, as the training process

may be slow and costly (Ju et al. 2022).

2. High overhead in system upgrades and new projects: Changing or updating

existing models or starting new projects from scratch can be burdensome due to

the need to retrain and fine-tune models (Ju et al. 2022).

3. Overfitting to anomalous patterns such as a potential class imbalance in the

training set not representative of the real-world distribution (Russo and Zou 2019).

4. Progressively decreasing quality control of the data: The more data is col-

lected, the harder it becomes to abide by initially set labelling conventions and pro-

cesses. This discrepancy can lead to inconsistent labelling (like the Ignore label in

Kitty) (Zhang et al. 2017b), noisy samples (Valvano et al. 2018) or expensive re-

labelling in case of problem reformulation (Goodfellow et al. 2016b) among many
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other Valvano et al. (2018), Solorio-Fernández et al. (2020), Ju et al. (2022).

Research dating back to the 60s and 70s Wilson (1972) started looking into different

ways to compress these datasets by only using a subsample of the records for training

the models while conserving the performance as much as possible. With the explosive

growth of data (both in terms of dimensionality and of sheer quantity), new methods

started to emerge (Rolnick et al. 2017, Dubey et al. 2018, Killamsetty et al. 2021) and

the idea of a ”coreset” was coined in Sener and Savarese (2017) . The coreset can be

described as the smallest subset of an entire dataset that can be used to train a machine

learning model to achieve satisfactory performance on the whole dataset.

Conducting coreset discovery in a supervised fashion is fundamental, but unfortu-

nately, it does not directly contribute to solving the problem of having to annotate all sam-

ples upfront Ju et al. (2022). Moreover, while the idea of supervised coreset discovery

has received a lot of research attention for years (Olvera-López et al. 2010, Rolnick et al.

2017, Killamsetty et al. 2021, Barbiero et al. 2020), some studies recently are attempting

to achieve similar results without the need of labels as a prerequisite, works like Ju et al.

(2022) attempt to discover coresets in a fully unsupervised fashion.

While there are many different methods, one of particular interest in this work is the

employment of evolutionary algorithms to approximate such coresets. This interest stems

from the ability of these algorithms to allow for multi-objective optimisation, which, as

noted by Barbiero et al. (2020), is of extreme importance since the approach at hand

should balance the quantity as well as the quality of the chosen records.

To address this scenario, this thesis presents a novel evolutionary-based approach to

coreset discovery by:

1. Adapting neuroevolutionary algorithm for neural architecture search to conduct large-

scale image coreset discovery.

2. Proposing a new genome construction approach for evolutionary coreset discovery,

which enhances the explainability of the results.

3. Presenting a novel unsupervised evolutionary-based approach for coreset discov-

ery using convolutional autoencoders.

5.2.1 Coreset Discovery

There is a multitude of different methods for ”dataset pruning” -as termed in Wang et al.

(2018). In this work, dataset pruning is loosely used to describe the process of reducing

the dataset in any way. These methods could be categorised into three main groups: 1.

instance selection when part of the samples are selected and are deemed to be ”valuable”

(Olvera-López et al. 2010). 2. Active learning, when a portion of the data (usually the
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part a particular model predicted with the lowest confidence (Killamsetty et al. 2021) )

is used to estimate what new data needs to be labelled and used for training with a

solid human-in-the-loop presence for progressively supplying new labels. 3. Dataset

distillation, consisting of artificially generating samples that can trick a certain model into

making sensible predictions on the normal data Wang et al. (2018).

Dataset distillation methods can compress a full dataset into a single instance per

class. These methods have recently achieved impressive compression rates (Barbiero

et al. 2019). However, producing these distillations requires significant time to train the

model on the full dataset upfront (Wang et al. 2021). In addition, any changes to the

model or additions to the data require recalibration of the distillations, which can be ex-

pensive and computationally intensive (Wang et al. 2018). Despite their effectiveness,

the high cost of producing and maintaining dataset distillations may limit their practicality

in certain contexts.

This study focuses on coreset discovery, a method of instance selection that aims to

identify the most ”valuable” or informative samples in a dataset Ju et al. (2022). Coreset

discovery approaches can be grouped based on their feature extraction process and

the use of labels Ju et al. (2022). This work does not consider methods that rely on

manually specified features, such as those described in Campbell and Broderick (2018),

Tsang et al. (2005), Tschiatschek et al. (2014), Wei et al. (2015), as manual feature

engineering is infeasible in the context of industrial (big data) applications for which MIRA-

ME is intended.

As the coreset discovery field rapidly evolves, no standard established methods ex-

ist. Still, some of the most revolutionary and best-performing ones are presented here

to the best of the author’s knowledge. A popular approach a while ago was to use clus-

tering methods such as k-means or similar techniques Har-Peled and Mazumdar (2004),

Har-Peled and Kushal (2005). Later, the idea was refined by methods such as Frank-

Wolfe Clarkson (2010), and GIGA Campbell and Broderick (2018) that are based on the

comparison between approximated and full likelihoods.

However, findings in Toneva et al. (2018) pushed the field’s boundaries even further

by suggesting that coresets can be discovered using neural networks and examining

closely catastrophic forgetting events. This ”forgetting approach” quickly became popular

and inspired multiple methods like Ju et al. (2022), Barbiero et al. (2019), Valvano et al.

(2018) and the one presented in this chapter, which leverages the findings of Toneva et al.

(2018).

Although many of the approaches seem to be reducing the datasets successfully, Bar-

biero et al. (2019) and Killamsetty et al. (2021) discuss the importance of phrasing the

coreset discovery problem as a multi-objective optimisation, striving to minimise the used

data points, while preserving performance as much as possible. An example of such

bi-level optimisation techniques is Killamsetty et al. (2021) ’s study - Glister- which out-
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performs the state-of-the-art by balancing model performance and coreset size through

the use of Naive Bayes as well as nearest neighbour search in an iterative fashion.

As discussed in Chapter 2, evolutionary algorithms are powerful population-based

stochastic optimisation techniques that are renowned for their ability to conduct multi-

objective optimisation Deb et al. (2002a), Zhang and Li (2007), Deb (2014).

At the early stages of the ”instance selection” field, works tried to utilise these powerful

tools Derrac et al. (2012). However, to the best of the author’s knowledge, the only

work that has successfully utilised evolutionary algorithms to address coreset discovery

in the context of a somewhat large-scale dataset is EvoCore Barbiero et al. (2019). They

have demonstrated that evolutionary algorithms (NSGA-II Deb et al. (2002a) in particular)

can be used to extract coreset from many problems, including Mnist, a low-dimensional

computer vision dataset.

Approaches discussed so far fall in the family of supervised coreset selection. How-

ever, new ways to conduct coreset selection have been recently proposed (Valvano et al.

2018, Ju et al. 2022). This new niche uses contrastive learning and the ability of autoen-

coders to compress and reconstruct images out of these compressions. Specifically, the

idea behind (Valvano et al. 2018) is that an objective function can be defined such that it

takes into consideration how well a variational autoencoder can reconstruct images and

how spread the representations of the data points are in the compressed space gener-

ated by the bottleneck layer. Along these lines, Valvano et al. (2018) argues that samples

that can be generated through simple augmentation should not be part of the generated

coreset and that they are ”not valuable”. To avoid picking such samples, they evaluate

local manifold Euclidean distances (Valvano et al. 2018).

By contrast, the work of (Ju et al. 2022) focuses on the cosine similarity of samples

to discriminate representations of data for selecting coreset candidates. Their framework

utilises SimCLR Chen et al. (2020), MoCo (He et al. 2020) and others to showcase the

potential of using contrastive learning for coreset selection.

Unsupervised coreset selection studies consistently argue that the key limitation of

supervised approaches is the requirement for labelled data (Valvano et al. 2018). In

contrast, unsupervised approaches do not rely on labelled data and can, therefore, be

more widely applied (Ju et al. 2022). Thus, unsupervised coreset discovery has become

a promising area of research, with the potential to enable more efficient and effective

instance selection in a variety of contexts (Valvano et al. 2018, Ju et al. 2022, Barbiero

et al. 2019).

The authors of Barbiero et al. (2019) employ a simple ridge classifier instead of a

computer vision non-linear model such as a convolutional neural network. Their work is

leveraged as a stepping stone to the initial design of the MIRA-ME backbone. Specifi-

cally, in their study, authors phrase the evolutionary problem as a discrete search of im-

age indices, despite evolutionary algorithms’ tendency to operate better with continuous
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Figure 5.7: MIRA-ME variation process. Notice that during the variation, the selected
coreset encodings reproduce, and then variation is applied for the effective exploration
and exploitation of the search space.

variables (Rothlauf 2006, Larranaga et al. 2013).

5.2.2 Methodology

Here, each sample (an image denoted by the tensor xi) is assigned a continuous weight

while letting the algorithm control the threshold above which indices can be selected.

This filtering contrasts with previous evolutionary strategies, which instead phrase the

task such that the algorithm samples indices in a discrete fashion Barbiero et al. (2019).

The advantage of MIRA-ME is that it conserves information about the importance of

a certain sample within the population and propagates the joint progress for all solutions

through the evolutionary processes (genome selection and variation). Even further, the

variation is performed in a more intuitive way with a continuous search space instead of

a discrete one like previously Barbiero et al. (2019).

A genome w (out the population W of possible genomes) is simply an n+1-dimensional

vector of continuous values wi ∈ (0, 1], i = 1, ...n + 1, where n is the number of images

(samples). Each vector entry wi, i ≤ n, represents a weight assigned to the correspond-

ing image (initially random), which encodes the importance of the image for the classifi-

cation task and hence its susceptibility to being part of the coreset. The last entry, wn+1,

encodes a threshold value.

To discover critical datasets, MIRA-ME relies on two different methods- the ”naive”

pipeline and the ”unsupervised” pipeline. Both pipelines rely on already established evo-

lutionary instance selection methodology (Derrac et al. 2012) and an encoding (w) dis-

cussed above, as well as variation based on Figure 5.7 . Adding the threshold to be part

of the genome leaves both the sample selection and determining the threshold to the al-

gorithm, which lets the algorithm fully control the instance selection process in difference

to previous works (e.g., (Barbiero et al. 2019)). This unique property is valuable since the

size of the coreset is not known in advance and methods like Glister (Killamsetty et al.

2021) or SimCLR (Chen et al. 2020, Ju et al. 2022) share the limitation that all of them

require it as a hyperparameter.
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Figure 5.8: MIRA-ME images encoding process. Notice that each image xi has an asso-
ciated weight in the genome w and the threshold(wn+1) used to determine if an image is
”important enough” to be in the coreset is part of the genome and is thus subject to the
discovery process of the evolutionary algorithm.

The way the image candidates are chosen to belong to the coreset during each it-

eration in both the naive and the unsupervised pipelines is by simply selecting each ith

image xi whose weight wi exceeds the threshold wn+1 (illustrated in Figure 5.8). The

naive pipeline then uses the coreset as a classification task in a multi-objective setting,

providing the output y containing the values of the multiple objectives (Figure 5.9). The

first objective y1 (the first entry of y) is just the current number of images in the coreset,

minimise
w∈W

y1(w) =
∑n

i ŵi,where ŵi :=

1 if wi > wn+1

0 otherwise,

subject to wi ∈ (0, 1] ∀i ∈ {1, ..., n+ 1} ⊂ N

(5.6)

The second objective (y2) in the naive pipeline is the validation performance obtained

after training for 5 epochs (unless specified otherwise) using the provided model and the

selected coreset of images x̂, which represents an n̂× 1 set of coreset images xi. Inter-

estingly, every ”weight” wi in the genome can be considered as a proxy of the importance

of its corresponding image (xi), and hence its proneness to belong to the coreset. This

property fosters explainability of the produced coreset x̂.

Even though the naive approach seems to be working well in literature (Chen et al.

2020, Ju et al. 2022, Barbiero et al. 2019), MIRA-ME goes one step further by compress-
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Figure 5.9: ”Naive” MIRA-ME evaluation process. The two objectives considered here
are the number of images and the task error rate. Notice that the green dots (represent-
ing non-dominated solutions) are the solutions that are going to be selected during the
selection process based on their contributing hypervolume. As part of the evaluation, the
network is trained with the selected coreset x̂ for each solution in the population (dot in
the scatter plot on the left).

ing the dataset in an unsupervised fashion. This is of critical importance in scenarios

where labelling data or data collection is expensive. Using this unsupervised pipeline, it

is possible to filter out highly representative data and then focus on it or extract valuable

insights about the dataset at the early stages of data collection before labels are pro-

vided. The beauty of not needing labels is that a task may not be defined yet or it may be

changed down the line, and it is not a prerequisite for applying the unsupervised pipeline

(Valvano et al. 2018).

The unsupervised pipeline (the evaluation process of which is presented in Figure

5.10) operates in the following way: First, an autoencoder (parametrised by θ) is con-

structed (ẑ = f(x̂; θ)), which is composed of two parts. The encoder part, a = g(x̂;ψ)

with parameters ψ is such that each raw coreset x̂ is transformed and compressed in a

smaller set of activations a in the bottleneck layer, where a represents a n̂ × 1 set con-

taining the compressed representations ai of each coreset image xi (for simplicity in the

description, this summarised representation was used for all images).

Then, compressed representations a are used to reconstruct an approximation of the

raw images ẑ = h(a;ϕ) where h (parameterised by ϕ) is the decoder component of the

autoencoder f .

The autoencoder is trained for 10 epochs, and then activations a from the bottleneck

layer are extracted to compute their n̂× n̂ covariance matrix C (where n̂ is the number of

images in the coreset x̂).
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Figure 5.10: Evaluation in the ”unsupervised” pipeline. Here there are 3 objectives: num-
ber of images, reconstruction loss and distance of latent representations. The latent
representations are captures from the trained convolutional autoencoders used for the
particular dataset. The autoencoders used here are discovered using MONCAE. Notice
that in the sample provided, the threat is clearly visible in the reconstructed image.

Then, the Mahalanobis distance of each bottleneck layer activation ai corresponding

to the image x̂i (McLachlan 1999) is calculated, which has proven to be effective with

multi-dimensional data problems (Gallego et al. 2013):

di =
√
(ai − µ · I)T · C−1 · (ai − µ · I)) (5.7)

where µ is the overall mean of the covariance matrix and I is a column vector of ones of

the same dimensionality as the compressed representation of the ith image, ai (note that

p×p bottleneck layer activations to was transformed to 2p×1 column vector for performing

this operation). Thus, di act as a proxy (under normality assumptions) of the likelihood of

the compressed representation of the image x̂i.

The final step is to calculate the average d of all distances, defining the first objective in

the evolutionary algorithm as di− d, (informally, the ”spread” of the average Mahalanobis

distance for the ith image).

The second objective is how well the autoencoder performed on a held-out validation

set by minimising the mean squared error between the samples from the validation set

and their ẑ counterparts. The third objective is the number of samples (like in the naive

approach). In short, a major advantage of both MIRA-ME pipelines over other state-of-

the-art (e.g., (Killamsetty et al. 2021)) is that the coreset size is dynamically discovered

by the algorithm itself (there is no need to specify it upfront). Thus, no prior knowledge

of the data itself is required and hence the process can be fully automated. In addition,

instead of running multiple times the algorithms in an effort to understand performance

with different compression rates (e.g., Killamsetty et al. (2021), Ju et al. (2022)), MIRA-

ME generates a pool of solutions (approximation set) that to select from, and hence no

manual tuning is required.
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5.2.3 Experimental setup

To evaluate how effective both the ”naive” and the ”unsupervised” pipelines are, their

performance is compared to random sampling as well as to state-of-the-art methods for

coreset discovery. Towards this goal, unless otherwise specified, the average results of

five independent runs with the selected method/coreset size are presented. Interestingly,

even with the uniform random selection for both MNIST and CIFAR-10 no high standard

deviation is observed and the results of the separate runs have minimal standard devia-

tion (less than 2%), hence they are considered highly representative of the problems.

The experiments are conducted using three separate datasets that were already used

as part of the previous chapters. Moreover, some of the few computer vision coreset

approaches in literature use these datasets, allowing MIRA-ME results to be comparable

to the state-of-the-art. Below, some important properties in the context of this particular

work of the already discussed datasets are established:

1. MNIST - a dataset containing 70000 visual 28x28 grayscale images of all 10 digits.

10000 of them are used as a held-out test set.

2. CIFAR10 - a dataset containing 60000 visual 32x32 coloured images of 10 different

classes mainly composed of animals and vehicles. 10000 of them are used as a

held-out test set.

3. SIXray10 - a dataset containing 74960 x-ray high-resolution images. This dataset is

multi-label, meaning that even though there are five classes representing different

types of weapons, each image can belong to a one, many or none of the classes.

This multi-label problem makes 32 possible unique label combinations. There is

also a huge imbalance present in the different classes, which is why accuracy is not

a good measure for this dataset (Miao et al. 2019).

To keep the results as comparable as possible LeNet (LeCun et al. 1998) is used

for both MNIST and CIFAR-10 1. For SIXray, LeNet is unable to capture the dataset

well, making deeper ResNet-50 a viable option (He et al. 2015). The models are trained

for the same number of epochs using SGD optimiser and the same schedule for the

learning rate. The models are trained with no augmentations to ensure the results are as

controlled as possible and to enhance the reproducibility of the results.

With CIFAR-10, the same methodology is followed, however to ensure all models are

trained in the same way for, a specific training cycle is used 2 where instead of using the

full CIFAR-10 dataset only the samples discovered by the evaluated method are used.

For the benchmarks, 10% and 20% of the dataset are used compared to 0.1%, 1% and

1With the exception of EvoCore and SimCLR for CIFAR-10
2defined by the following repository https://github.com/exelban/tensorflow-cifar-10
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10% for MNIST. To implement Glister, SIMClr and Random sampling, the DeepCore (Guo

et al. 2022) is used in line with the aim of keeping as many control variables as possible.

One of the aims of MIRA-ME is to investigate the performance of coreset methods on

large-scale data. While most of the literature focuses on small, low-dimensional datasets

(such as MNIST, CIFAR-10, etc.) for proof of concept (Valvano et al. 2018, Barbiero et al.

2019, Killamsetty et al. 2021, Ju et al. 2022), it is essential to establish benchmarks and

evaluate the feasibility of these methods. However, some approaches are designed in

a way that makes them incompatible with real-world problems (Ju et al. 2022). The aim

is to demonstrate the utility of MIRA-ME in large-scale problems. To that end, SIXray is

used as the dataset for the final set of experiments. Unfortunately, as SIXray is a multi-

label problem, it is incompatible with any of the unsupervised approaches tried. Therefore

MIRA-ME is compared to random selection and Glister. As this dataset has a high-class

imbalance, accuracy is not the best metric to assess performance, so average precision

is used for each class and the mean over all classes. The same training cycle for all

methods is used, training for 50 epochs using the SGD optimiser with a learning rate of

0.001 and a learning rate scheduler available in the MIRA-ME repository. ResNet50 is

used as the architecture. Here, for random and Glister use 3 budgets are used - 10%,

15% and 20%.

To discover a suitable autoencoder for the unsupervised pipeline, MONCAE (pre-

sented in Chapter 3 is employed. The default hyperparameters are used for the discovery

of the autoencoder, and the best-performing autoencoder (in terms of final cHV) is then

used.

5.2.4 Results and Discussion

Turning now to the results, Figure 5.11 shows the performance of various methods on

the MNIST dataset, which is the lowest-dimensional dataset used in the selection. Both

random sampling and Glister are used with 10% (6000 samples) and 1% (600 samples)

of the dataset. While most studies focus on budgets of 10% to 70% of the data, the focus

here is on the low-data regime and how the algorithms can compress the datasets the

most while retaining the original performance as much as possible. For the MIRA-ME

experiments, the coreset with the highest assigned contributing hypervolume indicator of

the produced set of solutions is used. In the MNIST scenario, the coreset with maximum

achieved compression is denoted by ”mc” in the results table.

As expected in the 10% budget, Glister(Killamsetty et al. 2021) and SimCLR(Ju et al.

2022) outperform random sampling, with SimCLR achieving the best MNIST result in the

whole selection. However, in the low-data regime (1% budget), it appears that random

sampling performs better at finding representative samples, as indicated by the results in

the table. This can be attributed to the fact that the distribution of classes in MNIST is
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Figure 5.11: MNIST MIRA-ME results. Random, Glister and SimCLR are run with 10%
and 1% of the dataset, and Random is run with 0.1%. Notice that in the ultra-low
data regime (below 1%), Random is clearly outperformed by genetic algorithms such as
EvoCore and MIRA-ME with maximum compression (MIRA-ME (naive) mc). MIRA-ME
(naive) mc stands for the coreset of the final population that has achieved the maximum
compression. Also, notice that both the naive and unsupervised versions of MIRA-ME
outperform Random with significantly fewer samples. While SimCLR and Glister beat
them, they use over 1000 more samples (and over 4000 in the case of the unsupervised
pipeline) than MIRA-ME.

Coreset Method Number of samples Test Accuracy
Random 6000 95.68%
Random 600 91.90%
Random 60 66.81%
Glister 6000 98.53%
Glister 600 64.50%
SimCLR 6000 98.13%
SimCLR 600 84.44%
EvoCore*3 82 77.2%
MIRA-ME (naive) 4918 97.67%
MIRA-ME (naive) mc 70 79.58%
MIRA-ME (unsupervised) 1859 95.70%

Figure 5.12: MNIST pixplots

(a)
Full MNIST dataset

(b) MIRA-ME(
naive) 8% of
MNIST

(c) MIRA-ME(
naive)mc samples

(d) MIRA-ME(
naive)mc samples
ordered
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Figure 5.13: CIFAR-10 MIRA-ME results. Notice that the advantages of MIRA-ME here
are even more prominent. While both pipelines are slightly outperformed by the other ap-
proaches when they use more than 2x the data, both MIRA-ME pipelines (using less than
8% of the data) outperform all approaches when they use 10% of the data. Interestingly,
the unsupervised pipeline here is again noticeably stronger than the naive pipeline and
uses even fewer samples.

Coreset Method Number of samples Test Accuracy
Random 5000 57.31 %
Random 10000 66.25%
Glister 5000 52.64%
Glister 10000 56.70%
SimCLR 5000 40.39%
SimCLR 10000 68.67%
MIRA-ME (naive) 4518 62.14%
MIRA-ME(unsupervised) 4423 65.05%

uniform; thus, random does have a high implicit chance of picking good samples, whereas

Glister’s way of picking ”hard samples” can lead to getting too many of a certain class and

too little of another at this high compression rate. This is in line with the experiments of

the authors when they compare Glister to Random with and without class imbalance

(Killamsetty et al. 2021). SimCLR results in the low data regime are consistent with the

ones of Glister, and the fact that the method only has one objective (cossim pair distance

in this case) might hinder its usefulness for such uniformly distributed datasets.

Nevertheless, MIRA-ME manages to beat the 10% Random while using a little over

8% of the training data and with the ”unsupervised” pipeline, it is on par with it while using

only 3% of the data. This performance can be credited to the fact that both MIRA-ME

approaches have multiple objectives instead of just one. EvoCore3 ’s results (Barbiero

et al. 2019) are also included as their work was a major motivation to attempt to use

evolutionary algorithms to start with. Even though EvoCore uses the Ridge classifier

instead of LeNet, the results are a testament to the potential of utilising evolutionary

3EvoCore uses a Ridge classifier and is not designed to work with deep learning models. Thus, it is not
directly comparable to the other results generated with the same methodology.
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Figure 5.14: CIFAR-10 pixplots

(a)
Full CIFAR-10
dataset

(b) MIRA-ME
(naive) 9% of
CIFAR-10

(c) Full CIFAR-10
dataset - samples
ordered

(d) MIRA-ME
(naive) 9% of
CIFAR-10(ordered)

algorithms in these scenarios.

While Glister and SimCLR achieve better accuracy at 10%, MIRA-ME uses less data

and also provides a set of solutions. Moreover, in the low data regime, MIRA-ME outper-

forms GLISTER significantly by beating the 1% accuracy of Glister with only 70 samples

(0.1%). Even though MIRA-ME achieves better accuracy with fewer samples than Evo-

Core, the comparison between the two is not entirely fair since EvoCore uses a linear

classifier instead of a CNN. The best part of the MIRA-ME results is that the assigned

scores for every single image provide an extra layer of explainability. While the discovered

threshold is used to find the actual subset, these scores can be used separately. Low as

well as high-scoring samples can be inspected for potential noise or other insights.

Interestingly, the ”unsupervised” pipeline achieves almost the same accuracy as the

”naive” one while using even fewer samples. In general, a trend begins to emerge that the

unsupervised approaches are generally getting better scores than their supervised coun-

terparts. This finding may feel counterintuitive at first as the provided labels in the super-

vised experiments should provide valuable information that the ”unsupervised” pipeline

doesn’t have access to. On the other hand, reconstructing the image might inherently

improve the representations learnt by the network and foster the idea of ”concept” repre-

sentations more closely.

To put this into perspective, in Figures 5.12 and 5.14 (with more detailed results view

in Figure 5.13) and 5.15, a library called PixPlot 4 is used to visualise the different sets.

Looking at Figure 5.12a and 5.12b, the compression becomes apparent because, on the

former, no digits are visible, where on the latter then start to become recognisable. In

Figure 5.12c and 5.12d, the difference with the full dataset is even more obvious and the

whole dataset can be easily displayed even with the constrained space in this A4 sheet

of paper.

What stands out in Figure 5.13 is the strong random baseline, which manages to

outperform Glister both at the 10% and 20% marks. This discrepancy with the results

4https://github.com/YaleDHLab/pix-plot
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Figure 5.15: SIXray10 pixplots

(a)
Full SIXray10
dataset

(b) MIRA-
ME(naive) on
SIXray10

(c) Full SIXray10
dataset - samples
ordered

(d) MIRA-
ME(naive) on
SIXray10 - ordered

Table 5.5: SIXRAY 10 MIRA-ME results. Notice that the MIRA-ME approaches are better
than both Glister and Random, even when these approaches use up to 3x more data.
What is more, the 62% achieved by the unsupervised pipeline (using less than 5% of the
data) is close to the model’s performance with the full dataset of around 77% presented
at the beginning of the chapter.

Coreset Method # of samples Gun Knife Wrench Pliers Scissors Average
Random 7496 71.41% 46.75% 15.68% 28.95% 0.08% 32.57%
Random 11,244 71.26% 36.72% 18.75% 42.92% 8.00% 35.53%
Random 14,992 69.15% 50.02% 33.73% 31.08% 0% 36.80%
Glister 7496 77.72% 34.46% 24.35% 50.74% 5.71% 38.60%
Glister 11,244 82.07% 60.34% 24.03% 49.90% 11.11% 45.49%
Glister 14,992 84.13% 53.70% 23.08% 54.06% 18.45% 46.68%
MIRA-ME (naive) 4918 85.00% 62.16% 29.96% 61.71% 36.36% 55.01%
MIRA-ME(unsupervised) 3536 70.64% 68.52% 28.50% 49.15% 93.33% 62.03%

presented in Killamsetty et al. (2021) can be attributed to several factors. Firstly, LeNet

is used instead of ResNet (used in Killamsetty et al. (2021)). Even though MNIST and

CIFAR-10 are used, results consistently show the substantially lower overall capacity of

LeNet might fail to capture the underlying distribution, which can result in poorer manifold

representations.

Consequently, the used manifold representations might affect the ranking of Glister

and ultimately cause overall poorer performance, which highlights a potential limitation

of Glister. Secondly, CIFAR-10 is uniformly distributed in terms of classes. The smaller

portion of the dataset used compared to the original study might further reveal a caveat

of Glister in low data regime. Another possible explanation is that no data augmentation

or complex pre-processing are used during training which differs from the experimental

setup in Killamsetty et al. (2021) for the purpose of keeping as many control variables as

possible. Possibly, the use of augmentations helps Glister build robust representations

and then pick from them more successfully.

SimCLR appears to perform poorly in the low data regime (10% budget) but shows

significant improvement when the budget is increased to 20% and achieves the highest

test accuracy among all methods. Notably, both the ”naive” and ”unsupervised” versions
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of MIRA-ME outperform all methods in the 10% budget, with the ”unsupervised” ver-

sion demonstrating a clear advantage. It not only uses the smallest number of samples

but also significantly outperforms the benchmark methods and competes with their 20%

budget scores. In contrast to MNIST, where the contributing hypervolume for the ”un-

supervised” version favoured size compression, the number of samples chosen by the

”unsupervised” version in this scenario is similar to the number chosen by the ”naive”

version.

Compared to Glister, MIRA-ME(”unsupervised”) appears to be more effective at se-

lecting critical samples in the low data regime, likely due to its use of an additional objec-

tive that allows it to utilise not only the contrast between different samples 5, but also the

ability of the autoencoder to reconstruct images. In Figure 5.14, the original full dataset

is visualised alongside MIRA-ME’s more than 90% compressed version. The visualisa-

tion reveals that the general trends of the features in the dataset are preserved and that

samples with distinctive features are more likely to be selected than those that are closer

to the dataset’s mean and standard deviation values in terms of pixel values.

Turning now to the real-world large-large applications, Table 5.5 displays the experi-

mental data on SIXray. As seen from the table, MIRA-ME’s best candidates feature sets

that are close to the 5% mark while achieving unprecedented performance and score

close to some methods with the full dataset presented in (Miao et al. 2019) and in Sec-

tion 5.1. Strikingly, MIRA-ME’s unsupervised pipeline once again has the lowest number

of samples (even lower than the one in the CIFAR-10 experiments), yet it manages to

outperform significantly all of the other approaches with an average precision of 62%,

which is almost double the one of random with 20% of the data and comfortably ahead of

Glister with substantially less used data also.

The ”naive” approach is lagging behind with an overall of 55%, but it can be observed

that the unsupervised approach has really focussed on the most underrepresented class

(the Scissors), and it has achieved better test precision than even specifically tailored

approaches working with the full dataset (Miao et al. 2019). Here, the benefits of Glister

over the random selection at each budget are also observed, as well as how random fails

at picking up enough scissors for the algorithm to learn what they are as a whole.

Surprisingly, the unsupervised pipeline turns out to be the better one of the two MIRA-

ME approaches, but it has its own drawbacks, which should be explored in future work.

For example, the prerequisite for a good autoencoder may be considered a severe bottle-

neck, and while it can be trained in an unsupervised fashion, it does increase the overall

training time of the approach, which may be important in certain use cases. These pro-

cesses, when combined with approaches like MONCAE, have demonstrated promise to

automate streamlining optimisation of both model and data fully.

5(measured using the distance between autoencoder bottleneck representations as described in Section
5.2.2, rather than cosine similarity distance used by SimCLR)
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5.2.5 Conclusion and Future work

As the problem of finding coresets has become increasingly popular (Har-Peled and

Mazumdar 2004, Dubey et al. 2018, Barbiero et al. 2020), in this work, a novel evolutionary-

based approach is presented. It is tasked and manages to achieve a state-of-the-art

balance between the compression rate and the performance of the models on multiple

datasets. Both a supervised(”naive”) as well an unsupervised variations of the approach

are showcased. In difference to the state-of-the-art discussed in Sections 5.2.1 and 5.2.4,

both variations automatically determine the size of the coreset. Also, the user is pre-

sented with the option to choose from a variety of different solutions and extract further

insights for the data, such as the individual score per image.

Firstly, the ”naive” approach works in a supervised fashion to discover the samples

that can supply enough information to train a model to perform well on the defined task,

while the ”unsupervised” version features a fully unsupervised approach that only re-

quires data and a few hyperparameters such as number of generations and population

size.

In the experiments, the two approaches achieve the highest performance compared

to the alternatives while keeping the coresets the smallest. Surprisingly, the fully unsu-

pervised approach does beat the supervised one, which is contradictory to the author’s

initial intuition.

In addition, this is the first work, to the best of the authors’ knowledge, to attempt to

use coreset methods on large-scale datasets such as SIXray. What is more, no previous

studies, to the best of the authors’ knowledge, explores the use of compatible coreset

methods for multi-label problems. Problems such as SIXray is where the benefits of

MIRA-ME seem to shine the most.

A limitation of this work is the lack of extensive ablation studies that determine the

effect of different hyperparameters of the evolutionary algorithm (such as the population

size, number of generations and others), which should be explored by future work to-

gether with the causality of how well the convolutional autoencoder performs before the

selection in the ”unsupervised” pipeline.

Future work should also explore the use of all mentioned approaches in other large-

scale datasets. Even though MIRA-ME has attempted to go into low data regime modes

with the sub 10% corests, it is evident that there is significant room for improvement for

going below 1% and even less. What is more, no techniques that employ augmentations

of the discovered coresets were explored, which might be crucial for further reduction.



Chapter 6

Concluding Remarks and Future
Work

This thesis provides a stepping stone towards more widespread use of Automated Ma-

chine Learning(AutoML) in research and industry. Specifically, the focus is on fostering

the efficiency of AutoML approaches by significantly reducing their computational cost

while preserving or improving their effectiveness (as discussed in Chapter 1). Methods

are designed with a holistic perspective in mind, that is, for addressing fundamental com-

puter vision problems. Thus, they are evaluated in various fundamental datasets and

compared with state-of-the-art approaches. After this, the thesis concentrates on adapt-

ing such techniques to novel applications for threat identification.

6.1 Thesis summary and main contributions

The first objective of the thesis Objective 1 1 is achieved in Chapter 2 with a comprehen-

sive review of the current state-of-the-art in AutoML for computer vision, highlighting both

the key strengths and limitations of these approaches. Emphasis is placed on discussing

the various methods used in concealed threat identification and the general working prin-

ciples of computer vision models. This analysis aims to identify future research and

development areas in AutoML for computer vision. Previous AutoML algorithms proved

to be effective in discovering models that outperform those designed manually by hu-

mans (e.g., (Real et al. 2017, Qin and Wang 2019)). However, it becomes evident that

new, significantly more efficient systems are needed to progress the AutoML and Neu-

ral Architecture Search(NAS) fields. In particular, the use of the current state-of-the-art

in industrial applications is still unfeasible mainly due to their tremendous requirement

for computational resources even for small-scale toy classification datasets (e.g., Stanley

1Identify key strengths and limitations of the state-of-the-art in AutoML for computer vision, with an em-
phasis on neuroevolution and threat detection.
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and Miikkulainen (2002b), He et al. (2021)).

Next, Chapter 3 proposes an efficient AutoML approach for the discovery of convolu-

tional autoencoder architectures (MONCAE), capable of simultaneously optimising image

reconstruction, dimensionality reduction and model complexity in line with Objective 2 2.

Some of the key findings of this chapter are:

1. The feasibility study(Section 3.1): A feasibility study has shown that the use of

convolutional autoencoders can improve the quality of extracted features through

the incorporation of an additional self-supervised step in the training cycle of CNNs.

This step utilises convolutional autoencoders and transfer learning to enhance final

task performance. While the gain of 2% may not appear significant at first glance,

statistical analysis has determined that it is, in fact, statistically significant. The

results suggest that using convolutional autoencoders as a supplement to the con-

ventional training of CNNs may be a viable approach to improving feature extraction

and task performance. Also, the results demonstrated that convolutional autoen-

coders could be used prior to receiving labels, which in some industrial settings can

take a long time (Goodfellow et al. 2016b).

2. The novel neuroevolution algorithm: A novel neuroevolution algorithm that auto-

matically discovers convolutional autoencoders for arbitrarily supplied dataset while

performing multi-objective optimisation (MONCAE) achieved over 10× compression

while outperforming state-of-the-art (including Charte et al. (2020)). With 97%,

close to 88% and 62% classification accuracies on MNIST, Fashion-MNIST and

CIFAR-10, respectively, MONCAE’s autoencoders outperform other methods as ev-

ident from Table 3.3, Table 3.4 and Table 3.5.

3. The novel metric: A novel metric and objective for successful convolutional au-

toencoders, named ”level of compression”, was introduced as part of Section 3.2,

measures how the scale of the bottleneck layer compares to the input dimensions.

The score was inspired by the use of network parameters as a proxy for the com-

plexity of the model in other works such as Hinton et al. (2015) and Charte et al.

(2020).

4. The results:MONCAE achieves promising results on small-scale datasets but also

presents the potential of using neural architecture search and neuroevolution within

a limited time (for instance, 93 GPU minutes compared to 1440 for MNIST in Charte

et al. (2020)), by optimally balancing image reconstruction, dimensionality reduction

and model complexity, w.r.t. the closest previous attempts (e.g. 97.3% accuracy

with a LOC of 1.8 compared to 96.3% accuracy with a LOC of 2.2 for (Charte
2Design an efficient AutoML approach for computer vision, capable of simultaneously optimising multi-

ple objectives (image reconstruction, dimensionality reduction, model complexity) to discover convolutional
autoencoder architectures.
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et al. 2020)). The comparison with the state-of-the-art in MONCAE was challenging

since it signifies the first attempt to date (to the best of the authors’ knowledge) to

construct convolutional autoencoders automatically.

Next, to address Objective 33 (and partially Objective 55), Chapter 4 builds upon the

promising results of MONCAE and introduces a novel Resource-Aware Multi-Objective

Semantic Segmentation neuroevolution approach (RAMOSS). Some key takeaways from

RAMOSS are:

1. The encoding: To address some of the key limitations of MONCAE, RAMOSS sets

out to present a more optimal encoding of convolutional neural networks is con-

structed that is designed to work with segmentation models and optimised to scale

to arbitrary data. The search space is also exponentially increased by designing an

encoding capable of representing any connection between layers. The new encod-

ing allows for each layer to be connected to each other layer through the use of a

directed acyclic graph constructed by encoding a row of a binary upper triangular

matrix as part of the encoding of each layer as explained in Section 4.1. The en-

coding is compatible with a plethora of different evolutionary algorithms to act as

controllers of the process, and the framework is open-sourced with the invitation

to researchers and practitioners to make use of RAMOSS with their data, experi-

ment with hyperparameters and improve the provided stepping stone towards the

transition to fully automated machine learning.

2. The Progressive Stratified Split (PSS): A new strategy is introduced as a novel

way to speed up AutoML in semantic segmentation as part of Chapter 4. The

PSS works by progressively iterating over stratified sub-samples of segmentation or

multi-label data. The importance of PSS stems from its unique property to conserve

architecture performance ranking, which makes the acceleration of AutoML possible

(refer to Section 4.1.3).

3. The results: RAMOSS discovers architectures that are slightly worse than the top

state-of-the-art in terms of validation performance (1-2% worse on CIFAR-10 and

3-5% worse on Cityscapes), but it uses 20-40 times fewer parameters and is one of

the few AutoML approaches (Zoph and Le 2016, Real et al. 2017, Lu et al. 2019).

Compared to state-of-the-art architectures of similar size (Howard et al. 2019, Shaw

et al. 2019), RAMOSS outperforms them (with up to 4% on Cityscapes) while still

having fewer parameters. RAMOSS also discovers its architecture in a record 0.3-

0.4 GPU days, which, compared to the state-of-the-art, is a 30x-1000x+ improve-

ment (Chen et al. 2017, Liu et al. 2019a). RAMOSS achieves the best trade-off,

3Develop a novel multi-objective optimisation AutoML strategy of discovering flexibly connected convolu-
tional networks for semantic segmentation which can dynamically adjust to computational requirements.
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which is established by using the cHV over the generated results, as evidenced by

the tables in Section 4.3.

Overall, Chapter 4 confirms the conjecture from Chapter 3 that multi-objective neu-

roevolution can aid the discovery of optimal architectures for large-scale problems tremen-

dously. Moreover, the training can be accelerated through heuristic methods such that

the architectures can be utilised not only for toy problems, as in previous works (e.g. Real

et al. (2017)), but also for real-world ones.

With the following chapter - Chapter 5 the thesis explores Objective 44 and Objec-

tive 55. In this study, the utility of RAMOSS and MONCAE, two approaches presented in

previous chapters, is evaluated in the context of industrial applications. The results sup-

port the hypothesis that these approaches are not only effective at discovering optimal

architectures(with MEOW), as they were designed to do but also demonstrate potential

in the discovery of data space and coreset in particular(with MIRA-ME). In summary, the

core findings and contributions from this chapter are:

1. MEOW: An improved version of RAMOSS is presented that uses state-of-the-art

proxy scores to estimate the performance of an architecture without the need for

training. The approach is named MEOW, although in Chapter 5 it is refered to as

RAMOSS interchangeably since the MEOW represents the application of RAMOSS

to the problem of threat identification and the modifications to achieve the acceler-

ation, while important, exploit most of the concepts defined in RAMOSS. In this

chapter, a way to utilise the benefits of choosing a population-based method is also

presented. An ensemble method draws on a larger portion of the produced approx-

imation set of solutions from the evolutionary algorithm, and exploiting their unique

representational capabilities, the method beats current state-of-the-art methods for

SIXray and demonstrates the value in producing multiple different solutions for a

particular problem rather than relying on a single one. With MEOW, it is established

that AutoML computer vision algorithms(such as RAMOSS and MONCAE) can be

aided by proxy performance estimation scores that can accelerate the algorithms to

run within a budget of 1 GPU hour and make it feasible to run such systems without

the need of a GPU.

2. MEOW experiments and results: The approaches were evaluated on a popular

large dataset - SIXray (Miao et al. 2019) and a proprietary dataset called ”Resid-

uals” to assess the feasibility of the presented approaches for concealed threat

identification (Section 5.1.4). For SIXray, MEOW yielded promising results by dis-

4Adapt the newly developed method to real-world dataset using concealed threat detection problem as a
case study to showcase potential field applications. .

5Develop a heuristic approach to bolster the feasibility and efficiency of AutoML in both model and data
optimisation, facilitating its broader adoption in industrial applications, exemplified through a case study in
concealed threat detection.
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covering an architecture that achieves 87.87% mAP, which is 10% higher than the

next best state-of-the-art architecture- ResNet50 (He et al. 2015). Testing MEOW

on the commercial proprietary dataset also results in success, but here the MEOW-

produced models achieve 2%-5% better results, up to 91.23% accuracy for predict-

ing what the threat is and up to 89% accuracy as to what type of modification is

present. This comparison might not look convincing enough, but since task error is

only one of the objectives, the models produced by MEOW use less than half of the

second-best architecture and when compared to similarly sized models the differ-

ence increase from 2%-5% to more than 20%. All in all, state-of-the-art results are

produced on large-scale X-ray concealed weapon dataset known as SIXray using

RAMOSS, which indicates that the rationale behind the approach is sound, and it is

in line with Objective 44

3. Segmentation Threat identification: An additional experiment is conducted to

establish the feasibility of RAMOSS for segmentation threat identification with an

extension of the Residuals dataset. Table 5.4 revealed that, once again, the meth-

ods presented throughout the thesis achieve an optimal balance of objectives. The

RAMOSS-produced architecture achieves 2%-4% worse test f1 and IOU scores,

but the architecture is composed of 60-100+ times fewer parameters. Compared

to similarly sized (yet still more than 10 times larger) architectures (He et al. 2015,

Szegedy et al. 2015b), it achieves over 20% better results on the test set. Interest-

ingly, during the validation, the RAMOSS architecture achieves the worst results,

and it is the only architecture to display less than a 1% difference between the

validation and test results, making it superior in terms of generalisation error.

4. MIRA-ME: Coreset discovery method: Based on the modularised design of RAMOSS,

this chapter demonstrates that the algorithm can be repurposed for coreset discov-

ery. Both MIRA-ME pipelines possess a unique ability because the images are

encoded continuously, allowing for a better understanding of the ”importance” of

each sample of the dataset. Both pipelines of MIRA-ME automatically determine

the needed coreset size in difference to the state-of-the-art (Ju et al. 2022, Killam-

setty et al. 2021) where it needs to be specified explicitly before the search. In

contrast to previous work (e.g. Barbiero et al. (2019 2020)), MIRA-ME provides an

extra layer of interpretability since the encodings of the coresets can be explored

more closely and serve as a proxy for estimating individual image ”importance”. It

also allows for user preference articulation by adjusting the threshold for selecting

instances, which enables the control of how many samples are to be chosen post-

process. Through adjusting the reference points for the different objectives, a prior

can be introduced that biases MIRA-ME to weight objectives differently and produce

even more customised results.
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5. Coreset results: Some interesting findings unrelated to MIRA-ME are discovered

during the experimentation. State-of-the-art approaches (Killamsetty et al. 2021, Ju

et al. 2022) struggle to operate in the low-data regime, while studies aim to go down

to 30% or 10% of the dataset in the MIRA-ME experiments, some of the methods

display worse performance than Random when they are tasked to search sub-10%.

For example, for MNIST, Glister at 1% is outperformed by Random with more than

20%; in fact, Random outperforms Glister at 1% when it uses only 0.1%. MIRA-

ME, on the other hand, achieves excellent results in both sub-10% and sub-1%.

MIRA-ME outperforms EvoCore when 0.1% of MNIST(60-82 images) is used and

significantly beats Random. A general tendency can be observed that the more

complex the dataset becomes, the more significant the gap between MIRA-ME and

the rest of the approaches. While for MNIST (97.67% and 95.7% with 4918 and

1859 samples for the ”naive” and the ”unsupervised” pipeline respectively versus

98.5% for Glister with 6000 samples), the benefits of MIRA-ME are only appar-

ent when compared to Random sampling(95.68% with 6000 samples), in CIFAR-

10( 63.5% with 4500 samples for the MIRA-ME pipelines versus 40% and 53%

for SimCLR and Glister respectively with 5000 samples) and especially in SIXray,

the trend becomes indisputable. For SIXray, the MIRA-ME ”unsupervised” achieves

62% with only 3536 samples compared to 38.6% for Glister with 7496 samples.

Next, some implications of the project are presented:

6.2 Implications

1. Automatic Discovery of Optimal Convolutional Autoencoders. Convolutional

autoencoders produced by MONCAE can be used for data exploration, filtering and

rapid prototyping. They are powerful tools, and their bottleneck representations can

be treated as a proxy for the original input. Because of their reduced size and the-

oretically higher information density, bottleneck representations can utilise them to

explore and visualise vision data more efficiently, filter out conceptual outliers, and

make possible the separation of feature extraction and feature selection that can ac-

celerate model/hyperparameter and other time-consuming searches. Although this

thesis does not fully explore how such encodings can be applied, it is a promising

direction for future work. Moreover, based on the experiments conducted in Chapter

3, reconstruction loss might not serve as a good enough proxy for the quality of the

compressed representations. Thus, there is a need for new methods of evaluating

these bottleneck representations and of ways to leverage their explainability poten-

tial optimally. More broadly, identifying how specifically models encode ”concepts”

in these bottleneck layers could render in the future potential ground-breaking dis-
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coveries in Explainable Artificial Intelligence (XAI) (Kazhdan et al. 2020).

2. Streamlining pre-processing. Combining the discovered convolutional autoen-

coders with the field of XAI (Dimanov 2021) can yield excellent results and enable a

quicker data cleanup and label verification (Kakani et al. 2020), as suggested from

the motivation experiments in Chapter 3.

3. Fostering transformers efficiency in computer vision. Recently, there has been

an increased interest in using transformers for addressing computer vision tasks,

originally designed for sequence modelling. The application of transformers, how-

ever, requires a substantial amount of heuristics and their use is still hindered by

some of the same caveats as AutoML. Thus, a good future work direction would be

to explore the use of neuroevolution for speeding up this time-consuming process

by designing more optimal representations and attention mechanisms with the help

of neuroevolution that can ultimately speed up transformers, improve their training

process to resemble the high dimensional agreement present in capsule networks

(Patrick et al. 2022, Sabour et al. 2017). Especially the contribution of this the-

sis in Chapter 3 gives insights into how neuroevolution can be used and guided to

generate good-quality representations.

4. Substantially reducing computational costs. The computational time saved by

employing the presented methodologies would allow for the fine-grained customi-

sation of produced solutions and the more efficient use of researchers’ and practi-

tioners’ time (Valvano et al. 2018). In addition, one of the largest time sinks in the

business world is precisely this wait for the model to be discovered and trained6

which often impedes the ability of deep learning experts to proceed with further

stages of development.

5. Customised dataset compression. Since MIRA-ME produces multiple coresets,

a strategy similar to the one performed with the ensemble method in Chapter 5 can

utilise all different weights for the instances. This strategy would provide a user-

adjustable threshold for controlling the coreset size (the degree of compression).

The potential incorporation of Progressive Stratified Sampling (PSS) with subsets

produced by MIRA-ME and downsampling even further by a specified coefficient

will take this even further.

6. Offsetting the carbon footprint of deep learning approaches: Last but not least,

a growing concern in the machine learning community is the environmental impact,

and carbon footprint of different methods Lacoste et al. (2019), to the extent that au-

thors in many prestigious conferences (e.g., ICLR, ICML, NeurIPS, AISTATS) are

6Based on personal experience and informal interviews with industry partners.



126 CHAPTER 6. CONCLUDING REMARKS AND FUTURE WORK

required to submit their estimated GPU hours as well as carbon impact (calculated

with tools like MLCO -https://mlco2.github.io/impact/). One of the most sig-

nificant contributions of this thesis is accelerating AutoML and NAS. Consequently,

this thesis contributes to a greener future by progressively lowering the immense

carbon footprint of these approaches (Dimanov et al. 2022). The results presented

in Chapter 5.1 suggest that heuristic methods may be effective in exponentially

accelerating AutoML approaches and, more broadly, automatic decision-making.

These findings highlight the potential benefits of using heuristic methods and the

importance of an engineering mindset in addressing the computational challenges

associated with AutoML. Future research should investigate the generalisability and

limitations of these approaches to understand their potential impact on the field en-

tirely.

6.3 Future work and limitations

Even though this thesis addresses big research questions in AutoML and potential in-

dustrial applications in security, the findings and wider implications of this work generate

an exorbitant amount of new intriguing research questions. Next, some of the future

research directions that has been deemed most promising and important is listed:

1. Proxy scores: NASWOT (Mellor et al. 2021) and SYNFLOW (Tanaka et al. 2020)

can accelerate AutoML and NAS by exponentially decreasing the needed time for

training architectures upfront. However, these proxies usually use just a single batch

of data, which, more often than not, is not representative of the whole dataset that

they are applied to. In the last chapter, this thesis explores how datasets can be

compressed by several orders of magnitude, allowing for the discovery of critical

datasets. Furthermore, some other methods that offer synthetic generation of sam-

ples offer to compress datasets to a single sample per class (Wang et al. 2018).

In their current shape, the methods from this work cannot be feasibly applied in

general AI scenarios, as discussed in Chapter 5. However, datasets can be sub-

stantially compressed with the advancements proposed by such methods and the

data reduction approaches presented in MIRA-ME (Chapter 5) and PSS (Chapter

4). Hence highly complex models can be potentially iteratively evaluated on a re-

duced number of batches by using proxy scores introduced in Section 5.1.2. Thus,

the combination of the new approaches might prove to be a closed-loop system

capable of not only assisting AutoML systems but also aiding in the general training

cycles of machine learning algorithms and, more importantly, in compiling better

data understanding techniques.

2. Proxy scores, MEOW and MIRA-ME: More specifically, a possible application of

https://mlco2.github.io/impact/
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proxy scores can be achieved using MEOW’s acceleration and MIRA-ME’s com-

pression. This way, more accurate proxies can be constructed, especially if the

Progressive Stratified Sampling implemented in RAMOSS is used on top of the

discovered MIRA-ME coreset together with the heuristic speedups of MEOW. For

example, the NASWOT score (Mellor et al. 2021), as well as SYNFLOW (Tanaka

et al. 2020), use a batch of data to determine the score of the network, but what if

this batch is indeed the maximum compressed coreset of a dataset and if it is not

small enough then it can be iterated using PSS.

3. HPO: Hyperparameter Optimisation: This thesis provides several different meth-

ods of achieving NAS. However, the thesis does not extensively explore all the dif-

ferent effects of hyperparameter tuning for the neuroevolution controller algorithms,

which would greatly benefit the interpretability of the present techniques. Moreover,

a standard framework should be composed (similar to CME (Kazhdan et al. 2020)

and (Kazhdan et al. 2021)) that objectively evaluates the interpretability of AutoML

methods. This framework can be added as a separate objective in any of the pro-

posed methods, as they are designed with scalability in mind. Furthermore, the

effect of the interpretability of using multiple different produced architectures from

the set of solutions should also be the focus of future work.

4. Exploring the final population: Evolutionary algorithms used throughout this the-

sis generate an approximation set of solutions. One way this is utilised is by com-

bining them via an ensemble approach in 5 to generate an optimal solution. Based

on the successful results, future work should explore other ways of exploiting the

generated approximation set of solutions.

The use case with the ensemble approach merely suggests the potential of combin-

ing some of the produced solutions. However, future work should focus on further

optimising this process and extracting correlated features (possibly from the differ-

ent genomes), possibly summarising the solutions into a single one through some

sophisticated aggregation procedure (e.g., (Abdelfattah et al. 2021) subject to pref-

erence articulation and allowing further customisation.

5. Use of MONCAE as part of the embedding and linear projection in Transform-

ers: With the current rise of transformers, researchers are looking for more ways

to apply them to various problems. Yet, there are only a few standard transform-

ers currently used. Future work should explore the use of MONCAE (chapter 3)

as means of discovering convolutional autoencoders that can then be integrated as

part of the transformers. Moreover, future work should explore using autoencoders

and variational autoencoders as potential substitutes for embedding and linear pro-

jection.
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6. Neuroevolution for Capsule Networks: To conclude, there might be potential for

using the proposed approach with capsule networks and discovering capsule net-

works instead of CNNs. Capsule networks are currently underutilised (Hinton et al.

2018). However, researchers may make better use of their equivariant representa-

tions in the future, and all novelties in MONCAE, RAMOSS, MEOW and MIRA-ME

are built in a modularised way allowing for the swap of convolutions for capsules.

Modifications of the training during the evaluation process might be needed given

the specific dynamic routing used by capsules (Sabour et al. 2017). However, the

high-dimensional agreement between agents in these approaches may resonate

with the idea of producing an approximation set of solutions and exploring the per-

generation intra-population high-dimensional agreement between different pheno-

types.

This thesis presents a suite of novel approaches for automated machine learning in

computer vision. These approaches are specifically designed to foster the efficiency of

current AutoML methods in various fundamental computer vision problems by addressing

some pressing challenges, such as their high computational cost. Results show the (still

not fully unleashed) potential of multi-objective and heuristic-based techniques in a wide

range of critical applications, such as threat detection. Hopefully, the findings from this

thesis will contribute to the wider adoption of automated machine learning in computer

vision and lay the foundation for future research in this rapidly evolving field.
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Appendix A

X-Ray screening

X-Ray screening is used in a wide range of settings, and hence is currently playing a cru-

cial part for e.g., enforcing security in publicly crowded areas and in medical applications .

Both scenarios require experts with a specific skill-set to be able to examine the produced

images, which introduces multiple different possible point of failure, which can be caused

by a variety of factors, such as exhaustion and distraction (Liang et al. 2019b) . More

specifically, in the context of threat identification, airport bag screening can be used as

an representative example. In this use case, the job of the transport security officer(TSO)

involves looking at many different X-ray images, identifying potentially hundreds of dif-

ferent threats accurately, and also achieving this in a timely manner, since throughput of

passengers in airports is also an important requirement to balance (Liang et al. 2019b).

Given these circumstances, in the recent years the industry has started making efforts

to implement an automated approach to aid manual operators (Department of Homeland

Security 2017)(Liang et al. 2019b)(Chavaillaz et al. 2019).

Discovered in 1895 (Röntgen 1895) by Wilhelm Röntgen, the ability of X-rays to

penetrate objects and identify inner structures found use in many different settings and

industries including medicine, security, archaeology and many others (Mery 2015)(Pa-

padopoulou et al. 2007). Through out the years, X-rays have played a fundamental role

in everyday life applications ranging from routine medical check-ups and non-invasive

monitoring for fractures or medical conditions and diseases to baggage scanning in air-

ports (Mery 2015).

As shown in Michel et al. (2007) there was a substantial increase of operators’ per-

formance in x-ray image interpretation resulting from adaptive computer-based training,

which connotes the importance of assistive computer systems for threat detection. Fur-

thermore, the same study discovered that objects were far more missclassified by human

operators when they were rotated in an unconventional way as well as that ”screeners

could reduce the time needed to detect a threat object significantly” (Michel et al. 2007).

A byproduct of the research recognised by Mery (2015) was also that the human detec-

tion performance during peak hours is only about 80-90%.
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After 9/11 a new urgent need for improved and advanced threat detection started

to emerge (Mery 2015).In fact, back in the late 80’s Murphy (1989) the state-of-the-art

detection systems for 1989 already included Thermal-Neutron Activation, Fast-Neuron

activation and also dual-energy X-ray systems, which later lead to the development of

3D computer tomography using X-rays for a more accurate detection of explosives (Mery

2015).

Currently, most airport systems use two 2D X-ray views (top-down and sideways)

to complete baggage screening (Liang et al. 2019b) , but recently new and more ad-

vanced computer-topography (CT) based systems have been proposed and implemented

in some (Gaus et al. 2019) (Akcay and Breckon 2020). The CT scans differ from the

conventional and traditionally performed X-ray scanners by having the ability to display

objects in 3D rotatable plain, thus giving operators more rich information about the scans

(Mouton and Breckon 2015). However, the automated analysis of 3D CT scans is much

more complicated not only because of the added dimension, but also the intrinsic noise

and artefacts present and also the increased demand for computational power (Mouton

and Breckon 2015).

In short, X-ray scanning is a huge part of concealed threat detection and it is so widely

used in security on a global scale . Thus, a major part of the research in this Thesis will

focus on analysis and concealed threat detection in X-ray images.
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Convolutional Neural Networks

As evident from the discussion in Section 2.2, the wide use both in industry and research

of convolutional neural networks has led to astonishing progress. This section presents

a brief explanation of how these networks operate, which is integral for understanding of

the rest of the thesis.

Convolutional neural networks(CNNs) are artificial neural networks which use spe-

cialised layers (convolutional and pooling layers) to deal with high dimensional and com-

plex inputs (Wu 2017).

Ever since LeCun et al. (1998) used convolutional neural networks to achieve state-of-

the-art performance in computer vision, CNNs have been one of the most widely spread

machine learning techniques for image processing, image classification, feature detec-

tion, feature extraction and much more (Goodfellow et al. 2016b). The unique properties

of CNNs and the fact that convolutional as well as pooling layers use kernels instead of

fully dense connections, allows them to be especially good at learning representations

with multiple different levels of abstraction (Yang et al. 2017a) and effectively process

high-dimensional and complex data (Pereira et al. 2009).

B.1 Convolutional layer

Convolutional layers produce feature maps, which are different representations of their

input (Yoo et al. 2015). They achieve this through the application of trainable filters which

produce a linear map of the input as displayed in Figure B.1. The number of these

feature maps and filters is a hyperparameter, which is fine-tunable based on the particular

application of CNNs at hand. Typically, the tuning process starts with an initial number of

filters, which is then increased in a reversely proportional fashion to the compression of

the input image through pooling layers or strided convolutions (Liu et al. 2019a). Through

these various linear transformations and combining them with non-linear functions such

as the rectified linear unit, CNNs are adept at handling high dimensional inputs (Wu
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Figure B.1: An example convolution operation with a kernel(F )of size 2 ,2(m,n) and a
stride of 1,1 (sx, sy)iterating over 5 by 5 input (X) and producing 4 by 4 feature map (X̂)
where each X̂i,j =

∑h=0
m−1

∑w=0
n−1 Fh,wXi∗sx+h,j∗sy+w. So when the stride is 1,1 it can be

simplified to X̂i,j =
∑h=0

m−1

∑w=0
n−1 Fh,wXi+h,j+w.

2017). Towards this goal, convolutional layers use kernels of predefined size and strides,

which iterate over the image. These kernels can also be of different shapes (spatial size),

which is one of the factors of variation which is considered when designing an attention

mechanism for CNNs or just generally when dealing with convolutional neural networks

(Gu et al. 2018) . The kernels store all trainable parameters of the different filters in a

particular convolutional layer.

The purpose of the convolutional layers is to make the features in a given image more

prominent and to conduct feature extraction in general (Albawi et al. 2017) . Thanks to

the convolutional layers, certain features are extracted, which can then be used to solve

a given problem. There are studies which theorise that good networks should produce

explainable representations which inherently contain ”concepts” (Kazhdan et al. 2020).

This is discussed in further detail in Appendix C. Using these concepts, convolutional

layers can be directed to look for certain features to extract instead of relying purely on

the loss minimisation gradients flowing through the classification layers.

Because convolutional layers naturally shrink the dimensions of the input image along

the edges based on the movement of the kernel displayed in Figure B.1, some of the

spatial information in these regions may be lost. Hence, a technique called padding, is

used to ensure these values are not lost when the input size is reduced (Albawi et al.

2017) .

There are several different popular padding techniques, of which the most popular

ones are zero-padding , same padding and valid padding (Wu 2017) .

Another interesting hyperparameter of convolutional layers is the stride. The stride

of a convolutional layer determines how big the step the kernel takes (pixel-wise) when
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Figure B.2: Dilated convolution kernel compared to a normal convolutional layer kernel

transversing through its input. Usually, the stride is set to (1,1), which means that the

kernel moves 1 pixel when going from left to right and from top to bottom, but it can be

modified to be more than 1 in which case the size of the produced feature map will be

smaller than the input in proportion to the stride step amount.

New types of convolutions have also emerged. Here, one of them (dilated convolution)

is covered. It can be important for understanding some of the work in Chapter 4 since

dilated convolutions are put as possible layer types in the search space of RAMOSS. The

reason for considering dilated convolutions in this work is their effectiveness in segmen-

tation problems (Hamaguchi et al. 2018). Discussion on transpose convolution can be

found in Section 2.1.

The dilated convolution (often also called ”atrous convolution”) works in the same way

the normal convolutional layer does, but instead of the kernel being a densely connected

block, the parameters of the kernels are dilated (as depicted in Figure B.2 (Wu et al.

2019a) . This introduces one more hyperparameter called dilation rate (Lei et al. 2019)

, which is responsible for controlling the separation of parameters between different pa-

rameters of the kernel. For example, an atrous 5 by 5 kernel with a dilation rate of 2 will

have the same receptive field as a 9 by 9 kernel, but only 25 parameters instead of 81.

They are usually used when a wider field of view is required but there are computational

limitations which make it unfeasible to add more layers or expand the model’s number of

parameters.
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B.2 Pooling layer

The pooling layer aims to reduce the size of the feature maps and in theory, select the

most important information in the feature maps and discard the less significant infor-

mation. The purpose of the pooling layers is to compress the data representation to

lower-dimensional vectors (Sun et al. 2017) while conserving a high level of information.

They also use a kernel with a specific stride and size, but this time instead of using a

kernel with trainable parameters, the kernel method is simply assigning a summary value

(like the average or the maximum value in the kernel). This value is then what ends up in

the feature map (Scherer et al. 2010).

In short, the pooling layer aims to conduct subsampling over the feature maps pro-

duced by the convolutional layers to decrease the spatial size of the maps (Sun et al.

2017). It is one of the quintessential operations in convolutional neural networks together

with the convolutional layer itself. However, some work explore using strided convolutional

layers instead of pooling layers since instead of simply applying a predefined reduction

operation, one can use the trainable parameters that can extract information out of the

feature maps more efficiently. The way strided convolutions work is that the kernels move

at a different pace rather than the default 1x1 stride described above. This way, the layer

can achieve the same compression as a pooling layer without sacrificing the trainable

parameters.

B.3 Upsampling layer

The upsampling layer aims to reverse the operation of the pooling layer (Goodfellow et al.

2016a). This is usually done to restore the original dimension of the image which is an

integral part in convolutional autoencoders and segmentation models (Ronneberger et al.

2015a). The upsampling layer uses a kernel similar to the pooling layer, but instead of

mapping to a lower-dimensional representation space, it maps to a higher-dimensional

one. There are two general ways to achieve this in a convolutional neural network. The

first one is to use an upsampling layer, which scales up a data representation using a

nearest neighbour or bilinear upsampling.

The second one is to use a transposed convolution, the inverse operation of a strided

convolution. Transposed convolutions came to light as a means to upsample features

using a kernel with weights (Zeiler and Fergus 2014). These are also termed ’deconvo-

lutions’ or ’fractionally strided convolutions’. An example of a transposed convolution is

presented in Figure B.3. The figure depicts the iterative process of the kernel (top left

2x2 grid) going over the input (the bottom 2x2 grid). Each cell from the input is multiplied

by the kernel at each step. Then, all produced feature maps are added using a specified

step size (stride). In the example, the stride is 1, so each cell where there is overlap
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Figure B.3: The process of upsampling with a transposed convolution with a 2x2 kernel
and a stride of 1.

represents the sum of all produced overlapping cells.

B.4 Hierarcical Convolutional Neural Networks

According to Seo and Shin (2019) one of the biggest challenges for CNNs due to their

discriminative nature Dai et al. (2014) arises when two or more classes share visual

similarities (Agyemang and Bader 2019). Seo and Shin (2019) explain that Hierarchical

Convolutional Neural Networks(H-CNNs) tackle this issue by using a two-step process,

which resembles a sieve. First, the classes, which have fewer visual similarities are

processed and then a second step deals with classes that look alike (Seo and Shin 2019).

H-CNNs also provide the opportunity to add additional classes to previously trained,

well-performing domain-specific classifiers. This is implemented to prevent the caveat

associated with CNNs that they suffer from the inability to classify previously unseen

entities, which do not belong to any of the classes seen during training (Agyemang and

Bader 2019). Indeed, it has been proposed that a future use-case for H-CNN could be

for anomaly detection” (Agyemang and Bader 2019).

On the other hand, a disadvantage of H-CNNs is their complexity and increased train-

ing time as they have to ”train each CNN within the hierarchy while also having to fine-tune

the hyperparameters for each CNN architecture such as deciding the number of convolu-

tion filters” (Agyemang and Bader 2019).

B.4.1 Hyperparameters

Training a deep neural network to learn to solve these problems is not a trivial task (Good-

fellow et al. 2016b) . So far, we’ve discussed picking the correct architecture and optimisa-

tion methods, but determining hyperparameters, how to choose them, and how to adjust

them, is also vital (He et al. 2021).This section examines some of the most imperative

hyperparameters for creating training/testing neural networks pipelines, their importance,

and immense impact on the performance of different learning algorithms.

Learning rate and momentum: Arguably the most important hyperparameter when
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Figure B.4: Figure depicting the result of a learning rate finder. The learning rate is
plotted together with the corresponding loss throughout 1 epoch of learning rate change.
Learning rate is changed every nth training step, where n is subject to the number of
learning rates that will be explored and the number of mini-batches of the data. The
steepest fall signifies a good initial learning rate.

training a neural network is the learning rate (Sutskever et al. 2013) . The learning rate

determines the magnitude of the weight adjustment the optimiser would perform at each

step that it takes (Darken et al. 1992) . It is of extreme importance since a too large

learning rate can result in skipping over optimal regions of the loss function and only su-

perficially exploring the loss space, but also too small learning rate can easily lead to the

optimiser getting trapped in a local minimum or saddle point (Goodfellow et al. 2016b).

An optimal learning rate would lead to the greatest step towards gradient improvement,

which can be found rather simple by allowing the algorithm to train for an epoch with a

set of different learning rates and determine the largest gradient (Figure. B.4), serving as

a starting point for the training of the algorithm. This process can theoretically be done

at every training step to achieve optimal performance, but it is often not practical for com-

putational cost reasons. Thus, some common practices include decaying or annealing

the learning rate with the progression of the training (Shen et al. 2022) or recently the

successful application of ”one-cycle” learning. It is a two-step process that first starts by

increasing the learning rate gradually followed by a drastic decrease, which has proven

to be an effective way of training deep neural networks for a variety of problems (Smith

2017).

Number of channels in each layer: Another vital hyperparameter, which is part of

the architecture choice is the number of filters or nodes in each layer. The process of

convolutional filters work has been discussed in Section B and nodes in fully connected
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layers, but choosing how many of these filters or nodes is often a manual process, based

on good practices and experience which have worked well in some general benchmarks

(Ahmed et al. 2020) . An example of this strategy consist of using a smaller number of fil-

ters in the first convolutional layers and then increase their number inversely proportional

to their size (Liu et al. 2019a). In essence, when the pooling is completed (regardless if

it is done with a dedicated pooling layer or strided convolution) the height and width of

the convolutional filters are halved, and the common practice is at this point to double

the number of filters. The reasoning behind this good practice is to minimise the loss of

important information due to the spatial compression of the input (Bender et al. 2020).

The starting point of the number of filters varies greatly across literature but some good

examples are 32 or 64 filters (Liu et al. 2019a, Ronneberger et al. 2015b). Although this

hyperparameter depends strongly on the dataset at hand, in difference to the methods

for finding out a good learning rate there are no real well-established methods for de-

termining what a good starting number of filters is. An alternative, to the otherwise trial

and error process, is the field of explainable AI. Explainable AI deals with the robustness

and interpretability of neural networks and is concerned with questions exactly like this

(Frankle and Carbin 2018, Kazhdan et al. 2020) . Informally, these approaches attempt

to categorize the different knobs of the black-box optimisation control room of a neural

network (Dimanov 2021). They use implicit properties of the data itself to determine the

need for as many of the parameters and hyperparameters as possible.

Batch size:Ideally, neural networks should backpropagate the gradients from the

whole dataset that is fed into them, but with large-scale datasets, this is computation-

ally infeasible. Hence, usually the dataset is split into mini-batches (Hinton 2012) and fed

to the algorithm in smaller chunks. There are generally two approaches to working with

batches and one is to evaluate all mini-batches and update the networks once all of them

are evaluated (Ruder 2016) or to evaluate the mini-batches one by one and update the

gradients and weights at each of this mini-batch steps (Khirirat et al. 2017). Of the two,

the second approach is far more popular.

The size of these mini-batches (”batch size”) is one of the easier parameters to exper-

iment with because of the numerous studies agreeing that up to a certain point (varying

between 256 and 512) it is generally good to opt-in for the highest possible batch size the

hardware limitations allow for (Radiuk et al. 2017, Neishi et al. 2017, Smith et al. 2017) .



Appendix C

Representation Learning

Representation learning is a flourishing field which is integral to the design of interpretable

models (Dimanov 2021), that is often overlooked in deep learning. According to Marr

(2010), it is the process that ”makes explicit certain entities and types of information” and

attempts to achieve some information processing goal.

The ability of humans to solve mathematical problems is hindered by their under-

standing of what the different digits, symbols and operations represent as evident from

the difference in performance of humans to perform complex calculations with Arabic

versus Roman numerals (Marr 2010). The same applies to deep learning systems. For

a deep learning model to have a good performance, it needs to restructure the input

data into fitting representations of this data (Alqahtani et al. 2021) . The whole purpose

of the convolutional and pooling layers in convolutional neural networks is exactly this

(Goodfellow et al. 2016b). But after industry moved from HAAR and similar features to

convolutional neural networks and other deep learning models, the construction of these

representations has been made more and more black-box optimisation and concealed

behind other processes and layers (LeCun et al. 1998) . Representation learning aims to

unveil this essential part of machine learning and gain more control and understanding

of what makes a good representation and how to steer a model to achieve it (Dimanov

2021). The work of Dimanov (2021) for example explores the different assumptions and

priors of representation learning and discusses how to qualify a good representation us-

ing information about its features and factors of variation. This is an important stepping

stone in explainable AI and deep learning in general since in contrast to supervised learn-

ing and other methodologies, which have well-defined objectives, representation doesn’t

(Dimanov 2021). Being able to score representations can thus be used to formalise a

general objective function, which can be used to train or/and improve representations.

An example of such an objective function for representation is the work of Bengio et al.

(2013), which describes the ideal representation as being able to ”disentangle as many

factors as possible, discarding as little information about the data as practical”. This begs

the question of the limits and how much data loss is ”practical” and also how much is
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”possible” (Dimanov 2021, Goodfellow et al. 2016a).

This quality of representations is often referred to as the ”representational power” or

”representational capacity” (Arpit et al. 2017) and there have been multiple recent at-

tempts to boost the representational capacity of various neural networks (Turner et al.

2021) . There are also findings which suggest that the deeper neural networks can pro-

duce more concise representations which still conserve all needed information by employ-

ing the use of generated concepts inside the hidden layers of the networks (Bermeitinger

et al. 2019). An interesting finding of the relationship between the growth of a neural net-

work and its representational capacity presented by Bengio et al. (2003) states shows that

shallow networks grow exponentially the more complex the representations get, whereas

deeper networks grow polynomially. However, in their study (Bermeitinger et al. 2019)’s

empirical results suggest that shallow networks might have an edge over deep networks

in ”attaining low mean square minima for given mapping problem”. Different optimization

algorithms result in vastly different gaps between deep and shallow networks, suggesting

that the study’s findings might not be in direct opposition to the widely held idea that more

layers lead to better performance (Bermeitinger et al. 2019). This instead shows that

training a model with a higher representational capacity requires better optimization and

longer time to converge.
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History of computer vision

One of the first projects in this field was ”The Summer Vision Project”(Papert 1966),

which attempted to use a computer and a camera to achieve pattern recognition by ap-

plying heuristic rules. Many image classification algorithms were then researched using

different approaches (Haralick et al. 1973, Szummer and Picard 1998, Chapelle et al.

1999).One of the first object detection algorithms, which were efficient and worked on

real-time inputs was the Viola-Jones algorithm (Viola and Jones 2004). It used HAAR-like

encoded features and then compared the gradients of the pixels in the images to these

features with the use of a Support Vector Machine (SVM), thus achieving face detection.

Later, different methods (Dalal and Triggs 2005), feature descriptors and similar ap-

proaches were introduced, but the next major advancement in the field came when a

technology, dating back to 1957 (Rosenblatt 1957), was reintroduced in 2012 by the team

of Krizhevsky et al. (2012) under the supervision of a respected figure in the field of ar-

tificial intelligence- Geoffrey Hinton. The new approach was to use a specific type of

neural network- the convolutional neural network (CNN), which was proposed by a team

of researchers again supervised by Hinton in a paper (Lang et al. 1990) and further re-

searched and developed by LeCun et al. (1998), in an attempt to achieve state-of-the-art

performance on the largest publicly available image dataset- ImageNet 1.The newly de-

signed AlexNet (Krizhevsky et al. 2012) outperformed all previous models used in the

annual competition ImageNet LSCRV2. This new revolutionary, yet old, idea was able to

work much better than its predecessor, because of the vast increase both in terms of

computational power and data available in 2012 compared to the late 1960s (Alom et al.

2018).

After the ’rebirth’ of the idea to use convolutional neural networks for computer vision

many different variations and architectures started to dominate other models . The accu-

racy for public datasets and in different competitions started to rise almost exponentially

. Big companies like Google and Microsoft started to get involved in the field and in the

1http://www.image-net.org/
2http://www.image-net.org/challenges/LSVRC/

141



142 APPENDIX D. HISTORY OF COMPUTER VISION

following years models like VGG (Simonyan and Zisserman 2014), ResNet (Targ et al.

2016), Inception (Szegedy et al. 2015a) and many others started to emerge. By 2015

researchers found that computers were outperforming humans for some visual tasks (Wu

et al. 2015).

Many different variations of the models were then proposed and with the advance-

ments in computational power, the models started scaling up and becoming more and

more complex (Liu and Deng 2015, Xia et al. 2017, Szegedy et al. 2017a). However, a

major deficiency started to arise. The CNNs were designed to solve image classifica-

tion problems (one image represents one entity or object), but an object detection was

needed to mimic the visual ability of humans (one image can contain multiple different

objects) (Girshick et al. 2014).

Thus, the idea of combining region proposals with CNNs was proposed- resulting in

R-CNN (Girshick et al. 2014). This specific branch of CNNs focussed on solving the ob-

ject detection and semantic segmentation performance stagnation (Girshick et al. 2014).

The idea behind this new approach, which achieved state-of-the-art performance, for the

time it was proposed, is that it uses an algorithm to determine the positions of potential

objects and then employs the ability of CNNs to classify images in these regions. Later,

many different variations of this approach started to appear with Fast R-CNN (Girshick

2015), Faster R-CNN (Ren et al. 2015), Mask R-CNN (He et al. 2017) and others, which

also achieved state-of-the-art or near state-of-the-art performances when they were re-

leased and benchmarked (Jiang et al. 2018). In the same year that R-CNN was proposed

another revolutionary idea on generative modelling, the General Adversarial Networks

(Goodfellow et al. 2014) Goodfellow et al. (2014) are based on game theory. and in

essence two separate neural networks are cooperating and competing in the same time

to produce a good enough agent that generates good ”fakes” and a good ”detective” that

can discriminate fakes and real samples.

The next big innovation in the field of computer vision, which achieved state-of-the-

art performance on the MNIST dataset 3 was the proposal of Capsule Networks (Sabour

et al. 2017) and the corresponding EM-Routing algorithm (Hinton et al. 2018), which used

a revolutionary approach and proposed adding a whole new structural element to the

neural networks. With Capsule Networks the team of Hinton et al. (2018) identified a de-

ficiency with previous computer vision approaches. Firstly, convolutional neural networks

suffered from their integral simplicity since they contained just a few levels of structure. In

Capsule Networks a new level of structure is introduced beyond the layer. This new build-

ing block of a neural network, the capsule. was inspired by the mini-columns present

in human brains and associated with human vision (Buxhoeveden and Casanova 2002).

Capsules also contain neurons which are stacked vertically. The capsule is designed to

store different properties of an entity and is composed of multiple neurons, which cor-

3http://yann.lecun.com/exdb/mnist/
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respond to a property of this entity (ex.: position, orientation, size, colour, intensity). At

a high level, the capsules combine multi-dimensional vectors, which represent an entity

and its pose (position, orientation and other properties) and output a probability of the

presence of the entity and its pose via ”routing by agreement”(Hinton et al. 2018). This

operation adopts the idea that if high-dimensional entities agree on every dimension that

a pose is important within a given small variation, then the chance of this happening is

significantly low, and the opposite if multiple entities agree sharply, then a certain entity

should be present in a certain pose(Hinton 2014).

The latest advancements in the state-of-the-art in computer vision are a product of the

automated machine learning (AutoML) efforts of researchers and industry experts, who

have attempted to design systems, which are capable of automatically discovering a way

of solving a given problem. In the domain of neural computation, AutoML is a process

of discovering the right hyperparameters(layers, number of neurons per layer, order of

layers, types of layers etc.) and parameters (weights and biases) of a neural network

(Hutter et al. 2019b). A whole new branch of algorithms has emerged, which deals with

neural architecture search(NAS) (Elsken et al. 2018b). There are many different types

of algorithms used for neural architecture search, but the two most popular ones are

reinforcement learning and neuroevolution (Stanley et al. 2019a).



Appendix E

State-of-the-Art Computer Vision
Methods

InceptionNet: In 2014 researchers at Google proposed a new architecture called In-

ception (Szegedy et al. 2015a), which achieved state-of-the-art results on the popu-

lar ILSVRC 2014 benchmark. A specific instance of the architecture is referred to as

GoogLeNet, which is a 22 layer InceptionNet used in ILSVRC 2014. It was the winner

of ILSVRC 2014 for ”object detection with additional training data” both in terms of cate-

gories found and mean average precision. The main aim of InceptionNet was to optimise

the width and depth scaling while keeping the computational cost as low as possible

(Szegedy et al. 2015a). The architecture was designed to allow for both depth and width

scaling and one of the main advantages it has over previously designed convolutional

neural networks is the degree of spatial exploration. It was intended to optimise the pro-

cess of neural architecture construction (Szegedy et al. 2015a). This was also one of the

first times the idea of convolutional blocks was proposed.

Figure E.1: Inception block used in Szegedy et al. (2015a).

InceptionNet is based on the Inception block (Figure E.1), which contains multiple

convolutional and pooling layers embedded inside it. The first version constricted the fil-

ter sizes used in this block to just 1x1, 3x3 and 5x5 ones mainly to avoid patch alignment.
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First, a different Inception block was created, but changed after considering computa-

tional performance. Dimension reduction was added in the form of a 1x1 convolutional

layers before the 3x3 and 5x5 ones, which is done for to conserve resources and be-

cause of the use of ReLU activation inside. Additionally, the Inception block is created to

facilitate stacking multiple blocks one after another. Thus, the output of every block is de-

signed such that it can be used directly as an input for the next Inception block (Szegedy

et al. 2015a).

In GoogleLeNet the network is constructed by substituting some of the fully connected

layers by average pooling. Also, two auxiliary classifiers (small full CNNs) are added to

two of the middle blocks in an attempt ot combat lower layers discrimination. During

training, the loss calculated from the output of this auxiliary classifier is backpropagated,

while being weighted at 0.3 and during inference, it is discarded (Szegedy et al. 2015a).

As mentioned in Section 2.2 later many different variations have surfaced with added

or improved features (Jin et al. 2016, Szegedy et al. 2016a 2017a).

Resnet: Soon after InceptionNet, in 2015 a new approach to convolutional neural

network architecture was suggested by researchers at Microsoft. He et al. (2015) came

up with an architecture called Resnet (Residual Network). The name came from a specific

part of the architecture, which is the residual block(Figure E.2).

With the hypothesis that the residual mapping will be easier to optimise than the orig-

inal one, the authors achieve state-of-the-art results on multiple datasets and bench-

marks. When scaled, the Resnet architecture includes multiple residual blocks, which

are convolutional layers, but with ”shortcut connections” as described in the original pa-

per (He et al. 2015). This approach helps with the problem of degradation, which denotes

the phenomenon that sometimes deeper networks perform significantly worse than nar-

rower networks for the same problem even after converging (He et al. 2015). Resnet is

a type of architecture and encompasses multiple variations of Resnet exist based on the

number of layers in the architecture. For example, Resnet-18, Resnet-34 and Resnet-101

are such variations that have 18,34 and 101 layers accordingly, but they all have residual

blocks. The residual blocks also vary a little with the number of layers because for archi-

tectures of 50 layers and more, a bottleneck building block is used, which differs from the

original residual block by using 3 layers instead of 2.

DenseNet: Fast-forward to 2018, the team of Huang et al. (2017) built on the idea of

skip connections (introduced in Subsection E). They discovered a CNN built with all layers

interconnected with each other. In contrast to ResNets, DenseNets do not apply summa-

tion. Instead they concatenate the feature maps produced by the different layers (Huang

et al. 2017). So rather than just implementing skip connections, DenseNets implement

”dense connections” as represented in Figure E.3. This way Huang et al. (2017) argue

that with fewer parameters CNNs can learn faster since the need for redundant feature

maps is minimised and also all information is preserved throughout the whole network,
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Figure E.2: Residual block used in He et al. (2015). The identity of the input is added
together with the output of layer 2 (in this example before the next activation is done.)

which alleviates the vanishing gradient problem otherwise encountered with CNNs. Also,

recent findings show that there is a significant amount of layers, which do not contribute

much to the final prediction of the neural network and can be randomly dropped (Huang

et al. 2016). Another key characteristic of DenseNets is that they are relatively narrower

than other CNNs since they use around 12 filters per layer and the authors argue that in

this way each layer contributes a small portion of the ”collective knowledge” (Huang et al.

2017). Some of the other listed benefits in the paper (Huang et al. 2017) are that the

dense connections have a regularisation effect, helps with improved flow of information

and gradients, and contribute to better parameter efficiency. Between the dense blocks

(like the one in E.3) the network has what they call a ”transitional layer”, which consists

of a 1x1 convolution and a pooling with stride 2 (in the case of ImageNet DenseNet the

pool is average 2x2 pooling).

Figure E.3: Dense block with 4 layers used in Huang et al. (2017). Each layer outputs its
feature map to each following layer in the neural network which has a matching feature-
map size.

U-Net: Ronneberger et al. (2015b) takes an unconventional, at the time, approach

and uses two mirrored pathways for first ”capturing context” and then expansion to fa-

cilitate precise localization. It is based on how autoencoders (discussed in Section 2.1)

work. The presented training strategy relies heavily on data augmentation as mentioned

in the paper. In difference to all earlier presented state-of-the-art models, U-Net’s pur-

pose is not to achieve image classification, but rather image segmentation, thus it has a

relatively higher computational complexity, but is used to solve a different problem. The

authors also believe that this approach ”can be applied easily to many more tasks” (Ron-

neberger et al. 2015b).
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Backbones: As computer vision is such an enormous field and encompasses so

many different problems, approaches and techniques it is particularly difficult to gener-

alise all concepts as applicable to each problem, but rather they should be studied sep-

arately. Yet, there is an immense transferable knowledge that can be applied from one

computer vision problem to another (Torrey and Shavlik 2010) . One concept that exploits

this postulate is the use of backbones. Backbones are neural network architectures or

parts of architectures, which are taken and used as part of some larger pipeline (Ren

et al. 2015) . An example of such an application is the use of ResNet (He et al. 2015)

backbones in the construction of UNets (Huang et al. 2020) or the use of InceptionNet

(Szegedy et al. 2015b) and ResNet (He et al. 2015) as part of object detection, where

they are only used to classify the object in a region, which is separately discovered by

a regression model (in the case of R-CNN with such backbones) (Li et al. 2018) . In

essence, the use of such backbones is not only important to make a certain approach

work. Regardless of whether it is an autoencoder task, semantic segmentation, object

detection or even generative adversarial network, it also signifies that computer vision

advancements and algorithms can be used to address different problems by applying

predefined adjustments. Thus, heuristic approaches can exploit this and produce novel

general-purpose computer vision models.

R-CNN: The field of deep learning for computer vision has been always influenced by

visual neuroscience theories, yet the perspective on image processing in these fields is

still substantially different (Riesenhuber and Poggio 2000) . That is why object detection

before 2014 was mostly performed using HOG(Dalal and Triggs 2005) and SIFT(Lowe

2004) features, which were inspired by complex cells in V11(Girshick et al. 2014). How-

ever, it is also known that object recognition happens in a later stage, which according to

He et al. (2017) suggests that there might be multi-stage, hierarchical processes. Based

on this idea, the authors build what they refer to as ”the bridge between image classifi-

cation and object detection”, which is the R-CNN approach. The approach uses region

proposals to recognise a region where an object is present and then CNN is used to

classify the object.

R-CNN is composed of three sequential methods to get from the raw image input to

its final output. The first one is region proposal one, which generates 2000 category-

independent regions. Then, a large CNN (usually a whole state-of-the-art CNN architec-

ture) is responsible to extract fixed-length features from each proposed region (Girshick

et al. 2014). The last stage uses class-specific linear SVM to confirm the object’s pres-

ence in the proposed region (Girshick et al. 2014).

With this approach, the authors have achieved a 30% improvement from previous best

results on the VOC 2012 challenge with their mean average precision score of 53.3% (Gir-

shick et al. 2014). Later, multiple different variations emerged with Fast R-CNN (Girshick

1V1 refers to ”the first cortical area in the primate visual cortex”
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2015), Faster R-CNN (Ren et al. 2015), Mark R-CNN (He et al. 2017) and others.

YOLO: After R-CNN, a new approach appeared, which was named: ”You Only Look

Once” or YOLO for short (Redmon et al. 2016). This approach is specifically unique be-

cause it encompasses everything in a single end-to-end neural network, which achieves

state-of-the-art competitive results while being extremely fast (Redmon et al. 2016). In-

stead of using a sliding window or the R-CNN region proposal approach, YOLO uses

features from the whole image to predict each bounding box Redmon et al. (2016). First,

the input image is resized to 448x448 pixels. Then, the CNN is ran and decision to keep

or discard the prediction is taken using a specified threshold. YOLO was particularly bet-

ter than other approaches for false positives from image background since it uses the

entire image when generating predictions instead of looking at just a region of the im-

age. Even though the original YOLO was less accurate than the state-of-the-art, it was

superior to other approaches for its generalisation capabilities for object representations

(Redmon et al. 2016).

The structure of YOLO is inspired from GoogLeNet(Szegedy et al. 2015a) (Discussed

in Section E) and it uses 3x3 convolutions with 1x1 reductions. YOLO has 24 convolu-

tional layers and then two fully connected layers with final output of 7x7x30 tensor pre-

dictions (Redmon et al. 2016).

As with other models, YOLO also has multiple versions: Fast YOLO, YOLOv2, YOLOv3,

YOLO9000 and others.

SSD The same year as YOLO was published, Liu et al. (2016) introduced the SSD:

Single Shot Multibox Detector, which achieved better accuracy than YOLO and even a

comparable Faster R-CNN model for the VOC2007 test problem. Similarly to YOLO, SSD

is also a single deep neural network that achieves object detection. However, the way

SSD generate the boxes is different. SSD uses the idea of default boxes over different

scales and aspect ratios of feature maps (Liu et al. 2016). The algorithm first creates

default boxes, which are various permutations of different sized boxes at given locations

in the feature maps. Then, using ”matching strategy” (Liu et al. 2016), the ground truth

boxes are matched to a corresponding default box using Jaccard overlap. The authors

have chosen VGG16 (explained in section 2.2) as a base network and then removed the

image classification layers, then added more convolutional layers to improve predictions

for different scales and finally added auxiliary structure to facilitate object detection (Liu

et al. 2016). SSD feature maps from several different layers to handle objects of different

scales and uses 8x8 and 4x4 feature maps.

FPN: Feature pyramid networks(FPNs) were introduced by the Facebook AI research

team (Lin et al. 2017a). Although the feature pyramids were used with some of the first

object detectors (Dalal and Triggs 2005, Lowe 2004), they were soon deemed compu-

tationally infeasible for use in deep convolutional neural networks. With FPNs Facebook

researchers came up with a way to use feature pyramids (similar to the SSD approach
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described above in section E) with marginal extra cost. Thus, they created a model, which

achieved state-of-the-art performance for single-stage models on the COCO 2016 chal-

lenge. Pyramids are scale-invariant, because of the multiple levels in the pyramid, which

allows for the detection of objects of various scales. The goal of this approach was to

”leverage the pyramidal shape of a ConvNet’s feature hierarchy while creating a feature

pyramid that has strong semantics at all scales” (Lin et al. 2017a). The network uses two

pathways- bottom-up and top-down, which are responsible for computing feature maps

of the backbone CNN and estimation of higher resolution features respectively.

The bottom-up pathway has a scaling step of 2. It is used only for the last outputted

feature map of each network stage2. The top-down pathway uses nearest-neighbour

upsampling to increase the spatial resolution of the feature map by a factor of 2. A

1x1 convolution is applied to the output of the bottom-up pathway to reduce the channel

dimensions and then it is combined with the top-down pathway to achieve the goal of the

paper mentioned above (Lin et al. 2017a).

RetinaNET: In 2017 the research team of Facebook Lin et al. (2017c) published a

paper, introducing the RetinaNet. The authors argue that the single-stage approach may

potentially be faster and simpler than the R-CNN two-stage approach. One of the biggest

contributions of the paper is the revised cross-entropy loss function. The proposed novel

loss is called focal loss, which aims to combat the extreme foreground-background class

imbalance found in training sets for object detection (Lin et al. 2017c) but it is extendable

to classification problems as well.

FL(pt) = −α(1− pt)γlog(pt) (E.1)

In the equation above pt refers to the model’s probability for the class with correspond-

ing label y such that:

pt =

 p if y = 1

1− potherwise

. The parameters α and γ represent the weighting of different class and the focusing

parameter respectively. The focusing parameter in particular smoothly adjusts the at

which the ”easy” samples are downweighted. The authors argue that the conventional

cross-entropy loss has a pitfall when used in object detectors because the easily clas-

sified negatives dominate the gradient and make up the majority of the loss, which is

why they have created a new focal loss (Eq. E.1) (Lin et al. 2017c). The γ parameter

is responsible for modulation, thus the bigger this focusing parameter - the more down-

weighted the easy examples are. The α parameter is a weighting parameter introduced

to achieve an α-balanced cross-entropy loss (Lin et al. 2017c). The detector (RetinaNet)

2A network stage is defined by the authors Lin et al. (2017a) as any group of layers within a network,
which output a feature map of the same size
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uses the focal loss and adopts a feature pyramid network backbone Lin et al. (2017a)

with 2 subnetworks responsible for classification and box regression respectively. For

the classification, there is a fully-connected network attached to each level of the FPN.

The subnetwork is composed of four 3x3 ReLU activated convolutional layers with filters,

which number correspond to the number of channels of the input feature map. Then a

3x3 convolutional layer with filters equal to the number of classes multiplied by the num-

ber of anchors. The last layer is a sigmoid or softmax layer depending on if the problem

is binary or multi-class (Lin et al. 2017c).

The second subnetwork is used for box regression and is also a fully-connected net-

work, which is also attached to each level of the FPN (Lin et al. 2017c). It regresses the

offset between each anchor box and a nearby ground-truth object. The structure of the

network is the same as the object classification subnetwork with a single difference. The

last layer has a linear output and the number of neurons in it is 4 times larger (because

of the 4 points needed to construct the box) than the number of anchor boxes (Lin et al.

2017c).

EfficientDET: While RetinaNET achieved new state-of-the-art performance thanks

to the optimisation of floating-point operations and managed to stay hugely competitive

and outperform many of the previous approaches, EfficientDet takes object detection

efficiency one step further by exploring two main ideas: weighted bi-directional feature

pyramid and compound scaling method (Tan et al. 2020). The motivation behind Efficient-

Det was that the new NAS models such as AmoebaNET(discussed in Section F) were

becoming bigger and bigger and ”the large model sizes and expensive computation costs

deter their deployment in many real-world applications” (Tan et al. 2020). This is a huge

problem because even though these models are highly accurate they have a hard limit

on the applications they can be used in. What EfficientDet does differently than normal

FPN approaches (following the methodology discussed in E), is that the authors weigh

the features coming from different resolutions of the pyramid, hence achieving weighted

bi-directional feature importance (Tan et al. 2020). In this way, they introduce new param-

eters which are responsible for capturing the importance of different features. The second

advantage which allows EfficientDet to surpass state-of-the-art performance while having

a magnitude fewer parameters lies in what they call ’compound scaling’ (Tan et al. 2020).

It scales up the resolution not only of the backbone but also the feature network and the

box or class predictor.

Hide-and-Seek: With the increased interest in the field of object detection a need to

upscale object detection datasets started to arise. The need for an upscaling augmen-

tation which could boost generalisation performance as well as size of the datasets was

needed (Singh and Lee 2017b). In (Singh and Lee 2017b) authors addressed just that by

coming up with the idea to hide salient parts of the image during training, thus forcing the

model to look elsewhere to find features. Thus, the network can learn much more about
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objects and their properties. There is also a reported significant increase in performance

for object localisation compared to the state-of-the-art in 2017. This is achieved with a

weakly-supervised method, which aims to localise all salient parts of an object, instead

of just looking for the most discriminative part. During training, it hides patches of the

image to hide the most discriminative parts and during inference, no augmentation to the

images is done. The method can mainly be applied to two general scenarios: object lo-

calisation in images and action localisation in videos (Singh and Lee 2017b), succeeding

in improving the state-of-the-art object localisation score on ILSVRC. During the develop-

ment of the method, the authors encountered two interesting problems. The first is that

a discrepancy between the neurons in the first convolutional layer starts to appear since

the filters in the first convolutional layer are exposed to lots of empty pixels, thus distorting

the underlying distribution. This affects negatively the performance when the method is

tested for inference since during inference the images are intact (Singh and Lee 2017b).

To combat this, the authors use to fill the removed patches with the mean vector for RGB

values over the whole dataset. The second interesting issue they tackle is the normal

performance of action localisation methods. During action localisation algorithms usually

focus on the most discriminative frames to ensure good performance and usually that

leads to many frames being missed out. Singh and Lee (2017b) removes random frames

during training (sampled from different segments with a predefined probability). This way

the algorithm can be exposed to different frames and thus learn to localise action better

following the same logic as the application for object localisation.



Appendix F

State-of-the-Art Neural Architecture
Search Methods for Computer
Vision

AmoebaNet Noticing the trend in computer vision and the effort towards a general pur-

pose AI, back in 2017 the Google Brain Team developed an algorithm based on neu-

roevolution (Real et al. 2017)- AmoebaNet, in line wiht the trends in computer vision .

The overall aim was to achieve automatic neural architecture search through employing

neuroevolution following a simplistic evolutionary approach backbone. The training was

via backpropagation with a standard optimiser, but an intriguing novelty was the use of

a simplified graph to represent architectures during encoding, enabling the approach to

use mutation on each node separately with the ability to occur multiple times (Real et al.

2017). In their study, the authors compared the approach to random search as well as

reinforcement learning methods. The evolutionary approach seemed to outperform all

other approaches. Although their performance has been currently surpassed by Effi-

cientNet (Tan and Le 2019b), the AmoebaNet is still considered to be state-of-the-art.

In the last couple of years, there have been several further improvements to the initial

model, thus several versions of the same model currently exist. All of them are grouped

in a family, which is called AmoebaNets, so each improvement has a specific suffix (ex.

AmoebaNet-A, AmoebaNet-D etc) (Real et al. 2017) (Real et al. 2018).

NASNET: While researchers at Facebook (He et al. 2017) and Google (Real et al.

2018, Tan and Le 2019b) were focusing on solving image classification, semantic seg-

mentation or even instance segmentation problems, Qin and Wang (2019) decided to

look at a very different computer vision problem. They examined the detrimental effect

on images when there is rain (or similar artefacts) and decided to come up with a novel

attention mechanism to combat it (Qin and Wang 2019). The idea behind their approach

was that it re-calibrates neuron-wise feature responses by observing codependence and
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correlation between neurons. In contrast to early methods that focus on image priors (Sun

et al. 2014, Kang et al. 2011), they fuse information of peripheral neurons allowing them

to capture the attention of local receptive fields as well as contextual information. One

of their key contributions is the Neuron Attention module of their approach. It is meant

to be adaptive and dynamic in re-calibrating responses of neurons by modelling their

inter-dependencies and influence over each other (Qin and Wang 2019). They achieve

this with two operations: depth-wise convolutions because of the extra spatial informa-

tion per channel and point-wise convolution to tackle the problem with the effectiveness

of depth-wise convolutions to capture the information of the different filters in the same

spatial location (Qin and Wang 2019).

DARTS: Arguably one of the most important developments in Neural architecture

search is DARTS (Differential Architecture Search) (Liu et al. 2018). In contrast to con-

ventional evolutionary or reinforcement learning approaches, the researchers involved in

this paper use continuous relaxation of the search space for architectures, which allows

for efficient search using gradient descent. The work discusses one of the fundamen-

tal challenges with neural architecture search approaches - scalability (Liu et al. 2018).

While most NAS approaches treat the optimisation of neural networks as a black-box

optimisation, in contrast to DARTS which applies gradient descent optimisation over a

continuous search space of architectures and while the continuous search space relax-

ation is not novel by itself, DARTS aims to find complex building blocks with convoluted

graph topologies which are not restricted to any family of blocks (Liu et al. 2018). In their

work, the authors search for a computational cell, which is represented by a directed

acyclic graph consisting of an ordered sequence of nodes. To relax the choice of layer

operations to be continuous the authors use a softmax function applied over all possi-

ble operations while at the same time attempting to optimise the weights of the network,

which results in a bi-optimisation problem (Liu et al. 2018). In their experiments, they use

a two-stage process where they first find repeatable cells (with 7 nodes) and then they

stack some of these discovered cells to create an architecture which they compare with

the state-of-the-art.

DEvol: Deep Neural Network Evolution (DEvol in short) is a generic framework for

genetic optimisation of neural networks (Davison 2017). In reality, even at first sight

simple, the approach manages to construct a full-fledged neuroevolution process and

achieves above 99.3% on the MNIST dataset without using any transfer learning, data

augmentation, ensembling or even fine-tuning. The authors run their approach for 50

generations with a population size of 20, which results in 1000 model construction and

evaluations (Davison 2017). DEVol also uses early stopping, parameter selection and a

limited number of epochs(in their experiments 10) to avoid using computational resources

for genomes that are not promising. They employ one-point crossover and for their mu-

tation, they change the value of a random parameter with the one from a pool of possible
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values (Davison 2017).

EfficientNet: While the team of Google Real et al. (2017) managed to set a new

state-of-the-art performance model and even further improve it just a year later (Real et al.

2018), researchers from the same research group decided to pursue a similar ambition

but instead of focusing on neuroevolution, they employed reinforcement learning (Tan

and Le 2019b). They base their approach on the idea that manual scaling of two or more

dimensions is possible, yet requires a tedious amount of labour and yields sub-optimal

results (Tan and Le 2019b). Hence, the authors attempt to automate this process using

reinforcement learning and rethink the way CNNs are scaled up. At first, they apply their

new scale-up method to already existing architectures but then decide to employ neural

architecture search to discover a new building block for CNNs which at that time set a

new state-of-the-art performance (Tan and Le 2019b).

MONAS: Sometime before EfficientNet and slightly after the improvement of Real

et al. (2017) procedure in the face of Real et al. (2018) came to light, the success of

automated neural architecture search was spotted by the authors of Hsu et al. (2018).

They managed to create an algorithm called MONAS (Multi-objective neural architecture

search) which was one of the first attempts in incorporating multiple (often conflicting) ob-

jectives in neural architecture search (Hsu et al. 2018). Their study focuses on the idea

that a correlation between model complexity and achieved accuracy has been observed

and while highly accurate models are generally preferred, there are settings in which

the model complexity makes it unfeasible for deployment as a solution (Hsu et al. 2018).

This is why they introduce an objective based on the number of operations and predicted

energy consumption while searching for an optimal architecture (Hsu et al. 2018). The

authors utilise reinforcement learning with long short-term memory cells which control the

hyperparameters for different layers (Hsu et al. 2018), but their approach differs from sim-

ilar related work thanks to the fact that they observe that while using multiple objectives,

their algorithm manages to produce solutions which satisfy specified constraints much

more effectively than random search (Hsu et al. 2018).

AutoDeepLab: While the methods discussed so far focussed on simple classifica-

tion, in 2019 ambissious researchers from Google and John Hopkins University Liu et al.

(2019a) decided to explore the possibility of using the already popular Neural Architecture

Search (NAS) methods to discover an architecture for semantic segmentation. They es-

tablish that despite most of the knowledge from conducting NAS on other problems being

relevant, some assumptions do not necessarily work in the case of semantic segmenta-

tion. They recognise there are two big problems with NAS and these are: 1. the need

for a more relaxed and general search space and 2. better efficiency for performance

estimation since state-of-the-art NAS approaches can take extremely long times to dis-

cover a competitive architecture (Liu et al. 2019a). Instead of focusing on Neuroevolution

(like AmoebaNet) or reinforcement learning (like EfficientNet), Liu et al. (2019a) employ
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gradient descent to optimise both weights and architecture. One of the key assumptions

they centre their work on when looking for architectures is that the current state of the art

utilises a two-level hierarchy (He et al. 2016b, Szegedy et al. 2015b, Liu and Deng 2015).

While most NAS approaches do focus their efforts to match these manually designed

architectures (by incorporating macro and micro search) (Lu et al. 2019), Auto Deep-Lab

propose a trellis-like network-level search space to form hierarchical architecture search

Liu et al. (2019a). They follow differentiable NAS formulation (Shin et al. 2018) and use

stochastic gradient descent to beat the Cityscapes benchmark and achieve 80.33% mean

IOU on the dataset using 20 out of the 30 classes. The paper also argues in favour of op-

timising the whole architecture instead of conducting micro and macro search separately,

which is rare in the field of NAS.



Appendix G

Datasets

In this appendix, some popular image classification problems/datasets are presented,

used in the following chapters. In addition, a new, original dataset specifically collected

for this thesis is shown, which will be introduced in chapter 5. Image classification is

one of the most mature, simple and fundamental computer vision problems (Nath et al.

2014). It is usually associated with a problem where a single image should be classified

to belong to one of two (binary classification (Parkhi et al. 2012) ), one of many (mul-

ticlass classification (LeCun et al. 1999) ) or multiple different (multilabel classification

(Miao et al. 2019) ). Here some of the quintessential image classification datasets are

presented.

CIFAR10 (Krizhevsky et al. 2014) is a dataset composed of 10 classes, which are

aeroplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Usually, the

dataset is used as-is and the task for the dataset is image classification where each

image is classified as being a single class out of the ten. There do exist extensions of this

task, however, which group different classes together and redefine the task (Wan et al.

2020, Ma et al. 2021).

For example, instead of predicting if the image is either of the ten classes, the problem

can be structured, so that a model needs to predict whether an image depicts a vehicle

or an animal (Hussain et al. 2018). In this way, the actual classes are grouped, but the

original labels can be used as concepts (Kazhdan et al. 2020, Sarkar et al. 2022) and in

this way, this extra information can be supplied to a model to explore representation learn-

ing and other interesting ideas. The same thing can also be done the other way around,

instead of the concepts being the actual classes and the labels being the groupings both

can be reversed (Ma et al. 2021).

Doing so, allows the model to have information if the image represents an animal

or vehicle but it still has to guess which one it is. This also opens the door to various

active learning research opportunities and exploration as to what part of the data is most

important for learning. This dataset is widely used in various computer vision problems,

benchmarks and scenarios and is believed to be a harder toy dataset than MNIST (LeCun
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Figure G.1: Example images with all 10 classes of CIFAR10 (taken from https://www.

cs.toronto.edu/~kriz/cifar.html) (Krizhevsky et al. 2014)

et al. 1999), which allows for more accurate performance estimation for real data.

ImageNET: Arguably one of the biggest computer vision datasets and a driving force

for the rebirth of the field of computer vision was the creation of ImageNet back in 2009

(Deng et al. 2009). ImageNet is a dataset which started with around 20 000 images of

different everyday objects and with the help of an annually held competition called Im-

ageNet Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al. 2015)

was expanded over the course of 7 years to become one of the largest annotated image

datasets in the world. It contains 14 million images classified into more than 21 thousand

classes and subclasses. The classes are structured using the popular framework Word-

Net which is a large lexical dataset (Fellbaum 2010). Many researchers use ImageNet

to benchmark general models, approaches and novel ideas and it is also of interest to

researchers in the area of active learning (Emam et al. 2021) and AutoML (He et al.

2021).

SIXray: In the paper Miao et al. (2019), the authors present a new publicly available

security threat dataset made up of more than a million X-ray scans of baggage. The data

is split into 7 classes(Gun, Knife, Wrench, Pliers, Scissors, Hammer and negative), but

because the Hammer class is made up of merely 60 images they didn’t use it in their

experiments. The dataset itself is the biggest dataset for baggage scans to date and

the data was collected from several subway stations (Miao et al. 2019). In the paper,

the dataset is described to have the following 4 important properties: 1. Presence of

overlapping objects 2. Inherent intra-class variation from the different shapes, scales,

viewpoints and styles 3. Noise from the heavily cluttered objects and 4. Heavy class

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
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imbalance.

SIXray consists of 3 separate datasets: SIXray 10, SIXray 100 and SIXray 1000 de-

noting 1:10,1:100 and 1:1000 ratio of threats to begin images respectively. This means

that in SIXray 1000 for every image of a prohibited item there are 1000 benign ones,

which can easily overwhelm a classifier and the class imbalance has to be considered

when designing a proper approach. More specifically, when choosing the right loss and

metrics.

For this reason Miao et al. (2019) introduces an approach, which they call class-

balanced hierarchical refinement (CHR). This method intends to combine two sources

of information and calculate a loss. It takes into account the different level features by

examining multiple different layers, which are chosen as feature extractors. The feature

maps produced from each chosen layer are then upsampled to the original size of the

image (if it is of a different size) and concatenated with the feature maps from the previous

layers. Then the result is fed into a refinement function before being sent for classification.

Object Localisation: In difference to pure image classification, where one image is

just associated with a label, the object localisation task takes this one step further by

requiring the system to provide information not only by a single label, but rather give

context as to where the actual entity is positioned (Tompson et al. 2015) . In contrast to

object detection, however, object localisation is just concerned with finding one particular

entity, thus is more similar to image classification with some auxiliary regression over 4

parameters which define a single bounding box (Harzallah et al. 2009) .
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Anomaly detection

Anomaly detection deals with the ”detection of deviation and divergence of anomalous

samples from the normal ones” Minhas and Zelek (2019). It is concerned with recognising

patterns of data(called anomalies), which appear to be out of the ordinary distribution

(Chandola et al. 2009). Recognising these anomalies is crucial for various problems

from a multitude of domains, which range from fraud detection, surface defect detection,

diagnostics and even threat detection (Minhas and Zelek 2019).

Identifying anomalies can be especially hard in scenarios where the natural distribu-

tion of data involves high variance (as in credit card fraud detection) since most of the

anomalies can be well concealed to look like natural outliers of the original distribution

(Mery 2015). Taking anomaly detection one step further is of extreme importance in mul-

tiple different industries such as medical imaging (Wei et al. 2018) , manufacturing (Mery

2015) and concealed weapon detection (Miao et al. 2019).

There exist anomaly detection algorithms that make use of supervised, semi-supervised

and unsupervised learning, where unsupervised learning techniques are believed to still

be unavailable for analysing images (Minhas and Zelek 2019).

Using supervised learning for anomaly detection there are two major challenges: the

”lack of labelled data and low anomaly instances” (Minhas and Zelek 2019)

The lack of labelled data can be combated either on the data level (by manipulating or

adjusting the data) or as part of adjustments to the mathematical model used to discover

the anomalies.

In the ”data space”, a popular way to deal with huge data imbalance if possible is to

over-sampling the data in favour of the misrepresented class or classes using approaches

such as SMOTE (Chawla et al. 2002) , MWMOTE (Barua et al. 2012) or many others. As

a result, new data points are generated which follow the distribution of the presented

dataset. With imagery data oversampling is usually done using data augmentation (Taqi

et al. 2018). Data augmentation is a great tool which allows one to specify hyperparame-

ters which in the case of images might be rotating the image at certain degrees, flipping

the image along each axis, brightening or darkening the image etc.
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In the ”model space”, there also exist numerous different techniques to address lim-

ited data availability and data imbalance (Miao et al. 2019). If the data follows similar

distribution even partially to an already existing method or dataset then transfer learning

can be applied Minhas and Zelek (2019). Using this method the model can be fine-tuned

to the dataset at hand while using an already trained model for a different dataset (Ver-

cruyssen et al. 2017) . A dataset often used for transfer learning is ImageNet (Section G)

since it is one of the largest image datasets available (Deng et al. 2009). To apply trans-

fer learning researchers and practitioners use a model which is already good at solving a

particular problem (in this example ImageNet) and then retrain it on the newly presented

problem(dataset) (Torrey and Shavlik 2010). This allows for the model to start at a po-

tentially good starting point while training on the new data points to reach global optimum

more efficiently and effectively.

Another technique used to combat class imbalance is adjusting the biases of the

output neurons for some of the classes (Givnan et al. 2022) or using weights in the loss

functions to steer the model in giving underrepresented classes more attention (Zhu et al.

2018) as well as using loss functions like Focal loss (Lin et al. 2017b) which are specifi-

cally designed to be as invariant as possible to class imbalance. These techniques which

in this work is called ’loss manipulation’ presents a way to specify preference articulation

and make the model give a certain class more attention to other ones and in this way

the training of the model can be steered into gaining bigger rewards in minimising the

loss when the performance for certain class or classes is improved. Below an example of

how the weight coefficients are added in normal categorical cross-entropy is presented.

Unweighted crossentropy can be represented by the following formula:

− 1

N

N∑
i=1

C∑
c=1

1yi∈Cc
log pmodel[yi ∈ Cc]. (H.1)

There is a double sum to calculate the loss over each observation i from all observations

N and each class c from all C classes. The term 1yi∈Cc is used to describe the indicator

function for selecting the ith element that belongs to class c. The probabilities for each

observation i to belong to class c as predicted by the model are pmodel[yi ∈ Cc], where C

is a C-dimensional vector of probabilities for each class c. Such probabilities are typically

weighted (e.g., to assign a higher importance to the true positives of a class with respect

to the rest), and expressed as ŷ, and thus the loss L becomes:

L(y, ŷ) = − 1

N

N∑
i=1

C∑
c=1

αc1yi∈Cc log ŷ, (H.2)

where y contains all the labels, ŷ the model predictions for a particular instance yi be-

longing to any of the classes c, and αc is the weight of the particular class.

Semi-supervised approaches attempt to estimate the underlying distribution and den-
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sity function (Akcay et al. 2018). While there exists a plethora of semi-supervised ap-

proaches one particularly interesting and successful is using generative adversarial net-

works to tackle this problem (Akcay et al. 2018). This approach attempts to first minimise

the difference between the images from the dataset and their generated reconstructed

counterparts. This way a larger distance from this learned data distribution at infer-

ence time ”is indicative of an outlier from that distribution” (Akcay et al. 2018), that is,

an anomaly.



Appendix I

Encoding convolutional neural
network architectures

A prerequisite for using evolutionary algorithms to solve a particular problem is to pro-

vide the algorithm with a search space of decision variables, which mapped through an

evaluation function (or functions) produces a result in the objective space. To do this with

neural architectures multiple different approaches can be undertaken (like using cellular

encoding (Gruau 1994b), genetic encoding (Dürr et al. 2006) and many more). Usu-

ally, the encoding techniques are split in direct encoding (which means directly mapping

the genotype to a single phenotype) (Ronald and Schoenauer 1994) or indirect encod-

ing (which involves mapping the architecture and other hyperparameters through some

function, which produces a summaries version of the original information and serves as

a DNA of the actual variables (Stanley 2003)). In this experiment, a direct encoding ap-

proach is discussed, but expanding that to an indirect one with the motivation to reduce

the search space could also be explored.

One of the major stepping stones in the process of constructing a neuroevolution

algorithm is the encoding and decoding of the neural network. Thus, this subsection

covers the progress in developing the neuroevolution approach discussed in the aims

and objectives and future work. Drawing motivation from the encoding scheme of the

paper ”Darts: Differentiable architecture search” (Liu et al. 2018) (DARTS for short), my

current novel approach is capable of encoding convolutional neural networks using 3

python lists for convolutional and dense layers as well as a single value (identifier) of the

desired global pooling approach. For successful construction of the CNN, the shape of

the input, as well as the number of classes, is also required. The 3 required lists are as

follows:

1. A list of all layer ids, where a dictionary of id to layers is predefined (ex. 1− > 3x3

convolution)

2. A list of number of nodes per each layer
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3. A list with integer values corresponding to binary values for each layer. This input

is then taken and converted to its binary representation, which is used to construct

a directed acyclic graph.

The way the encoding is structured allows for the use of cells (similar to the approach

of DARTS (Liu et al. 2018). These cells are abstract separations of a set of layers. For

convenience, the convolutional and pooling layers are separated from the dense layers

after the flattening or global pooling in different cells and each cell consists of a 3-D

tensor containing the 3 lists from above. As evident from Figure I.1, any set of forward

connections in a cell can be encoded, while a drawback is that no skip-connections can be

made between cells. This allows for great modularity and in the context of an evolutionary

algorithm, this allows for cells to be easily swapped to facilitate recombination of different

genomes.

This experiment is a major stepping stone in the creation of a neuroevolution algo-

rithm and is subject to change. However, it is proof of progress towards objective 3 and

enables great flexibility for the further developed neuroevolution algorithm. The next ma-

jor efforts will be into creating an initialisation, which is also supported by literature and

adding the weights and biases to the encoding. A fast experiment for using the random

seed for normal initialisation was attempted (as a mean of indirect encoding), but it was

abandoned because of the lack of literature to support the feasibility of the idea as well

as the implicit lack of robustness.
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Figure I.1: Illustration of the encoding/decoding process. a) presents the same architec-
ture described in b), but a) is decoded and b) is encoded. c) presents a more in-depth
view of how the connections array from b) is decoded and d) is an example b) of a con-
nections array which is [128,112,33,16,8,4,2,1]
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Concealed Weapon Detection using
State-of-the-art Object detection

The motivation behind this experiment is to establish the performance of state-of-the-art

models for object detection on concealed weapon x-ray dataset.

The authors of (Miao et al. 2019) provide a limited number of bounding box labelled

images and not all threat images have an assigned bounding box for the threat, thus to

evaluate the effectiveness of this approach the CNNs were only tested on images with

bounding boxes. This means that the algorithms were not tested on fully negative images

and to accurately measure the false positive rate this has to be done.

That is why one of the first conducted experiments was the use of state-of-the-art

object detection algorithms on SIXray(Miao et al. 2019). In object detection, an often-

used performance measure is the intersection-over-union (IOU) (Rezatofighi et al. 2019).

During this experiment, Faster R-CNN (Ren et al. 2015) was used with InceptionResnet

backbone and the produced results after 1 million steps converged to 62.9% mean aver-

age precision across all IOUs (graph of training MAP in Figure J.1a and the loss in Figure

J.1b) during training. During inference, this approach scored 60% on the validation set

and 70.78% on the test set (Breakdown of the performance per class available in Figure

J.1c).

From this experiment, it can be seen that the state-of-the-art models perform quite

well on SIXray, which connotes that x-ray concealed weapon detection does share some

similarities with normal visual data and knowledge and approaches to some extent can

be transferable for this problem. On the other hand, 62.9% mean IOU is a possible point

of improvement and it presents an opportunity for niche research in order to optimise

these or other networks to perform better in the critical context of security.
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OBJECT DETECTION

(a) Mean average precision of train-
ing Faster R-CNN with InceptionRes-
net. Light blue indicates real loss val-
ues and the dark blue is the produced
line after 50% softening is applied.

(b) Loss for training Faster R-CNN with
InceptionResnet. Light blue indicates
real loss values and the dark blue is
the produced line after 50% softening
is applied.

(c) Performance for different classes of the ap-
proach on the test set. The first result is the
current state-of-the-art performance for COCO
datset, which is widely known object detection
dataset problem. The second bar (the brown
one) is the trained loss
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Figure J.1: Object detection experiment results. In the first two figures (a) and (b) the x
axis denotes the training steps (how many minibatches the algorithm iterated over) and
the y axis denotes the mean average precision in (a) and the loss in (b)



Appendix K

Preference articulation through loss
manipulation

From looking at the results in the original study for SIXray (Miao et al. 2019), it becomes

evident that the performance for some of the classes in the context of SIXray100 and

SIXray1000 can drop to near-random and sometimes even worse. All presented ap-

proaches report the worst performance for the Scissors class, which also happens to

be the most underrepresented class. It is worth mentioning that according to the code

provided by the authors, the performance of for SIXray100 and SIXray1000 is reported

after the algorithm is trained on SIXray10 and then inference is conducted on each of

the three datasets to discover their performance. This observation connoted that there

might be a correlation between the number of available samples for each class and their

performance on all of the three different datasets. Some deviation in the performance is

to be expected since intuitively the lower the number of samples the algorithm can ob-

serve while training the higher the probability of underfitting goes. This is because the

algorithm is not exposed to all features that make up the particular class. Research in

this area has currently made tremendous progress in achieving good results with less

data through techniques like data augmentation (Singh and Lee 2017b) , one-shot learn-

ing (Chen et al. 2019) , zero-shot learning (Li et al. 2019) and many other interesting

approaches (Ghadakchi et al. 2019, Teh and Taylor 2020). However, setting this aside,

one of the main features of the SIXray dataset is that it is highly imbalanced and this is

done on purpose for the dataset to be representative of the imbalance, which is usually

present in real-world scenarios in this domain (Miao et al. 2019).

A series of experiments were conducted on the SIXray dataset (Miao et al. 2019) to

test the hypothesis: Through preference articulation in the form of loss manipulation for

adjusting how much attention is given to different classes, the performance for underrep-

resented classes can be improved. This is done by assigning weights to the output loss

for each class. In particular, in the last layer the loss function used is binary cross-entropy,
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but because it is applied to 6 sigmoid activated neurons separately (denoting if a threat

from the 6 different classes is present).

In the following two equations the following convention is used:

1. C is the number of classes

2. si is the score output of the neural network.

3. ti is the ground truth target value for this class.

4. wi is the weight applied to each class.

The non-weighted version of cross-entropy:

C∑
i

tilog(si) (K.1)

The weighted version of the cross-entropy:

C∑
i

witilog(si) (K.2)

During the setup of the experiments, some discrepancies with the original paper and

methodology were found, thus, unfortunately, results from this study are not fully compa-

rable with the original results produced by the authors of (Miao et al. 2019). The reason

for this is that during the training the authors of the SIXray paper used the testing set for

validation and their final results are, therefore ”contaminated” with data leakage from the

actual test set. In the experiment discussed below the training and validation was done

on the training set and a predefined split is defined so that the training and validation

splits are the same for all models. Because the datasets are imbalanced there is a high

possibility of choosing a validation split where no records from a certain class are present

if the sampling is done at random. That is why a stratified approach is used to ensure that

the validation set contains the same percentage of records for each class. For example,

if the validation set is 20%, then it will be constructed by taking 20% of the records for

each class.

Afterwards, several runs of the same architecture were conducted and all hyperpa-

rameters were defined initially to be used in all experiments for all architectures. This

is done in order to keep any hyperparameters except the loss class weights as con-

trol variables, so the difference between any experiment settings would be just the used

architecture and if the loss manipulation is applied or not. Then, a model with the cor-

responding architecture was trained with the predefined architecture (mostly taken from

the original paper) and the rest of the methodology has also been kept the same. After

the model is trained on SIXray 10, it is then evaluated on the final testing set provided for

each separate problem (SIXray10, SIXray100 and SIXray1000).
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The first set of produced results looked promising since (as evident from Table K.1)

for Resnet 50 and 101 the loss manipulation generally improved the performance of the

classifier across almost all classes and at first glance yielded better performance even

from the state-of-the-art described in Miao et al. (2019). Interestingly, after executing

15 independent runs the results were drastically different when using average precision

(instead of a cherry-picked threshold) as evident from Table K.2. What is even more

interesting, is that looking at the 15 runs not only the loss manipulation did not affect the

performance positively it, in fact, lead to a drop in performance for the important classes,

which is an unexpected finding.

Even though the null hypothesis for this experiment cannot be rejected based on the

results, the following key takeaways can be drawn:

1. A reason that might have caused this huge discrepancy is that the hyperparameters

used (in terms of learning rate etc.) are based on the average of all optimal discov-

ered ones, which is suboptimal and automated approaches such as neuroevolution

may be able to tackle this problem.

2. The performance of the used algorithms vary greatly depending on the used ran-

dom seed for the initialisation of the weights, which in theory should be one of the

few points of difference between the runs. This might signify the importance of a

strong initialisation and also connote that the performance of an algorithm is prede-

termined by its initialisation.

3. A reason for seeing such poor performance might also be due to underfitting since

the deeper architectures have worse performance than the shallower ones. To the

best of the author’s knowledge, currently, there is no measure of estimating the

needed capacity of a neural network (and the possible architectures with this ca-

pacity) solely based on the data itself. As suggested by (Goodfellow et al. 2016b)

such an approach would require the complexity of the dataset to be discovered

first and then from that infer the needed capacity. Research in this area can be

ultimately useful for neuroevolution and other neural architecture search algorithms

since if the optimal capacity of a classifier is known, then the search space can be

constrained and the algorithms would produce much better algorithms much faster.

It can essentially serve as a preference articulation vector (Rostami 2014), thus

narrowing down the search space.
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Table K.1: Precision for 0.5 threshold in % for each class and macro mean precision for SIXray 10,100,1000

Method Gun Knife Negative Pliers Scissors Wrench Macro avg

Resnet34 96 86 76 90 68 63 97 100 100 73 32 15 75 21 15 49 26 23 80 55 49
Resnet34 + CW 95 76 63 85 63 56 97 100 100 73 32 13 75 16 11 47 24 21 79 52 44
Resnet50 95 74 60 86 62 54 97 100 100 75 34 15 74 22 15 51 23 19 80 52 44
Resnet50+CW 94 82 71 87 60 52 97 100 100 74 35 15 79 24 17 49 23 19 80 54 46
Resnet101 94 63 46 87 72 66 97 100 100 50 10 4 58 12 9 21 3 2 68 43 38
Resnet101+CW 97 78 63 93 57 44 96 100 100 70 30 13 77 16 10 41 22 20 79 51 42

Table K.2: Average precision in % for each class and macro mean recall for SIXray 10,100,1000 for 15 runs.

Method Gun Knife Negative Pliers Scissors Wrench Macro avg
Resnet34 82µ2.4 65µ8.3 53µ10.7 61µ4.1 46µ5.6 43µ7.7 99µ0.1 100µ0.01 100µ0.06 51µ2.2 21µ2.6 11µ2.1 10µ0.1 1µ0.2 1µ0.1 23µ0.1 10µ1.2 8µ1.2 54µ1.4 40µ2.3 36µ2.6
Resnet34 + CW 79µ5.1 56µ12.6 44µ14.8 58µ5.9 42µ10.2 39µ11.0 99µ0.1 100µ0.05 100µ0.03 51µ1.8 19µ2.0 10µ1.5 10µ1.3 1µ0.2 1µ0.1 22µ2.2 9µ1.6 7µ1.5 53µ2.0 38µ3.9 34µ4.3
Resnet50 77µ6.6 52µ18.6 41µ20.3 62µ13.0 41µ18.0 36µ17.2 99µ4.4 100µ0.08 100µ0.05 50µ2.3 18µ4.2 9µ2.4 10µ2.3 1µ0.5 1µ0.4 21µ2.0 7µ2.3 6µ2.2 53µ3.3 37µ4.6 32µ4.7
Resnet50+CW 76µ8.5 47µ17.6 35µ17.1 55µ11.8 27µ15.4 22µ15.5 99µ0.7 100µ0.06 100µ0.03 50µ4.9 18µ5.1 9µ3.1 9µ1.6 1µ0.2 1µ0.1 21µ3.1 7µ2.9 6µ2.9 52µ3.7 33µ5.4 29µ5.0
Resnet101 71 -10.6 41µ22.6 32µ21.6 50µ12.4 23µ13.7 18µ12.3 99µ0.8 100µ0.08 100µ0.04 49µ2.9 17µ3.4 8µ2.1 11µ1.9 1µ0.4 1µ0.3 19µ2.5 7µ2.4 5µ2.3 50µ3.6 31µ5.0 27µ4.4
Resnet101+CW 72µ10.0 40µ20.2 31µ19.9 53µ9.6 25µ15.0 20µ14.0 99µ0.1 100µ0.13 100µ0.08 49µ2.7 16µ3.9 8µ2.6 9µ1.5 1µ0.3 1µ0.2 21µ2.4 7µ2.1 6µ1.9 51µ3.2 32µ5.4 27µ5.2



Appendix L

Density plots for number of pixels
per class over images
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APPENDIX L. DENSITY PLOTS FOR NUMBER OF PIXELS PER CLASS OVER

IMAGES

Figure L.1: Here each image from (a) to (t) displays the distribution of number of pixels
for each class separately over all images in the dataset.

(a) Class 0 (b) Class 1 (c) Class 2 (d) Class 3

(e) Class 4 (f) Class 5 (g) Class 6 (h) Class 7

(i) Class 8 (j) Class 9 (k) Class 10 (l) Class 11

(m) Class 12 (n) Class 13 (o) Class 14 (p) Class 15

(q) Class 16 (r) Class 17 (s) Class 18 (t) Class 19



Appendix M

Discovered best Cityscapes model
visualisation

The visualisation as well as the saved state of the model are present in the submitted

supplementary materials.
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Figure M.1: Visualisation of best discovered model with MOSS for Cityscapes
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