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Abstract

Structural Health Monitoring (SHM) involves the application of qualified standards, by

competent people, using appropriate processes and procedures throughout the struc-

ture’s life cycle, from design to decommissioning. The main goal is to ensure that through

an ongoing process of risk management, the structure’s continued fitness-for-purpose

(FFP) is maintained – allowing for optimal use of the structure with a minimal chance of

downtime and catastrophic failure.

While undertaking the SHM task, engineers use model(s) to predict the risk to the

structure from degradation mechanisms such as corrosion and cracking. These predictive

models are either physics-based, data-driven or hybrid based. The process of building

these predictive models tends to involve processing some input parameters related to the

material properties (e.g.: mass density, modulus of elasticity, polarisation current curve,

etc) or/and the environment, to calibrate the model and using them for the predictive

simulation. So, the accuracy of the predictions is very much dependent upon the input

data describing the properties of the materials and/or the environmental conditions the

structure experiences.

For the structure(s) with non-uniform and complex degradation behaviour, this pro-

cess is repeated over the life-time of the structure(s), i.e., when each new survey is per-

formed (or new data is available) and then the survey data are used to infer changes in

the material or environmental properties. This conventional parameter tuning and updat-

ing approach is computationally expensive and time-consuming, as multi-simulations are

needed and manual intervention is expected to determine the optimal model parameters.

There is therefore a need for a fundamental paradigm shift to address the shortcomings

of conventional approaches. The Digital Twin (DT) offers such a paradigm shift in that

it integrates ultra-high fidelity simulation model(s) with other related structural data, to

mirror the structural behaviour of its corresponding physical twin. DT’s inherent ability to

handle large data allows for the inclusion of an evolving set of data relating to the struc-

ture with time as well as provides for the adaptation of the simulation model with very little

need for human intervention.

This research project investigated DT as an alternative to the existing model cali-
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bration and adaptation approach. It developed a design of experiment platform for online

model validation and adaptation (i.e., parameter updating) solver(s) within the Digital Twin

paradigm. The design of experimental platform provided a basis upon which an approach

based on the creation of surrogates and reduced order model (ROM)-assisted parameter

search were developed for improving the efficiency of model calibration and adaptation.

Furthermore, the developed approach formed a basis for developing solvers which pro-

vide for the self-calibration and self-adaptation capability required for the prediction and

analysis of an asset’s structural behaviour over time.

The research successfully demonstrated that such solvers can be used to efficiently

calibrate ultra-high-fidelity simulation model within a DT environment for the accurate

prediction of the status of a real-world engineering structure.
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1 Introduction

1.1 Overview

The engineering infrastructures (assets), including bridges, buildings, industrial plants,

offshore structures, and others, play a vital role in the functioning of societies including

private and public business. While most of these structures are typically designed to with-

stand expected loading and environmental conditions during their lifespan, unforeseen

uncertainties can still arise that do not follow the design rules. Therefore, it is crucial to

have effective risk assessment procedures in place to mitigate potential risks associated

with such uncertainties and ensure timely maintenance (Brownjohn 2007). Moreover, ef-

fective risk assessment will allow for optimal usage of the structure with minimal chance

of downtime or catastrophic failure by maintaining their fitness-for-purpose (FFP).

Structural Health Monitoring (SHM) technologies aim to assess the risks associated

with engineering infrastructures (assets) during their operational phase (Farrar and Wor-

den 2007a). To achieve this, predictive models are frequently used in SHM, which can

also be utilised further for system optimisation, design control, and other related pur-

poses. These models can be physics-based (Gopalakrishnan et al. 2011), data-driven

(Azimi et al. 2020), or hybrid (Chao et al. 2022). The physics-based model makes pre-

dictions by capturing the dynamic processes of the system through solving equations

that describe the underlying dynamics, whereas the data-driven model relies on previ-

ous system data to assess the current and future state of damage. Hybrid models that

combine both approaches can leverage the strengths of each. While data-driven mod-

els are popular in many domains due to their lower computational complexity and the

abundance of data available, SHM-related domains still rely on physics-based models

(Malveiro et al. 2018, An et al. 2019). This is because the SHM data available is of-

ten limited, and structures can undergo varying new scenarios with different patterns of

depletion and deterioration, making it difficult to track these patterns with limited data.

Moreover, physics-based models are capable of providing insight into the situations type

that have not yet occurred, which is critical for predicting and preventing structural failures

in SHM-related applications (Farrar and Lieven 2007b).
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To rely on any type of model for predictive analysis, including risk assessment, the

credibility of the model is essential. For a physics-based model, credibility depends on its

accuracy in emulating real-world dynamics and the use of the most precise input variables

to run the simulation. The physics-based model building process in various domains

is often aided by the availability of commercial process simulators. These simulators

can simulate the real-world dynamics for designated processes with acceptable accuracy

(Brynjarsdóttir and O’Hagan 2014). Using such simulators, parametric simulation models

for real systems are frequently constructed. However, before these models can be used,

they must be calibrated by providing the best set of material and environment-related

input parameters (e.g.: mass density, modulus of elasticity, polarisation current curve,

etc) so that the model accurately represents the real structure or asset (Agami Reddy

2006).

The commonly used calibration approaches for structural models are often computa-

tionally expensive, time-consuming, and may not be effective for real-world structures due

to their complexity and variability. The parameter estimation and updating task presents

challenges related to obtaining real-time data, selecting appropriate algorithms, and un-

derstanding the complexity associated with parameters. Although technology has led to

more precise and cost-efficient data acquisition in many domains, data related to SHM

often remain unstructured and obtained from inspections and surveys (Gong et al. 2016,

Gulgec et al. 2017, Barni et al. 2018). Furthermore, there is a lack of a standardised

approach to determine the quality, quantity, and variability of data required from sensors

(surveys) to ensure model performance during calibration (Fabrizio and Monetti 2015,

Kang et al. 2021). Additionally, the traditional trial-and-error calibration approach relies

on manual involvement, and multiple simulation runs are required before determining the

best set of parameters (Kim et al. 2019, Cao et al. 2020, Silva et al. 2021). These issues

can lead to delays in developing a credible predictive model that represents a real-time

dynamics for the structure, and also increase the risk of the model being out of sync.

To address the challenges of parametric calibration in developing a credible model

utilising simulator(s), there is a need for automated data extraction from unstructured data

sources and fully automate the calibration task. Additionally, an appropriate framework

for benchmarking the validation data during calibration, as well as an efficient parametric

calibration strategy, are required to ensure an accurate and reliable model.

Maintaining the predictive ability of the calibrated model presents another significant

challenge, particularly in the context of structure-related models. The model often di-
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verges from the true behaviour of the asset over time due to complex changes in the

material properties of the structure, which can vary even among seemingly similar com-

ponents of the structures (Sohn 2007, Sehgal and Kumar 2016). As a result, the engineer

must repeatedly re-calibrate (i.e., adapt) the model throughout the structure’s operational

lifespan when each new survey is performed (or new data is available) to infer changes

in the material and/or environmental properties.

Despite significant progress in physics-based modelling, the challenges in calibration

and adaptation hinder the development of practical and durable prognostic tools for real-

world structures. The need for frequent adaptation of the model demands a self-adaptive

model that is supported by analytic (e.g.: Machine-Learning tools) and able to account

for the evolving material properties of the structure over time (Sohn 2007, Gabor et al.

2016). This paradigm shift would overcome the limitations of conventional approaches to

model calibration and adaptation.

The concept of Digital Twin (DT) is an evolving concept in the modelling world that

represents a virtual model replicating the real-time behaviour of an existing system, which

is referred to as its physical twin (Glaessgen and Stargel 2012, Boschert and Rosen 2016,

Ye et al. 2020). Moreover, the DT concept involves a comprehensive model that combines

an ultra-high fidelity simulation tool with physical twin-related data to provide the online

simulation of the physical twin (Barricelli et al. 2019, Rasheed et al. 2020).

Therefore, this research aimed to explore the potential of DT in addressing challenges

related to model calibration and adaptation. The findings suggest that although the con-

cept of DT has been widely adopted in manufacturing for over a decade, its applicability

in SHM is gaining momentum in recent years only (Seshadri and Krishnamurthy 2017,

Tao et al. 2018, Ye et al. 2020). One of the reasons for this is that the practical limita-

tions of the DT concept, particularly regarding the lack of an appropriate framework for its

application within the context of SHM (Barricelli et al. 2019, Aivaliotis et al. 2019b, Broo

et al. 2022).

This research therefore leveraged existing DT related features and technologies to

address the model calibration and adaptation related challenges, and aimed to improve

its characteristics, for which suitable frameworks are still lacking.
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1.2 Research Goals and Scopes

The primary objective of this research was to address issues related to model calibration

and adaptation using the Digital Twin paradigm. This involved leveraging the inherent

capabilities of DTs and identifying areas where they may fall short in terms of parameter-

related calibration and adaptation.

The model calibration and adaptation related challenges demand various solution ap-

proaches and/or frameworks, while the DT concept can provide a platform that can incor-

porate these frameworks when available. The DT concept allows for a holistic approach

to reach the solution, utilising the benefits among the frameworks to assist each other.

In line with the DT concept, research fields were categorised based on gaps in the

calibration and adaptation characteristics of DT, as well as other related DT features.

From this categorisation, five key topics were selected for further research activities. Then

research objectives and milestones were set for each of the research areas that are in

accordance with the problems and scopes corresponding to the research areas (Figure

1.1).

Figure 1.1: Research areas categorised to address the research challenges

categorically.

Following the establishment of objectives and milestones, further research activities
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were undertaken. These include analysis, development/adoption/design, and implemen-

tation of various strategies to address research gaps in each area.

1.3 Contributions to the Field

This research has been able to make the following contributions to the field of SHM-

related modelling and DT:

1. An Ontology and Natural Language Processing based data extracting framework to

obtain possible near real-time data from the survey reports (discussed in Section

4.2).

2. An Integrated Platform for online simulation model validation and parameter up-

dating, eventually also assisting in the automation of DT enabling (Sapkota et al.

2021a).

3. An approach to benchmark the data and the metric requirements before tailoring

a parametric model to represent the real physical asset’s behaviour (Sapkota et al.

2021b).

4. The surrogate-assisted model calibration approach utilising the DT concept that ul-

timately reduces the number of required simulation cases for optimisation-assisted

parameter estimation. This approach also assists in reducing the issue of local

minima during optimisation-based calibration (Sapkota et al. 2022a).

5. A ROM and modularisation-assisted approach to deal with the problem of paramet-

ric spatial variability arising with time (Sapkota et al. 2022b).

6. Machine-Learning (M/L) in trend capturing, offering a substitute for the physics-

based model during the operational lifetime of DT (discussed in Section 8.4).

The developed codes to have the above-mentioned outcomes up to their current de-

velopment are available in the Adaptive-Digital Twin repository at https://github.com/Adaptive-

DigitalTwin.

The outcomes of this research has provided solutions for model-related challenges in

parametric calibration and adaptation, and also benefit the practical implementation of DT

within SHM. Furthermore, successful deployment of the research-adopted DT concept

(including architecture) has established it as an enhanced adaptive modelling concept.

The DT architecture together with the outcomes (approaches and frameworks) from this

research could also be considered as a contribution to the standardisation of SHM-related

DT.
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1.5 Thesis Structure

The rest of this thesis is outlined as follows (Figure 1.2).

Figure 1.2: Representation of the thesis structure

Chapter 2 provides an overview of Predictive Simulation in Structural Health Monitor-

ing (SHM) together with the modelling-related challenges, particularly during the calibra-

tion and/or adaptation phase. For this, the techniques for building models, with a focus

on those related to structural health, are surveyed. Additionally, the chapter explores the

sources of parametric uncertainty and examines current developments in dealing with

this type of uncertainty. The chapter also investigates the potential of the DT concept as

a means of addressing key research challenges and provides an outline of an appropriate

DT architecture for this purpose. Research questions are then presented considering the

benefits and limitations DT provides based on a discussion of the problems from the DT

perspective.

Chapter 3 covers the industry-as-academy research methodology, which outlines the

roles of both industry and academia during various phases of the research process.

These phases include dealing with sources of motivation, design and development, ex-

perimentation, and outcome testing. The chapter also details the research plan, including

research objectives and milestones set for each of the identified research areas.
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Chapter 4 provides an overview of modelling in the Cathodic-Protection (Corrosion)

domain, which will be utilised in the experimentation and results analysis during the re-

search. The chapter also contains the results of investigated approaches to address the

first research problem, which is “delay in acquiring data when available in survey reports”.

Chapters 5, 6, 7, and 8 present the findings from the investigation guided by the

research objectives and milestones for model calibration and adaptation-related uncer-

tainties and complexity handling. Chapter 5 focuses on the automation requirements of

the model calibration/adaptation process, while Chapter 6 discusses the results of re-

search related to resources benchmarking. Chapter 7 explores an efficient parameter

search technique, and Chapter 8 investigates addressing the complexity of model adap-

tation during the operational phase. In addition to presenting their findings, each chapter

details the procedure for designing and developing solutions proposed to address the

identified problems. Finally, each chapter also provides a demonstration of the proposed

solutions’ applicability.

Chapter 9 concludes this thesis with a summary of the research activities and the

outcomes. The chapter summarises the proposed solutions and their applicability, high-

lighting the benefits of each approach (framework). Additionally, future works are outlined

for the real-world application, extension, and enhancement of the proposed solutions.
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2 Background and Research Chal-

lenges

This chapter provides a comprehensive overview of the simulation modelling and the Dig-

ital Twin (DT) concept, with a particular focus on those related to Structural Health Mon-

itoring (SHM). The chapter furthermore includes the findings from the related literature

analysis on the existing challenges in model calibration and adaptation for two different

simulation applications- i) applications before incorporating DT and ii) applications where

DT is incorporated as the potential solution to the challenges.

It begins with an introduction to SHM and is followed by the role of the physics-based

model(s) for predictive simulation within SHM. The process of model generation and the

uncertainties involved during the process are then explored to provide insight into issues

related to the predictive models used in SHM. Furthermore, the section presents the

common challenges in model calibration and adaptation within SHM.

The next section presents the findings from an investigation into recent literature on

the current developments in the key challenges related to model calibration and adapta-

tion in SHM-related domains. The aim of this section is to outline the current state-of-art

associated with challenges in implementing predictive models in real-world scenarios

through calibration and adaptation.

In the next section, the chapter discusses the idea of Digital Twin as a suggested

strategy for resolving the difficulties associated with model calibration and adaptation.

Additionally, the challenges in integrating DT into SHM are examined, with a focus on

the difficulties in online adaption because it has the greatest potential for application.

This outlines the DT gaps that must be evaluated to address the model calibration and

adaptation-related issues.

Finally, the chapter concludes by raising research questions to address the challenges

associated with the use of DT in SHM.
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2.1 Simulation Modelling in SHM and Research Challenges

2.1.1 Structural Health Monitoring (SHM): An Introduction

The use of civil, aerospace, and other mechanical engineering infrastructure often in-

volves some level of risk, including the potential for loss of life and economic loss. There-

fore, these structure must not only be designed and produced with proper supervision

but their integrity must also be monitored and maintained throughout their operational life

cycle.

The term Structural Health Monitoring (SHM) itself is typically applied during the op-

erational phase of the structure. It is the process of implementing a damage identification

strategy for the assets (structures) during their operational phase (Farrar and Worden

2007a). Early damage identification allows for the appropriate maintenance strategies to

be implemented to address the identified issue in accordance with the design rules. A

reliable SHM process not only maintains the structure’s fitness-for-purpose but also min-

imises the chance of downtime and catastrophic failure, allowing for optimal use of the

structure.

Overall, SHM-related tasks can be classified into two types: diagnostic (identifying af-

ter happening, a traditional method) or prognostic (predicting before time) (Farrar and

Worden 2007a, Daigle and Goebel 2012). While diagnosis is straightforward relying

upon sensors’ equipment and frequency of inspection, the prognosis-related task de-

pends upon the data availability and/or knowledge about the physics of the behaviour.

In practice, almost all industries (private and government) aim to detect damage at

the earliest possible time in their products, equipment and infrastructures. If mainte-

nance activities can be carried out proactively it will reduce the maintenance cost and

also maintain the asset’s life at the highest possible level. This suggests a transforma-

tion of maintenance strategy from the traditional fail-and-fix practices (diagnostics) to a

predict-and-prevent (prognostics) one (Lee et al. 2014). With the assistance received

from evolving related technology SHM concept is now achieving maturity and it is in-

creasingly being approached from a prognostic perspective (Farrar and Lieven 2007b,

Daigle and Goebel 2012, Abbas and Shafiee 2018, An et al. 2019). Additionally, progno-

sis (prediction) of asset’s performance enables optimal operational time planning, which

enhances revenue-generating potential. Therefore this research focus on the prognosis

aspect of SHM.
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2.1.2 Prognosis in SHM

Prognosis sometime in SHM is also defined as, ’the estimate of an engineered system’s

remaining useful life (RUL) utilising principles, expert knowledge and/or data from the

past’ (Farrar and Lieven 2007b). This suggest prognosis task is not straightforward and

can be complicated in cases where behaviour and loading conditions are constantly vary-

ing, typically encountered in complex structural applications.

For the prognosis, predictive models are frequently used in SHM, together with the an-

ticipated future environmental and loading conditions, information from usage monitoring

and system-level testing, as well as past maintenance-related data (Farrar and Worden

2007a). Though term “model” is used with many different meanings in the sciences and

philosophy (Blum and Ferri 2009), this research refers to it from the mathematical model’s

perspective as a ‘representation of the dynamics occurring to the real-world system’. The

types of models used for prognosis can be physics-based, data-driven, or hybrid. The

characteristics of these model types are briefly discussed below:

Physics-based model: The physics-based model provides an imitation of the dy-

namic process by solving the corresponding equations of the underlying dynamics (Gopalakr-

ishnan et al. 2011). To make predictions using such model, analysts estimate the loading

conditions (including initial and boundary) together with material and environmental re-

lated variables, and feed them into the model for the simulation run (Farrar and Lieven

2007b).

Data-driven Model: Data-based techniques, on the other side, depends on the pre-

vious data from the system to assess the current and future damage state, using typical

pattern recognition method(s). Comparatively, data-driven ones are less computationally

intensive than physics-based numerical models. That is why the recent trend in most of

the domains is data-driven analysis in the situation of wider data availability and accessi-

bility (Azimi et al. 2020).

Significant challenges are, however, posed to the data-driven models as they usually

generalise the pattern with a larger set of situations.

Hybrid model: Using both numerical simulation and data analysis supported with

inspection (sensor) data from the structure has been proven to be more promising than

relying upon one technique (Ling and Mahadevan 2012, Neerukatti et al. 2014, Chao

et al. 2022).
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2.1.3 Factors determining the choice of Model for Prognosis in SHM

The utilisation of the physics-based or historical data-driven or hybrid approaches for

structural risk assessment within SHM tends to be dependent on a few factors such as

the complexity of the structure, data to track the trend, availability of physics-based mod-

els, etc.(An et al. 2015, Chao et al. 2022). The ultimate objective is to reduce resource

requirements, including the costs associated with prognostic tasks (Balageas 2006).

While data-driven methods are becoming more popular in multiple domains in recent

years, physics-based models are still necessary to understand situations that have not

yet occurred (Daigle and Goebel 2012, Malveiro et al. 2018, An et al. 2019). The condi-

tions and rates of damage progression in structures can vary even among structures of

the same type due to differences in manufacturing and exposure to varying loading and

environmental conditions during operation. Therefore, when it comes to the structural

health monitoring (SHM) of complex structures, a physics-based model is necessary to

carry out SHM using a prognostic approach (Daigle and Goebel 2012).

The effectiveness of prognostic solutions in SHM heavily relies on the ability of the

physics-based model to provide accurate predictions. Therefore, it is crucial to ensure

that the numerical simulations of the model are credible and meet the accepted threshold.

However, modelling structural composites requires a deep understanding of the under-

lying mathematics of phenomena within the discretised domains, making the numerical

process itself a crucial task. Even if the model sufficiently replicates the phenomena, the

accuracy of the predictions heavily relies on the input data that describes the properties

of the materials and environmental conditions that the structure experiences.

Since the credibility of the model is essential before using it for the prognostic task

within SHM, the process of developing the model and potential stage (areas) for errors

and uncertainties is discussed in the next section. The ultimate goal is identification of

the potential aspects for the enhancement of the model’s robustness.

2.1.4 Simulation Modelling: Overview

The physics-based model from mathematical model’s perspective is often understood as

an ‘interpretation of the theory’s calculus’ (Hartmann 1996). The outputs from such mod-

els are the dynamic response data values anticipated in the real system and obtained via

solving the equations (such as Partial Differential Equations) of the underlying dynamics.

Simulation is the process of imitating the dynamic process for a real system under a given
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load, boundary, and environmental conditions. When the numerical solution is performed

using a computer, then it is called computer simulation. The process of developing such

a mathematical model is termed modelling.

The development of a valid simulation model i.e., modelling requires an iterative pro-

cess (Figure 2.1).

Figure 2.1: General model developing process (Sargent 1984)

Conceptual modelling

It is the process of abstracting a model from a real or proposed system (Robinson 2008).

Moreover, it is a non-software with a specific description regarding the model (that will be

or has been developed), describing the objectives, inputs, outputs, content, assumptions

and simplifications of the model (Robinson et al. 2015). The followings are the common

procedures of conceptual modelling (Oberkampf et al. 2002):

1. Mathematical modelling: It is the process of identifying governing equations

for the dynamic physical, chemical and/or biological phenomena, and establishing a set

of mathematical relations for the representation of the system (Hartmann 1996). The

governing equations are mostly partial differential equations (PDEs) as most of the phe-

nomena can be described in general by PDEs (Farlow 1993).

2. Discretisation and algorithm selection (Numerical approximation method):

Numerical approximation is the process to solve the underlying Partial Differential Equa-
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tions (PDEs) (Morton and Mayers 2005). Some commonly used methods for numerical

approximation for models involved in SHM are the Finite Element Methods (FEM) (Rao

2017), Finite Difference Methods (FDM) (Thomas 2013), and Boundary Element Methods

(BEM) (Kythe 2020).

Computerised modelling

The next step is the development of the computerised model from the conceptual model.

Computerised modelling for structure-related dynamics usually involves three major tasks

to obtain the numerical approximation using the computer programme (Aliabadi 2002,

Zienkiewicz et al. 2005):

1. geometrical modelling of the structure(s),

2. meshing of the geometry, and

3. computational approximation of the Partial Differential Equations (PDEs) solution.

With recent developments, modelling steps 1 and 2 can be easily performed with CAD

and meshing software tools respectively. Then, step 3 requires an additional numerical

solver (algorithms) with appropriate solution (numerical approximation) methods.

Moving forward, the iterative process illustrated in Figure 2.1 are often undertaken to

determine and assess the gaps in the model’s performance during the conceptual and/or

computerised model building process. A well-designed model should incorporate most

of the salient features of the system and is a judicious trade-off between realism and

simplicity (Maria 1997).

Dealing with Model’s errors and Uncertainties

In modelling a structure or process, it is essential to account for errors in the measurement

of representative values and the uncertainty of the model’s performance compared to the

real asset.

American Society of Mechanical Engineers (ASME), defines the error and uncertainty

in the modelling process as follows (ASME 2009):

Error: It is the result difference between the observed or calculated value from the true

value. An error (δ) is thus a quantitative value that has a particular sign and magnitude.

Uncertainty: It is the effect of parametric and/or modelling quality seen in the model out-

put. Uncertainty characterises the dispersion of the output values that could reasonably

be attributed as observation values.

Statistically, uncertainty is the estimated amount or percentage by which an observed

or calculated value may differ from the true value. Intuitively it can be understood as
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the issues of non-determinism, particularly about the prediction of future events and the

estimation of the reliability of systems.

Each phase of the modelling contains sources of error and uncertainty (Oberkampf

and Trucano 2002). During re-assessment on each iteration after validation (Figure 2.1),

the tasks to be performed are determining and addressing uncertainty that typically in-

volves (Sargent 2010):

1. the inadequate theories (physics) of the model and/or

2. the approximation of the input parameters involved.

However, there are also situations where uncertainties can not be removed/reduced.

Some of the uncertainties are reducible but appear (remain) in the model mostly due

to the lack of knowledge (expertise), and are known as epistemic uncertainties. While

other types are irreducible due to probabilistic uncertainties and are known as aleatory

uncertainties (Helton et al. 2010).

The validation or verification of the output from each phase is essential to ensure the

accurate representation of the real system to the requirement. The accuracy, as well as

the complexity of the model (making it more comprehensive), can be increased by the

iterative process.

Model Validation and/or Verification

Determining the correctness of the model or measuring the uncertainty the model pos-

sess is the goal of model validation. However, the different insights about conceptual

modelling and computerised modelling lead to distinctions in the validation process. Con-

ceptual model validation is dealing with the correctness and/or reasonability of the the-

ories and assumptions that are followed. While computerised model verification is pro-

viding assurance of the correct implementation of the conceptual model into the comput-

erised programme.

The validation task is defined by ASME (2009) as “the process of determining the de-

gree to which a model is an accurate representation of the real world from the perspective

of the intended uses of the model”

Substantial advances have been made in the field of benchmarking the definition of

validation distinguished from the task of verification and accreditation has been provided

(Oberkampf and Trucano 2008, ASME 2009, Sargent 2010). Among the different meth-

ods used to validate simulation models, operational validation is widely applied at the last

stage of model building i.e., during the realisation of a virtual replica of a physical asset

(Sargent 2010). It is done by determining the error and/or uncertainty of the model’s
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prediction with a comparative analysis of predicted data to the corresponding physical

system-related data. This measurement of accuracy between model outputs and real

data is made using performance validation metrics also termed as performance criteria

(Sarin et al. 2010).

The process of model-building has been undertaken in many domains for several

years and has progressed significantly. Different methods (techniques and tools) for cap-

italising on knowledge, experience, and expertise are now in practice. These includes

the commercial simulators (simulating software) for numerical simulation across multiple

domains and the adoption of the parametric modelling concept.

2.1.5 Simulator-based Simulation Modelling

The use of a previously validated conceptual model (discretisation and numerical approxi-

mation) assists in the design of not just one simulation model but many within the problem

domain (Robinson et al. 2015, Abdelmegid et al. 2020). The simulation model building

in multiple domains is already facilitated by the availability of commercial process sim-

ulators (simulating software). Such simulators are generally based on current scientific

understanding (physics of phenomena), often involving numerical approximation of differ-

ential equations, and are implemented in complex computer programs (Brynjarsdóttir and

O’Hagan 2014). Commercially available simulators in structural analysis (e.g.: AKSE-

LOS™, ANSYS ™, BEASY™) provide the functionality of Computer-aided-design (CAD)

modelling, meshing, and also behavioural process simulation i.e., a numerical approxi-

mation of PDE’s.

2.1.6 Parametric Modelling Concept

Figure 2.2: Simulation execution with parameter feeding into the parametric model to

make the prediction.

In general engineering practice, the knowledge of a structure such as material prop-
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erties, deterioration and so on is usually uncertain. This lack of knowledge of the true

parameter values motivates the idea of building a parametric model sufficiently repre-

sentative of the phenomenon of interest in the field. Such a model requires feeding into

appropriate parameter-related values to execute predictive simulation (Figure 2.2). The

parameters can be a variable representing the material properties of the system and/or

the surroundings that have a significant effect on the simulation output (Hartmann 1996).

The parameterisation of the model allows for the implementation of generic functions to

solve similar problems where the model can be tuned.

As discussed earlier (Section 2.1.4), the process of enhancing a model involves two

major re-iterative tasks: i) determining and addressing uncertainty by updating parame-

ters, and ii) accounting for inadequacies in the model’s physics. When predefined sim-

ulators that have been verified and validated are adopted, the re-iterative task is mostly

limited to the first task (Higdon et al. 2008, Martinez et al. 2018), which is necessary for

the model’s performance to converge with the actual behavior of the system/structure.

Therefore, it is recommended that the validation and updating mechanism focuses on en-

suring the correctness of the parameter(s). For tuning the parametric model to the real-

world scenario, the best set of parameters are required that best correlates the model

output (i.e., prediction made by the model) to the available measurement data from the

real-asset. This parameter estimation (tuning) is termed as calibration of the model.

2.1.7 Calibration of Parametric Model

Parametric models built using pre-existing simulation computer programmes required to

be tuned and calibrated with various inputs to closely match the observed data with the

predicted simulation run results (Agami Reddy 2006). Structure-related data from sen-

sors or inspections, together with knowledge of deterioration mechanics and behavioral

laws are combined and used to calibrate the model. The model calibration, which involves

updating the parameters, is performed through multiple simulation runs by varying the in-

put parameter values until a match is found (Figure 2.3). In most scenarios, engineers

or analysts may not have a clear understanding of the model’s working principle, but they

use their engineering judgment, along with available data interpretation, to choose ap-

propriate values. However, manual calibration using trial-and-error approaches is often

inefficient (Taylor et al. 2010).
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Figure 2.3: The model parameter estimation process during its calibration with

comparative analysis between model’s output and real-world data (trial-and-error

method).

Common Issues associated with model calibration

Calibrating a parametric model (pre-validated to its conceptual level) through parameter

tuning can still present challenges associated with either data-related and/or procedure-

related issues. In Section 2.1.9, the former will be discussed, while the latter pertains

to the selection of appropriate methods or algorithms. Some of the most common and

relevant procedure-related challenges for simulator-based model’s calibration in SHM are

listed below.

1. Manual involvement mostly while implying the traditional trial-and-error methods,

and/or implementation of calibration algorithm (Zambrano-Bigiarini and Rojas 2013,

Silva et al. 2021).

2. Difficulty in selecting appropriate performance metrics to evaluate the goodness-of-

fit of the model (Liu et al. 2011, Sarin et al. 2010).

3. The computational cost can be high if required multiple simulation runs, especially

for large-scale or high-dimensional systems (Yang et al. 2013).

4. The model can be sensitive to the initial conditions and/or the choice of model

parameters. This often leads to the risk of ending up at the local minima during im-

plementation of calibration algorithms (such as mathematical optimisation) making

it difficult to find the global minimum (Yang et al. 2013, Cao et al. 2020).
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2.1.8 Model’s adaptation requirements in SHM

The issue of non-uniform and complex changes in the material properties of a structure is

a significant challenge for SHM (Sohn 2007, Sehgal and Kumar 2016). Even if structures

share the same design parameters, variations in manufacturing precision, material prop-

erties, and operational loading conditions lead to differences in behaviour. As a result,

even after initial calibration and provided design rules suggesting future trend of param-

eters, the future performance of a structure-related model cannot be guaranteed. This is

why the model’s predictions tends to drift-away from the real-world data over time. An-

alysts may need to perform re-calibration (adaptation) for each model corresponding to

different physical assets, and the adaptation route would vary (Belostotsky et al. 2018).

Since adaptation mainly involves re-calibration, calibration-related challenges are also

relevant from a model adaptation perspective.

Other major issue that arise over time in the case of the structural model is the vari-

ability of the model’s parameter where a material considered uniform before behaves

varyingly among the position of the structure (Marques et al. 2012). For structure on

operation, this variability in dynamic properties can be a result of varying environments

and/or operational conditions (Sohn 2007). This demands further parameterisation of the

model with an increased number of parameters and repetition of the parameter updating.

2.1.9 Real-world data for model calibration and adaptation, and common

issues

Real-world data is a crucial requirement for validating model’s performance during its cal-

ibration or adaptation. However, the complexity of physical systems can result in varying

data requirements to ensure accurate validation of operational performance (Pace 2004,

Oden et al. 2013). Obtaining structural data is often restricted to data from sensors or

physical inspections, and it may not always be readily available. As a result, the shortage

of necessary data or information during calibration or adaptation can lead to increased

costs, time, and the risk of incorrect assumptions.

Common challenges associated with timely acquisition of quality data for model cali-

bration and adaptation include:

1. Inconsistency in SHM-related data resources with a wide variety of formats, termi-

nologies, and concepts (Gong et al. 2016, Gulgec et al. 2017, Bayraktarov et al.

2019), which results in a risk of knowledge-data mismatch (Ashino 2010).
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2. Delays in obtaining measurement data when obtained from the surveys (Adey et al.

2020).

3. Incompleteness and/or error in the measurement data (Catbas et al. 2013).

Due to the challenges in obtaining data and the varying data requirements caused

by the behavioural complexity of the physical system, it is crucial to ensure that the col-

lected data are sufficient for model calibration (Fabrizio and Monetti 2015). Therefore, it

is essential to benchmark the data based on their quantitative, qualitative, and diversity

requirements to monitor the model’s performance and avoid incorrect assumptions about

its performance.

2.1.10 Summary on SHM related simulation modelling and challenges

The research background overview indicates that structure-related model (such as the

FE model) development is made easier by software packages that include simulating

tools (simulators) (Quintana et al. 2014, Nguyen et al. 2018, Ezzat et al. 2020). Further-

more, research has acknowledged that even with the most advanced software packages

available, developing a comprehensive representative model via. calibration remains a

challenge (Aktan and Brownjohn 2013, Nguyen et al. 2018). This tends to be due to

uncertainties regarding the structure’s material properties, as well as uncertain boundary

conditions (Sabamehr et al. 2018, Nguyen et al. 2018).

While this section presented the overall potential SHM-related model calibration and

adaptation issues, the next section will present the current developments related to these

issues based on the findings of the research investigation into recent research work.

2.2 Current developments in model calibration and adapta-

tion related key challenges in SHM-related domains

The previous section discussed the common issues that may arise in the process of cre-

ating a trustworthy physics-based model in SHM, with a specific emphasis on problems

related to calibrating and adapting the model. It is important to note that researchers are

not ignoring these issues. The complexity of the modelling process, including the need

for calibration and adaptation, has been recognised by researchers and developers for

many years (Sargent 1984, Papalambros and Wilde 2000, Agami Reddy 2006).

The following sub-sections present the findings from the analysis of recent relevant
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literature. The process details on the literature search and analysis findings of the repre-

sentative literature are presented in tabular format in Appendix A.

2.2.1 Real-world data for model calibration

The advancement of technology, such as high-performance sensors and precision signal

conditioning units has led to more precise and cost-efficient data acquisition in SHM (Cre-

mona and Santos 2018). The optimisation of the sensors placement strategies are also

being discussed to ensure adequate data requirement (Barthorpe and Worden 2020, Liu

et al. 2021). This is more applicable in situations where only a small number of sensors

can be placed at the limited positions of a structure in practice due to the restrictions of

physical space and economic conditions. Additionally, the model-data mismatching risk

caused due to heterogeneity of data is being addressed with the adoption of related de-

velopments such as the material and asset-facilitated Ontology concept (Ashino 2010,

Stark and Pförtner 2015).

However, there is still a need for a standardised approach to determine the quality,

quantity, and variability of data required from sensors (survey) to ensure model perfor-

mance during calibration (Fabrizio and Monetti 2015, Kang et al. 2021). Another issue

that still persists is the acquisition of past, unstructured SHM-related data that could still

play an essential role in information mirroring and analytics (Gong et al. 2016, Gulgec

et al. 2017). Furthermore, there is currently a lack of a comprehensive platform to or-

ganise the heterogeneity of data and utilise it for model validation during calibration or

adaptation (Barni et al. 2018).

2.2.2 Tools and Techniques for model calibration

Calibration in SHM typically involves using response data to estimate parameter(s) re-

lated to the material properties, also referred to as “system identification” (Sabamehr

et al. 2018, Barthorpe and Worden 2020). This is considered an “inverse problem” due

to its inherent nature, i.e., model output data are used to estimate the input parameters

(Sabamehr et al. 2018, Liu et al. 2021). Following the concept, calibration may prove

helpful in identifying errors in data obtained from the physical system and monitoring

sensor (survey equipment) malfunctions (Buethe et al. 2014).

With the development in tools and technologies, the calibration approach is being ad-

vanced from the traditional trial-and-error approach. To overcome the shortcomings of

the traditional trial-and-error approach, systematic calibration procedures such as experi-
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mental design (Seltman 2012), sensitivity analysis (Christopher Frey and Patil 2002), and

design (parameter) optimisation (Roy et al. 2008) are often used as alternatives for model

calibration (Law et al. 2007). Design optimisation in this scenario can be understood as an

approach that combines mathematical optimisation algorithms with a parametric simula-

tion model to search the design (parameter) space for the optimal solution (Papalambros

and Wilde 2000). When it comes to optimisation-based parametric calibration, residual

minimisation is commonly employed which involves minimising the difference between

the observed and predicted values of a system. This can be accomplished using either

deterministic or probabilistic approaches for optimisation.

Sensitivity-based (Nguyen et al. 2018, Peč et al. 2019) and/or gradient-based ap-

proaches (Cao et al. 2020) are used under the deterministic approach where the infor-

mation on the sensitivity of the model to the parameters is used to update them iteratively

until the residual is minimised. However, such an approach has a common issue of reach-

ing local minima during optimisation mostly in the situation with errors in measurement

data (Cao et al. 2020). Therefore, probabilistic approaches like Bayesian methods are of-

ten preferred because they account for uncertainties in both the parameter and calibration

data (Green et al. 2015, Behmanesh and Moaveni 2016, Ye et al. 2020). Nevertheless,

the implementation of probabilistic techniques may result in significant computational ex-

penses, making them impractical for complex structures.

To address the challenge of high computation costs in calibration, surrogate-assisted

parameter calibration has emerged as a viable solution (Yondo et al. 2018, Vincenzi et al.

2019). However, the role of surrogates in addressing issues related to data and the risk

of local minima during optimisation problems is not yet well-established.

Automation of calibration is being achieved in some cases through the use of optimi-

sation algorithms (Huang et al. 2010, Peč et al. 2019), however, this approach has limita-

tions when the model and the optimisation algorithms operate in different design environ-

ments. In such cases, the algorithms need to be heavily modified to establish links with

simulator inputs and outputs (Zambrano-Bigiarini and Rojas 2013), requiring specialised

expertise. Another approach to automation is the collaboration of scientific software, ana-

lytical tools, and simulators (Murphy and Yarnold 2018, Benaouali and Kachel 2019), but

this approach still requires manual involvement in most situations (Cao et al. 2020, Silva

et al. 2021). To fully automate model validation and updating, a framework is needed that

establishes the role of software(s) in assisting simulators.

Given the importance of data and expertise-related costs in establishing a model with
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validated performance, it is essential to benchmark the calibration process. Before imple-

menting an algorithm for parameter identification in the real world, it is recommended to

validate it experimentally (McGetrick et al. 2015).

The analysis shows that the key gap in the literature is how to best use observed

data to idealise the physics-based model that replicates the responses of the operational

structure (Gregory et al. 2019). Moreover, the dynamic operational and environmental

conditions of the structure make it challenging to develop efficient prognostic models that

are resilient enough to tolerate uncertainty under diverse conditions (Cross 2012, Javed

et al. 2017, Xia et al. 2018).

2.2.3 Development on model adaptation-related issues

The model and/or parameter adaptation requirement in SHM though acknowledged by

the researchers/engineers, the progress in adaptive modelling is still at a slow pace (Gude

et al. 2015, Behmanesh and Moaveni 2016, Rabiei et al. 2018, Zhang et al. 2020). Typ-

ically, model adaptation is approached similarly to calibration (Belostotsky et al. 2018),

but evolving material properties and changing surroundings over time requires a compre-

hensive model that can gather information and reduce resource requirements over time

(Cross 2012, Gabor et al. 2016, Javed et al. 2017, Kita et al. 2019). Some research has

attempted to incorporate environmental effects on structure-related parameters to create

a holistic model (Murphy and Yarnold 2018, Zheng et al. 2020), however, the approaches

are limited to experimentation and cannot address the continuous adaptation requirement

of a practical model.

In regular operation, the dynamics of the structural environment and loading become

non-uniform, which induces “spatial variability” within a parameter (Spiridonakos et al.

2016, Ehret et al. 2020). The model adaptation in such a situation is suggested to be

assessed by increasing the parameter count to the full-order model or by embracing

the module-based concept (Sohn 2007, Jesus et al. 2017). However, increasing the

parameter count and/or still relying upon the full-order model with manual involvement

can be complex and time-consuming and pose risks to the structure if the model fails.

Hence, more efficient approaches to adapting model parameters are needed.

On the other hand, testing model performance during the operational phase with para-

metric variability issues requires a robust tool for probabilistic assessment (Aldrin et al.

2011). This also necessitates a framework for data collection (sensor placement) to cali-

brate spatially varying parameters (Nath et al. 2017), which advocates for an online data
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benchmarking framework.

The adoption of Machine learning (M/L) and other data-driven approaches either to

support physics-based model’s updating (Montáns et al. 2019) or having a data-driven

predictive tool in such a complex scenario is also gaining prominence in SHM (An et al.

2015, Azimi et al. 2020, Katam et al. 2022, Omar et al. 2022). This is due to recent ad-

vancements in sensor technology, as well as fast progress in internet-based cloud com-

putation which promises more similar structure-related data (Katam et al. 2022). How-

ever, completely replacing physics-based models seems unlikely in the near future for

SHM-related prognostics (An et al. 2015, Montáns et al. 2019, Omar et al. 2022).

2.2.4 Summary on current development

While researchers have made progress in addressing individual challenges related to

model calibration and adaptation, these advancements have not been sufficient to enable

the practical and continuous implementation of prognostic models for real structures. De-

spite progress in modelling and calibration-related literature with experimental data and

models, real simulator-based parametric models remain scarce (Javed et al. 2017, Ozer

and Feng 2019, Ezzat et al. 2020). The difficulty in creating accurate prognostic mod-

els is not due to a single factor, but rather a combination of previously discussed factors,

such as inherent uncertainties related to the deterioration process, insufficient data quan-

tities, sensor noise, unknown environmental and operating conditions, and engineering

variations (Javed et al. 2017).

The frequent adaptation requirement of the structural model presents the most sig-

nificant challenge in practical application of the model. To address this challenge, a self-

adaptive model is needed, which is most likely to be a more comprehensive model that

also encompasses the structure’s evolving material properties as well as its evolving sur-

roundings over time (Gabor et al. 2016, Kita et al. 2019).

To successfully develop such a robust but practical predictive tool, integrating large

and heterogeneous real-world data resources in multiple SHM-related domains with physics-

based and data-driven approaches would be crucial (Stark and Pförtner 2015, Cremona

and Santos 2018). However, this requires a holistic approach to address the existing

categorical challenges in real-world data collection, arrangement, and integration into the

model for its calibration and/or adaptation.

The need to address challenges related to model calibration and adaptation holisti-

cally has motivated this research to investigate the potential features of a Digital Twin,
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which has emerged as a more comprehensive model in the field of modelling in recent

years.

2.3 Digital Twin Concept in Modelling

The Digital Twin (DT) concept is a novel development in simulation and modelling field

(Boschert and Rosen 2016, Barricelli et al. 2019). Over the last decade, the term DT

has been used to describe a model that has a corresponding physical twin with real-time

information (Glaessgen and Stargel 2012, Ye et al. 2020). In addition, the DT concept

offers to provide a comprehensive asset management model that differs from a purely

mathematical approach. It incorporates real-world data, analytics and simulation model

to provide predictive insights (Macchi et al. 2018, Wright and Davidson 2020).

This section therefore aims to explore the potential of using DT as an approach to

address the SHM-related modelling challenges discussed in Sections 2.1 and 2.2. To

achieve this, the current state-of-the-art of DT will be discussed, and the following re-

search questions will guide the findings:

1. What is the current state of the art for undertaking simulation tasks within the DT

paradigm?

2. What are the current approaches for simulation model calibration, predictive simu-

lation, and online adaptation within DT

3. What are the existing challenges in model calibration, predictive simulation and

online adaptation-related assessment, within SHM-related DT?

To answer these research questions, this section presents the findings from a review

of DT-related papers, primarily focused on SHM and dedicated to predictive simulation

assessment.

2.3.1 Digital Twin’s Definition

The definition of Digital twin (DT) also known as Cyber-Physical System tends to vary

depending on the domain of application. For instance, DT has been defined by NASA (in

2012) as an “ integrated multi-physics, multi-scale, probabilistic simulation of a vehicle or

system that uses the best available physical models, sensor updates, fleet history, etc., to

mirror the life of its flying twin. It is ultra-realistic and may consider one or more important

and interdependent vehicle systems” (Glaessgen and Stargel 2012).
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However, the DT concept was informally introduced in 2003 within product life-cycle

management by Michael Grieves. At the time, digital representations of actual physical

products were relatively new and immature. Grieves (2014) elaborated on the digital

twin concept from the product life-cycle management (PLM) perspective and defined it

with three major components: physical products, corresponding virtual products of the

physical one and the data and information connections between them.

Rosen et al. (2015) proposed the adoption of the digital twin concept in manufacturing

to realise Industry 4.0. as one of the substantial technical and technological solutions.

Parrott and Warshaw (2017), in the context of Industry 4.0 has defined DT as, “an evolving

digital profile of the historical and current behaviour of a physical object or process that

helps optimise business performance”.

According to Negri et al. (2017), “the digital twin is based on massive, cumulative, real-

time, real-world data measurements across an array of dimensions, and can be used for

forecasting and optimisation of production systems at each life cycle phase in real-time.”

Similarly, Rasheed et al. (2020) defines Digital Twin as “an adaptive model of a com-

plex physical system”

The literature shows, there has been a different understanding of the Digital Twin

concept in academia. While the few available international standards for Digital Twin to

date, (for example ISO/DIS-23247-1 (2020)) are limited to the manufacturing domain, an

analyst in the structures (assets) related domain could understand the definition in their

way. Still, the best part is the concept of DT has evolved significantly in the last decade

(Figure 2.4). Ongoing research and analysis on the DT concept, as well as its practical

suggestion, can be considered as an effort towards standardisation of the DT concept for

real-world problems.

Also, there are other terms often appearing in the literature to represent the virtual

replica and/or following the above-mentioned DT-related conceptual definitions.

Digital Thread: The digital thread refers to linking and integrating models from various

aspects through common inputs and data flows to speed up the design time and enable

trades across isolated disciplines (Siedlak et al. 2018). Often mentioned together with

Digital Twin, digital thread especially refers to the communication framework that links

the entity in support of synchronising the real and virtual world (West and Blackburn

2017).

Avatar: The concept of “product avatar ” was introduced by Hribernik et al. (2006), and

the concept was similar to digital twin. The concept is intended to support the establish-
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(a) (b)

Figure 2.4: Evolution of DT- 3-dimensional concept (Grieves 2014) to 5-dimensional

concept (Tao et al. 2018)

ment of an information management architecture that furthermore enables a bidirectional

information flow. The term is used for the digital counterparts as targeted digital represen-

tations of products (Hribernik et al. 2013). Also, some research recognises both the term

‘product avatar ’ and ‘digital twin’ and differentiates them (Rı́os et al. 2015). However, the

implication of the term ‘Digital Twin’ in most cases is slowly replacing the product avatar

concept.

Internet Of Things (IoT): IoT is usually understood as the interconnection of objects to

interact and cooperate to achieve a common objective. Also, the concept of IoT is still

evolving, much like the concept of DT (Li et al. 2015). While DTs are typically understood

as the virtual representations of the physical world that organise and manage information

and are integrated with models and analytics, IoT is mostly about connecting resources

and collecting data about the physical world (Jacoby and Usländer 2020).

2.3.2 Development of DT in Manufacturing

DTs are considered one of the key enablers for Industry 4.0. in the scenario where

Industry 4.0 is envisioned as interlinked and autonomous manufacturing systems, self-

organising the production of small batch sizes (Stark et al. 2017). Today, manufacturing

covers more than half the number of DT research, though DT was introduced for asset

health monitoring. The industrial application of the DT could range from real-time mon-

itoring (Soares et al. 2019), production control (Zhao et al. 2019), process evaluation

and optimisation (Sun, Bao, Li, Zhang, Liu and Zhou 2020). Moreover, from the asset’s

health perspective, the application ranges from asset management (Zhuang et al. 2018)
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to predictive maintenance (Aivaliotis et al. 2019a, Feng et al. 2023), fault detection (Wang

et al. 2019), performance prediction (Seshadri and Krishnamurthy 2017) and more in the

service phase.

In the industrial context, the initial simulation-based concept is being replaced with the

data-driven concept, especially while having DT on the Industrial-floor (Schroeder et al.

2016, Lee et al. 2017).

2.3.3 DT Application in SHM

In the initial phase, DT roles were foreseen as the multi-physics models of the aircraft’s

digital counterpart (Tuegel et al. 2011, Glaessgen and Stargel 2012). The role of DT

anticipated was to design and predict the structural life of an air-frame and to enhance

the existing approaches for aircraft certification and sustaining. DT at the beginning was

limited to the conceptual level, but still enough to have insight as a future powerful tool

applicable for structural health prognosis. However, unlike the other field of manufac-

turing, the progress of the DT concept and its related technologies in the engineering

infrastructures related field is not fast enough and is still nascent (Broo et al. 2022).

During the last few years, the research about the structural DT technology applied to

civil or engineering structures has increased to some extent within the scope of SHM.

Bazilevs et al. (2015) uses the term DT though lacking proper elaboration on the concept

and used the term in the context of developing the framework for aircraft components’

fatigue-damage prediction that uses an advanced computational model (virtual replica)

informed by in situ SHM data. Next, Seshadri and Krishnamurthy (2017) developed the

methodologies as part of the digital twin concept, where multi-physics models, sensor

information and input data are integrated to mirror the life of its corresponding physical

twin (aircraft).

The application of the DT concept seems to have expanded to other SHM-related

domains in the last few years, which includes product/machinery-related predictive main-

tenance (Scaglioni and Ferretti 2018, Qiao et al. 2019, Aivaliotis et al. 2019a, Feng et al.

2023) to the offshore/onshore assets’ structural integrity management task (Knezevic

et al. 2019, Tygesen et al. 2018, Adey et al. 2020). The need to monitor and control

manufactured assets like buildings, bridges, etc. throughout their life-cycle has moved

several researchers into investigating Digital Twin’s potential for the role of SHM (Ye et al.

2019, Angjeliu et al. 2020, Chiachı́o et al. 2022). However, the lack of a proper defini-

tion for infrastructure-related DT exists which creates confusion, for example in building
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infrastructure-related papers, authors use the term digital twin simply as a synonym for

Building-Information-Modelling (Sacks et al. 2020).

In summary, DT is gaining increasing attention within SHM in recent years, possibly

due to the risk associated with the assets and with the support available with recent

technology. The approaches found in the literature contribute to one or some of the

functionalities generally, such as digital representation and/or predictive simulation within

or assisted by DT.

2.3.4 DT and Simulation features

The lack of a standardised concept of a digital twin leads to misunderstandings with

simulation aspects within digital twins. Most researchers believe that a Digital Twin should

be an ultra-high-fidelity simulation (Glaessgen and Stargel 2012, Ye et al. 2020, Gardner

et al. 2020, Ganguli et al. 2023). Although the simulation seems to be a key aspect

related to the DT concept, some authors do not mention it (Negri et al. 2017, Parrott and

Warshaw 2017).

On summarising the important characteristics of DT after related literature analysis,

Barricelli et al. (2019) has concluded: ”DT should provide modelling and simulation appli-

cations for representing, realistically and naturally, both the current status of the physical

twin and different “what-if” scenarios.” The trend shows DT concept is following two di-

rections - one focuses on the physics-based simulation aspect (Glaessgen and Stargel

2012, Boschert and Rosen 2016, Wright and Davidson 2020) while the other is on the

data-based modelling (Lee et al. 2017, Booyse et al. 2020, Fahim et al. 2022). DT based

upon both types of the predictive model i.e., data-driven and physics-based is termed

a hybrid Digital Twin (Chinesta et al. 2020, Azangoo et al. 2022). A hybrid DT uses a

combination of both types of models to have a more accurate predictive tool. Again, in

the structure-related DT, a physics-based model is suggested for the task of predictive

simulation (Wright and Davidson 2020).

2.3.5 Digital Twin’s Architecture

The DT’s architecture in literature is also evolving along with the concept but is varied

within the application domain. The general and less challenged architecture of a DT is

the one proposed by Grieves (2014) which includes physical space, virtual space and

the connection for the flow of data and information between them. Higher-dimensional

DT architectures are also being introduced which are aligned to the initial 3D concepts
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with the categorisation of the virtual space into different sub-modules. For example, the

five layers of DT architecture presented by Ponomarev et al. (2017) and also adopted by

Bazaz et al. (2019) are: (1) cyber-physical layer, (2) primary processing layer/store data

layer, (3) distributed computing and storage layer, (4) models and algorithms layer and (5)

visualisation and user interfaces layer. The architectures are highlighting the data storage

modules as well as the modules for multi-purpose algorithms that include analytics and

optimisation within DT.

Likewise, Tao et al. (2018) proposed another 5-d concept (Figure 2.4) for Digital Twin

which is composed of: (1) Physical entity (PE); (2) Virtual entity (VE); (3) Services (Ss)

for PE and VE; (4) Data (DD) and (5) Connection (CN) among PE, VE, Ss and DD.

In summary, a DT architecture can be understood and elaborated differently, however,

the components and technologies can be organised into three major spaces: the physical

space, the communicating/networking space and the virtual space. The digital replica or

the DT itself exists in the virtual space.

Physical Space:

The physical space usually consists of a product or a device, a physical system (struc-

ture), or even an entire organisation including the activities, process and/or phenomenon.

DT is about having virtual models for the physical entities in a virtual space to simu-

late/replicate their behaviours. For this, the physical space at first is anticipated to have

the sensing capability so that the structural features of the physical entity can be per-

ceived which is required in many application scenarios.

During both directional information flowing, reliable sensors and actuators (when ap-

plicable) are vital for effective analysis (diagnosis or prognosis) and the control chain.

Virtual/Computing Space:

The virtual space incorporates the virtual entities required to represent the corresponding

physical entities, which primarily include the 3D CAD model and data element to infer the

properties of the observable physical asset.

In advanced form, it comprises other virtual models and tools such as physics-based

models, data-driven models and analytics. Furthermore, data storage and services sys-

tems required in establishing and maintaining the DT system comes within this space,

when DT-concept is applied with 3 dimensions.
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Communicating/Networking Space

Both the physical and the digital twins should be essentially equipped with connecting

devices to guarantee a seamless connection for the continuous exchange of data and

signals. With the recent cutting-edge technologies in the development of sensor and

communication tools, advanced quantities of data can be acquired. Though in some

cases sensors may not be connected, such cases anticipate near-time real-world data,

otherwise, the term digital twin may not be appropriate to represent the virtual replica of

the physical twin (Jones et al. 2020).

2.3.6 DT concept on Adaptive Modelling

The concept of model adaptation came into existence together with the notion of predic-

tive DT. The DT concept as a “living model” presented by Tuegel et al. (2011), is about the

model that continually adapts to changes in the environment or operation using real-time

sensors data. The information model updating is provided with some frameworks within

Digital Twinning such as ontology-based support (Bao et al. 2022) to overcome the issue

created due to the heterogeneity of data. However, this doesn’t mean only updating the

physical representation model (CAD model) of DT is enough. The predictive model also

needs to be updated/adapted to emulate the real-time behaviour of the related physical

twin. Moreover, the maintenance and re-assessment of the model are essential tasks for

real-life applications requiring reliable reference data from physical space.

Following the adaptation concept, some research suggests DT over mathematical

models for the case when an object/structure is changing over time (Rasheed et al. 2020,

Wright and Davidson 2020). This undoubtedly demands the ability of DT to accurately

simulate events on different scales of space and time. This everlasting prediction cred-

ibility of DT is possible by relying upon the ultra-high-fidelity advanced physics-based

simulation, but also on the collection of data from all deployed systems and thus aggre-

gating the experience gained in the field to update the model based on collected data

(Liu et al. 2018). From the object/structure changing perspective, the online adaptation is

mostly about updating the parameter in moving time windows.

This model adaptation concept within DT is also supported by the extended 5D DT

proposed by Tao et al. (2018). In the 5-dimensional architecture for DT proposed by Tao

et al. (2018), the role of the services module (Ss) is also to ensure the high fidelity of

the Virtual Entity (VE) by calibrating the VE parameters during its running to maintain its
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performance with the Physical Entity (PE). Similar to Tao et al. (2018), Vrabič et al. (2018)

has proposed the concept of the Learning Model as a partial module of DT, that assists

in enabling the simulation of what-if scenarios. This concept can then be exploited for

tasks such as the optimisation of control parameters or synchronisation of the digital twin

models with the physical asset.

The ongoing research around the concept of Digital Twin (DT) demonstrates its in-

creasing recognition and acceptance as an advanced modelling approach, supported by

cutting-edge technologies (Barricelli et al. 2019, Zhang, Zhou and Horn 2021, Ganguli

et al. 2023). Moreover, these cutting-edge technologies include advancements in Ma-

chine Learning and Artificial Intelligence (AI), which are often utilised for physics-based

DT-related adaptations (Chakraborty et al. 2021a, VanDerHorn and Mahadevan 2021).

This chapter has already discussed the advantages of selecting a physics-based

model over a data-driven approach (in Section 2.1.3). However, the complexity of imple-

menting physics-based models can sometimes lead to an inability to precisely represent

the actual system. Additionally, environmental noise present in measurement data can

pose further challenges. In such scenarios, data-driven Digital Twins (DTs) may offer

an alternative solution for mitigating these issues (Booyse et al. 2020). Nevertheless,

it’s important to note that data-driven DTs also come with their own set of limitations (as

discussed in Section 2.1.3).

While data-driven DTs can factor in noise within the data, they may struggle to accu-

rately predict behaviour in unfamiliar environments. This limitation emphasises the need

for a more comprehensive approach. As a potential solution, the concept of a hybrid

DT, which blends elements of both physics-based and data-driven DTs, is also intro-

duced (Chinesta et al. 2020, Azangoo et al. 2022). This hybrid approach aims to balance

between the strengths of each method. The hybrid DT concept which incorporate data-

driven and physics-based model is about utilising machine learning techniques to learn

and compensates for incomplete physics from the real-time streaming data (Chakraborty

et al. 2021a, Tripura et al. 2023).

On the other hand, within the realm of DT being model with real-time representation,

the concepts of self-learning and self-adaptation were introduced to the DT paradigm

a few years ago (Barricelli et al. 2019). While research in the earlier and mid-2010s

focused on establishing the DT concept, a trend for DTs’ self-adaptive features estab-

lishment began to gain prominence in the late 2010s and early 2020s (Rasheed et al.

2020, Julien and Martin 2021, Alnowaiser and Ahmed 2023). Specifically, for this notion
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of self-adaptability of DT in automotive contexts, recent developments in Machine Learn-

ing and AI are being leveraged and expanded (Orlova 2022, Tripura et al. 2023). This

is why such developments in M/L and AI is emerging as a benchmark for DT concept,

getting established as major characteristics of Digital Twin (Rasheed et al. 2020, Julien

and Martin 2021, Chakraborty and Adhikari 2021b).

2.4 DT Features adoption to address challenges in adaptive

Modelling

From this developments within the areas the research activities should be directed to-

wards addressing practical limitations associated with DT implementations (Orlova 2022,

Alnowaiser and Ahmed 2023, Ganguli et al. 2023), which is happening to some extent.

For instance, the adoption of machine learning (M/L) models to complement physics-

based model (Chakraborty and Adhikari 2021b, Feng et al. 2023) or as core predictive

model (Fahim et al. 2022) has been considered as a potential solution to overcome the

practical limitations of DT in recent years.

Moreover, the current state-of-the-art in DT technologies shows certain features can

be utilised in SHM to address issues related model calibration and adaptation. Thus, DT

is considered a viable solution for the challenges discussed in Sections 2.1 and 2.2.

Before utilising the DT concept followed by its development, it is first necessary to

benchmark the DT concept, especially for its predictive notion. This research from this

stage will embrace the DT concept as, a predictive tool that is integrated with physics-

based models and adapt on its own.

Additionally, it is important to adopt and adhere to a suitable DT architecture that can

maximise the benefits of the current state-of-the-art.

2.4.1 DT Architecture to support adaptive simulation and predictive fea-

tures

The research at this phase adopts the DT architecture for SHM-related predictive role

with the given artefacts as shown in Figure 2.5. The DT architecture in the virtual space

(One dimension of DT discussed above) comprises the following modules:

1. Physical-Twin-related data for data-mirroring: This artefact will be facilitated by

the recent cutting-edge technologies related to the development of sensor and com-
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Figure 2.5: The adopted DT concept with the required data-mirroring, simulation, and

calibration/adaptation artefact

munication tools so that data can be obtained in near-real time. For the geometrical

representation of the physical twin, CAD model will be utilised.

2. Parametric Simulation model for prognosis: This artefact provides the role of

behavioural simulation and can be achieved using simulation software (simulators)

in most cases.

3. Model calibration/adaptation artefact for parameter tuning: This artefact will

remain the most essential artefact required during tuning the model to represent

the real system. This artefact will host the model calibration and adaptation related

mechanisms (frameworks, tools).

After benchmarking the DT architecture, the analysis of the research-challenges dis-

cussed above (Section 2.2) is now again required but from the DT perspective. The

analysis of the issues is presented below where the extra columns provide insight into

the model calibration and adaptation-related challenges from the DT perspective.

The analysis (Table 2.1) shows how DT offers a solution. This can be achieved by

either providing near-real-time physical asset-related data or facilitating the integration of
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Table 2.1: Analysis of the adaptive modelling-related research challenges from the DT

perspective.

different supporting artifacts (such as frameworks or tools) needed to adapt the model.

However, some issues still demand additional framework(s) within the DT’s artefacts.

2.4.2 Additional benefits offered by the Architecture

The adopted DT architecture also facilitates establishing simulator (or parametric model)

based DT for which the frameworks are still missing in the literature. The DT establishing

i.e., enabling and maintaining tasks are also mostly related to the calibration and adapta-

tion of the parametric model.
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Simulator-based DT enabling

In today’s engineering fields that involve structures, the presence of simulators and tools

for creating geometric models requires a unified system to support all users in enabling

simulator-based Digital Twin (DT) technology. By utilising the DT architecture shown

in Figure 2.5, various components such as data mirroring, performance validation, and

calibration can aid the simulator or conceptual simulation model in creating a real-time

virtual replica of the physical asset.

Maintaining DT

While calibration is about dealing with parameter estimation, maintaining a DT means

online updating of the parameter whenever required. The efficient and effective model

updating artefact(s) within the architecture is anticipated to address the issue of model

performance getting drift-out with time.

2.4.3 Challenges in DT features Adoption

The analysis (Table 2.1) suggests DT offers a significant role in addressing model cali-

bration and adaptation-related issues, however, posed some implementation challenges.

The practical limitation of the DT concept are summarised below:

1. The absence of data acquisition and management frameworks for DT data (Barni

et al. 2018).

2. A general platform and a common methodology for a physical model-based DT

creation is still missing (Aivaliotis et al. 2019b).

3. An enhanced and online tuning mechanism with more efficient algorithms to tune

the modelling parameters is anticipated (Macchi et al. 2018, Aivaliotis et al. 2019a,

Chakraborty and Adhikari 2021b, Feng et al. 2023) in order to fully realise the model

calibration/adaptation artefact (Figure 2.5) of DT.

4. The proper framework for utilising historical and real-time data for the continuous

adaptation of the digital twin is very limited in the literature (Gabor et al. 2016, Ye

et al. 2019, Alnowaiser and Ahmed 2023).

5. Additionally, the solvers (frameworks or approaches) should provide the self-detection

and self-adaptation features for the DT (Alnowaiser and Ahmed 2023).
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2.4.4 Uniqueness of the research

This research explores predictive simulation modelling, especially in the field of SHM. It

brings two important aspects to the forefront. Firstly, it suggests using the idea of a DT to

solve challenges in adapting models. Additionally, it aims to offers practical solutions to

overcome the difficulties of applying simulator-based DT in real-world scenarios.

The second significant aspect revolves around the unique area of study, experimenta-

tion, and showcasing outcomes within the SHM framework. While existing SHM research

mainly revolves around elasticity models (as seen in the Table in Appendix A) for handling

structural integrity against fatigue and identifying cracks in assets, this research expands

the scope. It focuses on addressing another critical area of concern – the impact of ma-

terial depletion on structural integrity and material properties. This choice is not guided

by the previous reason alone, with other following rationales considered for choosing the

corrosion domain for research and overall experimentation:

1. The domain tends to rely upon physics-based models for prognosis (Adey 2005),

2. The development of a simulator that can accurately replicate the behaviour and

phenomena of corrosion, and

3. There is very little research on corrosion-related DT techniques (Adey et al. 2020,

Peratta et al. 2021).

By concentrating on the area of electro-chemical reactions, specifically in the context

of corrosion affecting engineering structures, this research also advocates for monitoring

corrosion severity and incorporating it into SHM considerations. A detailed explanation of

how the corrosion process model works and an exploration of the state-of-the-art use of

the Digital Twin concept in this domain will be presented in the next chapter (Chapter 4).

2.5 Research Questions

The DT related analysis shows that it can effectively facilitate the model’s calibration and

adaptation requirements in SHM, but there are still implementation challenges (Barricelli

et al. 2019, Rasheed et al. 2020).

In the scenario, where the DT architecture (Figure 2.5) is considered as the solution

for model- calibration and adaptation-related issues, next, the goal should be addressing

the limitations which hinder the application of the DT architecture. For this, the research

from here onward will investigate the following research questions (RQ) posed aligning to

the previous-discussed challenges and considering the DT’s current developments:
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Data requirement and collection:

RQ1: What is the recent development in data-obtaining related technologies that can

be utilised to obtain near-real-time data for Digital Mirroring, especially when data is not

readily available from direct sensors (for example data in survey reports)?

RQ2: What are methods that can be utilised to set the standard of the data resources

required for model’s performance validation during simulator-based DT enabling?

Efficient Parameter updating during the model calibration/adaptation process:

RQ1: What are the available techniques/tools that can be implemented for realising the

integrated DT with the features of full automation for the calibration/adaptation process?

RQ2: How the solver can be utilised within the DT perspective so that it also assists in

simulator-based DT enabling?

Model parametric adaptation and maintaining predictive capability over time:

RQ1: What are the benefits and challenges involved in adopting the analytical features

under the DT concept to solve the issue of performance drift of the model?

RQ2: How can the features of AI and/or M/L under the hybrid DT concept be utilised to

address the issue of parameters-related uncertainty and complexity arising with time?

2.6 Conclusion

This chapter included a brief outline of the physics-based model’s function in SHM as well

as some of its limitations concerning the need for calibration and adaptation. The model

building process and the sources of uncertainties involved in it were explored, to gain the

isight associated with the challenges related to model calibration and adaptation.

Next, the chapter discussed current developments related to the key challenges of

model calibration and adaptation in SHM-related domains. Additionally, the state-of-the-

art of Digtial Twin was presented, with a focus on domains linked to SHM, to address

concerns related to model calibration and/or adaptation.

The DT idea offers a significant role in addressing model calibration and/or adaptation-

related issues, however, posed some implementation challenges. The limitations of DT

integration into SHM are then discussed, given that DT’s online adaption has the most

scope for use. The research questions are then put forth to address the model calibration

and adaptation-related issues from the DT’s perspective.

The research methodology will be covered in the following chapter. This methodology
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will serve as a guide for carrying out the research activities to achieve its goal. Based

on the research challenges described and the questions provided in this chapter, the

research plan will then be developed. The objectives and milestones will be established

to help the research stay on track with the main goal, which is to address problems with

SHM-related model’s calibration and adaptation.
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Plan

Engineering and Design science research usually looks for bringing the theoretical and

practical aspects of the research together. The research challenges discussed, and the

research questions posed in Chapter 2 were approached from both theoretical and prac-

tical perspectives. The next task is to direct research to reach the solution(s) guided by

research challenges and the questions.

This chapter provides a short overview of the research methodology that will be fol-

lowed hereafter. It also covers the steps followed to reach this state of the research. Then

in the next section, the research plan is discussed, which includes the categorisation of

the research area followed by setting up the research objectives and milestones for each

research area.

3.1 Research Methodology

The research methodologies used in engineering and information systems have been

known by different names for many years (Gregor and Hevner 2013, Peffers et al. 2018).

Nevertheless, these methodologies usually aim to create or develop artifacts for engi-

neering and/or information technology. These typically involve the creation and testing of

innovative solutions to address specific problems or challenges in a particular domain as

they arise or are identified.

Among different understandings, this research follows the industry-as-academia method-

ology (Potts 1993) which is supported by continuous interaction between the industrial

world (real-world problem) and academia. This mixed approach allows for literature-

based research as well as the creation and testing of practical solutions that can be

implemented in real-world settings. The process typically involves multiple iterations and

the use of feedback from stakeholders to refine the solution. This methodology is cho-

sen over others because of its demand of academic novelty and emphasis on practical

solutions at the same time.

40



CHAPTER 3. RESEARCH METHODOLOGY AND RESEARCH PLAN

3.1.1 Industry-as-Academia Method

The benefit offered by the Industry-as-academia method is emphasising the intervention

during the research increasing the potential of the practical utility of the output, which

is unlikely in typical research-then-transfer methods with detached analysis. However, it

also posed a challenge to balance the demands of methodological rigour that they share

with purely curiosity-driven scientists, with the demands of practical utility that they share

with utility-driven engineers (Wieringa 2010).

The major goal of this collaborative research is learning with practice and enhancing

knowledge from performing research to systematically building the artefacts. Further-

more, the substantial outcome of the research should be innovative and bring interesting

knowledge.

Figure 3.1: Project adopted Industry-as-academia methodology of research (Potts

1993).

Industrial Role

The source of inspiration for this research is the state of the art in adaptive simulation from

an industrial applicability perspective existing in most of the domains. For example: In
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the field of corrosion and Cathodic Protection (CP) modelling, a commercial simulator like

BEASY™ is available for CAD modelling, meshing and the simulation of corrosion phe-

nomena. The current state of the art in BEASY-based Cathodic-Protection (CP) modelling

will be discussed in the next chapter which will further justify this research requirement in

a certain domain like CP modelling.

The next industrial role after passing the challenging problems to the academic re-

searcher will be providing the environment for testing and verification of the proposed

solvers (frameworks, approaches or methods). During this research, the modelling and

the DT-related experimentation will receive such aid from the BEASY™ tool and CP mod-

elling.

Academia-Research Task

The role of academia is to approach problem(s) from an academic perspective to have a

novel solution. This research conducted an integrative literature review (Torraco 2005) to

explore the state of the art from literature perspective in SHM-related adaptive simulation

and associated research challenges. The integrative review was chosen over other types

of literature reviews because it provides a more comprehensive approach, allowing for a

broader understanding of the issues and the generation of new frameworks and perspec-

tives. This can help design researchers to build on existing knowledge, identify research

gaps, and develop more effective research strategies.

Following this integrative approach, novel Digital Twin (DT) concept in the field of

modelling was also investigated and gaps were identified within it. Findings suggest DTs

offer some benefits in addressing the model calibration and/or adaptation-related issues,

however, there still are areas for improvement within DTs. Additionally, the state-of-art of

a specific SHM-related domain, namely Cathodic-Protection modelling was investigated

(presented in Chapter 4), to elaborate on the source of inspiration for this research fol-

lowing the integrative literature review approach.

Other academic-related tasks include setting research objectives, making hypothe-

sis(es) of possible solutions, giving the shape of artefact(s), evaluating, etc. (Figure 3.1)

in addressing the areas of improvement in both academia and Industry. The output of the

academia-research could range from design theories (Gregor et al. 2007) to concepts,

models, methods/frameworks, or instantiations (March and Smith 1995).
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3.1.2 Experimentation and Evaluation

While conducting such research, it is crucial to have an evaluation process for artefacts

that are created (March and Smith 1995, Venable et al. 2012). Moreover, a rigorous

evaluation will assure that the output of the research fulfils the desired goal.

The cathodic-protection model(s) will be used in the evaluation of the research out-

comes. The rationale behind selecting this particular domain is already discussed in

Chapter 2 (under sub-section 2.4.4). The elaborated explanation regarding working prin-

ciples of this CP model is presented in Chapter 4.

Simulator adoption for Modelling

From the current state of the art, this research takes into consideration the availability of

a simulator such as BEASY (Danson et al. 1982), that can be utilised in CP modelling.

BEASY, is a commercial parametric simulator specifically designed to simulate the behav-

Figure 3.2: CP model building with the adoption of pre-available simulator and

requirements for its simulation run.

ior of galvanic corrosion problems and cathodic protection designs. The software utilises

the Boundary Element Method (BEM) to provide a numerical approximation of Laplace’s

equation (Brynjarsdóttir and O’Hagan 2014, Zienkiewicz et al. 2005). In this research,

BEASY will be used to assist in the computerised modelling stages (Section 2.1.4). The

software is selected based on its BEM-based numerical simulation abilities and its prac-

tical prognostic applicability in the field (Al-Otaibi 2010, Cui et al. 2015, Kim et al. 2017).
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It will be assumed that the tool has been validated for its numerical approximation ability,

meaning that its accuracy is accepted for mathematical modelling-related uncertainties,

and only geometric and parametric uncertainties will need to be addressed.

CP model(s) to represent the real CP system(s) will be built using the simulator and

the solution on addressing the SHM-related model calibration and adaptation challenges

will be tested. In the entire research process, evaluation mechanisms can be iterative,

however, the final evaluation will take place after the complete development of the arte-

fact. Evaluating an artefact sometimes may be a complex task as the performance of the

artefact is tightly coupled with the reason why the artefact was created.

Data for CP model calibration and adaptation related analysis

The calibration of the model for an existing physical system is usually performed against

the data from the real system. In the case of the CP system, the data types that can be

practically feasible from the structure and also predicted by the CP model are: a) Surface

Potential (mV ), b) Normal Current density (mA/m2) and c) electric field (mV/m) (Adey

2005). However, the quantitative and qualitative data dependency for validation as well

as the calibration of the model is always influenced by the complexity of the model.

While the model will be built for the real-existing CP system for an offshore struc-

ture, obtaining real-world data might be limited (Soomro et al. 2022). Therefore, calibra-

tion data during experimentation and analysis will be generated from a virtual reference

model simulation run with fixed parameters suggested by design rules. This approach

which involves the use of artificially generated data is implied by researchers in the sim-

ilar situations (Bi et al. 2017, Jensen et al. 2017, Zhou and Tang 2021). A benefit of

such procedure is it avoids the influence of other factors than the required one into the

experiment.

Given that a substantial portion of CP-related data is obtained from surveys, these

data are susceptible to errors. These errors may arise due to various factors, such as the

inability to position or orient the measurement probe accurately on the structure or anode

(Adey et al. 2012), or errors due to the positional misplacement of the probe in terms of

elevation (Stutzmann 2017). However, recent advancements in precise measuring tools

and data handling techniques have led to the underrepresentation of survey errors during

calibration related experiment within research (Marcassoli et al. 2013, Stutzmann 2017).

This can be attributed to the ability to identify and removing of outliers (noise) during ex-

perimentation. Other significant attribute is the development of tools and techniques to
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nullify errors, ultimately limiting errors negligible level when equipment handled properly

(Melios et al. 2023). Despite these developments, anticipating an inherent level of er-

ror within measurement data and considering it during the calibration would be a good

practice. As synthetic CP-related simulation data will be used for calibration during this

research, the incorporation of anticipated synthetic near real-world measurement errors

to the data would be preferred. This emulation can be achieved through the introduc-

tion of noise into the data (Amaya et al. 2014). Various methods can be employed to

induce noise in such situations, encompassing systematic errors with consideration of

measurement uncertainties from historical data, random noise, and adjustments to un-

certain parameter values (Inigo et al. 2021, Burés and Larrosa 2023).

During the presence of unrecognised pattern of errors, with ample data are available it

is often assumed that the nature of the error (uncertainty) follows a Gaussian distribution

(Soomro et al. 2022). When considered this one, the noise will be added to each synthetic

data (x) at each data point to have data with noise given as: x noisy = x+noise factor ,

where, the noise factor follows Gaussian distribution with given mean and standard devi-

ation of the anticipated noise (error) value. However, in scenarios where data availability

is limited, this assumption may not hold true, and would be preferable to follow subjective

patterns specific to the given context. For example, Sapkota et al. (2022b) undertook ran-

dom noise injections ranging from +2% to −2% to replicate real-world errors within the

data. This approach aligns with the broader research discourse on refining data accuracy

in CP-related studies (Amaya et al. 2014, Stutzmann 2017) and state-of-art in develop-

ment with CP related data collection (Soomro et al. 2022, Melios et al. 2023). Following

the similar approach, this research enriched noise into artificially generated calibration

data by introducing minor perturbations/errors (approximately uniform within the range of

±2). The noise is added to each synthetic data at each data point using the following

mathematical formula and is slightly different to above.

x noisy = x(1+noise factor) with, x representing the original data point and noise factor

as a random number in the range of [-0.02, 0.02], corresponding to a ±2% noise level.

This approach ensures that each data point is perturbed by a small fraction of its value,

mimicking the variability observed in actual measurements. The representative example

is presented in Figure 3.3.

It is equally, if not more, important to consider the errors in measurement data during

the calibration process, i.e., the effect of this error into the calibration accuracy. Tech-

niques such as the Monte Carlo method and/or Bayesian methods are often employed
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(a) (b)

Figure 3.3: a)The initial synthetic surface potential data obtained after a simulation run

with a reference CP model b) synthetic noise to be incorporated to the initial data (in mV)

to address such situations during the calibration as an Inverse-Problem (Zapoměl et al.

2016, Ramancha et al. 2020, Soomro et al. 2022).

3.2 Setting research objectives

The research endorses the use of the Digital Twin (DT) concept and adopts a DT architec-

ture (Figure 2.5) to address the model calibration and adaptation related challenges, but

also acknowledges that limitations in DT application must also be addressed. Therefore,

the objective of this research, in other words, is to contribute to overcoming the chal-

lenges in the practical implementation of the suggested artefacts for the DT architecture

discussed in Chapter 2. The focus among them will be more on the calibration/adaptation

artefact.

To reach its objective, the research challenges-related areas are required to be in-

vestigated separately but following the DT concept. It will enable this research project

to reach the solutions within each area but in a holistic way i.e., under DT architec-

ture. The research areas are therefore categorised considering the model calibration

and adaptation-related problems in SHM.

Research Areas:

Following are the categorised research areas (RA):

The research activities within each of the areas will be carried out in overall 3 steps:

• Setting research area-specific objectives and goals (milestones)

• Design and Development,
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Figure 3.4: Research Area Categorisation according to the model calibration and

adaptation related Research Problems

• Evaluation with Experimental demonstration

Aligning to the research questions, the research-area-specific objectives and mile-

stones are set. While the objectives are towards undertaking the research in a theoreti-

cal way, the milestones set will also undertake the practical applicability of the research

outcome.

RA1: Data-Acquiring for Digital-Mirroring

Objective:

1. To investigate the recent development in data-obtaining related technologies that

can be utilised to obtain near-real-time data for Digital Mirroring when data is not

readily available from direct sensors (for example data in survey reports).

Milestone:

1. Data-extraction and data-acquiring framework aligned with the DT concept that can

be automated.

RA2: Automation in Model Calibration and Adaptation process:

Objectives:

1. To investigate the applicability of scientific software and/or tools in having a platform

for automated calibration and/or adaptation following DT concept.

2. Experimentation analysis on the benefits offered by such an integrated platform i.e.,

platform with scientific software for analytics and the simulator for simulation task.

Milestones:
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1. A platform with incorporated analytics performing the model calibration with au-

tomation.

2. The utilisation of the platform for automated DT enabling and maintaining.

RA3: Data Benchmarking for Model Calibration and Adaptation

Objective:

1. To investigate the DT concept and its associated recent development (such as in-

tegrated platform) on standardisation of the data resources required for model cali-

bration and adaptation.

Milestone:

1. Approach for benchmarking the required quantity, quality, and variability of valida-

tion data and performance metric(s) for model online calibration and/or adaptation

within DT.

RA4: Online Model calibration/adaptation: Addressing Input Parameters Uncer-

tainties

Objectives:

1. To investigate the significant methods/procedures in dealing with parameter uncer-

tainties during adaptive simulation.

2. Providing a standard framework for efficient and reliable parameter updating during

model calibration and/or adaptation.

Milestone:

1. The online model updating/adapting artefact (a mechanism) aligned to the DT con-

cept, that uses the best suitable optimisation algorithms/methods.

RA5: Maintaining the predictive capability of the Model over time

Objectives:

1. To investigate the significant analytical features that aid DT in maintaining its pre-

dictive capability despite changes and uncertainty arising with time.

2. To investigate the possibility to pave the way for data-driven prediction towards pro-

viding an alternative to the physics-based model in order to avoid its complexity

arising with time.

Milestones:

1. Features facilitated by analytical and database that support in providing DT with the

predictive capability despite changes and uncertainty arising with time.
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2. The past pattern-based i.e., data-driven techniques and/or tools for online predic-

tion, also capable of extending the range of predictive applicability utilising the Dig-

ital Twin aspect.

The suggestions/solutions will be proposed aligning with the research objectives in the

subsequent chapters. Additionally, the industrial goals are set up to ensure the practical

applicability of this Industry-as-Academia research which are presented in Appendix B

3.3 Conclusion

This chapter presented a description of the research methodology being followed and to

be followed. Different aspects of the Industry-as-Academia methodology were discussed

which will be used as a process guide by this research to reach its goal. Also, this chapter

presented the research plan with categorical research objectives and milestones for each

of the research area identified.

The next task for this research includes making hypothesis(es), investigating from dif-

ferent aspects, giving the shape of artefact(s) in addressing the areas of improvement

and evaluating. Before moving to this, Cathodic-Protection domain that follows SHM and

also uses the physics-based model for it will be discussed to have more insight into the

research problem. This domain will not only provide to explain a source of inspiration

in SHM but will also provide the application playground (Figure 3.1) to evaluate the out-

comes of this research.
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4 Problem Domain: Modelling and

Digital Data Mirroring

Chapter 3 discussed the research methodology being undertaken and presented the

research plan. The industrial source of inspiration and necessity of evaluation of the

outcomes of the research were two of the discussion topics.

This chapter in the first section discusses the state-of-art of adaptive simulation and

DT in the domain of Cathodic-Protection (CP) Modelling. This will elaborate on the source

of inspiration for this research by explaining the specific SHM-related domain which also

provides the experimental platform to analyse and validate the outcomes.

In the next section, this chapter presents the findings from the work under the first

research area i.e., Data-Acquiring for digital-mirroring with the DT concept utilised. One

of the issues in Digital Twinning presented in Chapter 2 is the hindrance in near-real-time

data for the situation where physical-twin-related data lies in the survey reports. This

hindrance to the establishment of a crucial feature of DT i.e., data mirroring in CP mod-

elling is required to be assessed. So, before continuing the research on model calibration

and adaptation issues, this chapter provides a framework for the acquisition of the data

utilising the existing DT concept together with the other applicable tools (frameworks).

4.1 Corrosion and Cathodic-Protection Modelling: State-of-

Art

Corrosion is the degradation/depletion of the material as a result of exposure and inter-

action with the surrounding environment. In metals, corrosion occurs due to chemical

or electrochemical reactions occurring with their surroundings. Corrosion is a common

problem for most of the existing infrastructure adversely affecting the structural load-

withstanding ability (Chen et al. 2017). When corrosion-caused damage reduces the

load-bearing capacity of a structure to extreme conditions, catastrophic failures like sud-

den collapse may occur. Therefore, during prognostic analysis i.e., predicting infrastruc-

ture’s behaviour over the service life, it is important to consider the effects of corrosion on
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the structure.

During electrochemical corrosion, numerous anodic (oxidation) and cathodic (reduc-

tion) reactions occur. The principal anodic reaction during the corrosion process for struc-

tures with steel is given by (Ahmad 2003):

Fe → Fe2+ + 2e− (4.1)

while the principal cathodic reaction is represented by:

O2 +H2O + 4e− → 4OH− (4.2)

The depletion or degradation of the metal components occurs through the anodic reaction

(Equation 4.1), which is complemented by a cathodic reaction (Equation 4.2).

The structures especially metallic and buried/submerged such as offshore turbines,

storage tanks, pipelines, etc at high risk of corrosion should be protected from it. The

cathodic protection (CP) method and well-bonded coating/paintings are the most effective

and most frequently used measures for protecting the surface from corrosion (DeGiorgi

1993, Adey 2005).

Among the two, Cathodic Protection (CP) method is very often used for the protection

of underground or underwater (seawater) metallic infrastructures from corrosion (Angst

2019). The principle of CP is the conversion of the protection required areas on a metal

surface into the cathodes, as electrochemical corrosion occurs only in the anode. When

the structure is coupled with anodes, the corrosion i.e., the anodic reactions occur to the

anodes instead of the main component of the structure. This means the flow of current

is reversed with the cathodic reaction (Equation 4.2) occurring on the structure’s surface.

In the case of sacrificial anodes (for example zinc), the anode metal depletes due to the

inherent potential difference between the anodes and the structure.

There are two general types of CP systems: Sacrificial anodes CP (SACP) and im-

pressed current CP (ICCP) (Adey 2005).

Sacrificial anode Cathodic Protection (SACP): A sacrificial anode is a metal that is

more reactive (anodic) than the metal of the structure it is protecting. This anode is con-

nected to the structure, forming a galvanic couple, which allows the anode to corrode

instead of the structure. The most commonly used sacrificial anodes materials are: Zinc

and Aluminium (Adey 2005). The effectiveness of cathodic protection depends on the

anode material having a large enough natural voltage difference to produce an electrical

current flow. If applied effectively, this cathodic protection can provide complete protec-

tion to any section of the structure for its entire lifespan.
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Impressed current Cathodic Protection (ICCP): Unlike sacrificial anode systems, im-

pressed current cathodic protection (ICCP) uses an external DC current to protect a struc-

ture from corrosion. This involves applying a current through long-lasting anodes without

any loss of material from the anodes. A corresponding cathodic reaction (Equation 4.2)

which generates hydrogen gas occurs on the structure and prevents corrosion. When

an AC power source is used to supply current, it is converted to DC by a rectifier before

supplying to the ICCP system. The electrical current is adjusted throughout the lifespan

of the ICCP system to achieve an efficient level of protection for the structure.

The appropriate design of any of the CP system is always anticipated for effective and

cost-efficient protection of the system (Tezdogan and Demirel 2014) while the selection

of one of the choices is decided by factors such as the source availability, feasibility,

maintenance requirement, etc. The CP designs are mostly reliant on the shape of the

structure, which means the shape could demand more protection in some areas than

others. Furthermore, the design of the CP system depends upon the design rules about

the performance of other protection measures such as coatings, in particular the rate at

which coatings are to be assumed to degrade over the life of the structure.

A computerised mathematical model can be used to design a proper CP system (Adey

et al. 1990 2012). Before this, the model requires to accurately emulate the current and

potential distributions on the structure’s (electrodes) surfaces in contact with the elec-

trolyte (soil, water, concrete).

4.1.1 Numerical Modelling

With the assumption that the electrolyte is homogeneous, the distribution of electric po-

tential obeys the following Laplace equation which is the governing partial differential

equation (PDE) for electrochemical corrosion (Newman and Balsara 2021).

−∇ (k∇ϕ) = 0 (4.3)

where,

k = electric conductivity, ϕ = electric potential and ∇ is Nabla operator

The PDE equation (Equation 4.3) represents the distribution of electric potential on

the electrode-electrolyte surface. To obtain predictions for the response data, i.e., surface

potential together with current density data by solving the PDE , a numerical method is

often necessary. Computational numerical methods such as the Finite Element Method
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(FEM) and Boundary Element Method (BEM) have been successful in electrochemical

responses modelling (Liu and Kelly 2019). However, the BEM method is better suited

for this purpose since it only requires modelling the interface of the surface and the elec-

trolyte, unlike the FEM which considers the entire volume (Adey et al. 1990, DeGiorgi

et al. 1992, Liu and Kelly 2019).

Computerised modelling utilising one or multiple numerical methods has been estab-

lished as a powerful tool for the study of complex system responses and is therefore an

appropriate means for simulating corrosion (DeGiorgi 1993, Adey et al. 2012, Liu and

Kelly 2019). These predicted response data not only facilitate monitoring the system’s

protection state but can also be integrated to calculate the rate of depletion of the an-

ode in Sacrificial Anode Cathodic Protection (SACP) systems. Moreover, the model can

be used in the design process to optimise the protection provided to structures and has

also been recognised as an effective tool to reduce unplanned downtime and failures in

long-term integrity management (Stutzmann 2017, Liu and Kelly 2019, Adey et al. 2020).

However, creating a virtual replica of an existing CP system through model calibration

is challenging, resulting in a lack of practical implementation of the model. Direct in-situ

inspection data are limited (Hawari et al. 2020), and matching data from multiple inspec-

tions can be difficult due to the use of different tools and techniques with varying levels

of resolution and accuracy (Stutzmann 2017, Kim et al. 2021). Continuous adaptation

requirement of CP model and optimisation of the CP survey data collection procedure

are other issues lacking solution till the date (Adey et al. 2020).

The steps involved in CP modelling including the calibration process can be divided

into three stages:

1. Pre-Processing Stage: This stage includes defining the geometry of the problem,

creating the mesh, and the categorisation of the elements to be able to assign

properties and corresponding parameters to them.

2. Model Setting and Simulation: This phase includes specifying the boundary con-

ditions, setting the value of the parameter and implementing the numerical method

for process simulation. The polarisation behaviour of the materials serves as a

boundary condition for running simulations, and other parameters such as the con-

ductivity of the surrounding environment are also required (Adey 2005).

3. Post-Processing Support: This stage facilitates the visualisation and analysis of

the simulation-predicted data.
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4.1.2 Simulator-based CP modelling

In this research, BEASY tool is adopted for the CP modelling process, assisting in all

three of the aforementioned stages required for CP modelling.

Figure 4.1: A geometrical model for a CP system provided with the sacrificial anodes

(represented by blue cylinders) (Danson et al. 1982)

A geometrical representation of the representative SACP model that can be built with

the BEASY software is presented in Figure 4.1. The data about geometry, data about

meshing can be exported to text files together with the materials and surrounding related

parameters data and fed to the solver (Figure 4.2) for the numerical approximation.

Figure 4.2: Inputs-Outputs for BEASY tool based Cathodic-Protection Simulation

The availability of simulator(s) in corrosion modelling motivates the idea of building a

parametric simulation model of a CP system. The parametric model requires to feed into

the parameter values before performing the simulation run.
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4.1.3 Parameters and Calibration of the CP model

The common parameters required to run the simulator-based CP model are:

• Polarisation Behaviour: It gives the relationship between potential and current

density and represents the electrode kinetics of the metal in the seawater. This

polarisation related values (data) provides the boundary conditions to the model

which are essential for solving the numerical problem.

• Conductivity/Resistivity: The conductivity of the surrounding medium/material

are directly involved parameter in the numerical model.

Calibration of a CP model now means providing correct polarisation values (curve)

related to the material and conductivity value related to the surroundings. While, providing

the conductivity value is straightforward, changing the polarisation values for the materials

would be tricky as it is often represented as a graph.

Polarisation curve-related parameterisation

Figure 4.3: Two different polarisation curves, which can transformed to each other with

the transformation p-value.

The requirement of a quantitative representation of the graphical polarisation curves

is felt so that modification of the polarisation data can be achieved easily during the cal-

ibration. For this, a curve transformation factor is chosen as a variable (parameter) to

allow the polarisation curve to be modified from the original design values. This parame-

terisation concept can be understood as a modification of the diffusion limiting current in

the polarisation behaviour of the materials involved and also reflects the coating break-

down factor. The transformation vector or parameter is termed the p-value. P-values are
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multiplicative factors that approximately account for new polarisation behaviour from a

reference curve.

The task of calibrating the CP model for a physical CP system, is however, challenging

as it is often done with the trial-and-error method and also data not being consistent as

obtained from the survey (Jain et al. 2011, Stutzmann 2017, Adey et al. 2020).

4.1.4 Performance Prediction with the calibrated CP Model

Figure 4.4: Performance prediction i.e., predicting anode status of the SACP system

using the CP simulation model

The calibrated CP simulation model emulates the distribution of electrical potential

and current density on the structural surface. From there, in the case of a sacrificial

anode cathodic protection (SACP) system, the anode consumption rate is calculated by

integrating the delivered current from the anodes over time (Figure 4.4). Making the

forward prediction then helps to assess the immediate impact, plan to retrofit, improve

design, find effective RUL of the CP system and ultimately have a cost-effective CP sys-

tem.

While in the case of ICCP, on performance replication after calibration of the model,

the required protection potential and current for the system are determined and thus the

impressed current can be maintained efficiently.
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4.1.5 Digital Twin concept in CP modelling

The Digital Twin concept has also appeared in the domain of CP modelling but in limited

numbers to date (Adey et al. 2020, Peratta et al. 2021). The concept is understood as

a 3D virtual twin of the current status of the asset supporting the engineer responsible

for integrity management. Furthermore, it is also a computer model which simulates

the physics of galvanic corrosion and the features of a cathodic protection system. This

digital twin is anticipated to provide a clearer understanding of the protection provided

to the asset and can be used to make predictions of the present and future protection

of all parts of the structure (Adey et al. 2020). For example, the engineer can use the

software to systematically monitor the differences between the model predictions and

survey data to identify anomalies and to provide early identification of problems that will

require mitigation.

The CP method though an effective way to prevent corrosion, it’s monitoring still relies

on diagnostic surveys. Hence, there is a need to focus on CP modelling and integrating

the concept of a CP Digital Twin. Towards the realisation of DT for a physical CP system,

the following model calibration and adaptation-related challenges need to be addressed

(Adey et al. 2020, Stutzmann 2017, Kim et al. 2021, Peratta et al. 2021):

• Model Performance Validation relies upon non-standard data.

• Data from physical structures available from Inspection is often unstructured.

• Manual calibration during the realisation of the simulation model.

• Time-consuming simulation run requirement for Calibration.

• Model adaptation (re-calibration) demands a similar procedure to initial calibration.

4.2 Data Mirroring for CP System

From the DT-related literature analysis in Chapter 2, it is unquestionably accepted a DT

should be a mirror of the physical twin. Though mirroring i.e., digital twinning is more

than just data, data (state) representation is the core functionality anticipated for a DT.

Literature suggests employing the proper data models such as ontologies to fully exploit

the potential of Cyber-Physical Systems and IoT (Negri et al. 2017). Such data models

should be explicit and semantic, and represent the formal concept in a particular do-

main. The electronic data measured by the sensors and flowing to the DT through the

connection are the best form of data anticipated for the real-time data mirroring process.
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4.2.1 Data acquiring challenge

The first benefit offered by the DT concept i.e., data mirroring in most cases is enabled by

the sensors and the communicating space between physical and virtual space. However,

not in every case data are obtained from sensors or remained in the best applicable form

for making an assumption or performing the analysis.

Manufacturing and survey big data are of three major types, 1 – structured, 2 – un-

structured, and 3 – semi-structured with unstructured data making up the major portion

of the physical asset-related data (Gulgec et al. 2017). Data from physical structures

available from the inspection and lying in the survey reports is often unstructured (Gulgec

et al. 2017, Bayraktarov et al. 2019). For example, during a corrosion-related survey of

offshore assets, data is normally contained in reports and EXCEL spreadsheets often

with different measurement locations and inconsistent naming of the locations between

reports (Adey et al. 2020). This leads to delay in obtaining the structural monitoring data

from such a format that is essential for the information mirroring as well as the calibration

of the model.

This hindrance on real-time or near real-time data acquisition not only affects the

data mirroring via. the digital twinning, but also the predictive role of the DT. Moreover,

it is not about obtaining only near-real-time data, the past data lying on such reports

after extraction also plays role in enabling the DT at the present. As timely relevant data

acquisition and asset components mapping together are the aspects desired within DT,

there is a requirement for the automated data extraction module within DT to obtain near-

time data from the reports.

4.2.2 Ontology Concept in Structural DT data Mirroring

Ontology defined as “an explicit specification of a shared conceptualisation” by Gruber

(1993) is useful to define the common vocabulary and sharing for the reuse of formally

represented knowledge. The heterogeneity in the structural and manufacturing data de-

manding an effective method of data organising motivates the utilisation of the Ontology

concept in the system Digital-Twinning (Erkoyuncu et al. 2020). Ontology-based data

management could help the integration of big amounts of sensed data which further can

be accessed through smart analytics tools during decision-making.

Differences among individual parts should be highly valued and proper relations should

be established to have a comprehensive model. Likewise, the Digital Twin with years
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(a) (b)

Figure 4.5: (a) Ontology initiated with only two attributes. (b) Ontology with multiple

attributes provided.

contains a vast amount of data. This could be the data from sensors or inspection of

the physical system or the self-generated data by the simulation at multiple stages. A

data aggregation layer is required for the Digital Twin to organise the data hierarchically

(Bazaz et al. 2019). This is where the ontology concept is attracting interest (Erkoyuncu

et al. 2020, Bao et al. 2022). With the adopted ontology concept for providing the re-

lationship of the data entries, the digital twins can offer effective historical data search

and convenient real-time analysis for the required sub-model. Ontologies provide bene-

fits of representing knowledge that can be shared between different entities establishing

a common understanding of information. Furthermore, the ontology-based data organ-

ising method can provide expansibility to accommodate the new assembly or analytical

measure that may arise in the digital twin/asset during its life cycle. This concept is also

illustrated in Figure 4.5, which shows that as new data types emerge, ontologies with a

higher number of attributes can be created.

Moreover, a semantic model based on ontology can be utilised to realise the fusion

of multi-source heterogeneous data (Liu and Cai 2020). Additionally, an ontology can be

developed to define the information architecture of the digital twin by accommodating the

possible modelling framework (Figure 4.6).

Though, Ontology idea has begun to get adopted in DT, the benefits of its data acquisi-
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Figure 4.6: Semantic Ontology creation with pre-available information from Digital Twin

tion especially when data are in unstructured formats have not been sufficiently explored

and utilised within Digital Twinning Concept.

Literature suggest, the use of Machine-Learning (M/L) techniques for text/image min-

ing can significantly improve the discovery of information from unstructured data (Sun,

Shang, Xia, Bhowmick and Nagarajaiah 2020). Similarly, the application of Natural Lan-

guage Processing (NLP) is becoming popular for extracting quantitative and qualitative

information from large heterogeneous datasets (Collobert et al. 2011).

Despite the potential benefits of Ontology and NLP, their combined use in acquiring

and/or organising SHM related data remains limited to date (Gardner et al. 2021).

Considering the problem and the benefits that can be leveraged under the DT con-

cept, a Natural Language Processing supported framework is proposed that utilises on-

tology from the DT to extract the data from unstructured resources.

4.2.3 Proposed approach: Ontology and N-L-P-based Data Extraction

The proposed framework utilises support from both Ontology and NLP concepts. The

ontology developed from the DT is used to define the information architecture, while

NLP is used to perform data-processing and refining tasks that align with the ontology

to extract data from unstructured resources (Figure 4.7) and map it back to the DT.

In overall, the data-extracting process can be categorised into following four major

steps:

1. Pre-Processing : Raw data available from the data resources mostly in physi-

cal report files, are first digitalised. Different available tools such as “pdfminer ”

(Shinyama 2015), and python-pickle (van Rossum and Drake 2009) within Python

can be utilised for the task.

60



CHAPTER 4. PROBLEM DOMAIN: MODELLING AND DIGITAL DATA MIRRORING

Figure 4.7: Overall process of Ontology and N-L-P supported data extraction.

2. Corpus Analysis: After having the digital format of data, NLP is initiated with cor-

pus analysis which is performed with “tokenisation” and followed by “tagging” (Col-

lobert et al. 2011) as shown in Figure 4.7. For the automation of the NLP, open-

source tools such as python-based “NLTK ” (Bird 2006), etc. can be utilised.

3. Filtering and Parsing: The digitalised and tagged data from the Step 2 are then

further categorised into two types, whether the data consist of crucial information

(i.e., qualitative or quantitative value) or action or relationship explaining secondary

information (example: date, position, or action).

4. Extraction

• Ontology from DT: The major challenges of Ontology creation could be lever-

aged with the concept of DT and vice-versa. When DT is provided with infor-

mation from its design to commissioning to operation, the information serves

on coping with the challenges of ontology creation (Figure 4.6). With the

pre-defined components and attributes from DT, the ontologies from lesser

to higher attributes can be initiated (Figure 4.5).

• Exploration and extraction : The information that falls into the crucial cate-

gory (for example quantitative or qualitative) is first mapped to the initialised

information ontology and provided to their corresponding attribute(s). Then

secondary data for the crucial information are explored, but within the limited

range to avoid false information. Following the process when information is de-

tected, they are stored within the attributes for the realisation of the complete

Information Ontology.
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These ontologies can later be exported and saved as structured data formats such as

Excel, CSV, etc. using the tools like pandas in Python.

4.2.4 Data Extraction tool

A computer programme in “python” platform is built following the above-discussed (Sec-

tion 4.2.3) algorithms and its demonstration is performed on extracting CP-related data.

Python packages (tool) used at different stages:

1. “pdfminer” (Shinyama 2015), “pickle” with python codes for reading the pdf file and

for the pre-processing task respectively.

2. “Camelot” -python tool for extracting tables in pdf files.

3. “nltk” (Bird 2006), “re” for corpus analysis

4. Python code for filtering and ontology creation.

5. “numpy” and “pandas” on quantitative data handling and data exporting to standard

formats like excel.

4.2.5 Performance evaluation of the tool:

Currently, the approach of the framework (tool) is semi-unsupervised, meaning that few

of the latent thematic information are passed into the system which will be taken as

reference response text during the clustering process.

Dataset Description:

Two different survey data report with the data after the inspection of two different offshore

structure/components protected with Cathodic-Protection system are considered. Each

of the report are provided in pdf format with the length of 75 and 200 pages each respec-

tively. One out of two is the inspection report for a Mooring chain. A mooring devices for

an offshore system refers to the arrangement of equipment and devices used to secure

and anchor floating structures.

Figure 4.8: An example of unstructured data lying within the CP survey report
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Ground Truth Data and Evaluation Metrics:

Ground truth dataset for each report is prepared manually which contains the correct data

and anticipated extraction from the source datasets mentioned above. This dataset will

be used to compare the data extracted by the NLP-assisted tool from the unstructured

reports. To evaluate the performance by the comparative analysis, precision metric is

used. Precision (also called positive predictive value) measures the accuracy of the pos-

itive predictions made by the model. It is the ratio of true positive (TP) predictions to the

sum of true positive and false positive (FP) predictions. This metric is chosen over others

for the dataset size limitation and manual preparation of ground data, which will again

facilitate in precision analysis.

Results and Analysis:

The raw dataset was passed into the model for the extraction of useful information. Addi-

tionally, few of the information required by the tool are provided to track and explore the

data, such as terms to recognise crucial ontology attributes. This information for ontology

initialisation is believed to be obtained from DT later on (Section 4.2.3 Step 4a). With

this initial information provided to the tool, the required information is then explored and

extracted on matching from the parsed data (Section 4.2.3 Step 4b). The data extracted

also get structured and then can be exported to formats like EXCEL, CSV, etc. (Figure

4.9).

Figure 4.9: Extracted data in a structured format from the survey report (Figure 4.8).

The model generates two output files: one containing data from the tables, which

can be considered semi-structured data if present in the report, and the other for the

remaining unstructured text data. A comparative analysis with the ground data revealed

that over 90% of the tabular data was successfully extracted, while for other data, the

extraction of over 50% of data was achieved with a precision of approximately 75% when

limited thematic information was provided to the system. However, when a few additional
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spatial information elements obtained from the Ontology were passed into the system,

the extraction accuracy improved to over 75%. Furthermore, with the inclusion of this

semantic information, the precision of the extracted data reached over 95%.

Discussion:

The result shows that N-L-P with automation and supervision can be implemented to

extract data from different report formats. The highlights of this results and analysis is

how the model’s performance improves with additional information from the Ontology.

Additionally, it opens the possibility of supervised (and unsupervised) M/L algorithms’

application on training the tool with time, i.e., on implementation to the additional data

formats. This should gradually enhance the robustness of the tool and ultimately make it

applicable to most cases and reducing the supervision requirement.

4.3 Conclusion

This chapter discussed the state-of-art for cathodic-protection modelling in the first sec-

tion, including challenges in CP Digital Twin realisation. In the next section, an Ontology

and N-L-P-supported data acquisition framework is discussed to provide the real-data

mirroring features of the Digital Twin. The framework together with the Digital Twinning

concept is for addressing the difficulties in obtaining SHM-related data (for example, cor-

rosion and CP-related) where most of the data are obtained from surveys and lies in

different paper formats.

From here, the research activities are directed towards achieving the other milestones

set in Chapter 3, i.e., addressing the model calibration and adaptation issues with the DT

concept utilised. This includes the steps: making hypothesis(es), investigating from dif-

ferent aspects, giving the shape of artefact(s) and evaluating. The steps will be repeated

being guided by the research objective under each research area and will be presented

in subsequent chapters.
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5 A Design of Experiments Platform

for Online Simulation Model Val-

idation and Parameter Updating

within Digital Twinning

This chapter presents the findings from the work under the second research area i.e.,

Automation of Model Calibration/adaptation Process with the Digital Twin concept utilised.

The research background analysis in Chapter 2 has demonstrated that simulation

tools are available in several domains to reproduce the process phenomenon. Addition-

ally, DT concept has evolved enough to offer data mirroring characteristics utilising the

cutting-edge technology. Then, establishing the simulator-based DT requires the tailoring

of the simulator-based parametric model within DT.

The aim is to provide a solution for addressing the manual calibration task but with

the adoption of the DT concept. This demands the solver which also offers to address

the practical limitation of DT particularly in implementing the automated model validation

and calibration/adaptation artefacts within its architecture (Figure 2.5).

The objectives and milestones set in Chapter 3 for the corresponding research area

are presented below which were set by considering the promise offered by the DT and

the recent development in tools and technology:

Objectives

1. To investigate the applicability of scientific software and/or tools in having a platform

for automated calibration and/or adaptation following DT concept.

2. Experimentation analysis on the benefits offered by such an integrated platform i.e.,

platform with scientific software for analytics and the simulator for simulation task.

Milestones

1. A platform with incorporated analytics performing the model calibration with au-

tomation.

2. The utilisation of the platform for automated DT enabling and maintaining.
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The outcomes of the research activities within this research area are already pub-

lished in Sapkota et al. (2021a), which includes the proposed solution approach and a

case study for its demonstration.

5.1 DT concept as a Comprehensive Tool- Motivation

This research has accepted the DT concept as a comprehensive tool with the incorpo-

rated essential features like the potential to handle data, perform experimentation, and

implementation of algorithms to calibrate and update the model. Also, Chapter 2 asserted

some practical limitations for such comprehensive tool and propose an architecture to

overcome the issue of DT practical implementation.

The recent advancements in analytical tools suggest that they can be utilised for the

necessary analytical tasks involved in model calibration and adaptation (Coleman et al.

1999, López 2014). These pre-existing tools and algorithms offering analytical aids such

as sensitivity analysis, data-sampling, and design optimisation, are promising for efficient

model calibration and adaptation. This creates an incentive to integrate these tools into

the model validating and calibrating/adapting components of the DT architecture (Figure

2.5). Additionally, a platform is expected to be developed to implement the appropriate

experimental design within the DT concept (Aivaliotis et al. 2019b). Experimental de-

sign or Design of Experiment (DOE) is the term used for the techniques used to guide

such experiments needed for the model calibration and/or adaptation process in an effi-

cient manner (Cavazzuti and Cavazzuti 2013). Therefore, the potential of collaboration of

the scientific software with the simulator and analytics is investigated to achieve the DT

architecture anticipated in addressing the manual calibration issues.

Study shows, Scientific software like MATLAB and/or PYTHON have demonstrated

their applicability to have an integrated platform where multiple modules can be utilised

(Cruz 2016, Inzillo et al. 2017, Benaouali and Kachel 2019). This suggests the idea

of software integrated platform to give the shape of the DT architecture which will ulti-

mately assist in the online model validation and calibration task. This will also assist as

an approach for establishing a simulator-based DT with automation in a situation where

process simulators are already available in multiple domains.
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5.2 The platform for Digital Twinning with Software Integra-

tion

A Design of Experiments (DOE) platform is proposed, to enable the practical application

of the DT and also to address the above mentioned challenges. The platform will be

created by integrating the process simulator and scientific software, providing essential

features such as the ability to handle data, conduct experiments, and implement adap-

tive algorithms to update the model. This approach will facilitate the establishment of a

simulator-based DT with automation, particularly in domains where process simulators

are already available.

Figure 5.1: Integration of server and simulator for automation of the process of data

management and analytical support required for the calibration/adaptation process.

The analytical tools that are typically used for model calibration/adaptation often em-

ploy design optimisation algorithms to recommend new parameters based on an analysis

of the model’s output for previous input parameters and real-world data. Such algo-

rithms and tools are commonly available in scientific software packages such as MAT-
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LAB, PYTHON, and others. This availability of optimisation algorithms and tools within

scientific software motivates the use of such software for analytical tasks in addition to

the automation of the process.

Likewise, when process simulation(s) can be achieved from commercial software

(simulator(s)), the collaboration of the simulator(s) with the scientific software(s) offers

to leverage the benefits provided by the analytical tools in predictive simulation. This

leads to the idea of an integrated platform which combines both software and simulator

and offers automation for model validation and calibration. The comprehensive integrated

platform (Figure 5.1) is supposed to pave a path towards establishing a self-adaptive Dig-

ital Twin. For example, the applicable benefit of the proposed integration is a call for

optimisation from analytics parallel to the simulation run.

5.2.1 Roles of Scientific Software as a Server

In a simulator-based DT, the simulator plays the primary role in simulation and predic-

tion, while scientific software serves as a supporting tool. Given that DT may need to

accommodate multiple process simulators and other tools, the scientific software can act

as a server that facilitates communication between the tools. It provides a platform for

experimentation and analysis, using internal or external interfaced tools and algorithms

to assist in the analytical tasks required for parametric model establishment and perfor-

mance enhancement.

Scientific software is also useful for pre-simulation tasks such as managing input-

output data, filtering and mapping data, and preparing the dataset for the simulator. It

can also connect to analytical tools to facilitate analysis during repetitive simulation. The

server software can enable data visualisation to provide insight into the model’s perfor-

mance, either with or without comparison to data from the actual system.

The other crucial roles of the server in a simulator-based DT is to handle the switch of

the simulation running process and provide the interface for relevant calibration/adaptation

algorithms to the model. To accomplish this, the scientific software should either include

a tool (Figure 5.1) or provide an interface to external tools for analytical support, including

design optimisation. Scientific software such as MATLAB or PYTHON can be used to

run user-customised optimisation algorithms or call external commercial or open-source

optimisers, regardless of the optimisation type chosen.

Moreover, automated data flow between the platform and the data server allows for

retro-perspective analysis if relevant time-series data are available. The platform should
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also provide a model performance validating criterion/algorithm, either separately or in-

tegrated into the platform, as the calibration (or adaptation) task cannot be performed

without synchronised validation.

5.3 Case Study: Automated Calibration of a CP Model for an

Offshore Jacket Structure

5.3.1 Experimental Model

A CP model (Section 4.1) for an offshore Jacket structure (Figure 5.2) protected by sac-

rificial anodes is built using the BEASY tool (Section 3.1.2). More details of the structure

(or the CP system) can be found in Appendix C. The geometry and the discretisation task

required before the simulation running is achieved with the aid of the tool as discussed in

Chapter 4.

Figure 5.2: The geometry of the marine structure protected

with sacrificial anodes adopted for the case study.

For the calibration experiment, the parameters related to geometry are not within the

scope of the case study as such values can be obtained from design data and/or from

the structure’s geometrical measurements.
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Then the parameters required to run the simulation for the CP model built for the

structure are:

• Polarisation Behaviour

1. P-value (Section 4.1.3) for Material 1 related Polarisation curve of the CP sys-

tem

2. P-value (Section 4.1.3) for Material 2 related Polarisation curve of the CP sys-

tem

• Conductivity/Resistivity

1. Sea water-related conductivity (Siemens/m)

2. Sea-bed-related conductivity (Siemens/m)

5.3.2 MATLAB as a Server

For the approach demonstration towards the Cathodic-Protection DT enabling, integration

of MATLAB-BEASY is chosen, where BEASY is the simulating tool and MATLAB will

perform as a Server. The reason for selecting MATLAB for the role of server during

the concept demonstration is its extensive data handling and analysis capability, plotting

capability and the availability of different optimisation algorithms within it. Such features

enable the assess-modify-check loops and can be completed in reduced computational

time when programmed for automation.

Optimisation toolbox like fmincon and fminunc (Coleman et al. 1999) within MATLAB

provides benefits in the continuous optimisation for the constrained and unconstrained

cases respectively. These optimisation tools synchronised to the simulation environment

fulfill the requirements of the model’s parameter updating.

MATLAB also facilitates app building with automatic code-generation features. By

utilising these features, along with the algorithms and tools required for calibration and

adaptation, a user-friendly Graphical User Interface (GUI) (Figure 5.3) can be created.

This GUI can be used by non-developers (engineers) for the calibration and adaptation

task, providing a straightforward functional platform for automated model calibration and

adaptation.

70



CHAPTER 5. A DESIGN OF EXPERIMENTS PLATFORM FOR ONLINE SIMULATION
MODEL VALIDATION AND PARAMETER UPDATING WITHIN DIGITAL TWINNING

Figure 5.3: User-friendly GUI example built using the MATLAB which can be utilised for

model calibration with automation.

5.3.3 CP Model’s Operational Validation data

(a) (b)

Figure 5.4: The calibration/validation data generated with simulation run of the reference

model a) surface potential, and b) normal current density, corresponding to the selected

data-points from the structure’s surface (Figure 5.2)

Two types of validating data are considered- surface potential (mV ) and normal cur-
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rent density (mA/m2). The validating data positions count from the structure’s surface

for two datatypes are 12 and 4 respectively (Figure 5.4). The benchmark of the vali-

dation/calibration data to ensure model’s calibration is subjective and depends upon the

different aspects. The justification for selecting the given data positional count will be

presented in the next Chapter.

Due to limitations in applying (obtaining) real-world data, validating/calibration data for

this experimentation are generated from a virtual reference model with fixed parameters

suggested by design rules. Summary of the response data obtained from the simulation

run of the reference model is presented in Section C.3 of Appendix C. Additionally, to

make the data more realistic, ±2% error is introduced to the data considered for calibra-

tion from the reference model’s simulation output.

The calibration data generated at this stage or even when obtained from the real world

will be stored in a data-storage server so that can be accessed via the GUI (Figure 5.3)

during the optimisation-based calibration process.

5.3.4 Tool selection for optimisation

Parametric optimisation is usually used to find the best set of design parameters where

parameters x = x1, x2, x3, . . . xn can in some way be defined as optimal (Coleman et al.

1999). In a simple case, it is done with the minimisation or maximisation of some system

characteristic termed as an objective function (f(x)) that is dependent on the variable x.

In a more advanced formulation, constraints are added to the optimisation task, where x

or f(x), may be subject to constraints in the form of equality and/or inequality constraints.

To undertake the task of optimisation, different algorithms are available offering to pro-

vide effectiveness in the process. The Optimisation Toolbox within MATLAB provides sev-

eral algorithms for solving a wide range of optimisation problems (López 2014). However,

the selection of algorithms is based upon the model behaviour such as the parameters

involved, linearity, non-linearity in the input-output, the search-space limits, simulation

time, the constraints, etc. For example, many simulation models including the CP models

built for a structure require a substantial amount of computation time. A single simu-

lation run might require several minutes to several hours or even days. Therefore, the

problem-suitable algorithm is required during the objective minima or maxima searching

optimisation as the computational expense from the simulation restricts the total number

of objective function evaluations.

At the initial stage of the research, the continuous optimisation method is adopted to
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establish the applicability of the integrated platform for model calibration with automation.

The iterative optimisation-suggested simulation runs will occur for which the optimisation

tool will be operated together with the simulator in a synchronous way. The algorithm cho-

sen for this continuous optimisation is a gradient-based “quasi-newton” algorithm (Venter

2010). The reason for choosing a gradient-based approach as opposed to other optimi-

sation techniques, such as genetic algorithms or neural networks, is that the CP model

problem space is mostly monotonic. The monotonic behaviour of the CP model was

found, after sensitivity analysis of the response data for the CP model vs. input parame-

ters.

Figure 5.5: Sensitivity Analysis for Material 1 related P-value against two data types

obtained from simulation at reference positional IDs

For this sensitivity test, multiple simulation outputs are obtained by varying the pa-

rameter Material 1-related p-value, while the other parameters including the sea-water

conductivity are kept constant. Now for the analysis, two reference IDs selected from

the above positional IDs (Figure 5.4) are considered and then the response data for the

corresponding IDs obtained from the simulation are plotted (Figure 5.5). For both the

data types considered, the monotonic behaviour is obtained against the material-related

p-values. With such behaviour of the model, gradient methods decide the appropriate di-

rection of the search during best parameter search by using information about the slope

of the function (Venter 2010). This will save the simulation run time significantly as op-

posed to the random-step (stochastic) optimisation method.

Optimised values of parameters can, therefore, be quickly found with the quasi-newton,

i.e., in a lower amount of completed laps. On this basis, the unconstrained optimisation
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tool “fminunc” within MATLAB provided with a “quasi-newton” algorithm is utilised. A

comparison analysis is made between ‘fminunc’ against ‘fmincon’ before implementing

the tool, both found within the MATLAB optimisation toolbox.

Table 5.1: Comparative analysis between two continuous optimisation tools from

MATALB’s optimisation toolbox

Features/Tools fmincon fminunc

Minimisation of

Non-linear functions
Yes Yes

Toolbox designed for

global minima
No No

Search space reducing

with bound & constraint
Yes No

Gradient-based algorithm’s

applicability to have a

direction of search

Can be applied, however,

could terminate before

reaching solution due to

constraints given

The newton-gradient step

can be best utilised

for medium-scale

In the experiments like this, where the constraints are not sufficient enough to reduce

the search space, an unconstrained method with an efficient algorithm method (such as

‘fminunc’ with a quasi-newton algorithm) would perform better over the constrained one.

However, both the tools implementing the gradient-based search could end up with the

local minima. These tools/algorithms from MATLAB can be linked to the GUI (Figure 5.3)

so that the user does not need to have more expertise and can use the tool appropriately.

5.3.5 Formulation of the Optimisation problem

Reducing the discrepancies between the validating/calibration data and the model’s out-

put from the simulation is the goal of this minima-based optimisation problem. While the

validation (calibration) data remains the same during the process, the input parameters

of the model are changed which ultimately varies the discrepancy between the model

output with the validation data. This discrepancy representing model performance mea-

suring criteria, as a function of the relevant parameters, will serve as the objective function

for the optimisation problem.
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Objective function

The Normalised Root Mean Square Error (NRMSE) is taken as an Objective function

during this experiment. The reason for selecting this criterion is its wider application in

the engineering field for the minimisation problem. Assuming two different validating data

types (Section 5.3.3), NRMSE here means Normalised Root Mean Square difference be-

tween validating data and model output data with the weightage constants (2:1) provided

for the two data types. This weightage constant is decided based on the sensitivity of the

data, reliability of the data type,etc. when obtained from the physical world.

f(x) =
n∑

i=1

ki ∗

√√√√∑j=m
j=1

Xi
j−Y i

j

Xi
j

mi
(5.1)

with,

”X” as model output data for the input parameter value ”x”

”Y ” as validating data

”n” as total data types (n=2 in this case),

”ki” as the weightage constant given to the data type i.

and ”mi” as the response data total positional count for the data type i.

The continuous optimisation method or the minimisation problem (Equation 5.2) will

seek the best parameter combination that gives the minimum objective function (5.1)

value.

min
x

f(x) (5.2)

Initial State Primary Model and Parameter’s Value

At this stage, the research deals with two parameters case, as increasing the number of

parameters could potentially lead to greater complexity. It can be easily obtained from

sensitivity analysis that the parameters “p-value of Material 1 related polarisation curve”

and “Sea-water conductivity ” are more sensitive to response data for the CP model. While

focusing on these two highly sensitive parameters, other parameters’ values discussed

above will be fixed i.e., kept constant.

As continuous optimisation is usually initiated with some best-known parameters value,

the values are considered as in the Table 5.2. This is under the assumption that the in-

volved engineer can always make some initial guess that can be based on the expertise

and/or the design rules. These initial parameter values in this case and the bound of

the parameter values during the implementation of constrained optimisation (for example

75



CHAPTER 5. A DESIGN OF EXPERIMENTS PLATFORM FOR ONLINE SIMULATION
MODEL VALIDATION AND PARAMETER UPDATING WITHIN DIGITAL TWINNING

Table 5.2: Parameter’s value provided to the initial primary model

presumably from design data rules.

‘Material 1” Polarisation curve’s

p-value

Sea-water’s Conductivity

(Siemens/m)

1.7500 3.0000

using fmincon tool) can be fed via the GUI.

Figure 5.6: Polarisation curves with the associated P-values

With the initial guess of the parameter, the simulation data can be obtained by feeding

the parameter for the simulation run. The polarisation curve represented by the p-value in

Table 5.2 is shown in Figure 5.6. On obtaining the simulation data, comparative analysis

(Objective calculation) can be done against the calibration/validation data to have insight

into the performance of the model with the given parameters.

A graphical plot might offer some insights to the concerned engineer through the

process of visualisation even though the automatic method simply takes the quantitative

requirement (objective calculation) into account. The graphs represent the response data

value in the y-axis against the IDs for the response data presented in Figure 5.7. The IDs

are the denotation of the meshes and elements created during the discretisation stage

of the CP modelling. For this case, the bar graph (Figure 5.7a) shows that there is a

less significant discrepancy between the calibration surface potential reference data and

the data from the model with the initial parameters’ values, while the other type of data

i.e., the normal current density (Figure 5.7b) has got significant discrepancy between the

calibration and the data from the simulation. This demands an update of the parameter
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(a)

(b)

Figure 5.7: The comparison plot between validating/calibrating response surface data

against the simulation data from the initial primary model with parameters value given in

Table 5.2, a) surface potential and b) Normal current density.

to match the simulation output with the reference data.

The parametric CP model with the initial parameter (Table 5.2) and with the corre-

sponding output response data as displayed in Figure 5.7 is now considered and selected

for optimisation-based best parameter search.

5.3.6 Optimisation with Minimisation for Best Parameter Finding

In the situation, where the objective function is dependent on the two independent pa-

rameters/variables “p-value of Material 1 related polarisation curve (p value1)” and “Sea-

water conductivity (σ)”, the minimisation problem (Equation 5.2) will be assessed as

Equation 5.3.
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Calibrating data, objective function and optimisation tool(s) discussed in Sections

5.3.3, 5.3.5 and 5.3.4 respectively are selected and applied for the requirement of mini-

mum searching.

min
p value1,σ

f(p value1, σ) (5.3)

Utilising the given data resources, tools and algorithms, continuous optimisation is un-

dertaken. The iterative state reached during the optimisation process is presented in

Table 5.3. The graphical discrepancy between the state’s model’s output with the calibra-

tion data can also be visualised within the GUI. The optimisation process for parameter

search ended as the algorithm cannot further decrease the objective function, in the

search direction.

Table 5.3: Iteration stages and corresponding parameters’ values during

the optimisation problem before reaching a solution.

Iteration F-count
Material 1 related

p-value

Sea-water’s Conductivity

(Siemens/m)

Objective values

(F(x))

0 3 1.7500 3.0000 5.5168e-03

1 9 1.8145 3.0443 3.5445e-03

2 12 2.0516 3.2340 3.5730e-05

3 15 2.0515 3.2422 2.8556e-05

4 18 2.0425 3.2655 1.5382e-05

5 21 2.0229 3.2959 4.5574e-06

6 24 2.0027 3.3186 1.5651e-06

Result and Analysis

In this case, it took a total of seven iterations to converge to the best set of parameter

values. The total count for objective function calculations, represented as F-count in

Table 5.3, was 24, which corresponds to the total number of data exchanges between

the server and the simulation. This also means that the equivalent number of simulation

runs took place during the entire process. The comparison between the model’s output

obtained with the best fit input parameters against the calibration data is presented in

Figure 5.8.
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(a)

(b)

Figure 5.8: The comparison plot between validating/calibrating response surface data

and simulation data from the solution model with solution parameters reached (Table

5.3): a) surface potential data and b) current density data.

Table 5.4: Calibration time analysis for the case study

Total count for simulation runs 24

Time for each Simulation Run Approx. 8 min.

Time for data transfer and analysis at each iteration Approx. 3 sec.

Total time Approx. 3 hrs. and 37 min

Utilising the platform and the approach, this parameter updating task which could

take many hours or days when performed manually is reduced to less than a few hours

including all the simulation running time (Table 5.4). All the experimentation (including

the simulation runs) were performed on a Lenovo-ThinkPad with a 2.30GHz CPU and

32 GB RAM. The importance of the platform is highlighted by the significant reduction
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of model calibrating time using the automated experimental platform compared to the

manual approach.

5.4 Conclusion

In summary, the proposed approach aims to reduce the need for human involvement

in model calibration and adaptation by introducing a Design of Experiments (DOE) plat-

form that integrates a process simulator and scientific software. This platform enables

the handling of data, experimentation, and implementation of adaptive algorithms for up-

dating the model, while also providing a way to integrate multiple process models and

simulators. By using this platform, a digital twin of a physical asset can be realised using

a process simulator that is already in use, making it a practical approach for Structural

Health Monitoring (SHM) that relies on physics-based prognosis.

The case study demonstrates the usability of the platform towards achieving a Cathodic-

Protection DT. The continuous optimisation procedure was undertaken using the platform

for the parameter estimation task essential during DT enabling and maintaining. Overall,

the proposed software integration approach combines advantages offered by scientific

and commercial software(s) to have a comprehensive Digital Twin in reduced time capa-

ble to predict the present and future health of a structure.

An issue felt during the above experimentation is the lack of benchmark of quali-

tative and quantitative validating/calibration data besides selecting the optimisation tool

(algorithm). This type of benchmark is necessary to ensure the optimisation process is

successful, assuming that all other aspects have been appropriately selected. A similar

issue was felt in determining the weightage constant of the objective function during the

CP model-related minimisation-based calibration. While the major of the further work will

be focused on the utilisation of the integrated platform on addressing DT adaptation re-

quirements, the issue of model validation/calibration resources benchmarking also needs

to be assessed. This necessity of the resource benchmarking approach is highly felt

when the data from the real structure is obtained from the costly survey and inspection

as in the CP system’s case for offshore structure. The next chapter will discuss the issue

and propose an approach for resource benchmarking for optimal usage of the experimen-

tation.
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6 Benchmarking the Validation Re-

source Requirements for Adaptive

Modelling Within Digital Twinning

This chapter presents the findings from the work under the third research area i.e., Data

Benchmarking for Model Calibration and Adaptation.

The benefits of Digital Twins have been already demonstrated in Chapter 4 and 5 in

obtaining the data from the real world and in automated model calibration respectively.

Under situations where the model operational validation formed a basis for the iterative

calibration, deterministic methods were utilised for both calibration and validation. Every

model update utilises the latest available observation data to reduce epistemic modelling

and/or parametric uncertainties. As SHM subsequently should also have the goal of re-

ducing resource requirements for the prognosis as discussed in Chapter 5, the resources

required for the performance validation of the model demand a proper trade-off between

the accuracy of validation and the cost involved (Alaswad and Xiang 2017).

The followings are the objective and milestones set associated with resources (par-

ticularly data) benchmarking during model calibration and/or adaptation:

Objective

1. To investigate the DT concept and its associated recent development (such as inte-

grated platform) on standardisation of the data resources.

Milestone

1. Approach(es) for benchmarking the required quantity, quality, and variability of vali-

dation data and performance metric(s) for model online calibration/adaptation within

DT.
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6.1 Quantitative and Qualitative Real-world Data Requirement

for Model Operational Validation – Motivation

Tailoring any parametric simulation model (pre-accepted for behavioural simulation) to

represent the physical system requires a suitable model adaptation route (Park and

Schneeberger 2003, Tahmasebi et al. 2012). Data is one of the crucial factors for validat-

ing model performance, upon which the route is dependent. Advanced sensor and data

measurement technologies have enabled online access to operational data from physical

assets, which is required for operational validation. However, the information require-

ments for operational validation may vary with the behavioural complexity of the system

(Oberkampf and Trucano 2008). Therefore, there is an anticipated trade-off between the

validating data and the cost involved in data collection, particularly when data are ob-

tained from inspections and surveys. For example, in the case of cathodic-protection

model validation, the data dependency ranges from surface-potential, normal current

density, and potential gradient-related data (Adey et al. 2020). These data in the case of

the offshore structure are often obtained from the survey/inspection which gets costly if

too many positional inspections of the structure are required.

Studies on standardising model verification and validation methods (Oberkampf and

Trucano 2008, Sargent 2010, ASME 2009) lack guidance on selecting or defining re-

sources (data) standards for validation (Pace 2004, Fabrizio and Monetti 2015). Oper-

ational validation becomes more challenging for complex models and/or immature do-

mains, such as offshore systems and wind turbines. This is because in such a situation,

with a shortage of quality-assured, and high-quality measurement data, the lack of the

standard escalates the challenges (Doubrawa et al. 2019, Adey et al. 2020).

A similar situation of data standardisation was felt during the case study in Chap-

ter 5 while undertaking the minima-based optimisation problem for model calibration.

The problem was regarding the fixation of the positional data counts required to vali-

date/calibrate the model ensuring avoidance of the wrong assumption about the model’s

performance. Though data for all small mesh points corresponding to the offshore struc-

ture can be obtained from CP simulation, the issue is with obtaining the data from the

physical system and the cost involved in obtaining the data. Fixing the weightage con-

stant of the objective function for two types of validation data was another similar issue

but related to the formulation of the validating criterion encountered during the CP model-
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related minimisation-based calibration.

Furthermore, with the growth of the degree of freedom of parameters in any simulation

model also puts a strain on the validation and calibration of the model due to increased

complexity. Thus, establishing a proper benchmark of the data to their quantitative, qual-

itative, and diversity requirements to track the model’s performance and provide an effi-

cient adaptation route is anticipated.

While the behaviour of the structure is changing, so should be reflected in the model

thus leading to the resource’s requirement might also need updating. Thus, rather than

fixing to benchmarked resources, an approach to benchmark the resources would be bet-

ter preferred within the DT. The research, therefore, instead of finding a benchmark for

each case proposes an approach to benchmark the resources. This chapter includes the

details of this approach and its demonstrative analysis. The outcome of the research ac-

tivities including a case study for the proposed approach demonstration has been already

published in Sapkota et al. (2021b).

6.2 Approach for Benchmarking Online Operational Model Val-

idation Requirements

A virtual and repetitive experimental-based approach is proposed to address the issue of

resource standardisation during model calibration or adaptation. The approach in other

words does resources benchmarking required to detect the parameter(s) uncertainty of a

predictive model.

The approach primarily involves multiple reference virtual experiments (Figure 6.1)

and can be undertaken with automation utilising the integrated platform presented in

Chapter 5. The benefit offered by this experimentation-based approach is that it can be

undertaken in the offline phase, even though it requires plenty of simulation-based exper-

iments. It involves generating virtual models within the DT platform and continues with

the performance evaluation and updating the primary model relying upon the selected

validating data and/or the formulated metrics. The successful repetitive experiments ul-

timately form the basis of increasing trust to rely upon the undertaken routes i.e., the

resources dependency.

The accepted model validating data can be used as the benchmark of the minimum

data required from the real asset. This means procedures and resources utilised in ref-

erence experiments can be adopted in parameter optimisation of the virtual model when
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Figure 6.1: Illustration of reference experiment for Benchmarking Operational Validation

Requirements.

data is available from the real physical system. A similar approach can be employed to

formulate, the performance-validating metric.

The major steps performed during reference experimentation for benchmarking the

model operational validation requirements are:

• Virtual Reference Model Generation

• Validation Data Selection to Standardisation

• Validation Metric Assessment

• Performance of Selected attributes on Model Convergence to the Reference Model.

6.2.1 Virtual Reference Model Generation

The effectiveness of the calibration route (resources and algorithms) can be analysed by

comparing the adapted/calibrated model either to the higher precision model or the phys-

ical prototype (or real system) but with all details known including the parameter-related

information. When conducting simulation experiments using a pre-accepted simulator,

a reference model with established behavioural simulation performance and known pa-

rameter values will serve as a virtual prototype. This research also endorses utilising the

virtual environment as virtual testing is the key to reduction of the cost and effort but also
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avoiding inconvenience for hardware tests. While at this stage, the research is focused on

assessing the parametric uncertainties of the model, the higher precision model is gener-

ated with some selected parameter(s) values but within a reasonable range(s). As error

(noise) in the data from the physical system cannot be neglected in the real-world sce-

nario, some error (noise) can be introduced to the input or output data for the reference

model’s simulation to make the data more realistic to the real world.

On the other side, there exists a similar virtual model but with different parameter

values than the reference model and termed as Primary Model. The Primary model

is the one which will be updated (or calibrated), while the reference model is the one

used as the representative of the real structure. Analytical support within DT discussed

in Chapter 5 can generate such virtual models, thus such virtual model-generating and

virtual experimentation features are proposed within the Digital Twin. However, limiting

the parameters within reasonable ranges might require external support/expertise.

6.2.2 Validation Data Initial Selection to Final Benchmarking

Data sensitivity tracking for corresponding parameters i.e., response data mapping to

the parameters is usually achieved by sensitivity analysis and usually requires no ref-

erence model. After fixation of other involved models validating and updating attributes

(e.g.: metric, optimisation algorithm), the initial data-set required for the model valida-

tion/calibration is selected. The experience with the domain and data could guide track-

ing the ability of data on validating and adapting performance, but also the cost and time

for data collection should be considered when applicable. Likewise, the response data

from the reference model needs to be provided with the noise(error), to have the data as

realistic (with some technical data measurement error) from the real asset.

If the convergence of the initial primary model to the reference model within the accep-

tance range is reached in the reference experiment i.e., passing Test 1 (Figure 6.1) , also

other similar convergence tests are required (Section 6.2.4). If fails either of the tests,

the resources (for example data) are updated to ensure the data capability on converging

the primary model to the reference one. The non-risk involved balance between the cost

involved in data collection and model optimisation accuracy using the data is identified

by the series of virtual experiments. Not in every case, the data counts are increased,

also should be reduced to find the trade-off between the data for validation and the cost

involved in data collection.
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6.2.3 Validation Metric Selection/Formulation

The performance of the quantitative metric to assess the goodness of fit between the

simulation response output and the real-world data is another important aspects as like

the data in the process. While the nature of the simulation is known and the uncertainty

types to assess are known, the metric selection/formulation will be easier. The nature of

the model in most of the application domains for their designated purposes is pre-known.

When performing model updating of complex structures deterministic approaches are

preferred (Goller et al. 2011) due to the associated computational benefits. Therefore,

metrics performance evaluation and metric formulation are confined to the deterministic

metrics at this phase of the research keeping the probabilistic assessment of the simula-

tion model outside the scope.

Multiple types of deterministic criteria (metrics) are available in the literature for per-

formance validation of a deterministic model. Among them, the magnitude-discrepancy

based, and the correlation-based are two wide categories of metrics for deterministic val-

idation. It is not possible to conclude that one criterion is better than another, as they

assess different aspects of the dataset. The choice of criteria to employ in validation

should start with the features that are intended to be assessed (Ni et al. 2004).

The role of validation metric formulation persists even after a metric selection when

multi-response data types available from simulation can be used for the model’s per-

formance validation. For example, a situation encountered in the case study of minima-

based optimisation in Chapter 5 can be considered. As multiple data types were involved,

the weightage constant was an important aspect, that will decide the role of specific data

types during the performance validation. Determining the dependency of multiple data-

types during model performance validation is the further step of metric formulation in such

cases. The selection of the weightage constant is not straightforward and might require

some experimental analysis before reaching the decision.

The best model’s performance measuring metric required during optimisation-based

parameter updating can be formulated using similar pre-mentioned repetitive virtual ex-

periments by fixing the other influencing attributes. Once the metric is formulated, it

is further adopted as an objective function during optimisation-based model calibration

when real-world data are available.
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6.2.4 Models’ Performance Convergence Analysis

For the performance validation of the selected resources supported with the reference

model updating experiments (Step A), the convergence Tests (1 and 2) (Figure 6.1) are

performed. The convergence of the response data as well as the value of the parameter

between the solution model and the reference model should be confirmed.

If the initially selected validating data and/or metrics fail in Test 1, the steps are re-

peated after updating the data-set and/or metrics (Step C) until the data-set and/or met-

ric(s) are promising to converge the Primary model to the reference one. Passing Test 1

is not enough as the performance need to be validated for other parametric situations as

well. Test 2 is about repetitive testing with the different cases of the virtual models (Initial

and/or reference) by varying the parameters of the virtual models.

6.3 Case-Study: Benchmarking CP model Validation and Cal-

ibration Data Requirement

6.3.1 Experimental setup

The experimental CP model (Section 5.3.1) built for offshore structure (Figure 5.2) is

adopted for the approach demonstration. Similarly, the Software-Simulator platform (pre-

viously discussed) is utilised for the implementation of the proposed virtual and offline

experimentation-based approach. Most of the resources except the response data count

will be fixed to the experiment discussed in Chapter 5.

The considered parameters required to run the simulation are:

1. P-value (Section 4.1.3) for Material-1 (Figure 5.2) related Polarisation curve of the

CP system.

2. Sea water-related conductivity (Siemens/m).

In this case study, the approach application for benchmarking response data require-

ments will be demonstrated. The benchmarked data should be sufficiently enough to

validate the model’s performance and calibrate the above-mentioned parameters.

6.3.2 Data types and other resources Selection

Considering the practical feasibility of the data, response data that would be selected as

validation/calibration data are: a) Surface Potential (mV ) and b) Normal Current den-

sity (mA/m2) and c) electric field (mV/m) with the first type being more preferred and
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so on. While at this stage the approach is being demonstrated to find the benchmark

of data requirements only, other attributes involved such as the metric and optimisation

tool are fixed beforehand. Normalised Mean Square difference is fixed as the validating

metric and as an objective function for optimisation with a fixed weightage constant (2:1)

when two different data types are considered. Similarly, for optimisation-based param-

eter updating, the gradient-based “Newton-quasi” algorithm and MATLAB-provided tool

“fminunc” are selected.

6.3.3 Virtual Models in the reference Experiments

Primary and Reference CP models are generated using the adopted structure related ge-

ometrical data and meshing. The parameter value(s) of the ”Reference model” provided

differ from those of the ”primary initial model” in each reference experiment. To make the

data more realistic to the real-world data ±2% noise is added to the data of the reference

model’s after simulation.

Table 6.1: A representative example of the parameters’ values provided for the models

in the reference experiment

‘Material 1’ related

p-value

Sea-water’s Conductivity

(Siemens/m)

Primary Initial Model 1.5000 2.7500

Reference Model 2.0000 3.3333

A representative example of the Primary initial and Reference model is presented

in Table 6.1 together with the corresponding parameters’ values. During the process of

continuous optimisation utilising the selected resources, the virtual experiment will be

aiming to converge the Initial model to the Reference Model.

6.3.4 Approach Implementation

An experiment with initial data dependency as Case-I (Table 6.2) is initiated. The lesser

data variety would be always preferred in practical phase as more data varieties being

obtained from the inspection requires more survey equipment, expertise and time. The

Surface Potential data positions (Case I) for both the primary and reference model is

presented in Figure 6.2b.

Utilising the validating data suggested by Case-I (Table 6.2) i.e., only one data type,
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Table 6.2: Response data counts considered for model validation/calibration for 2

different cases

Data Counts

Surface Potential

(mV )

Normal Current density

(mA/m2)

Case I 20 0

Case II 15 5

together with the other optimisation resources, the continuous optimisation-based param-

eter search similar to one in Chapter 5 is undertaken. The process is towards converging

to the reference model (parameters) starting from the initial primary model. After the pa-

rameter update (Step A) and analysis 1-2 (Figure 6.1), the likelihood to reach the wrong

solution i.e., local minima during optimisation-based parameter updating is found in this

case. It is detected after making the parameter comparison of the solution model reached

with resources under Case-I (Table 6.3) against the Reference model (Table 6.1).

Table 6.3: Parameter’s value in solution model reached for both cases.

‘Material 1’ related

p-value

Sea-water’s Conductivity

(Siemens/m)

Case-I 1.6055 2.6525

Case-II 2.0099 3.3313

Then, the next set of response data is selected by giving diversity in the data type

i.e., normal current density data is further added keeping the initial quantity the same

as Case-I. After the analysis like before, the result shows Case-II favours Case-I re-

garding data dependency. These two representative cases form the basis of the virtual-

experimentation-based standardisation of model validation data requirements. If passed

performance evaluation with re-testing (Section 6.2.4), the Case-II suggested response

data will be set as a standard resource for validation and adaptation of the CP model

when data are available in the online phase. The experimentation and the approach can

be further exploited to reach the lowest possible response-data count ensuring the diver-

sity and distribution over the structure. However, the cost of the experimentation though

mostly undertaken in the offline phase and the risk of the wrong assumption needs con-

sideration.
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(a)

(b)

Figure 6.2: a) The graphical comparison, b) Difference shown at real 3D positions of the

data, between surface potential data from the simulation run of the Initial primary model

and the data for reference model.

Result Analysis

The result shows diversification in data selection could minimise the risk converging to

local minima during the given CP model’s validation and adaptation route from any pri-

mary state. When relying upon data from Case-I for model operational validation one can

reach the wrong assumption about the performance of the model. This situation can be

more understood by analysing the solution models’ surface potential (i.e. first data type)

discrepancies with the reference data for both cases (Figure 6.3). The response data
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(only one type) suggests the solution from Case-I is better than Case II, which is a wrong

assumption.

(a) (b)

Figure 6.3: The discrepancies for Surface Potential data, between solution model output

and Reference model output (validating data) a) Case I solution model, b) Case II

solution model.

A similar approach can be implemented in metric formulation the performance of the

provided attributes differs.

The benchmarks provided might not only vary between models but also for the same

model at different stages of its operational lifespan due to changes in the integrity of the

system. This underlines the integration of such benchmarking approach within the DT

artefact, to support adaptation required at any instance of its operational life span.

6.4 Conclusion

This chapter presented the solution for the issue of model validation resource standard-

isation being an important aspect which cannot be discarded during model calibration

and/or adaptation. An approach is proposed to benchmark the data and the metric re-

quirements before going to the online phase of tailoring the parametric model as the rep-

resentation of the real physical asset. The approach utilises the virtual reference model

and multiple virtual experiments in the offline phase to set the standard of the validating

resources.

Moreover, the proposed approach can be achieved within the integrated platform pro-

posed in Chapter 5 for the automation of model validation, calibration, and adaptation

under the DT concept. This highlights that the experimentation-based approach is also
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essential to the DT architecture (Figure 2.5) and can be accomplished within the valida-

tion artefact. Additionally, the applicability of the approach is demonstrated to standard-

ise the quantity, quality, and diversity of data requirements for validating the adopted CP

model during calibration. However, a limitation of the approach is that proper justification

for requiring the benchmarked resources may require high expertise in the domain and

related data, as it is experimentation-based.

The above experiments also encountered one of the issues discussed in Chapter

2 i.e., time-consuming simulation runs highly affect this experimentation-based resource

benchmarking. Each update of the data or metric repeats the entire process of continuous

optimisation, therefore, increase in time for the approach implementation, though won’t be

a serious issue in the offline phase. However, with the complexity arising in the system’s

behaviour during operational time, the requirements of the approach are also in the online

phase. The re-assessment of the experimentation-based approach thus requires the

solver for addressing the time-related issue.

As, a future work within the context, the approach needs to be implemented in a

more complex model. Also, the benchmark reached needs to be applied to the real-world

problem i.e., to calibrate the model based on the response data from the physical CP

system.
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7 Surrogate-Assisted parametric cal-

ibration within Digital Twinning

This chapter presents the findings from the work under the fourth research area i.e.,

Online Model Calibration/adaptation: Addressing Input Parameters Uncertainties.

Chapter 5 and Chapter 6 have provided the basis for the automation of the parameter

updating task and an approach to benchmark the resources required to calibrate a model

before applying the real-world data from the real system. From here, the research activ-

ities are focused on the core research area and are guided by the following Objectives

and milestones.

Objectives

1. To investigate the significant methods/procedures in dealing with parameter uncer-

tainties during adaptive simulation.

2. Providing a standard framework for efficient and reliable parameter updating during

model calibration/adaptation.

Milestone

1. The online model updating/adapting artefact (a mechanism) aligned to the DT con-

cept, that uses the best suitable optimisation algorithms/methods..

The state-of-art discussed in Chapter 2 about modelling in SHM has already estab-

lished the role of calibration to prepare the model for its predictive role. The optimisation-

based calibration (parameter estimation) is also discussed to some extent in the previous

chapters including the application of a type of them.

7.1 Issues with Simulation-Based Optimisation and Role of

Surrogate Modelling: Motivation

Chapter 2 concluded with the anticipation of an enhanced and online tuning mechanism

with more efficient algorithms to tune the modelling parameters during the establishment

of the predictive DT. Also, it is acknowledged that the deterministic model calibration at
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an advanced level is achieved with gradient-based or gradient-free optimisation methods,

requiring output from the simulation runs for multiple situations.

7.1.1 Limitation of Continuous Optimisation Method for Parametric Cali-

bration of Model

The continuous optimisation methods requiring the objective calculation (with simulation

run) for each iteration can be divided into 2 categories: 1) the gradient-based method and

2) the gradient-free method. The gradient-based methods such as Quasi-Newton Method

(Gill and Murray 1972), Conjugate Gradient method (Hager and Zhang 2006), Interior

Point Method (Nocedal and Wright 1999), etc. though efficient than trail-and-error based

approach, has got the demerits like the results being too sensitive to the initial values and

tending to get trapped in the local optimum. Such issues were also noticed in the CP

model-related experimentation during the case study of Chapters 5 and 6.

On the other side, the gradient-free optimisation method such as Genetic Algorithm

(Grefenstette 1993), Simulated Annealing (Kirkpatrick et al. 1983) and Particle Swarm

Optimisation (Poli et al. 2007) can find the global optimal solution but require hundreds or

even thousands to millions of objective evaluations in the whole design space. While re-

lying upon such algorithms, real-time parameter updating becomes almost unachievable

due to the computational expense associated with higher-order physics-based models.

7.1.2 Surrogate Concept in Modelling

Surrogate models (also known as surrogates) are the approximation models to the full-

order simulation model with significantly less computation time than the full-order physics-

based one (Barton 1992).

Surrogate models are broadly categorised into three different classes: hierarchical

models (simplified models), projection-based reduced models, and data-fit models. A

brief insight into the method of obtaining the approximation model is provided below (El-

dred and Dunlavy 2006, Benner et al. 2015):

1. Model Simplification method:. It is built by simplifying the underlying physics

and required model building and domain expertise. This includes, mesh simpli-

fying, reducing the number of parameters and/or ignoring nonlinear terms in the

solver. This approximation modelling is often referred to as multi-fidelity, hierarchi-

cal, component-based, sub-structuring, etc.
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2. Projection-based Methods: These approximations are based on mathematical

derivation, rather than professional knowledge. Generally, a subspace is created

to project the governing equations into the subspace to achieve dimensionality re-

duction of the model space. Some of the methods that follow this approximation

technique on having ROM are:

• Proper Orthogonal Decomposition (POD) (Chatterjee 2000)

• Balance Truncation method (Gugercin and Antoulas 2004)

• Reduced Basis Method (Haasdonk and Ohlberger 2008)

3. Data fitting method: This approximation is known as the black-box modelling and

is also termed response data or scalar surrogate.

This research from this stage will assess the role of surrogates in the calibration and/or

adaptation of the model within the DT concept. This will be expanded to the simulator-

based DT enabling and maintaining concept. Once the surrogate-assisted approach is

established in the realisation of the DT for a physical system, it will be an attempt to

standardise the roles of surrogates within the DT concept.

This surrogate-assisted calibration method using the DT concept including a case

study for the approach demonstration has been already published in Sapkota et al. (2022a).

7.2 Surrogate Models in Digital Twin’s Realisation

In overcoming the issue of time-consuming calibration tasks, replacing the computation-

ally expensive model with an approximation model that takes less running time offers a

solution. The applicability of such an approximation model or surrogate to circumvent in-

tractability caused due to high computational costs in many-query applications has been

discussed for years (Barton 1992, Robinson et al. 2008, Yin et al. 2019). The surrogate,

as an alternative to a time-consuming numerical simulation model, could assist in the

estimation/update of design parameters by obtaining the global optimal solution within a

reasonable time.

As, the motive is utilising the surrogate on calibration rather than using it for under-

standing the dynamics of the system, the data-driven black-box models that are typically

trained by using datasets obtained from a physics-based (white-box) model’s simulation

run will be considered at this phase. Black-box models are models which provide no

information about the behaviour (physical process) of the system, unlike the grey (or
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white) box models with some (or complete) information available about the working prin-

ciple of the process behaviour for the system. The response surface method (RSM) also

known as polynomials regression fit (Myers et al. 2016), artificial neural network (ANN)

(Shalev-Shwartz and Ben-David 2014, Zhang, Xie, Ji, Zhu and Zheng 2021) and Krig-

ing (Van Beers 2005) are the commonly used methods in constructing a surrogate in

engineering fields. Any of the methods require generating simulation datasets using the

appropriate Design of Experiments (DOEs) (Giunta et al. 2003) method that decides the

combination of input variables for the simulation run to generate data snapshots. Then

the simulation snapshots are used to train the surrogates (data-driven) with the simulation

input parameters as the input-variable and the simulation response data as the output.

The surrogate is accepted as an alternative model once the performance of the model is

evaluated and is within the required threshold

Although the cost of running a surrogate is insignificant compared to the full-order

physics-based model, the building of a surrogate may get relatively expensive due to the

multiple simulations requirement for data generation. Two terms ”offline” and ”online” are

often used by the literature to highlight the benefits of surrogates. Offline cost refers to

the up-front cost to create the surrogate which could be large enough, while online cost

refers to the cost of running the surrogate during the parameter exploration with real-time

calibration data. The inexpensive computational cost offered by the surrogates illustrates

the benefits of surrogates in the online phase when real-time evaluation is essential.

Towards, the real-world realisation of the DT concept, experimentation-based adap-

tation is essential to tailor the physics-based simulator to represent the physical twin.

The necessity of surrogates in structural DT realisation has been discussed since the

same time when the concept of DT was introduced to the field of simulation and mod-

elling (Tuegel et al. 2011). However, in the lack of standardisation of the DT concept, the

discussion is mostly limited to the conceptual level.

Leveraging the concept of hybrid DT discussed in Chapter 2, the surrogates here

are considered as the data-driven models within the DT but serve as a substitute for the

physics-based model. For the practical DT endorsing surrogate, the integrated platform

discussed in previous chapters with automated data and control signal flow between them

also offers the feasibility. For example the MATLAB-based platform proposed in Chapter

5 is capable of performing the tasks essential for surrogate building such as DOE, model

training, performance analysis, etc.

Though surrogates are suggested as an alternative when faster prediction is required
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Figure 7.1: Illustration of role of surrogates in parameters approximation with the

utilisation of the sever-simulator integrated platform.

or to ease the process of parameter estimation, physics-based full-order model(s) will

remain the core and robust predictive tool of the DT.

7.2.1 Design of Experiments for Surrogate Model building

DOE is a procedure of choosing a set of samples in the design space, intending to gather

the maximum amount of information from a limited number of samples (Giunta et al.

2003). The quality of the samples (training data) significantly impacts the accuracy of the

data-driven model. Hence, an appropriate DOE method to select the optimum number

and region of the sample training data points can enhance the surrogate modelling pro-

cess (Alam et al. 2004, Davis et al. 2018). Latin Hypercube, Box–Behnken, and Central

Composite Design (CCD) (Giunta et al. 2003) are a few of the common DOE methods

implemented during the space-filling design to ensure adequate coverage of the space

of the variables within the given range.
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Based on the data generated from the initial experimental design, a surrogate model

is trained and the accuracy of the model is evaluated using the error testing metrics ac-

companied by graphical analysis (if required). Then based on the performance accuracy

of the surrogate, the requirement of additional sample points is decided (if the samples

from the initial design were not enough) (Figure 7.1). The success of having the best

surrogate depends upon proficiency in finding the trade-off between the computational

cost associated with the data generation by simulation runs suggested by the DOE and

the accuracy of the surrogate (Alizadeh et al. 2020). Furthermore, the ability to repre-

sent the complex behaviour of the simulation model is another considerable factor during

sampling in the cases when higher accuracy of surrogate is desired.

7.2.2 Surrogate Model Building with Simulation Parameters as the Input

Variables

Most of the surrogate modelling methods have a common procedure to follow, which

includes DOE, model training, assessing the quality, and updating to enhance the quality

(if required). Among the multiple types of surrogate modelling methods available, the

appropriateness depends on the system’s behaviour that is being modelled. A polynomial

fit model also known as Response Surface (RS) methodology among one of the surrogate

building methods is considered as an example and the data-fitting meaning for the method

is explained.

Response surface (RS) methodology is a collection of mathematical and statistical

techniques based on the fit of a polynomial equation to the input-output dataset. The

regression coefficients (mostly second-order) are usually used to provide the relation

between the output responses and the input variables. A representative second-order

polynomial RS equation is presented as equation 7.1 (Bezerra et al. 2008, Myers et al.

2016).

y = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

k∑
i<j

k∑
j=2

βijxixj + ϵ (7.1)

where, y is the estimated output of the RS model, and x are the input parameters or

variables with a total count equal to k. Then, β represents the regression coefficients also

known as hyper-parameters of the data-driven model.

The training of the RS models in this case means calculating the regression coeffi-

cients, which are usually performed using the method of curve-fitting. Curve-fitting is the
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process of creating a curve or formulation of the mathematical function that best fits the

provided group of the dataset (Arlinghaus 1994).

The server offering to enable and represent DT proposed in Chapter 5 can also fa-

cilitate utilising an “offline” phase to create the surrogate model of the system using the

simulation input-output dataset from the physics-based model.

7.2.3 Surrogate Model’s Performance Evaluation and Updating

The performance of the constructed surrogate model should always be assessed before

using it as a representative of the full-order model. Usually, a set of testing points other

than those used during the surrogate training are used for the performance validation of

the surrogate. The qualitative assessment is made using criteria such as the Normalised

Mean Square Error (NMSE). If the error is higher than the threshold, sample data points

are added to the existing training data set and the surrogate is updated to enhance its

prediction accuracy. Sequential adaptation (Golzari et al. 2015, Marque-Pucheu et al.

2019) is often preferred during surrogate updating in which new points are selected in

the region where the prediction made by the surrogate model is not within an acceptable

threshold.

7.2.4 Surrogate as an Alternative model in Calibration

The surrogate i.e., data-driven model on performance validation can now be used in the

“online” phase. In the “online” phase, the adequately efficient surrogate(s) is used for the

objective evaluation during the process of optimisation for optimum parameter approxi-

mation. When the computation time for each surrogate-based prediction can be within

milliseconds to seconds, sufficient counts of searches to reach the global minima are

attainable in significantly reduced time. This allows for an exploratory search in contrast

to the exploitatory search limited by the gradient or non-gradient optimisation technique,

thus avoiding the trap in local minima.
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7.3 Case Study I- Surrogate Assisted Cathodic Protection (Sac-

rificial Anode) System’s Digital Twin Realisation

7.3.1 Experimental Setup

The experimental CP model (Section 5.3.1) built for offshore structure (Figure 5.2) using

the simulator BEASY is adopted. Similarly, the Software-Simulator integrated platform

discussed in previous chapters is utilised for the expedition of experiments with automa-

tion. The analytical support required for surrogate building such as DOE, data generation,

and performance analysis, are also provided by MATLAB’s tools, within the integrated

platform.

As the same CP model built for the structure is adopted, the core parameters consid-

ered to run the simulation as well as to build the surrogates are:

1. P-value (Section 4.1.3) for Material-1 related Polarisation curve of the CP system

2. Sea water-related conductivity (Siemens/m).

The goal of this case study is to demonstrate the role of the surrogate in the estimation

of the above two mentioned parameters. The selection of the same parameters as of the

previous experiment (Section 5.3.1) will allow for the comparative analysis of two different

approaches implemented for parameter estimation.

7.3.2 Response data points for Surrogate building

The role of the surrogate in the calibration task is to provide an approximation of the

simulation for the corresponding calibration/validation data points that could be available

from the real system. Considering the feasibility of the data, two types of response data

(as in Section 5.3.3) are taken for surrogate building: surface potential (mV ) and normal

current density (mA/m2). The response data-position counts (IDs given as per count)

are 12 and 4 respectively from the structure’s surface (Figure 5.4). For these considered

response data points (total n = 16), the data-fit models will be built.

7.3.3 Design of Experiments for Surrogate building

Regarding experimental design for Response-Surface-Modelling, the central composite

design (CCD) has been frequently discussed (Montgomery 2017) and adopted in this

case study. The reason CCD is the most implemented sampling method and prominent

in DOE in most engineering problems, made it to be used as the first choice in the CP
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model. The inscribed central composite design (CCD) is selected which gives 8+1 sam-

ple points for 2 variables case. MATLAB based tool ‘ccdesign’ is used to generate the

sampling points for the two independent variables “Material 1 related p-value” and “sea-

water conductivity”. The central point is used multiple times to provide high impact of the

centre of the parameter space. However, deciding the range over which the samples will

be generated requires some level of prior knowledge about the parameters. When the

sample count is fixed, a narrower range will result in a higher accuracy of the model for

predicting within the parameter range.

Figure 7.2: Plot showing the sample parameter points (in blue) for surrogate building

from CCD with corresponding value for the two selected parameters and surrogate

performance testing parameter points (in cyan)

The sample range is selected (Figure 7.2) and then samples are generated using

the CCD method within the range. Assuming the interest is towards the centre i.e., the

probability of the solution parameter falling towards the centre is maximum, the data-set

corresponding to the central point is taken two times. Likewise, a few surrogate testing

samples points are also generated (Figure 7.2).

7.3.4 Surrogate Model for CP system

The response surface method (RSM) with 2nd order polynomials regression fit (equation

7.1) is implemented for surrogate building. When the effect of the independent variables

and their interactions can be tracked, the polynomial response surface model (RSM)

would be the first choice as a data-fitting model.
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To investigate the applicability of the polynomial-fit model for the CP surrogate mod-

elling, sensitivity analysis is performed. Few reference data positional IDs are considered

for the output response data, and then response data at the positions obtained after sim-

ulation are taken into account by varying the target input parameter(s) while keeping the

other parameters (if involved) constant. From the sensitivity analysis, the effect of the

independent variables (p-value and conductivity ) on the response data (surface-potential

and normal current density ) is obtained. The analysis (also represented by the Figure

7.3 for one of the related IDs in each analysis) shows the non-linear but uniform relation

between Material 1-related p-value with both the surface potential and normal current

density. The analysis (Figure 7.3) thus suggests that the 2nd-order polynomial fit model

could capture the relation between the input-output variables for such a CP modelling

case.

(a) (b)

Figure 7.3: Material 1-related p-value vs a) surface potential, b) normal current density,

with other input variables fixed, for two different reference data positions for the two

data-types.

Now the parameter (independent variables) involved for RSM in the case study are

the polarisation behaviour represented by the p-value of the curve and the sea-water’s

conductivity. If p value and conductivity (“σ”) represents the two variables involved, each

positional response data (y) for the corresponding ID (with index i) according to equation

7.1 can be represented as:

yi = β0i + β1i ∗ p value + β2i ∗ σ + β3i ∗ p value ∗ σ + β4i ∗ p value2 + β5i ∗ σ2 (7.2)

Using the simulation data snapshots generated from the aforementioned DOE, RS mod-
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els are constructed for each node (i.e., i = 1, 2,... n). MATLAB based tool ’fit ’ is used

for the second-order polynomial fit, i.e., to determine the beta-coefficients for each equa-

tion for each response data position. In total, the ‘n’ number of the second-order data-fit

models are trained with the data corresponding to the data IDs. The trained surrogate

can now provide a prediction of the response data (Surface Potential or Normal current

density ) with varying input control variables (p value and σ).

For performance evaluation of the surrogate, the comparative analysis between sur-

rogate output and the full order model simulation output for the testing parameters (one

testing case Figure 7.4) is made. The developed surrogate model is capable of repre-

senting the CP model responses with acceptable accuracy (NMSE < 0.002). The ac-

ceptance threshold is taken after the performance analysis and considering the experts

opinion from the related field. This often tends to be varying from the model and the type

of data considered for the analysis.

Figure 7.4: Surrogate output for one of the testing point compared with simulation output

data (Surface Potential only)

The surrogate after performance evaluation and ensuring it’s predictive efficiency

within the margin of error provided can now be used as an alternative model for Opti-

misation based parameter estimation.

7.3.5 Parameter Estimation with surrogate

Having the polynomial-based surrogate now enables performing the exploratory search

for the possible combinations of the parameters to obtain the objective function output

with less computation time.

The calibration/validating data set (Section 5.3.3) is repeated from the case study
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in Chapter 5 where the data are used for continuous optimisation. With two different

validating (calibrating) data types, the Normalised Mean Square difference (equation 5.1)

between calibrating and model output data with weightage constant (2:1) is taken as

validating criteria (optimisation objective).

Figure 7.5: Objective plot over the parametric space with response data obtained from

the surrogate for different parameter inputs, while validating response data remains

fixed.

The plot in Figure 7.5 represents the objective function’s output over a range of pa-

rameter combinations. The surrogate is used to assist in the generation of the plot by

predicting the response data for the combination of input parameter values, while calibra-

tion (validation) data remains fixed. During the objective calculation, the minimum value

is stored, and an exploratory search method is used to find the global minimum. The

plot also demonstrates the effectiveness of the surrogate in avoiding local minima with

surface smoothening.

However, in other situations when the exploratory search tends to induce a delay

even while assisted with surrogate, gradient or non-gradient based optimisation algo-

rithms/tools are suggested.

Result Analysis

The performance of the full-order simulation model with the parameters “polarisation

curve for Material 1” and “sea-water conductivity” approximated using the above-mentioned

calibrating resources and the surrogate is demonstrated in Figure 7.6.
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Figure 7.6: The comparison plot between calibration response surface data against the

simulation results with solution parameter achieved a) surface potential and b) Normal

current density.

This parameter estimation which could take hours (Table 5.4) while entirely relying

upon the physics-based simulation is reduced to less than a few hours including the

offline cost of surrogate building. The calibration time requirement for the case-study is

shown in Table 7.1, with all the experimentation (including the simulation runs) performed

on a Lenovo ThinkPad with a 2.30GHz CPU and 32 GB RAM.

Beyond parameter estimation, surrogate also assists in problem and data understand-

ing. For example, from the surrogate-assisted objective plot for the case, only one type of

calibration data is available (Case I from Section 6.3), the more clarity into the issue can

be reached.

The objective function with only one data type gives the non-converging types of plot

(Figure 7.7), that suggest two possible reasons for the problem: 1) the similar effect of

the input parameters to the response data (the surface potential data) 2) the correlation

between the involved parameters. While the objective plot with both types of data in-

volved suggests a proper minimum. This analysis highlights the importance of the both
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Table 7.1: Surrogate Performance Table for the Case-Study.

Offline Cost

Total Simulation Run for training sample

generation
9

Total Simulation Run for testing sample

generation
2

Time for each Simulation Run Approx. 8 min.

Time for data collection and

surrogate building
Approx. 30 sec.

Online cost
Time for surrogate-assisted

parameter search
Approx. 1 min.

Total time - Approx. 1 hr. and 30 min.

Figure 7.7: Objective plot over the parametric space for only one validating response

data-type case (Case I from Section 6.3).

data benchmarking approach as well as the surrogate in efficient real-time virtual model

building.
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7.4 Case Study II- Surrogate-assisted calibration for Cathodic

Protection System’s (ICCP type) DT realisation

This case study is about the demonstration of the approach in another type of CP system

i.e., ICCP, while case study I presents the experimentation with the SACP type CP sys-

tem. For this, the tool and methods will remain the same as the first case study except

for the model used for the experimentation.

7.4.1 Experimental Setup

The experimental ICCP model built for offshore tank structures (Figure 7.8) is consid-

ered. The model represents a buried gas tank of size length = 44m, width = 5m, height

= 5m, protected by an ICCP System which includes 4 linear ICCP anodes (represented

as A1, A2, A3 and A4 in Figure 7.8) arranged as loops around the tank at different eleva-

tions. The normal current density and the current from these anodes are adjusted such

that the protection potential is achieved. The current and normal current density values

considered can be found in Appendix D.

Figure 7.8: The geometry of the offshore Tank protected

with ICCP system adopted for the case study.

The data measurement points also termed as internal-points are located at three

positions along the tank axis and four positions around the circumference (Figure 7.9),

located close to the tank surface (distance: 15 m, element size: 0.6 m). The ICCP

model for this system is built with the BEASY tool following the procedure of geometrical

modelling and discretisation discussed in Chapter 4. The geometry-related parameters
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Figure 7.9: The location of the Internal Points for response data measurement with the

reference cells.

are not within the scope of the case study as such values can be obtained from design

data and/or from the structure geometrical measurements.

Then for the ICCP model built for the tank structure, the modelling parameters re-

quired to run the simulation are:

• Polarisation Behaviour

1. P-value (Section 4.1.3) for Material A related Polarisation curve of the CP sys-

tem (Figure 7.8)

2. P-value (Section 4.1.3) for Material B related Polarisation curve of the CP sys-

tem (Figure 7.8)

• Conductivity/Resistivity

1. Zone 1 surroundings’s conductivity (Siemens/m)

2. Zone 2 surrounding’s conductivity (Siemens/m)

In this case study, the parameter p-value will be assessed differently i.e., by relating it

to the coating-breakdown factor as the coating breakdown is the main cause of fluctuation

in the polarisation behaviour of the metal (Adey 2005). The coating breakdown for the

bare metal i.e., without any paint will be considered equal to 1 (i.e.100%) while for the fully

insulated painting case, it will be taken as 0. Now, the p-value which is a multiplicative

factor approximately account for new polarisation behaviour by taking the reference of the

curve for the bare Material (p-value = 1) fall in the range of 0 and 1.

Comparatively, estimating the p-value is more challenging during the calibration of a

CP model, while conductivity can also be measured directly using the equipment avail-

able. Thus, in this case-study focus will be on estimating the p-values for Material A and

Material B.
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7.4.2 Response data points for Surrogate building

Figure 7.10: The calibration data (surface potential) for selected validating positions of

the structure’s surface (Figure 7.9).

In this case study, only one response data type i.e., surface potential (mV ) data will

be considered for surrogate building with total counts = 12 (Figure 7.10). The decision to

use only surface potential data is based on the finding that this data type with appropriate

data-count is sufficient for calibrating the model when it is about estimating polarisation

behaviour only. This finding was reached through preliminary analysis about benchmark-

ing the resources required for calibration and validation, as discussed in previous chap-

ter. For all the considered response data points (total n = 12), the 2nd order polynomial-fit

model will be built.

7.4.3 Design of Experiments for Surrogate building

The lower and upper limit of the polarisation-related p-value for both curves is assumed

to be taken according to the design rules for breakdown depletion. The polarisation

behaviour for the corresponding p-values is represented in the Figure 7.11.

The inscribed central composite design (CCD) selected before for Case Study I is

adopted. Likewise, the MATLAB-based tool ‘ccdesign’ is used for generating the sam-

pling points with CCD for the two independent variables “Material A related p-value” and

“Material B related p-value” (Figure 7.12).

The required number of simulations for the 2-variable case to generate the surrogate

training data-set is 9. Also, one additional testing sample is generated (Figure 7.12).
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Figure 7.11: The upper and lower limit of the polarisation behaviour selected together

with the breakdown factor

Figure 7.12: Sample points from CCD for two selected parameters for surrogate building

(in green), and generated parameter values for surrogate model performance testing (in

blue).

7.4.4 Surrogate Model for the ICCP system

The surrogate building follows the similar method as in Case study I. The Response

Surface data-fit models are built for each of the nodes (n = 12) for which the data are

considered to be accessible/available.

Let’s denote the polarisation curve related p-value for Material A and Material B as

p valueA and p valueB respectively. Now, if p valueA and p valueB are two variables in-

volved, each positional response data (y) for the corresponding IDs(i) according to equa-
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tion 7.1 can be represented as:

yi = β0i + β1i ∗ p valueA + β2i ∗ p valueB + β3i ∗ p valueA ∗ p valueB

+ β4i ∗ p value2A + β5i ∗ p value2B (7.3)

MATLAB based tool ‘fit’ is used for the second-order polynomial fit surrogate, i.e.,

to determine the beta-coefficients (β) for each data-fit model (Equation 7.3) at each re-

sponse data point.

Figure 7.13: Comparison of data from simulation with surrogate output (The testing point

is shown as a blue dot in Figure: 7.12.)

For the performance evaluation of the surrogate, the comparative analysis is made

between the surrogate output and the full-order model simulation output for one testing

parameter value (For example Figure 7.12).

Figure 7.13 presents an analysis indicating that the surrogate model does not ade-

quately represent the CP model responses being NMSE >> 0.002, i.e., higher than the

acceptable threshold. As a result, the surrogate model requires an update that involves

additional sampling points, corresponding simulation runs, and retraining of the model.

While the surrogate is not suitable for determining deterministic values, it can still be

used to approximate the solution parameter neighbourhood. This approach will avoid the

computational burden that could arise from having samples that are not relevant to the

solution parameters.
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7.4.5 Parameter Space Approximation with the surrogate

With only one type of validating (calibrating) data type, the optimisation objective i.e., the

Normalised Mean Square difference between calibrating and model output data will take

the weightage constant of 1.

Figure 7.14: Objective plot over the parametric space with response data obtained from

the surrogate for the parameter inputs and fixed validating response data.

The objective function’s output is plotted (Figure 7.14) over the parameter range for

the respective combination of the parameters. The process of finding global minima is

repeated as in the Case study I.

Figure 7.15: Comparison of data from simulation results with solution parameters

achieved and the calibration data
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The performance of the model with approximated parameters i.e., “Material A related

p-value” and “Material B related p-value” obtained using above mentioned calibrating

resources and the surrogate is demonstrated in Figure 7.15.

The analysis of the model’s output still shows a significant discrepancy between the

solution model and the calibration data. However, from the objective plot and analysis,

it also can be obtained that the true solution exists in the neighbourhood of the current

approximated one.

7.4.6 Surrogate updating with additional sample Points

As the necessity of the surrogate updating was felt beforehand though utilised to approxi-

mate the solution space, the next task is to update the surrogate efficiently. When solution

space is narrowed down from the previous DOE space, the additional sample points are

generated within the approximated space.

Figure 7.16: Sample points updated (added shown in yellow, previous in blue) in the

neighbourhood of the solution reached (in cyan) with the previous surrogate.

Following the previous sample points counts (n = 9) considered for the surrogate

building, 5 sample points are added within the space and then the sample points in the

far neighbourhood of the space are removed (Figure 7.12 and 7.16). This is done to

enhance the efficiency of the surrogate within the solution neighbourhood space, but

keeping the data count same as before.

Again the performance evaluation of the updated surrogate is made, by making the

comparative analysis (Figure 7.17) between the output from updated surrogate and the

full-order model simulation output (simulation output same as in Figure 7.13) for the same

testing parameter value. The surrogate model after performance evaluation on their pre-
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Figure 7.17: Comparison of data from simulation with updated surrogate output.

dictive efficiency though with some error (NMSE ≈ 0.002) now will be used for minima-

based parameter estimation and the solution is anticipated to be better than the previous

one.

7.4.7 Parameter Estimation assisted with the updated surrogate

Figure 7.18: Objective plot for over the narrowed solution space with response data

obtained from the updated surrogate for combination of parameter inputs.

The objective function’s output is plotted over the reduced parameter space (Figure

7.18) for the respective combination of the parameters. The process of finding global
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minima is repeated as before.

The conical shape of the objective plot (Figure 7.18) within the solution region sug-

gests that the solution minima is more accurate than previous one (Figure 7.14) with

fewer closer value parameters located in the neighbourhood.

Results and Discussion

Figure 7.19: Comparison of data from simulation results with solution parameter

achieved and the calibration data.

The performance of the full-order model with the solution parameters approximated

using above mentioned calibrating resources and the updated surrogate is demonstrated

in Figure 7.19. The comparative analysis of the model’s output shows that the dis-

crepancy between the solution model and the calibration data are within the acceptable

threshold (Objective value ≈ 0.0019), thus the estimated solution is accepted as the input

parameter value for the CP model.

This case study has highlighted, the surrogate updating requirement with sample ad-

ditions for higher accuracy. Moreover, not every time, is the surrogate capable of cali-

brating the full-order model to the required accuracy. However, a less accurate surrogate

still can be used to narrow down the possible solution space in the situation with no idea

regarding the solution parameter values.

Additionally, if the surrogate is sufficiently accurate at least for the limited parameter

space, it can be used for predictive analysis saving the simulation running time.
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7.5 Conclusion

This chapter presented the findings from the research area “Online Model Calibration/

adaptation: Addressing Input Parameters Uncertainties” towards fulfilling the requirement

of an enhanced and online parameter tuning mechanism. When the different optimisation

methods for model calibration are already discussed in the literature including the previ-

ous chapters of this thesis, the research aims to ease the issue of the time-consuming

simulation-based calibration.

Following the idea of surrogate modelling, this chapter then discussed the role of sur-

rogates in model calibration and adaptation within the DT concept. Surrogate models are

proposed as an approximation to full-order models, thus ultimately reducing the number

of required simulation cases, unlike the continuous simulation-based parameter estima-

tion (discussed in Chapters 5 and 6 case studies). This benefit is achieved with access to

the analytical support required for the surrogate building within the integrated platform. A

surrogate model, built offline using simulation input-output data, is used as an alternative

model for online parameter estimation. Multiple surrogate building tools are available with

easy access to the integrated platform, and the benefits of surrogates in model calibration

make them an important feature of the DT architecture.

Not only in parameter estimation but surrogate models also could assist in other ways.

Surrogate models can assist in problem and data understanding in addition to parameter

estimation, with the computational benefits they offer. Furthermore, surrogate models

with not enough approximation of the full-order model to the required accuracy can still

aid in identifying solution neighbourhoods . This is particularly useful when there is no

idea about the solution neighbourhood space.

The case study presented in this chapter highlights the benefits of using a surro-

gate model in the calibration of CP models, which is a crucial task for enabling a digital

twin. Surrogate-assisted optimisation was utilised to estimate the polarisation data and

sea-water conductivity of the CP models. The results showed a significant reduction in

calibration time compared to relying solely on full-order model simulation runs. Addition-

ally, the case studies illustrated the other benefits of utilising a surrogate model in various

situations.

The findings and analysis of this study suggest that surrogate modelling is a crucial

component of the structural Digital Twin ecosystem. This is relevant particularly in the

situation where there is lack of a standardised definition of what constitutes a structural

116



CHAPTER 7. SURROGATE-ASSISTED PARAMETRIC CALIBRATION WITHIN
DIGITAL TWINNING

Digital Twin. Surrogate models are not only useful in Digital Twin development but also

could play an important role in adaptation, which is a key aspect of the Digital Twin con-

cept. Further research is needed to assess the role of surrogate modelling in dealing with

operational uncertainties that may arise during the life of the Digital Twin.

With respect to Digital Twin establishment and its calibration issues, the results of

this study are promising. The next step of research is to investigate the real-time pre-

dictive capabilities of the Digital Twin. The subsequent chapter will focus on the online

adaptation-related issues that may arise during the operational phase.
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8 Maintaining Digital Twin for On-

line Prediction

This chapter presents the findings from the work under the fifth research area i.e., Main-

taining the predictive capability of the model over time.

One of the major issues that arise over time in the case of the structural model

is the spatial variability of the model’s parameter (Sohn 2007, Marques et al. 2012).

This material-related uncertainty issue during DT’s operational phase is discussed in the

first section of this chapter. The approach discussed in previous chapters including the

surrogate-assisted model calibration will be exploited and expanded together with other

analytics for the role of maintaining the predictive accuracy of the Digital Twin.

In the following section, the chapter discusses the potential role of data-driven mod-

elling within DT during its operational phase. The role is on addressing the complexity and

also provide a substitute for the time-consuming simulation issue with a physics-based

model. This is moreover motivated by the previous approach of utilising the data-driven

models (surrogate) as a solution to time-consuming calibration tasks. The promise of

data-driven models providing a substitute for the simulation model during calibration also

suggests expanding the concept by utilising different Machine Learning (M/L) tools to

have an alternative model with the lesser computational time required for (Chakraborty

et al. 2021a). The hybrid DT concept (Chinesta et al. 2020, Azangoo et al. 2022) also

promotes having an alternative data-driven tool for the structural damage detection task

even in the newly arrived situation.

Let us recall the research objectives and milestones set to guide the research activi-

ties for this phase of research:

Objectives:

1. To investigate the significant analytical features that aid DT in maintaining its pre-

dictive capability despite changes and uncertainty arising with time.

2. To investigate the possibility to pave the way for data-driven prediction towards pro-

viding an alternative to the physics-based model in order to avoid its complexity

arising with time.
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Milestone:

1. Features facilitated by analytical and database that support in providing DT with the

predictive capability despite changes and uncertainty arising with time.

2. The past pattern-based i.e., data-driven techniques and/or tools for online predic-

tion, also capable of extending the range of predictive applicability utilising the Dig-

ital Twin aspect.

8.1 Maintaining Digital Twin for Online Prediction: Challenges

and Scopes

Categorising the different phases of the DT across the life-cycle, 3 major phases can be

considered:

• Phase 1: Digital Twin enabling by calibrating physics-based model (simulator(s))

• Phase 2: Digital Twin operation (Prediction of RUL)

• Phase 3: Maintaining the Digital Twin across the lifetime.

Different aspects that support enabling the DT (Phase 1) with automation are already

discussed in the previous chapters.

An enabled DT after calibration is now supposed to provide the prediction features

but is limited for some time period. The maintenance and re-calibration of the model

(Phase 3) are essential due to the uncertainty and complexity arising from time (Gabor

et al. 2016, Belostotsky et al. 2018, Kita et al. 2019). It is also an equally challenging and

cost involving task as the calibration with the requirement of some adaptive features to

be incorporated within the DT architecture. With such features incorporated, a DT with

real-time adaptive ability even under the situation of change is anticipated.

From the SHM-related state-of-art discussed in Chapter 2, it is established that pre-

dictive modelling in SHM has the goal of cost reduction (including inspection cost) beyond

ensuring the safety related to the structure (Alaswad and Xiang 2017). This goal should

be highly embraced during the adoption of the DT concept for the ultimate reduction of

the physical inspection requirement (Figure 8.1). DT, with real-time predictive capabilities,

should provide a long-term prognosis or tool for estimating remaining useful life (RUL) for

SHM, but making it less dependent on inspections (i.e., diagnostic).

119



CHAPTER 8. MAINTAINING DIGITAL TWIN FOR ONLINE PREDICTION

Figure 8.1: Digital Twin’s roles anticipated in SHM (Adey et al. 2020)

8.1.1 Uncertainty with time

Though significant progress has been established in having high fidelity and interpretable

physics-based models, complex systems still face model-related uncertainties over time.

One particular form of uncertainty related to structural models is parametric spatial vari-

ability, which arises due to a range of factors, such as manufacturing tolerances, material

differences, and variations in wear patterns. For instance, the polarisation behaviour of

a material in response to its environment, which is often used as an input parameter

in CP models, may exhibit spatial variability due to differences in coating performance.

This uncertainty necessitates periodic reassessment of the model while it is in use, either

through updating the model or replacing it with a more complex one. However, as models

become more complex, it demands further expertise which raises costs, their accuracy

may be compromised, and is particularly problematic for real-time applications.

8.1.2 Machine-Learning (M/L) model and DT

Machine Learning (M/L) and Artificial Intelligence (AI) are the other trends coming up

together with the DT concept in recent years. Also, a collaboration of machine learning

models (including Reduced Order models (ROM)) to the DT is being appeared in recent

years (Lee et al. 2020, Chakraborty and Adhikari 2021b, Ritto and Rochinha 2021, Orlova
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2022).

Under the scenario of frequent adaptation requirements of the physics-based model,

and with the promise the M/L model and ROMs offer in modelling, the potential role of

M/L within the DT concept is investigated and discussed.

The role of the Reduced-Order-Modelling is discussed around the parametric vari-

ability (a type of uncertainty) issue while M/L models are discussed as the solution to the

complexity issue.

8.2 Modularisation and Reduced-Order-Modelling for Model

Adaptation

Reduced Order Modelling together with domain modularisation is investigated to address

the above-mentioned issue of the model re-assessment requirements due to spatial vari-

ability in parameters.

The Reduced Order Modelling (ROM) technique is one of the major accomplishments

in theoretical and applied mathematics at the end of the last and beginning of the 21st

century (Antoulas 2005). These models rely on an adequate approximation of the so-

lution without sacrificing the model solution accuracy but accommodating the real-time

constraints. The term ROM sometime might get confused with the term surrogates as

understood differently. To prevent confusion, the research will now refer to the projection-

based techniques, which are also discussed briefly in Chapter 7, as the reduced-order

modelling. ROMs are used for predicting field quantities providing an approximation so-

lution for the governing partial differential equations (PDEs) or underlying mathematical

structure of the system (Rajaram 2020). It is reasonable to assume that there exists no

definite answer to the question regarding the choice of approximation modelling. ROMs

are believed to be powerful only if the sufficient approximation of input to output map can

be achieved by a low-rank subspace (Antoulas 2005). A common framework under this

ROMs method consists of extracting the major influencing modes involved in the model

solution offline and then projecting the solution to similar problems in that reduced space

(Quarteroni et al. 2014).

This ROM and modularisation-based model calibration approach to deal with the

parametric variability issue following the DT concept has been already published in Sap-

kota et al. (2022b).
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8.2.1 Domain Modularisation with Data grouping

The diversity of the data location distributions must be taken into account to prevent draw-

ing incorrect conclusions about the performance of the model. To ensure the best uniform

distribution of the data, data grouping based on the sub-components offers a solution. On

the DT application, the part-modelling is suggested to form a basis for the reduction of

the data entries required for analytical needs (Bao et al. 2022). Additionally, the sen-

sitivity of the measurement data to the parameters will differ with the position when the

model incorporates varying materials-related characteristics. Thus, domain sub-grouping

is essential to estimate/update the parameter with their best-influenced data.

The primary role of the modularisation of the structural model will be finding the ap-

propriate parameters that influence the response data in each module. In other words,

modularisation splits and maps the inspection response data with the input parameters

based on the sensitivity of the parameters to the module response data. In the case

of SHM-related models, when most of the parameters are related to the materials the

structure is constructed, the task of mapping the parameter to response data will be

straightforward. Modularisation not only benchmarks the data dependency for parameter

estimation but also finds the best calibration subset of data for the selected parameter(s).

Moreover, this will also provide the remedy for the calibration complexity arising due to

the higher count of parameters and dealing with them together during optimisation-based

calibration.

Beyond this, the utilisation of the modularisation concept is suggested in assessing

the variability of parameters arising with time (Jesus et al. 2017). The factors reasonable

for the parametric-variability can form the basis for modularisation. For instance, the

region most likely to get affected by load or environmental factor can be separated from

others, even if they had similar structural integrity at the time of commissioning of the

asset. Modularity further can assist in generating sub-models to minimise the effect in

one module on others.

8.2.2 Module-based Reduced-Order Modelling (ROM)

The benefits offered by the approximation (surrogate/reduced order) models such as pro-

viding fast predictions to enable computationally efficient design space exploration has

been already discussed in Chapter 7. In this section, ROM together with domain modu-

larisation is proposed so that the past simulation data from the full-order model can also
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be utilised in the ROM model building when modularised.

Parametric model reduction is one of the approaches within the more general area

of the surrogates and will be achieved with the projection-based approaches. The goal

of parametric model reduction is to generate accurate ROMs that characterise system

responses for different values of the parameters (Benner et al. 2015). This explaination

of the concept in broader way is provided in Appendix E.

The idea is to utilise the previously generated simulation snapshots matrix even after

modularisation and even after variability in the parameter. Digital Twin at its operational

phase is assumed to have the simulation snapshots created at a different phase of time

for a different combination of the parameters. For example, the parameter and simulation

response data during continuous or surrogate-assisted calibration, discussed in Chapters

5 and 7. Now, when ROM is implemented together with the modularisation concept

(Figure 8.2) and if more than one module exists, the response data (U = n ∗ m) will be

categorised into the corresponding modules. For example for module-1, the snapshot

matrix (U1) will have the dimension n1 ∗m with n1 < n. If ‘k’ is the total count of modules,

then n1 + n2 + · · · + nk = n. Now, during the parameterisation stage of ROM building,

the input variable(s) that was considered to be uniform at the beginning but are believed

to have a different pattern of change in each module can be taken in a unique way for

each module. However, the sample count (m) need not be varied unless any other less

sensitive and parameter-varied snapshot data are removed. The dimension of snapshot

matrix can be reduced for the module to reduce the ROM building time by ignoring the

insignificant variable of that module.

8.2.3 ROMs’ Performance Evaluation and Updating

The performance of the constructed ROM required a validation assessment before using

it as a representative of the full-order model. Usually, a set of testing points and simulation

snapshots other than those used during the ROM building are used for performance

validation, similar to surrogate validation discussed in Chapter 7. The difference, in this

case, would be the validation simulation data required to be generated with the variability

of the parameter for the different modules. This demands additional parameters for the

full-order simulation model from different modules.

If the inaccuracy is more than the threshold during the comparative performance anal-

ysis, sample data points are added to the current training data set, and the ROMs are

updated to improve their prediction accuracy (Figure 8.2). For the sample data update,
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Figure 8.2: Modularisation of the structure and ROM building for each modules

the corresponding material parameter(s) value can be varied among the modules but

snapshots will be obtained with the full-order model.

8.2.4 ROMs for Optimisation-Based Parameter Estimation/Adjustment

The ROMs after performance validation can now be used in the “online” phase. In the

“online” phase, adequately efficient ROMs are used for the objective evaluation during the

process of optimisation like the usage of polynomial surrogates in Chapter 7. Provided

the ROMs are available for each module, parameter estimation would be also performed

separately for each module by only relying upon the calibration data belonging to the

modules. For each module, the objective function has the corresponding module-related

parameter as an input variable plus other parameters that exist from the beginning. It

takes less time to conduct enough counts of searches to reach the global minima when

the forecast time for each ROM can be within milliseconds to seconds. This also allows

for an exploratory search in contrast to the exploitatory search limited by the gradient or

non-gradient optimisation technique, thus avoiding the trap in local minima.

The comprehensive approach for real-time and faster calibration of the model that also
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Figure 8.3: Module-wise Parameter estimation with Reduced-Order-Modelling for the

physics-based model.

addresses the issue of variability issue of the parameter is illustrated in Figure 8.3. The

above-discussed approach offers the core functionalities essential within the DT system

required for real-time prediction, i.e., the potential of parameter-related adaptation.

8.3 Case Study- ROM for Re-calibration with Parameter vari-

ability assessment of CP model

8.3.1 Experimental Setup and Parameters

The experimental CP model (used in the previous chapter) built for offshore structure

(Figure 5.2) using the BEASY simulator is adopted. Similarly, the Software-Simulator

integrated platform is utilised for the expedition of experiments with automation. The

analytical support required will be received, within the integrated platform.

Though the same CP model built for the structure is adopted, the core parameters

considered to run the simulation are limited to the polarisation-related:
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1. P-value (Section 4.1.3) for Material-1 related Polarisation curve of the CP system.

2. P-value (Section 4.1.3) for Material-2 related Polarisation curve of the CP system

The goal of this case study is to demonstrate the benefit of the ROMs in the variability

assessment of the above material-related parameter (p-value for Material 1).

8.3.2 Modules and parameter mapping

Figure 8.4: The adopted offshore structure (Figure 5.2) with modules categorised based

upon the material 1 sub-categorisation for its polarisation behaviour assessing.

The primarily focused parameters are the parameters representing the polarisation

data corresponding to the main structural steel in the structure. This polarisation be-

haviour might change over time due to localised coating breakdown, calcareous de-

posits, and mechanical damage. Assuming the pattern of degradation varies with depth

i.e., considering possible variability of the polarisation and/or coating, material 1 is sub-

categorised into two sub-materials i.e., material 1A and Material 1B, and correspondingly

two modules are separated as in Figure 8.4.

126



CHAPTER 8. MAINTAINING DIGITAL TWIN FOR ONLINE PREDICTION

8.3.3 Model Validation/Calibration data.

Two types of calibration data are considered: surface potential (mV ) and normal current

density (mA/m2). The count of data positions on the structure surface (Figure 8.4) is

49 and 10 respectively. A similar procedure of generating calibration data from a virtual

reference model as in the case study in Chapters 5 and 7. However, in this reference

full-order model, possible parameter variability along the depth is taken into account and

simulation data is obtained.

(a) (b)

Figure 8.5: The data for calibration obtained after a simulation run from the reference

model before introducing noise a) surface potential, b) normal current density, from a

selected validating position of the structure surface (Figure: 8.4).

Also, to represent the type of errors expected in real-world inspection surveys noises

are introduced to the calibration data (Figure 8.5) before using the data for validation and

calibration. Then, the calibration data are separated for the modules categorised based

on the region they belong to.

8.3.4 Module-wise Reduced-Order Models

In the context of implementing a DT approach and having access to simulation snapshots

over time, the data obtained from the previous surrogate-assisted calibration experiment

will be utilised. The sample data, generated with an inscribed central composite design

(CCD) approach making 9 sample points (m) for the two-variable case is considered.

Then, the data snapshots for POD (or SVD) based Reduced-Order-Modelling are

stored in matrix X of dimension, dim(X ) = total data positional counts (n = 49 + 10) ∗

sampling counts (m = 9). This entire snapshot matrix will then be split into the matrices
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equal to the total number of modules. For example, in the two modules case, X is split

into X1 and X2 with dim(X1) = data points in first module (k = 28 + 6) ∗ sampling counts

(m = 9) and dim(X2 ) = data points in second module (n− k = 21+ 4) ∗ sampling counts

(m = 9).

For the parametric ROM building, an open-source python-based tool EZyRB (Demo

et al. 2018) is adopted that utilises the SVD method for ROM and RBF for parametric

interpolation. The reason for relying upon the particular tool is due to its applicability in

building ROM only from the input-output data i.e., without assessing the Operator Matrix

of the full-order model. Also, this research is aiming towards utilisation of the previously

available analytical tools in the adaptation requirement. The tool can be interfaced with

the simulation software within the integrated platform simply and can be used to generate

the parametric ROM using the simulation snapshots.

SVD-based ROMs are then built for both modules using the corresponding snapshot

matrix, and the tool. During the parameterisation phase, the p-value for Material 1 will be

assessed as the p-value for Material 1A and the p-value for Material 1B in Module 1 and

Module 2 respectively.

8.3.5 ROM assisted Parameter Estimation: Result and Discussion

Having the ROMs now enables performing the exploratory search for the solution param-

eters i.e., to obtain the objective function output for different parameter combinations with

less computation time.

Assuming two different validating/calibrating data types, the Normalised Mean Square

difference between validating/calibrating and model output data with weightage constant

(2:1) for the two data types, is undertaken as validating criteria and ultimately as the

objective function for the minimisation problem.

The categorised module-based calibration data for the corresponding module is fixed

and an objective surface plot is obtained over the two-dimensional parameter space for

each module (Figure 8.6). For the both modules, during the objective calculation over

the parameter space, the minimum value is stored, which means an exploratory search

method is made for all possible combinations of the parameters to reach the global min-

ima in the presented case study. The plot also signifies the similar role of ROMs as of

polynomial-surrogates discussed in Chapter 7 in surface smoothening and avoiding local

minima.

The exploratory search method could find the global minima in this case study. How-
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(a) (b)

Figure 8.6: ROM-assisted objective plot over the parametric space with validating,

response data and ROM of the corresponding module a) module 1 b) module 2

.

ever, in other situations when the exploratory search tends to consume more time and

induces a delay in the process, different gradient and non-gradient-based optimisation

algorithms are required.

Figure 8.7: Polarisation behaviour for the respected materials suggested after ROMs

assisted minima finding-based parameter estimation

The polarisation curves set for the two modules that are obtained with the above-

implemented p-value estimation approach can be visualised in Figure 8.7. The perfor-

mance of the model with estimated/updated polarisation curves is validated against the

calibration data as in Chapters 5 and 7. As the solution response data are within the error
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threshold when compared to the calibration data, the above solutions are accepted.

The results show that the ROM-assisted model re-calibration (adaptation) approach

is capable of replicating the inspection results in the DT model under the situation of

parameter variability. The ROMs built by utilising the past simulation snapshots, on the

other side reduce the computational burden significantly. Not only this, modularisation

forms the basis of having ROMs that take in parameters that influence the response data

of the module, which is why parameter variability among the modules can be traced.

The quality and amount of the calibration data that are available among the modules

would be the approach’s restriction. The quality and quantity of the calibration data at

the beginning during the situation of non-variation among the parameter won’t be enough

in the new situation where another parameter-related uncertainty i.e., the variability of

the parameter appears with time. This situation thus requires the benchmarking of the

resources for the reached situation. This though induced complexity in the process can

be achieved by using the resources benchmarking approach proposed in Chapter 6.

8.4 Machine Learning within DT as alternative to simulation

model with time

The conceptual DT introduced was physics-based and so is the focus of this research as

a physics-based model is essentially required for some complex domains. The flip side

of the physics-based digital twin is the complexity of its implementation since it requires

a more detailed structural model of the asset, calibration of the model, and also often

consume more time during computation.

On the other side, DT towards endowing Artificial-Intelligence (AI) to it requires high

integrity, awareness, self-learning, and adaptability. These intelligence-providing features

cannot be achieved without the advanced analytics features incorporated within. These

analytics with features like analysis and learning to bring self-configure, self-adapt, and

self-learning functionalities have already been adopted in manufacturing to increase pro-

ductivity, speed, flexibility, and efficiency of the process (Lee et al. 2017).

It is fair to say, if a DT driven by data analytics with slightly less predicting accuracy is

available as an alternative to the physics-law-driven DT, they are largely complementary.

Moreover, the data collected from real-system during the operational time-span together

with simulation data can be used to predict an approaching unplanned situation after ad-

equate curation of the data. This will further enable data-based decision-making about
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predictive maintenance, control, and efficient inspection possible in real-time. Also, it is

already accepted that the future of “intelligent” DT applications relies on the combination

of these two, uniting the strengths of each side. In this context, also a concept of a hy-

brid twin (Chinesta et al. 2020) is proposed that encompasses a digital twin including all

physics of the structure to the purely data-based digital twin with the reduced order mod-

els/surrogates. However, realisation of such DT demands integrated advanced analytics

for example Machine Learning to the DT architecture (Barricelli et al. 2019, Lee et al.

2020). When facilitated with advanced analytics like M/L, DT can also analyse the trend

of the physical and the simulation data across the multiple stages of the product life cycle

to enhance on-demand predictive services.

M/L could assist in constructing surrogates, ROMs and/or other supervised and un-

supervised models within DT in several ways that ultimately assist in reducing the com-

putational cost. To some extent, the previously discussed ROM has a common goal with

this M/L in the adaptation of the predictive model within the DT concept. Though the

M/L-based model offers computational benefits over the physics-based, the major draw-

back of such a data-driven model is the deterioration of its predictive capabilities outside

the training set scope rapidly. Similarly, the models fail to perform when little complex-

ity arises requiring new model building with much more updated training data to capture

the new trend (Chan et al. 2020). Therefore, such a model also requires the mecha-

nism to identify the drift in their performance as well as the appropriate model updating

mechanisms. However, until there are enough data to represent the emerging trend, the

computational advantages of such an M/L model, as well as updating them, still favour

the data-driven model over the physics-based one.

8.4.1 Data collection and Storage over Time Series

A well-maintained physics-based DT that has been in operation for several years is a

reliable resource for understanding the operational past of an asset. It provides a wealth

of physical data from sensors and inspections, as well as virtual data from simulations,

that can be used to analyse the root causes and trends of the asset’s behaviour over

time.

In order to develop a successful M/L model, it is necessary to collect data specifi-

cally related to the deterioration, fatigue, or damage patterns experienced by the struc-

tural components over a certain period of time. It is important to determine the optimal

data collection interval to minimise unnecessary expenses and to gain a thorough under-
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standing of the structure’s complex patterns and performance. Although the fatigue index

may exhibit non-uniform trends due to seasonal and loading variations, it should still be

recorded. Furthermore, any outliers or noise in the data, such as sensor malfunctions

or measurement-related technical issues, should be eliminated before relying on it for

prediction.

Once large amounts of data related to assets with similar materials and performance

characteristics are available globally, accessing this data, would be useful for identifying

the trends.

8.4.2 M/L tools for trend capturing

Materials scientists are increasingly adopting the machine learning tools to discover hid-

den trends in data and make predictions (An et al. 2015, Wagner and Rondinelli 2016,

Azimi et al. 2020). M/L algorithms can be trained on data from both physical systems and

their virtual counterparts, including both historical and real-time data. The trained model

is then tested on a portion of the data, and if the performance is not satisfactory, the

process is repeated until the testing results meet benchmarked criteria. Once the model

is validated, it can be used to make real-time and future assessments.

Different types of Machine-Learning techniques such as data mining, deep learning,

regression, manifold learning, etc are available to build such data-driven predictive tools.

M/L can be broadly categorised into three types: supervised, unsupervised and reinforce-

ment learning (Li 2017).

Supervised learning: For the supervised learning model, labelled data-sets are pro-

vided i.e., the independent and dependent variables are fixed. It is mostly applicable

in situations where the complete behaviour representative data (for example all failure

modes and expected behaviours) are available so that the M/L model map the inde-

pendent variable to the dependent variables by finding a generalised function that maps

inputs to desired outputs. Some commonly used supervised algorithms are Polynomial

Regression (Ostertagová 2012), Logistic Regression (Kleinbaum et al. 2002), Decision

Trees (Charbuty and Abdulazeez 2021), Support Vector Machine (SVM) (Hearst et al.

1998), Random Forest (Biau and Scornet 2016) and Artificial Neural Networks (ANN)

(Zupan 1994).

Unsupervised learning: In unsupervised algorithms, the data-set is not labelled, so

the appropriate internal representation of the input is desired from M/L.

Reinforcement learning: It is provided with feedback evaluation algorithms that learn
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to act given an observation. The computer then learns how to achieve the goal through

trial-and-error interactions with its environment (Harmon and Harmon 1997).

8.4.3 Supervised M/L models for time-step prediction

The role of the M/L model such as the polynomial-regression model and the ROMs for DT

realisation is already established in this research. Furthermore, within the DT, supervised

M/L model with time has the potential to extract the patterns linking different loads and

environmental conditions and structural performance to them. For this, the simulation

data obtained within the DT pave the way to have the parameterised and time-dependent

M/L model (Figure 8.8).

The parameterisation process mostly followed while enabling physics model-based

structural DT would favour the usage of Supervised Learning among different M/L tech-

niques considering the parameters as the independent variables. Also, to make the time-

step predictions/projections (time as one of the input independent variables) polynomial

regression (for simpler) and/or Artificial Neural Networks (for higher complexity) can be

exploited.

Figure 8.8: Data accumulation with time and usage of M/L model (Two types) for trend

capturing utilising the past data

Utilising the data accumulated with time, the supervised M/L model that can predict

future response data can be built in two ways (Figure 8.8):

Type 1- This type of M/L model considers time as an input variable, and only response

data that is associated with the corresponding discrete-time will be utilised for model
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training. This type of trend-based predicting M/L model may become obsolete with even

a slight disturbance in the trend, as it does not take into account other parameters and

response data are less likely to be directly dependent to the time.

Type 2- This type of model is parametric, similar to a physics-based model, but with a

different working principle. The M/L models are trained with the simulation snapshots as

simulation parameter as the input and the response data from the real-structure or simu-

lation as the output data. The surrogate model for CP system discussed in Chapter 7 is a

typical example for such M/L model. This model also requires estimation of parameters,

which must be tracked over time by relating them to other environmental factors. The pre-

diction with the M/L model tends to remain reliable for a longer period compared to Type

1, as long as it is built with the snapshots data of possible future parametric changes and

other relevant factors. However, over time, this type of data-driven model will still become

obsolete and require updating.

Performance-drift of supervised M/L models over time is a known and common issue,

as a new influential independent variable might appear or the response to the parameter

might change. In such a situation, the identification of the independent variable using

feature extraction methods should be reassessed to continue with supervised learning.

Moreover, obtaining a large number of failure datasets for SHM related to critical assets

can be problematic, as damages are usually only recorded for a fraction of the asset’s

total life. Additionally, supervised learning approaches are inapplicable for newly procured

assets as there is no historical data to leverage.

Deep learning, or deep neural networks, is a another advance M/L scheme that is

also receiving attention for its data-driven prognostic role in structural health monitoring

(Khan and Yairi 2018). Deep learning can be integrated with supervised or unsupervised

learning with reinforcement learning as a function approximator. It has the advantages of

data classification and feature extraction even in unsupervised cases, making it useful for

detecting unprecedented complex situations for assets arising with time. However, this

research will be limited to the supervised M/L on establishing the role of the M/L within

structural DT but also foresee the potential of reinforced or deep learning approach as a

future scope.
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8.5 Case Study- Machine Learning for CP System’s Predictive

Analysis

This research has previously discussed the simulator-based CP model for the CP sys-

tem. Once such model is calibrated to the required accuracy, it can generate virtual data

that closely resembles real-world data. Additionally, physical data can be obtained from

sensors or surveys. The polarisation data, response data, and anode consumption rates

obtained from simulation, survey, or calibration at different time spans can now be studied

to identify trends using the M/L concept.

This section will present a case study to demonstrate the application of the M/L model

for a CP system.

8.5.1 Experimental Setup

The experimental CP model built for offshore structure (Figure 5.2) using the simulator is

adopted. As, in the previous case study of this chapter, the core parameters considered

to run the simulation are limited to the materials-related polarisation behaviour. Further-

more, in this case-study the Material 1 related p-value will be split into two parameters,

while Material 2 related p-value will be treated as a constant, limiting the parameters

count to two. The categorisation of the material aligns with the modularisation concept

discussed in the previous case-study, which considered possible variability over time.

1. Parameter CAt (coating breakdown for Material-1A) of the CP system

2. Parameter CBt (coating breakdown for Material-1B) of the CP system)

New notations are used for the parameters to reflect the corresponding relative years

from the time of reference (Figure 8.9). CAt and CBt will represent the coating break-

down for the Material-1A-related Polarisation curve and Material-1B-related polarisation

curve of the CP system (and model) with the suffix ‘t ’ representing the corresponding

relative years. For year t = 0, 1, 2, . . . N, the parameter will be updated either when new

calibration data from the physical structure are obtained or with other method (tool) to

predict or interpolate the parameter value when necessary.

8.5.2 Calibration and Model updating with time

In practical applications, data obtained from physical inspections are collected at differ-

ent intervals, and the model are adapted accordingly by updating parameter values in
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(a) (b)

Figure 8.9: Materials related parameter denoted to reflect the change with time

the event of changes in material properties (such as polarisation behaviour or coating

breakdown) and/or environmental factors (such as conductivity).

In this case study, the previously discussed polynomial regression approach is utilised

to update the model over time. A similar calibration-data generation approach is imple-

mented, where data are obtained from the reference model while considering possible

changes in polarisation behaviour and introducing some error to make the data more re-

alistic. Surrogates are built at different time intervals using the same procedure outlined in

Chapter 7, incorporating the above-mentioned parameters. In the previous experiments,

surrogates were built for a fixed time by neglecting other factors, i.e., only varying the pa-

rameters of interest. Moving forward with time, the usability of previously built surrogates

should be investigated to identify and benchmark the threshold and/or criteria for surro-

gate updating requirements, which can be accomplished using the automated platform

and resource benchmarking approaches discussed in earlier chapters.

For the SACP-related model mentioned above, anodes size also influence the re-

sponse data (Figure 4.4), but were previously deemed less sensitive and therefore dis-

regarded. Anode-related data were held constant during surrogate building, meaning
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that changes in anode size were not captured by the two-variable input surrogates. This

raises the question of the surrogate’s usability over time. For example, when surrogates

are built for two breakdown-related parameters at particular anodes size, the predictive

capacity of the surrogate may decrease and uncertainty may increase if the anodes size

changes. The experiment suggests that the surrogate need not be discarded until an-

odes depletion reaches 15 − 20% from the stage of surrogate building, as the predictive

capacity of the surrogate depreciates with uncertainty increasing by less than 5% error.

However, if the change in anode size is more significant (i.e., > 20%), the surrogate (M/L

model) should be updated (Figure 8.8). The analysis of this surrogate updating require-

ment corresponding to the anode status related status can be found in Appendix F.

8.5.3 Predicting important variables with calibration

It is well known that predicting the anode size itself is the goal of any CP-related model

whether it is physics-based or data-driven. Also, when the anode sizes have depleted

significantly, the reduced size should be considered as the input to make a further time-

step simulation. Regarding, the usage of surrogates in such a case, the incorporation

of anode size-related variables into the surrogate ( M/L model) is required. However,

this task is somehow limited by two reasons: 1) the count of anodes which ultimately

increases the number of input variables if considered, 2) the anode sizes are already de-

pendent variables to the other input parameters which will invite complexity to the model

when they are considered as input parameters (usually independent variable are taken

as input to any model). Though having limitations, the model can be rebuilt with further

parameterisation utilising the supervised approach. However, the number of parameters

should be limited in order to avoid the complexity which means the anode sizes will be

considered as other input parameters but limiting them to one or a few. For example,

taking an average of the anode sizes or adding an extra parameter with the average or

initial size to reflect their distribution.

Data for surrogate modelling with a 3-variables case

The polarisation-related data (breakdown factors) and anode consumption factor data

together with the corresponding response output are obtained at different time-span. The

data collected from different time-step (t0, t1, . . . tn years) has three varying parameters

when included anodes related parameter. For example, in this case, the data are obtained

during surrogate-assisted calibration (two variables case) for the time instants where the
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anode consumption factor remains fixed for each time instant but get updated with years.

Now, these data being converted to three variables case (Figure 8.10) can be used to

train the data-fit model with three input parameters.

While the input-data pattern is changed as new factor is considered, the output re-

sponse data type will remain same.

Figure 8.10: Data samples collected at different time-span, and being utilised in

surrogate-building for the three variables case

Data-driven Model building

For the 3-variable case, the representative 2nd-order polynomial data-fit model will be:

yi = β0i + β1i ∗ CAxx + β2i ∗ CBxx + β3i ∗ σ + β4i ∗ CA2
xx + β5i ∗ CB2

xx+

β6i ∗ σ2 + β7i ∗ CAxx ∗ CBxx + β7i ∗ CAxx ∗ σ + β7i ∗ CBxx ∗ σ (8.1)

where, β represents regression coefficients, σ represents the average consumption factor

with CAxx and CBxx representing coating breakdown for Material-1A and Material-1B

respectively. The surrogates are built for each of the nodes (i = 1, 2, . . . n) considering

the availability or accessibility of corresponding nodes related validation (calibration) data.

Calibration Step

When the calibration response data from the physical system be available, let’s say at time

“tn+1”, the calibration task can be performed. The calibration/validating data set, objective
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computing metrics and the procedure are repeated from the case study in Chapter 7.

Calibration data is generated by making the forward time-step simulation where the two

coating breakdown related parameters’ values will be assumed to represent the change

for the time (Table 8.1). Additionally, anode consumption data for the state (time “tn+1”)

can be obtained from the time-step (5 years for this case) simulation for the analysis.

Table 8.1: Variable values for calibration and solution data

Parameter Cases CAxx CBxx

Average Anode

Consumption (σ)

Values for Calibration data generation 0.26 0.18 0.6904

Values at Minima point

(Solution reached)
0.2575 0.2000 0.6925

Figure 8.11: Objective plot over 3 dimensional space for 3 variables case

Now, the variables estimation will be undertaken in a similar way to the previous

surrogate-assisted calibration approach. However, this time the search will take place

in 3 dimensions (Figure 8.11). During the objective calculation, the minimum value is

stored, for all possible combinations of the parameters to reach the global minimum. In

this case, the anode status in the CP system is considered together with the breakdown

factors of the materials during the surrogate-assisted calibration (inverse problem).

The solution parameters’ values obtained from this procedure are also presented Ta-

ble 8.1. Likewise, the performance of the M/L model (polynomial surrogate) with the
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approximated solution for σ, CAxx and CBxx using the above-mentioned calibrating re-

sources and the surrogates is demonstrated in Figure 8.12.

Figure 8.12: Comparison of data from simulation and surrogate with input solution

parameters to the calibration data

The prediction of anode states for a CP system, which previously relied on physics-

based simulation, now appears to be directly achievable through the use of historical

data and the analytics. This approach is different to the previously discussed approach,

which also used historical data to adapt the model even under parametric variability, but

still relied on the full-order model for predicting anode-related status. In contrast, this

case study demonstrates a situation where anode-related data can be predicted using

past data (e.g., from time t0 to tn) and analytics. However, calibration data from the real

system for time tn+1 > tn is still needed.

The results seen in CP modelling shows simulation and real-world data collected over

time got the potential to reduce the dependence on the simulation model for predictive

tasks. In the next subsection, the broader concept of machine learning will be explored for

its use as a substitute for the physics-based model in predicting the state of CP systems.

8.5.4 Supervised Learning on Prediction

The calibrated simulation model is usually used to predict the anode depletion rate in the

case of the SACP model. The prediction about the anode status is made by integrating

the response data over time which are obtained from the simulation. This means the
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ultimate anode states are the function of the parameters involved. On the other hand,

multiple data sets are generated over time either during Design of Experiments (DOE) for

calibration tasks or while performing predictive simulations. Now the motive is to predict

the anode depletion utilising the data-set.

Figure 8.13: sensitivity analysis for pvalue vs anode consumption rate

For this, at the first step, the correlation between the polarisation behaviour (break-

down factors) and anode consumption rate is studied (for one or more anodes) by fixing

the other parameters. This analysis is done by assuming the uniformity of the change

in the breakdown factor. Likewise, it is assumed the system is not encountering noise

or some localised issue that could invite extreme abnormality in the anode consumption

rate.

In the given condition, the analysis (Figure 8.13), indicates that the relation can can

be captured using a 2nd-order polynomial fit model. A M/L model accurately capturing

the relation would be preferable to running simulations for prediction. To build the model,

simulation snapshots were used from time t0, for the two input parameters considered

(CA0 and CB0), following the approach outlined in Chapter 7.

Upon analysis, it was found that the performance of the model was within an ac-

ceptable threshold (NMSE ≈ 0.005) set for the anode consumption rate output. Figure

8.14 provides a representative example case, with input parameters of CA0 = 0.02 and

CB0 = 0.02.

The findings suggest for the utilisation of the generated past data with the available

M/L model building algorithms to make anode-data related prediction for the CP system,

reducing the prediction time. However, the polynomial-fit and other neural network M/L
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Figure 8.14: Anode consumption rate prediction comparison between simulation and

poly-fit model output

models can only assist in the predictive role once the abundant related virtual and physi-

cal data are available to train the model.

When the trend of parameters can be captured for a certain time ahead, the appli-

cability of the Type 2 model (Figure 8.8) is facilitated. Once future parameter values are

achieved (Figure 8.15a), the rate of anode consumption or anode mass left can be pre-

dicted in a few seconds with the machine learning model that was built. Figures 8.15b

and 8.15c represent the anode-related performance prediction for the CP system with the

Type 2 M/L model (Figure 8.8). However, in order to utilise the Type 2 M/L model, the

condition discussed in Section 8.4.3 must be met, which involves ensuring the reliability

of the M/L model for a certain time period before the influence of other neglected factors

becomes significant.

Furthermore, the Type 1 M/L model (Figure 8.8) can also be achieved using super-

vised and unsupervised learning M/L algorithms. However, to establish the credibility of

this model, a wider range of data is required, including maintenance-related data and

other complex scenarios.

This result has demonstrated the benefits of the supervised learning algorithm to

implement the M/L model for CP system, so that the computation time for predictive

model can be significantly reduced. This has opened the scope of M/L in reducing the

dependency upon the complex physics-based simulators in CP Digital Twinning.
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(a) (b)

(c)

Figure 8.15: Machine Learning in the role of making prediction for CP system

performance (dotted line representing future prediction)

8.6 Conclusion

In this chapter, the focus was on the difficulties of maintaining physics-based DT in an on-

line setting, i.e., during the operational phase. One major challenge is the emergence of

parameter-related uncertainties that can exhibit spatial variability and complex patterns,

therefore requiring more intricate adaptation methods beyond the scope of previous cali-

bration techniques.

The modularisation and ROM-assisted re-calibration (adaptation) of the model is sug-

gested to address the issue of variability in the input parameter values. The benefit pro-

vided by the ROM over other methods is its ability to replicate the physics to some extent,

while modularisation ensures the usability of the historical data to assess the parame-
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ter(s) separately among the modules. Moreover, the module-based approach facilitates

an expressive framework(s) required for rapid model adaptation and provides significant

computational time reduction for larger complex systems. Thus, the approach will con-

tribute to achieving the crucial feature of the digital twin i.e., less time-consuming model

adaptation.

Likewise, the next section discussed replacing the physics-based model with the M/L

model eventually with time. The facilitating features available within the DT paradigm

make this possible even though physics-based models are essential in many situations

at the beginning. The M/L model as a substitute for the physics-based not only provides

an online prediction (with computation time in seconds) but also avoids the complexity

in physics-based model’s calibration arising with time. A case study to demonstrate the

role of supervised M/L in trend capturing for the prognosis of the working status of the

CP system is also presented. This forms the basis for M/L models offering to replace the

physics-based model with time i.e., after capturing the possible trends and scenario of

the assets.

While this experimentation is limited to the use of supervised machine learning, it is

crucial to explore the potential of other algorithms offering promise in more complicated

modelling circumstances. This will be significant for example in CP modelling when more

data about other similar assets are available but with different patterns of anode depletion.
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9 Thesis Summary, Conclusion and

Future Work

This chapter provides a summary of the research activities undertaken and presents the

conclusion of the study. Furthermore, it outlines some potential future avenues of this

research project.

9.1 Research Summary

This research investigated the issues with the simulation model required for prognosis

during Structural Health Monitoring (SHM).

The SHM process demands a high-performance model that accurately reflects the

structure in real-time for the purpose of risk assessment, optimising system usage, de-

sign control, etc. Recent advancements in simulation modelling have made it possible to

use 3D CAD design software and commercial simulators to simulate structural degrada-

tion caused fatigue, corrosion, and/or cracking. This facilitate for simulator-based para-

metric model to make real-world predictions after calibration. However, the model often

deviates from the actual behaviour of the asset due to parameter-related uncertainty and

other complexities that emerge over time. Consequently, repetitive calibration or adapta-

tion of the model is necessary, which not only increases costs but also poses a risk to

the structure if the model fails to perform. Despite significant progress in physics-based

modelling, the current advancements have not been sufficient to enable the practical and

continuous implementation of prognostic models for real structures.

The challenges involved in the calibration and/or real-time adaptation of the SHM-

related model, are outlined in Chapter 2 which includes:

1. Unstructured data obtained from surveys is required for calibration/adaptation.

2. Calibration and adaptation requiring manual involvement.

3. Lack of benchmark of data for model calibration and adaptation.

4. Lack of effective online approach or mechanism for updating parameters..

5. Material-related parameters changing with variability and complexity in the opera-

tional phase.
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The concept of Digital Twin, a novel, promising and holistic approach in the modelling

field, was then explored to discover its potential benefits in addressing model calibration

and adaptation-related challenges. The findings revealed that while DT holds promise

in addressing these challenges, it still lacks a practical benchmark for implementation.

Thus, the research aimed to leverage the advantages of DT to address the research

challenges, and to propose suitable approaches (frameworks) within the DT domain. A

research plan was developed accordingly which is presented in Chapter 3 Section 3.2.

Also, the research areas were categorised based on the research challenges and the

scopes they hold.

The Industry-as-Academia methodology was followed to address the research chal-

lenges, categorically for each of the research areas. The research challenges, the cor-

responding scopes they hold and the reached solutions to the research challenges are

outlined in Figure 9.1.

The key findings from the research to which resulted in the outcomes highlighted in

Figure 9.1 are summarised and concluded as follows:

1. Ontology and N-L-P assisted automated data-extraction

Recent advancements in sensors and data-transfer technologies, support the idea of

DT’s online mirroring concept. However, still, in some SHM-related domains, data are col-

lected from the survey and lie in unstructured report formats. To deal with this issue and

make the data available to the DT in near-real time, an ontology and Natural-Language-

Processing assisted framework was proposed.

This framework leverages the ontology-based DT concept which provides to built in-

formation ontologies from the DT and utilises them for automated N-L-P-based data ex-

ploration and extraction. The solution for automated data extraction utilising this frame-

work was presented with an example case in Section 4.2 of Chapter 4. The proposed

framework for data acquisition and arrangement, is also equally important for the practical

implementation of the first feature of DT, i.e., digital mirroring (Barni et al. 2018, Barricelli

et al. 2019).

2. Scientific software-simulator integrated platform for automated calibration

When the real-world data are available via data-mirroring, the uncertainty of the model’s

parameters can be addressed through the use of multiple design optimisation algorithms

and tools (Huang et al. 2010, Peč et al. 2019, Benaouali and Kachel 2019). However, to

fully take advantage of these tools, it is necessary to automate the calibration process.
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Figure 9.1: The outline of the research from research challenges, the scopes they hold

to the proposed solutions.

Furthermore, there was also a requirement of a framework that provides a common plat-

form for creating a predictive DT from physical models (Aivaliotis et al. 2019b, Barricelli

et al. 2019).
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A Design of Experiment platform was proposed to enable the practical use of real-

world data, physical model and design optimisation tools for DTs. This platform, which

includes analytical support, reduces the need for manual involvement during the calibra-

tion and adaptation process. The development and advantages of this platform were

demonstrated in Chapter 5 using a MATLAB-BEASY integrated platform to represent a

Cathodic-Protection system. Furthermore, this platform provides the groundwork for au-

tomating the creation of DT from existing simulator(s).

3. Virtual Experimentation based resources benchmarking approach

Despite the availability of real-world data and automation tools for calibration, challenges

still exist due to a lack of benchmark data needed for accurate model’s calibration. Inad-

equate data can lead to incorrect solutions, while an over-reliance on data may increase

costs (Fabrizio and Monetti 2015, Kang et al. 2021).

To address this challenge, an approach was proposed for benchmarking the quantity,

quality, and variability of validation data required for model calibration/adaptation. This

approach, which is based on virtual experimentation and presented in Chapter 6, aims to

optimise data collection and minimise the costs involved in the process, particularly when

data is obtained from costly surveys (or sensors). The approach assists in standardising

the necessary data before moving on to the online phase of parametric model tailoring.

The benefit of the approach was demonstrated for the cathodic-protection model-related

data standardisation.

4. Surrogate-assisted approach for reliable and cost-efficient calibration

Though calibration is achieved with automation, other challenges still remain, such as

time-consuming simulation runs during calibration and the risk of getting stuck at local

minima. To address this research challenge, Chapter 7 proposed a cost-effective but

reliable parameter search technique.

The proposed surrogate-assisted calibration approach utilises the approximation model

(i.e., surrogate) for prediction during the parameter tuning process, rather than relying

upon a full-order model. The case study also demonstrated that using an offline-built

surrogate model during parameter estimation in BEM based CP modelling reduces the

online time required from hours when using a physics-based simulation to just a few min-

utes.

The surrogate model offers additional benefits such as avoiding local minima during

calibration with optimisation, solution space approximation and providing problem under-
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standing over the parameter and solution spaces. Considering the analytical support

available with the hybrid DT concept (Chinesta et al. 2020, Azangoo et al. 2022) and

the benefits surrogate offers, this research, therefore, advocates for the use of surrogate

modelling as a crucial feature within the structural DT ecosystem.

5. ROM and M/L for parametric variability and complexity assessment

Following the beneficial results observed in terms of model calibration and DT enabling

processes, the research then turned its attention to the challenges that arise when im-

plementing physics-based DT during their operational phase. These challenges include

spatially varying parameter-related uncertainty and the complexity posed by the dynamic

pattern of those material-related parameters over time.

Modularisation and ROM-assisted model adaptation were suggested towards ad-

dressing the issue of variability in the input parameter values arising during the opera-

tional phase. ROM got the benefit over the polynomial surrogate that it retains some of

the physics of the dynamic phenomenon. Furthermore, the proposed approach facili-

tates an expressive framework(s) required for rapid model adaptation and also provides

significant computational time reduction for larger complex systems.

Additionally, the role of M/L algorithms were discussed to provide a substitute for the

physics-based model eventually with time. This is because the adaptation of the sim-

ulation model often gets more complex with time, making it difficult to obtain accurate

predictions. M/L models including above mentioned surrogate built-in offline phase with

sufficient accuracy for the parameter values within the DOE can be used for online pre-

diction requirements. This concept which was presented in Chapter 8, Section 8.4 is also

about the utilisation of the DT concept as it provides a wealth of physical and virtual data,

that can be used to analyse the root causes and trends of the asset’s behaviour over

time.

The implementation of the approaches discussed in this research for a model in a

comprehensive manner seems to be challenging as dealt with multiple aspects of mod-

elling. However, following the DT concept and the features it provides for such compre-

hensive modelling, makes it achievable. The outcomes have demonstrated the feasibility

of such a DT applications (Sapkota et al. 2021a 2022a b) in situations where the frame-

works for dealing with parameter related uncertainties and complexities under DT were

missing (Barni et al. 2018, Aivaliotis et al. 2019a, Broo et al. 2022). In addition, this re-

search presents a solution towards using predictions of cathodic protection performance
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to estimate the lifetime extension of the offshore structure.

The outcomes achieved in addressing the research challenges, still have opportuni-

ties for future work, which will be recommended in the next section. The recommenda-

tions will be based upon either the scope to test the usability of the proposed approaches

on a variety of problems or the limitations (time, goals) of this research.

9.2 Future Work Recommendations

The potential avenues beyond the promise offered by this research outcomes are pre-

sented below as future scopes:

1. Data collection and processing in DT

The Digital Twin (DT) concept has gained significant momentum in recent years to provide

real-world data mirroring in several fields that require Structural Health Monitoring (SHM).

Despite this, past data lying in unstructured formats when acquired still holds valuable

benefits for DT’s prognostic tool. This research developed a tool which was presented

in Chapter 4 that utilises ontologies from the DT for N-L-P-based data exploration and

extraction.

It is recommended to conduct usability testing of the tool with supervision across

a range of data as a future task. With further implementation, the tool’s robustness

should improve, making it applicable to a wide range of cases with less supervision.

Additionally, implementing such a tool opens up the possibility of training it with super-

vised/unsupervised M/L algorithms over time, as additional data formats become avail-

able. This possibility should be explored in line with the trend of using M/L techniques

for extracting information from structured and unstructured data, including text and image

mining (Barni et al. 2018, Sun, Shang, Xia, Bhowmick and Nagarajaiah 2020).

2. Expansion of Scientific software-simulator integrated platform

The demonstration of the Design of Experiment platform proposed in Chapter 5 for online

parameter validation and calibration, is currently limited to MATLAB and BEASY tools.

As a future work, it is suggested to test the concept of the integrated platform with other

software and simulator(s) on having an automated platform for self-calibration. Also, the

platform has the potential to be developed and expanded to achieve a more compre-

hensive Digital Twin as anticipated by researchers (Barricelli et al. 2019, Aivaliotis et al.

2019b). To accomplish this, additional modelling-providing simulators (or algorithms) and
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analytical capabilities (tools or algorithms) required for co-simulations can be incorpo-

rated into the platform.

3. Extension of the surrogate-assisted calibration approach

In this research, only a 2nd order polynomial-fit surrogate and the CCD method for sam-

pling were used to demonstrate the surrogate-assisted calibration approach. However,

there exist other data-driven surrogate modelling and sampling methods that are also be-

ing applied to SHM-related simulation alternatives (Yondo et al. 2018, Westermann and

Evins 2019, Garcı́a-Macı́as et al. 2021). This indicates a vast potential for further investi-

gation into the applicability of these methods in the CP domain and beyond within the DT

concept. Thus, the research recommends exploring the extension of surrogate-assisted

calibration as another avenue for future work.

4. M/L algorithms for dealing with uncertainties and complexities during the

operation

Another potential future scope is to expand the use of Machine-Learning (M/L) for dealing

with parameter-related uncertainties and complexities during the model-operation period.

The experimentation and results presented in Chapter 8 demonstrated the benefits of util-

ising a supervised learning algorithm of M/L for assessing the complexity of the Cathodic-

Protection system. This has already opened up the possibility of reducing dependence

on complex physics-based simulators in CP Digital Twinning.

While M/L-based SHM concept has been introduced, current techniques are not yet

sufficient for tracking damage with respect to the type of structural components, materials,

locations, and other environmental conditions (Azimi et al. 2020, Omar et al. 2022, Willard

et al. 2022). To address this, it is worth exploring the potential of using reinforcement

learning or deep learning approaches to track such complex scenarios over time in an

asset. For example, in the context of CP modelling, where anode size itself plays the role

of the input variable(s) and an output variable to be predicted, a deep learning approach

can be explored to deal with this complexity.

5. Wider potential application

To implement practical solutions in existing CP system-related prognostic, the model must

be tailored to the real specific environmental and boundary conditions. For this real-

world data are anticipated. Gathering individualised information for each measurement

date and location, along with detailed and continuous measurements, would result in
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significant benefits.

Apart from the real-world application, the proposed solutions can be further tested and

evaluated in more complex models. While the research outcomes presented in Chapters

5, 6, and 7 have demonstrated their effectiveness using two parametric variables cases,

the applicability of these approaches in higher parameter situations can be investigated

and their efficacy and efficiency can be studied.

Furthermore, to achieve real-world practicality test, the solutions in more complex

scenarios such as time-step models can be utilised. Although Chapter 8 demonstrated

the approaches for a few time-step cases, further evaluation can be conducted using

time-dependent parametric models, which are generally more complex than steady-state

one. By applying the proposed solutions to time-dependent parametric models, their

potential can be assessed in a broader context.

Additionally, exploring to adopt probabilistic parameter values instead of assuming

determinism is another scope of this research. The incorporation of probabilistic values

can aid in the propagation of uncertainty throughout the model, resulting in a range of

possible outcomes rather than a single estimate (Honarmandi and Arróyave 2020, Chai

et al. 2022). This is particularly useful for robust or reliability-based design, where accu-

rately quantified uncertainties in the predicted outcomes of a design choice are crucial

(Arróyave and McDowell 2019). However, it is important to note that this approach can

be computationally expensive, particularly when using a physics-based model.

9.3 Concluding Remarks

To conclude, this research study proposed various approaches to enhance the calibration

and adaptation procedures of a simulator-based model to create a digital twin of a physi-

cal asset. These solutions are particularly useful in situations where standard frameworks

for digital twin implementation are lacking. Therefore, the research outcomes, including

the suggested digital twin architecture (shown in Figure 2.5), can also be understood as

a contribution on standardisation of SHM-related digital twins. Additionally, while exist-

ing SHM research mainly revolves around elasticity models this research focused on the

impact of material depletion due to corrosion on structural integrity.

The demonstration of the outcomes, particularly in corrosion-related SHM that uses

BEM models, also shows their applicability from an industrial perspective. This is particu-

larly noteworthy as most SHM-related research focuses on FEM models. Additionally, the
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research outcomes offer the potential to equip SHM engineers with a predictive tool for

real-time and future analysis in real-world applications. The outcomes being promising in

the use of digital twin concepts for SHM-related prognosis, also still has opportunities for

future work, which are outlined above.
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Honarmandi, P. and Arróyave, R. (2020), ‘Uncertainty quantification and propagation in

computational materials science and simulation-assisted materials design’, Integrating

Materials and Manufacturing Innovation 9, 103–143.

Hong, M.-S., So, Y.-S. and Kim, J.-G. (2019), ‘Optimization of cathodic protection design

for pre-insulated pipeline in district heating system using computational simulation’,

Materials 12(11), 1761.

Hribernik, K. A., Rabe, L., Thoben, K.-D. and Schumacher, J. (2006), ‘The product avatar

as a product-instance-centric information management concept’, International Journal

of Product Lifecycle Management 1(4), 367–379.

Hribernik, K., Wuest, T. and Thoben, K.-D. (2013), Towards product avatars representing

middle-of-life information for improving design, development and manufacturing pro-

cesses, in ‘IFIP International Conference on Digital Product and Process Development

Systems’, Springer, pp. 85–96.

Huang, Y., Seck, M. D. and Verbraeck, A. (2010), ‘Towards automated model calibration

and validation in rail transit simulation’, Procedia Computer Science 1(1), 1259–1265.

Inigo, B., Colinas-Armijo, N., de Lacalle, L. N. L. and Aguirre, G. (2021), ‘Digital

twin-based analysis of volumetric error mapping procedures’, Precision Engineering

72, 823–836.

Inzillo, V., Santamaria, A. F. and Quintana, A. A. (2017), Integration of omnet++ simulator

with matlab for realizing an adaptive beamforming system, in ‘2017 IEEE/ACM 21st

International Symposium on Distributed Simulation and Real Time Applications (DS-

RT)’, IEEE, pp. 1–2.

ISO/DIS-23247-1 (2020), ‘Automation systems and integration–digital twin framework for

manufacturing–part 1: Overview and general principles’.

Jacoby, M. and Usländer, T. (2020), ‘Digital twin and internet of things—current standards

landscape’, Applied Sciences 10(18), 6519.

165



BIBLIOGRAPHY

Jain, A. K., Peratta, C., Baynham, J. M. and Adey, R. A. (2011), Optimization of retrofit

cathodic protection (cp) systems using computational modeling by evaluating perfor-

mance of remnant and retrofit cp systems, taking into account long-term polarization

effects, in ‘CORROSION 2011’, OnePetro.

Javed, K., Gouriveau, R. and Zerhouni, N. (2017), ‘State of the art and taxonomy of

prognostics approaches, trends of prognostics applications and open issues towards

maturity at different technology readiness levels’, Mechanical Systems and Signal Pro-

cessing 94, 214–236.

Jensen, H. A., Esse, C., Araya, V. and Papadimitriou, C. (2017), ‘Implementation of an

adaptive meta-model for bayesian finite element model updating in time domain’, Reli-

ability Engineering & System Safety 160, 174–190.

Jesus, A., Brommer, P., Zhu, Y. and Laory, I. (2017), ‘Comprehensive bayesian structural

identification using temperature variation’, Engineering Structures 141, 75–82.

Jones, D., Snider, C., Nassehi, A., Yon, J. and Hicks, B. (2020), ‘Characterising the dig-

ital twin: A systematic literature review’, CIRP Journal of Manufacturing Science and

Technology 29, 36–52.

Julien, N. and Martin, E. (2021), ‘How to characterize a digital twin: a usage-driven clas-

sification’, IFAC-PapersOnLine 54(1), 894–899.

Kang, F., Wu, Y., Li, J. and Li, H. (2021), ‘Dynamic parameter inverse analysis of concrete

dams based on jaya algorithm with gaussian processes surrogate model’, Advanced

Engineering Informatics 49, 101348.

Katam, R., Kalapatapu, P. and Pasupuleti, V. D. K. (2022), A review on technological ad-

vancements in the field of data driven structural health monitoring, in ‘European Work-

shop on Structural Health Monitoring: EWSHM 2022-Volume 3’, Springer, pp. 371–380.

Khan, S. and Yairi, T. (2018), ‘A review on the application of deep learning in system

health management’, Mechanical Systems and Signal Processing 107, 241–265.

Kim, C., Chen, L., Wang, H. and Castaneda, H. (2021), ‘Global and local parameters for

characterizing and modeling external corrosion in underground coated steel pipelines:

A review of critical factors’, Journal of Pipeline Science and Engineering 1(1), 17–35.

166



BIBLIOGRAPHY

Kim, Y.-S., Kim, J., Choi, D., Lim, J.-Y. and Kim, J.-G. (2017), ‘Optimizing the sacrificial

anode cathodic protection of the rail canal structure in seawater using the boundary

element method’, Engineering Analysis with Boundary Elements 77, 36–48.

Kim, Y.-S., Park, I.-J. and Kim, J.-G. (2019), ‘Simulation approach for cathodic protec-

tion prediction of aluminum fin-tube heat exchanger using boundary element method’,

Metals 9(3), 376.

Kirkpatrick, S., Gelatt Jr, C. D. and Vecchi, M. P. (1983), ‘Optimization by simulated an-

nealing’, science 220(4598), 671–680.

Kita, A., Cavalagli, N. and Ubertini, F. (2019), ‘Temperature effects on static and dynamic

behavior of consoli palace in gubbio, italy’, Mechanical Systems and Signal Processing

120, 180–202.

Kleinbaum, D. G., Dietz, K., Gail, M., Klein, M. and Klein, M. (2002), Logistic regression,

Springer.

Knezevic, D., Fakas, E. and Riber, H. J. (2019), Predictive digital twins for structural in-

tegrity management and asset life extension–jip concept and results, in ‘SPE Offshore

Europe Conference and Exhibition’, OnePetro.

Kromanis, R., Kripakaran, P. and Harvey, B. (2016), ‘Long-term structural health moni-

toring of the cleddau bridge: evaluation of quasi-static temperature effects on bearing

movements’, Structure and Infrastructure Engineering 12(10), 1342–1355.

Kythe, P. K. (2020), An introduction to boundary element methods, CRC press.

Law, A. M., Kelton, W. D. and Kelton, W. D. (2007), Simulation modeling and analysis,

Vol. 3, Mcgraw-hill New York.

Lee, J., Azamfar, M., Singh, J. and Siahpour, S. (2020), ‘Integration of digital twin and

deep learning in cyber-physical systems: towards smart manufacturing’, IET Collabo-

rative Intelligent Manufacturing 2(1), 34–36.

Lee, J., Jin, C. and Liu, Z. (2017), Predictive big data analytics and cyber physical systems

for tes systems, in ‘Advances in Through-life Engineering Services’, Springer, pp. 97–

112.

167



BIBLIOGRAPHY

Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L. and Siegel, D. (2014), ‘Prognostics and

health management design for rotary machinery systems—reviews, methodology and

applications’, Mechanical systems and signal processing 42(1-2), 314–334.

Li, S., Xu, L. D. and Zhao, S. (2015), ‘The internet of things: a survey’, Information

systems frontiers 17(2), 243–259.

Li, Y. (2017), ‘Deep reinforcement learning: An overview’, arXiv preprint

arXiv:1701.07274 .

Liang, Y., Lee, H., Lim, S., Lin, W., Lee, K. and Wu, C. (2002), ‘Proper orthogonal

decomposition and its applications—part i: Theory’, Journal of Sound and vibration

252(3), 527–544.

Ling, Y. and Mahadevan, S. (2012), ‘Integration of structural health monitoring and fatigue

damage prognosis’, Mechanical Systems and Signal Processing 28, 89–104.

Liu, C. and Kelly, R. G. (2019), ‘A review of the application of finite element method (fem)

to localized corrosion modeling’, Corrosion 75(11), 1285–1299.

Liu, G. and Cai, M. (2020), ‘Modeling time-dependent deformation behavior of brittle rock

using grain-based stress corrosion method’, Computers and Geotechnics 118, 103323.

Liu, J., Ouyang, H., Han, X. and Liu, G. (2021), ‘Optimal sensor placement for uncertain

inverse problem of structural parameter estimation’, Mechanical Systems and Signal

Processing 160, 107914.

Liu, Y., Chen, W., Arendt, P. and Huang, H.-Z. (2011), ‘Toward a better understanding of

model validation metrics’, Journal of Mechanical Design 133(7).

Liu, Z., Meyendorf, N. and Mrad, N. (2018), The role of data fusion in predictive main-

tenance using digital twin, in ‘AIP conference proceedings’, Vol. 1949, AIP Publishing

LLC, p. 020023.
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Appendix A - Analysis of related rep-

resentative literature

A review of the SHM-related literature is done to have insights into current developments

in model calibration and adaptation-related challenges in SHM.

The following procedure is followed for the related literature study. The search, review

and analysis are motivated by the following research question:

RQ: What is the current development in physics-based model parametric calibration

and adaptation particularly those involved in SHM?

The keywords groups identified related to the research question are:

1. ”structural health” OR “SHM”

2. “physics-based model” OR ”simulation model”

3. ”model calibration” OR ”model adaptation” OR ”parameter updating” OR “parameter

estimation”

Table A.1: Materials count yielded from Search Engines

Scopus WebOfScience Google Scholar

121 3 840

The next step involved determining the source of the publication databases. Since

searching individual publication databases was found to be insufficient in yielding com-

prehensive results (Table B.1), a general source such as Google Scholar was taken into

account. Additionally, Google Scholar, addresses the biases of specific scientific pub-

lishers, as suggested by Wohlin (2014). The search was limited to papers published up
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APPENDIX A. ANALYSIS OF RELATED REPRESENTATIVE LITERATURE

to 2021 and required at least one keyword from all three groups mentioned earlier. As

Google Scholar restricts searches to either the title or the entire body of the material, the

search was conducted across the entire body.

The search yielded 834 potential research items, which included research papers and

related theses. These items were then screened for quality and relevance to the research

topics. The initial screening process involved reviewing the abstracts, which resulted

in 116 scholarly papers and relevant theses being selected. However, the number of

relevant papers was reduced due to the keyword being present only in the referencing

sections of most papers.

Out of the 116 selected papers, 78 works were chosen for the survey based on their

quality (as determined by citation received) and appropriateness to the survey topic. Ad-

ditionally, 10 other articles from other domains, such as “corrosion modelling” related to

SHM, were added to the list as they were not found in the previous search. The tables

below provide information on the representative works, including their categorisation by

application domain, simulation, and calibration method, as well as key findings from the

corresponding papers.
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Appendix B - Gantt-Chart to address-

ing Industrial problem
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Table B.1: Gantt-Chart with the Industrial Milestones set for this Research-project
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Appendix C - Offshore SACP System

C.1 Offshore Structure Description

Figure C.1: Real-world Offshore Jacket structure, usually provided with the protection

potential on the wet and buried members ranged from −923 to −1014 mV

(Ag/AgCl/seawater)
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Following are the conditions considered for the offshore structure:

• Water depth 75 m

• Four legs each with a pile underneath it.

• Four elevations: −10m, −30m, −50m, −73m,

• 3 conductors and well casings

• Survey points down the legs and down the conductors, at 10m intervals

• 266, stand off, sacrificial (Aluminium-Zinc) anodes

Figure C.2: Plot with the dot-points representing the centroid of the spatial position of

the anodes (n =266)

The sacrificial anodes (266 in number) connected to the offshore structure uniformly

(Figure C.2) got following properties:

• Length = 3.0m, height = 0.228m, width = 0.228m, mounting bar diameter = 0.1143

m, stand off distance = 0.325m

• Mass = 356 kg, utilisation factor = 0.9, consumption factor = 0.0, density = 2710kg/m3

• Electrochemical capacity = 0.003504 kg/mA*year (2500 A*hrs/kg).

The definition for the terms used above are provided below:
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1. Stand off distance: It is the minimum distance needed to prevent electrical inter-

ference or arcing between them.

2. Utilisation factor: The ratio of the mass that can be utilised during the cathodic-

protection.

3. Consumption factor: The ratio of the mass-consumed to the initial total mass.

C.2 CP Model related General Information

C.2.1 Mesh-related

Following are the conditions considered for the CP model discretisation phase using the

BEASY tool:

• Number of Elements (Meshes) : 8820

• Number of Mesh-points: 32894

• Number of Zones: 2.

C.2.2 Polarisation Curves

The list of polarisation curves used in this model is as follows:

• Material 1 : This will be achieved by calibration as considered dynamic due to

factors like coating breakdown.

• Material 2 : Will be considered consistent (constant) as represented by Figure

C.2(a).

• Anode ALZN : Will be considered consistent as represented by Figure C.2(b).

(a) (b)

Figure C.3: Polarisation curves considered for two materials a) Material 2 related, b)

Anode related, during the CP simulation run obtained from design rule.
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C.2.3 Conductivity data

• Zone 1 (portion in sea-water) : will be considered uniform but as unknown variable

for calibration, otherwise with the value 3.3333 (Siemens/m)

• Zone 2 (portion in sea-bed) : will be considered uniform and known variable with

value 0.667 (Siemens/m)

Important Points to be noted about the Model:

1. The geometrical as well as material related data are obtained from the domain

expertise (BEASY Ltd.), and also the design rules are considered.

2. The illustration showing the structure (for example Figure C.1 only represents the

metal-body components and not the sacrificial anodes, though will be connected to

have the CP system.)

C.3 Reference Simulation summarised data

The reference simulation run is corresponding to the model considered during the cali-

bration data generation phase, discussed in Chapter 5 and Case Study I in Chapter 6.

The summary of the output from the reference simulation run data is presented below:

Model Current Balance

Summation over non-interface elements:

• Current flowing into model: 1.58543e+006 mA

• Current flowing out of model: 1.58544e+006 mA

• Net Current flowing into model: -9.21036 mA

• Percentage Current Error: 0.0000058
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Table C.1: Zone wise Current (mA) results

Zone

ID

Current

Inwards (mA)

Current

Outwards (mA)

Net Current

Inwards (mA)

Percentage Current

Error (%)

1 1.59E+06 1.59E+06 -1.5346 -9.70E-05

2 21175.1 21164.3 10.7449 0.051

Table C.2: Performance Result over each group categorised during meshing step
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Appendix D - ICCP model related Cur-

rent Supply

Table D.1: The adjusted normal current density applied to the anodes such that the most

positive potential on the tank are −850mV .

Linear Anodes AREA (m2) Current (mA)
Normal Current density

(mA/m2)

A1 0.500934 -218 -435.187

A2 0.500934 -81 -161.698

A3 0.500934 -82 -163.803

A4 0.500934 -162.71 -324.813

Total Current -544
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Appendix E - Parametric Reduced Or-

der modelling

This section attempts to provide some insights on Parametric Reduced Order Modelling.

E.0.1 Model reduction concept

For this, let’s begin with the concept of numerical approximation of the PDEs. During the

numerical approximation of the PDE(s), the response data is represented with the basis

functions and the coefficient vectors in most situations. The response variables (U) for

each snapshot (temporal or spatial) can be represented as :

u ≈
N∑
k=1

ϕkαk (E.1)

With coefficient vector α and basis functions ϕ of count k = 1, 2, 3, . . . N .

For example, the numerical solution for the heat equation is usually achieved by solv-

ing the following PDE form (Morton and Mayers 2005):

∂u

∂t
= ∆u (E.2)

The approximation for the response variables (eg: temperature) from the equation E.2 is

obtained as a function of time and space as equation E.3 :

u(x, t) ≈
N∑
k=1

αk(t)ϕ
k(x) (E.3)

Reduced-order models from the full-order model are generated by capturing the dominant

modes (Liang et al. 2002). In other words, ROM is about reducing the numbers (N) of

basis functions (ϕ) to represent the response variable. For the above case, the reduced

count of basis after truncation let’s say is K <<< N , and ROM is represented as equation

.

û ≈
K∑
k=1

ϕ̂kα̂k (E.4)

With coefficient vector α̂ and basis functions ϕ̂ of count k = 1, 2, 3, . . .K to approximate

the response variables (û).
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E.0.2 Methods for ROM building

One of the widely used methods for parametric ROM building is the Proper Orthogo-

nal Decomposition (POD) method (Chatterjee 2000). POD generates the optimally or-

dered orthonormal basis for a given set of experimental or computational data. POD

is mostly achieved with Singular-Value-Decomposition (SVD) method and is also some-

times known so (Liang et al. 2002). Though the generated ROM is supposed to be grey-

box, it only requires solutions from the full-order model as snapshots of the solution. The

dependency upon only the simulation snapshots generated by varying input parameters

offline makes it not rely upon the operator (solver) matrix from the full-order model.

This ability to generate the reduced model using only the system input-output data

make SVD algorithm especially suited for industrial applications (Rozza et al. 2018). For

this, the data are sampled at a predefined set of surface positions (count ‘n’) and sample

parameter combinations (count ‘m’) are considered. Generally, the altered parameters

can be any combination of material properties and/or boundary conditions. Each uj is

then stored inside a rectangular snapshot matrix X of dimension n ∗m.

X =


...

...
. . .

...

u1 u2 . . . um
...

...
. . .

...

 , XϵCn∗m (E.5)

The snapshot is obtained from the numerical solver of the system (FEM or BEM), or

from actual empirical data. SVD capitalises on the correlation between the known direct

problem and the sought-after solution.

C = XT ·X (E.6)

(E.7)

where, C represents the covariance matrix.

Now eigen decomposition of the covariance matrix is performed which is done by

SVD and the outcomes result to:

C · V = A · V (E.8)

where, A represents the diagonal matrix storing the eigen values λ1, λ2, . . . of C. Simi-

larly, V represents the eigenvectors of the covariance matrix C.

Now, based on the eigenvalues (only dominant are kept) of the matrix, the eigenvector

matrix can be truncated (cut-off). The resulting POD basis ϕ̂ referred to as the truncated
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POD basis, consists of K <<< M vectors and obtained from V̂ , i.e., truncation of the

eigen-vector matrix (V ).

Parametric model are desired in SHM which is why parameterised ROM will be antic-

ipated, and the parameterisation for ROM is usually done with the interpolating function.

For this job, an interpolating function such as Radial Basis Functions (RBF) has been

used as it has got good approximation and smoothing properties (Buhmann 2000). An

adoption of RBF for interpolation together with POD can be found in Rogers et al. (2012).

When parameterised, the response variables for the arbitrary parameter set ’k’ will be

obtained from ROM as,

Xa(k) ≈ ϕ̂BF a(k) (E.9)

where, Xa(k) , denotes a snapshot corresponding to an arbitrary parameters vector k.
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Appendix F - Analysis for CP surro-

gate model updating re-

quirement with time

To create the surrogate, the focus will be on two input parameters (CA0 and CB0) using

the approach detailed in Chapter 7. The surrogate will be built using simulation snapshots

taken at time t0, which are depicted in Figure F.1.

Figure F.1: Sample points from CCD for two selected parameters for surrogate building

(in blue), including parameter values for performance testing of the surrogate model (in

green)

Next, the 2nd-order polynomial fit approach detailed in Chapter 7 is used to construct

the surrogate model based on the corresponding snapshots of input parameters and

response data. The surrogate model is specifically built for the initial phase (t = 0),

where no anodes have been consumed and the average anode consumption factor is

equal to 0.

Now, the performance of the surrogate model will be analysed against the against

simulation data obtained at different stages of anode consumption. To this end, the time

step models for simulation run are generated following the assumed pattern of chang-
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ing parameters (i.e., CAt and CBt). The 3 testing samples points in ascending order

of parameter values from Figure F.1, are considered for year 0, 5 and 10. The time-

step simulation is used to obtain the anode consumption factor for the given time. Table

F.1 presents the parameters value for two different time-step considered and computed

average anode consumption state for those corresponding years.

Table F.1: Parameter related values considered and computed for different time-steps.

Years CAxx CBxx Avr. Anode cons.

0 0.02 0.02 0

5 0.08 0.06 0.0753

10 0.1716 0.1188 0.2345

(a) (b)

Figure F.2: Surrogate (built at t = Year 0) performance compared to anode-related data

updated simulation model for time (t = Year 0 ), for 2 different data-types a) Surface

Potential, b) Normal Current density.

The performance of the surrogate model is evaluated by comparing its predictions

with response data from the simulation run (graphical and NMSE measurement). Table

F.2 shows the Normalised Mean Square Error (NMSE) between the output of the initial

surrogate model, which did not account for anode status, and the output of the simulation

that considers changes in anode status over time.

The performance drift of the surrogate over time in this case is primarily due to the

unaccounted aspects, i.e., the anode consumption status during surrogate construction.

Based on the analysis, one can identify the need to update the surrogate model. Addition-

ally, if the design variables (parameters) of the system have reached the values beyond

the the surrogate sample space, the surrogate updating is essentially required.
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(a) (b)

Figure F.3: Surrogate (built at t = Year 0) performance compared to anode-related data

updated simulation model for time (t = Year 5 ), for 2 different data-types a) Surface

Potential, b) Normal Current density.

(a) (b)

Figure F.4: Surrogate (built at t = Year 0) performance compared to anode-related data

updated simulation model for time (t = Year 10 ), for 2 different data-types a) Surface

Potential, b) Normal Current density.

Table F.2: Initial-built Surrogate Performance drift with time.

Years Avr. Anode cons. NMSE

0 0 0.0051

5 0.0753 0.0068

10 0.2345 0.0130
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