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Adaptive and robust fractional gain
based interpolatory cubature Kalman
filter
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Abstract
In this study, we put forward the robust fractional gain based interpolatory cubature Kalman filter (FGBICKF) and the
adaptive FGBICKF (AFGBICKF) for the development of the state estimators for stochastic nonlinear dynamics system.
FGBICKF introduces a fractional gain to interpolatory cubature Kalman filter to increase the robustness of state estima-
tion. AFGBICKF is developed to enhance the state estimation adaptive to stochastic nonlinear dynamics system with
unknown process noise covariance through recursive estimation. The simulations on re-entry target tracking system
have shown that the performance of FGBICKF is superior to that of cubature Kalman filter and interpolatory cubature
Kalman filter, and standard deviation of FGBICKF is closer to posterior Cramér-Rao lower bound. Moreover, our simu-
lations have also demonstrated that AFGBICKF remains stable even when the initial process noise covariance increase,
proving its adaptiveness, robustness, and effectiveness on state estimation.
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Introduction

Bayesian filtering (BF) has been intensively researched
in various applications such as communication, state
estimation, and signal processing.1 Extended Kalman
filter (EKF) is a common state estimation algorithms
used in the target tracking problem.2 However, the
implementation of EKF requires computing Jacobian
derivative, so EKF may lead to large errors and even
divergence in some systems. Then free-derivative
Kalman filters were proposed, including unscented
Kalman filter (UKF),3 cubature Kalman Filters
(CKF),4 improved CKF,5 robust and adaptive CKF,6

interpolatory CKF (ICKF),7 the improved central dif-
ference Kalman filter,8 etc. In the approaches above,
the filter gain is achieved by calculating the state covar-
iance and cross covariance between state and measure-
ment. In the course of target tracking, the filter gain
lags behind the true state of the target when the target
maneuvers, which causes severe tracking errors. So
researchers have studied the gain based robust Bayesian
filter, such as an optimal control approach to designing
constant gain filters,9 modified gain EKF,10,11 adaptive-
gain tracking filters based on minimization of the inno-
vation variance,12 UKF using modified filter gain,13

analysis of the characteristic of the filter gain in

cubature Kalman filter for 1D chaotic maps,14 and dis-
tributed adaptive high-gain EKF.15

Generally, the prior knowledge of process noise cov-
ariance increases the performance of estimation. In
practice, however, the prior knowledge of process noise
covariance is usually unknown, resulting in model mis-
matching. Adaptive filtering is an effective method to
solve the model mismatching problem. For instance,
adaptive Bayesian filters were proposed for unknown
process noise covariance, including adaptive Kalman
Filtering for dynamic system with outliers,16–19 varia-
tional Bayesian based Kalman filtering,20 and prior
probability statistics based robust estimation algo-
rithm.21 These algorithms were developed for the linear
and time-invariant systems, assuming prior probability
statistics (such as sampling distributions). Some
Kalman or extended Kalman based filters were
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developed such as ELM based adaptive Kalman fil-
ter,22 Kalman filter for dynamic state estimation based
on adaptive adjustment of noise covariance,23 adap-
tively estimate Q and R based on innovation and resi-
dual extended Kalman filter, and sample-based
adaptive Kalman filtering for accurate camera pose
tracking.24 For specific applications, the adaptive
square-root sigma-point Kalman25 and adaptive
embedded CKF,26 improved CKF for spacecraft atti-
tude estimation5 were proposed. Then the robust
Huber-Based Cubature Kalman Filter for GPS
Navigation Processing27 was put forward for the non-
Gaussian noise. Despite the adaptive filters mentioned
above can well address the model mismatching to some
extent, they still have limitations such as non-positive
covariance matrices and heavy computational load.

Since fractional Kalman filter (FKF) was developed
for tracking vehicles,28 quite a few fractional KFs have
been proposed recently as fractional calculus gives more
accurate results for system analysis. These filters include
FCKF for fractional-order nonlinear stochastic sys-
tems,29 fractional central difference Kalman filter,30

fractional ICKF,31,32 innovation-based fractional adap-
tive KF,33 fractional feedback KF for vehicle tracking
in video34 and CKF for continuous-time nonlinear
fractional-order systems.35

It can be seen from the filters mentioned above that
ICKF is practical for state estimation. However, the fil-
ter gain in the ICKF is obtained by calculating the cov-
ariance of state and cross-covariance between state and
measurement, which causes the filter gain to drop
behind the target state in rapid change situations.
Especially, when the target highly maneuvers, which
causes severe tracking error, the tracking performance
of the ICKF becomes worse and may diverge. To avoid
such divergence, in this paper we put forward the frac-
tional gain based ICKF (FGBICKF), in which the fil-
ter gain uses fractional derivative and the gain of the
present state depends upon the previous ones. The gain
will never be too large, and the FGBICKF performs
better even when the target highly maneuvers. Thus,
the proposed filter improves the state estimation per-
formance by modifying the filter gain using factional
calculus. Moreover, we take a further step to propose
adaptive FGBICKF (AFGBICKF) with recursive esti-
mation of unknown process noise covariance. The
simulations on state estimation for re-entry ballistic tar-
get (RBT) tracking system have demonstrated the effec-
tiveness and robustness of our proposed filters. The
main contributions are summarized in the following:

� We propose FGBICKF, which incorporates
fractional derivative of previous filter gains to
estimate state of nonlinear systems under
Gaussian noise. Meanwhile, we analyze the
errors of FGBICKF with posterior Cramér-Rao
lower bound (PCRLB).36

� We propose AFGBICKF to enhance FGBICKF
for estimation under unknown process noise
covariance.

� We conduct the simulation on RBT tracking
with FGBICKF and AFGBICKF, and we make
errors analysis of FGBICKF using PCLRB. The
results show that FGBICKF outperforms CKF
and ICKF.

� We analyze the influence of process noise covar-
iance on the performance of AFGBICKF. The
simulation results demonstrate AFGBICKF’s
adaptiveness, robustness, and effectiveness on
RBT tracking.

The remainder of this paper is organized as follows. We
review some preliminaries on the Grünwald-Letnikov
(G-L) fractional difference, Bayesian filtering, and
interpolatory cubature rule (ICR) in Section 2. The
main algorithms are derived in Section 3, where we first
developed FGBICKF by introducing a fractional gain
to ICKF, and then put forward AFGBICKF with
adaption to unknown process noise covariance using
recursive method. In Section 4, we apply the proposed
filters to RBT tracking and show the performance of
FGBICKF with analysis of its PCRLB. Meanwhile, we
present the performance of AFGBICKF and analyze
the influence of various process noise covariance on
AFGBICKF. Concluding remarks on the results are
drawn in Section 5.

Preliminaries

G-L fractional difference

The G-L fractional difference concept can be defined as
follows:

Daxk =
1

ha

Xk
j=0

(21)i
a

j

� �
xk�j ð1Þ

where D is the operator of fractional order system, and
a 2 R(R is the set of real numbers) is fractional difference
order. And h (it is considered to be unity in the paper)
and k are the sampling interval and the sampling number,

respectively. The coefficient
a

j

� �
can be calculated as:

a

j

� �
=

1 if j=0
a(a�1)���(a�j+1)

j! if j. 0

�
ð2Þ

Equation (2) is the discrete equivalent of derivative
when a is greater than zero.

Bayesian filtering

We consider the stochastic nonlinear dynamics system
(SNDS) with additive Gaussian noise, which is
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modelled using the following state and the measure-
ment equation:

xk =f(xk�1)+wk�1 ð3Þ

lk =h(xk)+ vk ð4Þ

where xk 2 R
nm and lk 2 R

ml are the state and measure-
ment vector, respectively, f and h are known nonlinear
functions; wk�1;N(0,Qk�1) is Gaussian process noise,
and vk is measurement noise with zero mean and Rk,
respectively, wk�1 and vk are mutually uncorrelated
noises. L1:k = fl1, l2, � � � , lkg is measurement data set
obtained by one or more sensors from time step 1 to k.

In the Bayesian filter under Gaussian noise, the
complete statistical description of the state (xk) can be
obtained by the posterior density of the state. m̂k�1 and
Pk�1 are denoted as the state estimation and covariance
at time k� 1, m̂k, and Pk as the state estimation and
covariance at time k. When a new measurement (lk) at
time k is received, the posterior density
p(xkjLk)=N(xk; m̂k,Pk) from the posterior density
p(xk�1jLk�1)=N(xk�1; m̂k�1,Pk�1) of the state at time
k� 1 is obtained in two steps:

(1) Time update, which involves computing the pre-
dictive state �mk and covariance �Pk:

�mk =E½xkjLk�1�
=E½f(xk�1)+wk�1jLk�1�=E½f(xk�1)jLk�1�

=

ð
R

nx

f(xk�1)p(xk�1jLk�1)dxk�1

=

ð
R

nx

f(xk�1)3N(xk�1; m̂k�1,Pk�1)dxk�1

ð5Þ

�Pk =E½(xk � �mk)(xk � �mk)
T
��L1:k�

=

ð
R

nx

f(xk�1)f(xk�1)
T3N(xk�1; m̂k�1,Pk�1)dxk�1

� �mk�mT
k +Qk�1

ð6Þ

(2) Measurement update, which involves computing
the measurement prediction �lk, innovation covar-
iance �Pll, k, cross covariance Pxl, k based on predic-
tive posterior density xk;N(xk; �mk, �Pk) obtained
in the time update.

�lk =

ð
R

nx

h(xk�1)3N(xk; �mk, �Pk)dxk ð7Þ

�Pll, k =

ð
R

nx

h(xk�1)h(xk�1)
T3N(xk; �mk, �Pk)dxk � �lk�lTk +Rk

ð8Þ

Pxl, k =

ð
R

nx

xkh
T(xk)N(xk; �mk, �Pk)� �mk

�lk ð9Þ

The Kalman gain Gk, estimated state m̂k, and covar-
iance Pk at k time instant are calculated as:

Gk =Pxl, k
�P�1ll, k ð10Þ

m̂k = �mk +Gk(lk � �lk) ð11Þ

Pk = �Pk � Gk
�Pll, kG

T
k ð12Þ

Interpolatory Cubature rule

As can be seen in equations (5)–(9), Gaussian filter can
be represented as weighted Gaussian integral under
Bayesian framework. The product of a nonlinear func-
tion t(x) and a Gaussian probability density function
(PDF)N(x; 0, I) (I is identity covariance) is described
as:

Integral½t�=
ð

t(x)N(x; 0, I)dx ð13Þ

where Integral½t� is an integration and t(x) is an arbi-
trary non-linear function. Integral½t� can be approxi-
mated by f(m, n)(t), which is a 2m+1 th-degree fully
symmetric interpolatory cubature rule (ICR) for a
n-dimensional Gaussian weighted integral37:

Integral½t�’f(m, n)½t�=
X

p2P(m, n)

u(m, n)
p t½l� ð14Þ

Here, P(m, n) = (p1, � � � , pn)jm5p15 � � �5pn50, pj j4mf g,
which denotes a set of all distinct n-partitions of the
integers 0, 1, � � � ,mf g, p 2 0, 1, � � � ,mf g, and jpj=Pn

i=1 pi.l is defined as a generator composed by
½lp1 , lp2 , � � � , lpn �, l0 =0, and lpi50. The fully sym-
metric sum t½l� is defined as

t½l�=
X
q2Pp

X
s

t½s1lq1 , s2lq2 , � � � , snlqn � ð15Þ

where Pp denotes all distinct permutations of p and the
inner sum is taken over all of the sign combinations that
occur when si =61 for those values of i where lqi 6¼ 0.
The weight u(m, n)

p of generator ½l� is given by

u(m, n)
p =2�K

X
jkj4m�jpj

Yn
i=1

aki + piQki + pi
j=0, 6¼pi (l

2
pi
� l2

j )
ð16Þ

where K is the number of non-zero entries in p and
a0 =1, and ai is derived as following:
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ai =
1ffiffiffiffiffiffi
2p
p

ð+‘

�‘

e�x
2=2
Yi�1
j=0

(x2 � l2
j )dx (i. 0) ð17Þ

The arbitrary degree ICR in equation (14) can be used
to numerically compute the Gaussian weighted integrals
in Gaussian filters. In this paper, the third-degree ICR
(m=1) is used to develop the proposed filters to balance
computational load and accuracy. The third-degree ICR
corresponds to p 2 0, 1f g and jpj=

Pn
i=1 pi,jpj41 (i.e.

jpj=0 or jpj=1). When jpj=0 and pj j=1, the basic
interpolatory cubature points (ICPs) jj and the weights
-j can be calculated from (16) as

jj=

½0� j=1

l1ej j=2, � � � , n+1

�l1ej j= n+2, � � � , r=2n+1

8><
>:

-j=

1� n

l2
1

j=1

1

2l2
1

j=2, � � � , r=2n+1

8>>><
>>>:

ð18Þ

here, ei denotes the ith column of a unit matrix.
Using the equation (18), Integral½t� can be calculated

as:

Integral½t�’
Xr
j=1

-jt(jj) ð19Þ

Further, we expressed the product of a nonlinear func-
tion t(x) and a Gaussian PDF N(x; m̂,P) as follows38:

IntegralN½t�=
ð

t(x)N(x; m̂,P)dx ð20Þ

Using equation (19) and P=SST, equation (20) can
be approximated as7:

IntegralN½t�’
Xr
j=1

-jt(Sjj + m̂) ð21Þ

Proposed methods

FGBICKF

We assume that the state estimate m̂k�1 and its corre-
sponding covariance Pk�1 have been obtained at the
time step k� 1. First, we factorize the covariance
Pk�1 =Sk�1S

T
k�1, evaluate the ICPs using jj defined in

equation (18) and propagate the ICPs through non-
linear state equation:

Xj, k�1 =Sk�1jj + m̂k�1 ð22Þ

X�j, k =f(Xj, k�1) ð23Þ

We obtained the state prediction �mk and the predic-
tion error covariance �Pk conditioned on measurements

L1:k�1 by using the equation (21), E½wk�=0 and
E(wkw

T
k )=Qk,

�mk =E xkjL1:k�1½ �’
Xr

j=1
-jX

�
j, k ð24Þ

�Pk =E (�mk � xk)((�mk � xk))
T
��L1:k�1

� �
=E f(xk�1)� f(m̂k�1)ð Þ f(xk�1)� f(m̂k�1)ð ÞT

��L1:k�1

h i
+E(wkw

T
k )

’
Xr

j=1
-i (X�j, k � �mk)(X

�
j, k � �mk)

T
h i

+Qk�1

ð25Þ

Then, factorize the predicted covariance �Pk = �Sk
�ST
k ,

calculate the predicted cubature points and propagate
ICPs as

Ui, k = �Skjj + �mk ð26Þ

U�i, k =h(Ui, k) ð27Þ

Evaluate the predicted measurement, the cross-
covariance and innovation covariance as the following:

�lk =
Xr

i=1
viU

�
i, k ð28Þ

Pxl, k =E (xk � �xk)(lk � (h(�xk)))½ �
’
Xr

i=1
-iUi, kU

�
i, k��xk�lTk

ð29Þ

Pll, k =E (lk � h(�xk))(lk � (h(�xk))
T

� �
’
Xr

i=1
-iU

�
i, kU

�T
i, k � �lk�lTk +Rk

ð30Þ

In the Bayesian filtering, the Kalman gain (Gk) is cal-
culated as:

Gk =Pxl, kP
�1
ll, k ð31Þ

The filter gain is obtained by calculating the covar-
iance of state and cross-covariance between state and
measurement. This may worsen the performance of fil-
ters when the target dramatically changes its motion.
With a high gain, the filter gives more weight to the
measurements and thus follows the target more closely.
With a low gain, the filter depends on the model predic-
tions more closely and the state estimation accuracy
decreases. To improve the performance of filters, we
have proposed the fractional gain which the filter gain
of the present state depends upon the previous ones.
The filter gain value will never be too large so that the
proposed filter is more robust to the change of the tar-
get’s motion.

Now using the fractional derivative, we define the
new filter gain named fractional gain (Gnew) as:

Gnew=Gk �
Xk

j=1
(21)jUjGk�j ð32Þ

4 Measurement and Control



where Uj = diag
a1

j

� �
, � � � , aml

j

� �	 

is fractional

order. Gnew includes previous filter gains using frac-
tional derivative, that is, Gnew is related to all of the pre-
vious gains (1, 2, :::, k time instant) and it means that
Gnew is with k-length memory size.

So, the state estimation and corresponding covar-
iance are

x̂k = �xk +Gnew(lk � �lk) ð33Þ

Pk = �Pk � GnewPll, kG
T
new ð34Þ

Proof of the fractional gain (Gnew) in equation (32).
The predicted state estimation �mk is evaluated as

�mk =f(m̂k�1) ð35Þ

where m̂k�1 is posteriori estimated state at k2 1 instant
time.

The estimated state m̂k with fractional gain is given
as

m̂k = �mk +(Gg +DaGk)(lk � h(�mk)) ð36Þ

Here, Gg is gain variable and DaGk is the fractional
derivative of the previous filter gain, and it is denoted
as:

DaGk =
Xk
j=1

(21)jUjGk�j ð37Þ

The covariance (Pk) of state is defined as:

Pk =E (x� m̂k)(x� m̂k)
T

� �
=E (x� �mk � (Gg +DaGk)(lk � h(�mk)))

�
(x� �mk � (Gg +DaGk)(lk � h(�mk)))

Tg
ð38Þ

To prove the equation (32), the minimum of a pos-
teriori error covariance has to be obtained in the
following:

Gk = argmin
Gg

E (x� �mk � (Gg +DaGk)(lk � h(�mk)))
�

(x� �mk � (Gg +DaGk)(lk � h(�mk)))
Tg

ð39Þ

To obtain Gk, we solve the following equation in
which the left-hand side is the first derivative of func-
tion in equation (39):

E (x� �mk � (Gg +DaGk)(lk � h(�mk))(lk � h(�mk))
T

� �
=0

ð40Þ

Reformulating equation (40), we have:

E (x� �mk)(lk � h(�mk))
T

� �
� (Gg +DaGk)E (lk � h(�mk))(lk � h(�mk))

T
� �

=0

ð41Þ

This yields:

(Gg +DaGk)E (lk � h(�mk))(lk � h(�mk))
T

� �
=E (x� �mk)(lk � h(�mk))

T
� � ð42Þ

Since Pxl, k and Pll, k are defined as

Pxl, k =E (xk � �mk)(lk � h(�mk))
T

� �
ð43Þ

Pll, k =E (lk � h(�mk))(lk � h(�mk))
T

� �
ð44Þ

Equation (41) is transformed into

(Gg +DaGk)Pll, k =Pxl, k ð45Þ

With equation (35), we have

Gnew=Pxl, kP
�1
ll, k � DaGk =Gk � DaGk ð46Þ

So Gnew in equation (32) is then derived.
We summarize FGBICKF in Algorithm 1 below.

Algorithm 1. FGBICKF algorithm.

Given the state estimates m̂0 and its associated error covariance P0 at time k = 0, the state estimation procedure can be recursively
implemented as follows.
Initialize parameters: m̂0, P0

For k = 1, 2, � � �
Step 1. Time update
Calculate the state prediction �mk and covariance �Pk using equations (24) and (25).
Step 2. Measurement update
Step 2.1 Calculate the predicted measurement, the cross-covariance, and innovation covariance using equations (28)–(30)
Step 2.2 Compute the fractional gain
Gnew = Gk �

Pk
j = 1 (21)jUjGk�j

Step 2.3 Evaluate the state estimate m̂k and Pk covariance using equations (33) and (34).
End.
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Computational complexity

To analyze the numerical complexity of FGBICKF
using floating-point operations (flops), we define basic
arithmetic operations such as addition, subtraction,
multiplication, division, comparison, or square root as
one flop.

The number of flops for vector-vector operations,
matrix-vector product, and matrix-matrix product are
explained in Ref.30 Table 1 lists the specific flops of
each step of the FGBICKF. In applications, the mem-
ory size (k) is too large as the filters is evaluated recur-
sively, so we select the fixed constant value as memory
size. In the paper, we select ML as the memory size (as
in equation (32)) under the guarantee of filters’ accu-
racy. F(nm) and H(nm,ml) are assumed to be the
required flops of two nonlinear functions f(xk�1) and
h(xk), respectively. Their exact computational complex-
ity is significant but difficult to evaluate. For
FGBICKF we have the total complexity:

TFGBICKF =6n3m +16n2m +6n2mml +(2F(nm)

+2H(nm,ml)+7)nm

+(5+ML +MLml)nm +10m2
l nm

+F(nm)+H(nm,ml)+5m2
l +2m3

l

ð47Þ

The numerical complexity of FGBICKF is
maxfO(n3m),O(m3

l ),O(nmF(nm)),O(nmH(ml, nm))g.

Adaptive FGBICKF (AFGBICKF)

In pactice, the covariance of the process noise is not
usually available as described in equation (3), so we
develop a recursive estimation strategy based on covar-
iance matching principle.39

Rewrite equation (25):

�Pk’Pxx, k +Qk�1 ð48Þ

Here, Pxx, k =
Pr

j=1 -i (X
�
i, k � �mk)(X

�
i, k � �mk)

T
h i

.

Given one-step prediction of state �mk at time k� 1
and the estimate state m̂k at time k, the residual between
them can be represented by:

zk = m̂k � �mk ð49Þ

Given the residual data from time k�MQ +1 (MQ

is an adjustable parameter) to time k, the mean and the
covariance of zk can be estimated by

�zk =
1

MQ

Xk
j= k�MQ +1

zj ð50Þ

X
zk

=
1

MQ � 1

Xk
j= k�MQ +1

zj � �zk

 �

zj � �zk

 �T ð51Þ

Provided that the covariance of process noise stays
constant, the expectation of equation (51) is given by:

E
X

�zk

� �
=

1

MQ

Xk
j= k�MQ +1

(Pxx, j � Pj)+Qk ð52Þ

By combining equations (51) and (52), the covar-
iance of process noise can be approximately calculated
by

Q̂k =
1

MQ � 1

Xk
j= k�MQ +1

zi � �zkð Þ zi � �zkð ÞT

� 1

MQ

Xk
j= k�N+1

(Pxx, j � Pj)

ð53Þ

Similarly, Qk�1 can be computed as

Q̂k�1 =
1

MQ � 2

Xk�1
j= k�MQ +1

zi � �zkð Þ zi � �zkð ÞT

� 1

MQ � 1

Xk
j= k�MQ +1

(Pxx, j � Pj)

ð54Þ

Through simple mathematical manipulations, equa-
tion (53) can be rewritten as the following form

Q̂k =
MQ � 1

MQ
Wk +DQk ð55Þ

where

Wk =
MQ

(MQ � 1)2

Xk�1
j= k�MQ +1

zi � �zkð Þ zi � �zkð ÞT � 1

MQ � 1

Xk
j= k�MQ +1

(Pxx, j � Pj)

ð56Þ

Table 1. Computational complexity of each step.

Step Flops

�mk 2n3
m + 7n2

m + 2(F(nm) + 1)nm + F(nm)
�Pk 2n3

m + 2n2
m + 2nm

�lk 2n3
m + 7n2

m + 2(H(nm, ml) + 1)nm + H(nm, ml)

Pml, k 4n2
mml + 4nmml

Pll, k 4nmm2
l + 5m2

l

Gnew MLnmml + m3
l + 2nmm2

l

m̂k (2 + ML)nmml + 2nmm2
l + nm + m3

l

Pk 2mln
2
m + (2m2

l � ml)nm
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If MQ is large enough, the difference between
MQ

�
(MQ � 1)2 and 1

�
(MQ � 2) is negligible. We set

MQ=10 according to the Remark 4 in the reference
Jiang and Cai.39 So, Wk can be approximated as

Wk’
1

MQ � 2

Xk�1
i= k�MQ +1

zj � �zk

 �

zj � �zk

 �T

� 1

MQ � 1

Xk
j= k�MQ +1

(Pxx, j � Pj)

ð57Þ

and

DQk=
1

MQ�1
zk��zkð Þ zk��zkð ÞT� 1

MQ
(Pxx,k�Pk)

ð58Þ

Obviously, the above equation has the equivalent
form with Qk�1; therefore, equation (55) can be
duduced. Similarly, the recursive estimation equation
of zk is given by:

�zk =
MQ � 1

MQ

�zk�1 +
1

MQ
zk ð59Þ

So, we can use equations (49), (55), (56), and (59) to
update the covariance of process noise. Provided that
the covariance of process noise stays constant, the
recursive relation between Qk�1 and Qk can then be
described as:

Q̂k =
MQk

� 1

MQk

Q̂k�1 +DQk ð60Þ

AFGBICKF algorithm is formulated in the
Algorithm 2.

Case study: Re-entry ballistic target
tracking

In the following, we apply the proposed FGBICKF
and AFGBICKF algorithm to the RBT tracking.40

Firstly, the effect of fractional order on FGBICKF is

analyzed. Then we compare FGBICKF with CKF and
ICKF. Furthermore, we compare the standard devia-
tion (STD) of FGBICKF with PCRLB and analyze
errors from FGBICKF. Afterwards, we compare
AFGBICKF with FGBICKF, while analyzing the
influence of various initial process noise covariance on
the performance of AFGBICKF algorithm.

RBT dynamics model

Figure 1 shows the geometry of the RBT. P is re-entry
ballistic target and the radar is situated at the surface
of Earth. The two coordinate systems: the Earth-cen-
tered inertial coordinate system (ECI-CS,OxIyIzI) and
East-North-Up coordinates system (ENU-CS,Osxyz)
are presented in the Figure 1. The ECI-CS is a right-
handed system with the origin O at Earth’s center, OxI
pointing to the vernal equinox direction, and the axis
OzI pointing to the direction of the North Pole N. Its
fundamental plane OxIyI coincides with Earth’s equa-
torial plane. The ENU-CS has its origin at the location

Algorithm 2. AFGBICKF algorithm.

Initialize m̂0, P0, Q̂0, MQ.
For k = 1, 2, � � �
Step 1. Time Update
Calculate the predicted state �mk and covariance �Pk, using equations (24) and (25).
Step 2. Measurement update.
Step 2.1 Evaluate the predicted measurement estimate, square root of the cross-covariance, and innovation covariance, using
equations (28)–(30).
Step 2.2 Evaluate the modified gain Gnew using equation (32), state estimate m̂k and covariance Pk using equations (33) and (34).
Step 3. Estimate the process noise covariance recursively.
Q̂k = (MQ � 1)Q̂k�1

.
MQ + DQk

where DQk is defined as equation (58).
End.

Figure 1. Geometry of radar and RBT (the ECI-CS (OxIyIzI)
and ENU-CS (Osxyz).
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of the radar, and z is directed along the local vertical. x
and y lie in a local horizontal plane, x pointing to the
east, and y pointing to the north, respectively.

In order to obtain the state equation, we make two
hypotheses: one is that Earth is spherical and non-
rotating, and another is that only the gravity and drag
are the forces acting on the RBT.40 According to the
transformation relationship of ECI-CS and ENU-CS,
we derive the kinematics of the RBT with unknown
ballistic coefficient in the ENU-CS. And we model the
discrete-time stochastic nonlinear state equation of
RBT:

hk =Fhk�1 +GC(hk�1)+wk�1 ð61Þ

here,hk = ½xk vxk yk vyk zk vzk bk�T is the RBT’s state,
bk (kg/m2) is ballistic coefficient,F and G are described
in the following:

F=

d 0 0 0

0 d 0 0

0 0 d 0

0 0 0 1

2
6664

3
7775, d=

1 t

0 1

	 

,

G=

k 0 0

0 k 0

0 0 k

0 0 0

2
6664

3
7775, k=

t2
�
2

t

	 

,

ð62Þ

C(hk�1)=

� r(hk�1)

2bk�1
Vk�1vxk�1 �

mxk�1
r3k�1

� r(hk�1)

2bk�1
Vk�1vyk�1 �

myk�1
r3k�1

� r(hk�1)

2bk�1
Vk�1vzk�1 �

m(zk�1 +Re)

r3k�1

2
6666664

3
7777775
ð63Þ

Here t (in second, i.e. s) is the time interval between radar

measurements, m=3:98600531014m3=s2 and Re =
6371004m are Earth’s gravitational constant and Earth

radius, respectively. And rk�1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2k�1+y2k�1+(zk�1+Re)

2
q

,

Vk�1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vx2k�1+vy2k�1+vz2k�1

q
, and hk�1=rk�1�Re � r(h)

(kg/m3) is the air density, which can be approximately

modeled as r=c1e
�c2h at height below 90km (c1, c2 are

dimensionless and constant).41wk is Gaussian noise with
zero mean and covariance matrix (Qk)

42:

Qk =

q1q 0 0 0
0 q1q 0 0
0 0 q1q 0
0 0 0 q2t

2
664

3
775,q=

t3
�
3 t2

�
2

t2
�
2 t

	 


ð64Þ

Here q1(in m2/ s2) and q2(in kg2/(m4 s)) control the
amount of process noise and RBT’s ballistic coefficient,
respectively.

The radar collects the measurements: the range (R),
elevation(E), and azimuth (A), which are presented in
Figure 2.

The measurement equation in ENU-CS is depicted
as follows:

lk = h(xk)+ vk ð65Þ

where lk = ½RkEkAk�T, h(xk)=

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2k + y2k + z2k

q

arctan zk

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2k + y2k

q
arctan yk=xk


T
. The range Rk,

elevation Ek, and azimuth Ak at time instant k are

defined: Rk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2k + y2k+ z2k

q
+ vR, Ek = arctan zk

.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2k + y2k

q
+ vE, Ak= arctan yk=xk + vA. The measure-

ment noise vk = ½ vR vE vA �T is the white Gaussian
noise, which is with the zero-mean and the covariance

matrix Nk = diag(½s2
R s2

E s2
A �), sR, sE, and sA are

the standard deviations of range, elevation, and azi-
muth, respectively.

To evaluate the performance of the proposed filters,
we use the performance metrics: root mean-square error
(RMSE) and average accumulated mean-square root
error (AMSRE).43 The RMSE and AMSRE in position
at k time instant are defined as follows:

RMSEp(k)=
1

Mt

XMt

i=1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x

(i)
k � x̂

(i)
k )

2
+ (y

(i)
k � ŷ

(i)
k )

2
+ (z

(i)
k � ẑ

(i)
k )

2
q ð66Þ

Figure 2. Range (R), elevation(E), and azimuth(A) collected by
radar.
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AMSREp =
1

Nt

XNt

i=1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Mt

XMt

k=1

(x
(i)
k � x̂

(i)
k )

2
+ (y

(i)
k � ŷ

(i)
k )

2
+ (z

(i)
k � ẑ

(i)
k )

2

vuut
ð67Þ

Here (x(i), y(i), z(i)) and (x̂(i), ŷ(i), ẑ(i)) are the true and
estimated position at the i th Monte Carlo run, Mt is
the total Monte Carlo runs, and Nt is the total number
of measurement data points. Similarly, we can obtain
RMSE and AMSRE in velocity and ballistic coeffi-
cient. The obtained RMSEs and AMSREs in the posi-
tion, velocity and ballistic coefficient in this paper were
averaged over 100 independent Monte Carlo runs.

Simulations and analysis

Influence of fractional difference order (a) on FGBICKF. In the
simulation, we set the parameters l1, T, q1, and q2 as 2,
0.1 s, 5m2/s3, and 5 kg2/(m4s). We initialize the position
x0, y0, and z0 as 232, 232, and 90km and module of the
velocity v0 as 3000m/s. We select the initial elevation
E0, azimuth angle A0 and initial ballistic coefficient b0

as 210�, 45�, and 4000kg/m2. Then the true initial state
x0= [232 km–1837m/s, 232 km–1837m/s, 90 km–
1500m/s, 4000 kg/m2]T is obtained, and the covariance
P0=diag([1002 502 1002 502 1002 502 2002]) is set. The
initial state estimate is randomly chosen from
x̂0;N(x0,P0). we set the standard deviations of the
range errors (sR) as 100m, the elevation angle (sE),
azimuth angle (sA) as 0.017 rad.

In the FGBICKF, the Kalman gain is modified with
fractional gain. We have done experiments and found
that FGBICKF converged when a was less than 1(a
\ 1). The simulation is carried out by selecting the
fractional order a as 0.05, 0.1, 0.2, 0.5, and 0.8, respec-
tively. Figures 3 to 5 presents the RMSEs of FGBICKF
with various fractional orders for the position, the velo-
city, and the ballistic coefficient.

As can been seen from Figures 3 to 5, FGBICKF
clearly converges. It is observed that there is a tradeoff
between convergence rate and estimation accuracy from
RMSEs in position, velocity, and ballistic coefficient.
For a=0.1, the RMSE of FGBICKF in the position is
lower than that of other values of a except a=0.05,
and the RMSE of FGBICKF in the velocity is lower
than that of other values of a except a=0.05 before
the estimation time 50 s. The RMSE of FGBICKF in
the ballistic coefficient is higher than that of other val-
ues of a except a=0.05 after the estimation time 50 s.
It has been shown that FGBICKF has better perfor-
mance when the fractional order is set as a=0.1.

Comparison of FGBICKF and CKF, ICKF. In the subsection,
we compare the performance of FGBICKF with frac-
tional order a=0:1 with that of CKF and ICKF when
they are applied to state estimation in the RBT tracking
problem. Here, the values of the parameters (l1, x̂0, P0,
Qk, and Rk) are set the same as those in the first subsec-
tion. Figures 6 to 8 present RMSEs in position,
velocity, and the ballistic coefficient for FGBICKF,
CKF, and ICKF.

Figure 3. RMSE of FGBICKF for various values of a in position.

Figure 5. RMSE of FGBICKF for various values of a in ballistic
coefficient.

Figure 4. RMSE of FGBICKF for various values of a in velocity.
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Obviously, in terms of effectiveness, Figure 6 to 8
show the high accuracy of FGBICKF, compared with
CKF and ICKF. Particularly, Figure 8 illustrates that
the estimates of FGBICKF in ballistic coefficient are
more accurate than those of CKF and ICKF after 40 s.
In FGBICKF, the Kalman gain is modified with frac-
tional characteristics. The information of variations in
the previous gain is used to evaluate the next state with
the help of fractional derivative. Modified gain gives
the better performance for state estimation. From
Figures 6 to 8, we can also see that CKF and ICKF
achieves mostly the same level of estimation perfor-
mance in position, velocity, and ballistic coefficient.

Moreover, the runtimes of UKF, CKF, ICKF, and
FGBICKF are about 0.76066, 0.24731, 0.26729, and
0.36222 s, respectively. We see the runtime of
FGBICKF is less than that of UKF due to its require-
ment for computing sigma points, and FGBICKF has
a slightly higher computational complexity, compared
to CKF and ICKF. FGBICKF is slightly slower due to
its requirements on evaluating more past gain.

Error analysis on FGBICKF. Cramér-Rao lower bound
(CRLB) provides the best error analysis for filter and is
used to evaluate the performance of filters.44

CRLBk(i.e. CRLB at k time instant) is defined as:

CRLBk = J�1k ð68Þ

where Jk is the fisher information matrix and is defined
as

Jk =E � ∂2 ln p(x1:k, l1:k)

∂x2k

	 

ð69Þ

Here, the posterior distribution function of x1:k, l1:k is
p(x1:k, l1:k). In practice, Jk in equation (69) is hard to be
calculated, so we use posterior Fisher information
matrix Jk, which is calculated using the recursive form
in equation (70) to obtain the posterior CRLB
(PCRLB).36

Jk+1 =D22
k �D21

k D11
k + Jk

� ��1
D12

k ð70Þ

Here, D11
k , D12

k , D21
k , and D22

k are defined as:

D11
k =E � ∂2 ln p(xkjxk�1)

∂2x2k�1

( )
ð71Þ

D12
k =(D21

k )T =E � ∂2 ln p(xkjxk�1)
∂xk�1∂xk

� �
ð72Þ

D22
k =E � ∂2 ln p(xkjxk�1)

∂2x2k

( )
ð73Þ

For nonlinear system with addictive Gaussian noise
in equations (3) and (4), D11

k , D12
k , D21

k , and D22
k are cal-

culated as

Figure 6. RMSEs in position for various filters.

Figure 7. RMSEs in velocity for various filters.

Figure 8. RMSEs in ballistic coefficient for various filters.
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D11
k =Ef½rxkf

T(xk)�Q�1k ½rxkf
T(xk)�Tg ð74Þ

D12
k = � Efrxkf

T(xk)gQ�1k ð75Þ

D21
k =(D12

k )T ð76Þ

D22
k =Q�1k +Ef½rxk+1

hT(xk+1)�R�1k+1½rxk+1
hT(xk+1)�Tg

ð77Þ

Figure 9. Comparison of STD of various filters and PCRLB: (a) x-axis position, (b) x-axis velocity, (c) y-axis position, (d) y-axis
velocity, (e) z-axis position, (f) z-axis velocity, and (g) ballistic coefficient.
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The initial information matrix (J0) is calculated as:

J0 =Ef�Dx0
x0
log p(x0)g ð78Þ

Here, rx = ∂=∂x1, ∂=∂x2, � � � , ∂=∂xn½ � and Dx
x =rxrT

x .
Next, we compare the STD of FGBICKF with

PCRLB, as shown in Figure 9. Here, the values of the
parameters (l1, a, x̂0, P0, Qk, and Rk) are selected the
same as those in the first subsection.

From the Figure 9(a) to (g), we see that the standard
deviations of the position, velocity, and ballistic coeffi-
cient of FGBICKF are smaller than that of CKF and
ICKF, and they are very close to PCRLB. These results
further prove that FGBICKF is a state estimation algo-
rithm with better performance.

Comparison of FGBICKF and AFGBICKF. In the simulation,
the values of parameters (l1, a, x̂0, P0, Qk, and Rk) are
set the same as those in the first subsection. Figures 10
to 12 present RMSEs in position, velocity and ballistic
coefficient for FGBICKF and AFGBICKF when the
initial process noise covariance is Q0 =1000 �Qk.

We see the obvious difference on the performance
between the FGBICKF and AFGBICKF. Figures 10
to 12 shows that AFGBICKF keeps converging and its

performance is better than that of FGBICKF. The
simulation results prove that AFGBICKF can suppress
the influence of the initial process noise covariance on
state estimation.

Moreover, we compute the AMSREp, AMSREv
(AMSRE in velocity), and AMSREb (AMSRE in bal-
listic coefficient) for FGBICKF and AFGBICKF,
respectively, as shown in Figure 13.

From Figure 13, we can see that AFGBICKF has
achieved comparable estimation accuracy to
FGBICKF. The simulation results have demonstrated
the prominent improvement over FGBICKF because
the AFGBICKF incorporates the recursive procedures
of estimating the process noise covariance.

AFGBICKF’s adaptiveness to initial process noise covariance. In
the simulation, the values of the parameters (l1, a, x̂0,
P0, and Rk) are set the same as those in the first subsec-
tion and initial process covariance Q0 =Qk. Figures 14
to 16 present RMSEs in position, velocity and the

Figure 10. RMSEs in position for FGBICKF and AFGBICKF.

Figure 11. RMSEs in velocity for FGBICKF and AFGBICKF.

Figure 12. RMSEs in ballistic coefficient for FGBICKF and
AFGBICKF.

Figure 13. AMSREs for FBCICKF and AFGBICKF.
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ballistic coefficient using the AFGBICKF algorithm
when the initial process noise covariances are set to
Q0=1000, Q0, and 1000 �Q0, respectively.

From Figures 14 to 16, we can see that when the ini-
tial process noise covariance changes in a big range,
from being small (1/1000 of Q0) to big (1000 times of
Q0), AFGBICKF always converges and achieves
almost same estimation performance. This validates the
superiority of AFGBICKF and the correctness of our
theoretical analysis in section 3.2. Moreover, a bigger
initial estimate of process noise covariance gives better
estimation performance. Thus, when accurate statistic
of the process noise is unknown, a larger initial value is
recommended to ensure the stability and convergence
of filtering algorithms.

Conclusion

This paper proposes a novel filter FGBICKF to esti-
mate the states for SNDS with Gaussian noise.
Utilizing the fractional order gain, we further develop
the FGBICKF with recursive process noise covariance
estimation. FGBICKF uses fractional derivative of pre-
vious filter gains as feedback to current filter gain for

estimating next states. The simulations on RBT track-
ing have proven FGBICKF’s superior estimation per-
formance. Meanwhile, we have computed the PCRLB
and compared it with relevant standard deviations of
different filters, proving the effectiveness of FGBICKF.
Moreover, the application of AFGBICKF to RBT
tracking problem with unknown process noise covar-
iance has shown AFGBICKF’s adaptiveness even when
the initial process noise covariance changes dramati-
cally. However, FGBICKF has some limitations.
Firstly, the accuracy of the proposed filters depends on
the accuracy of the system dynamics and measurement
process. If the model does not accurately represent the
real system, the filter’s estimates may deviate signifi-
cantly from true states. Secondly, as the dimensionality
of state increases, the matrix operations involved in the
calculations become computationally intensive and
require significantly additional computational
resources. In the future, we will continue our research
on addressing these limitations to estimate the states
for SNDS more accurately and robustly.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This work is supported by National Natural Science
Foundation of China under grant number (No.62177037),
Education Department of Shaanxi Provincial Government
Service Local Special Scientific Research Plan Project under
grant number (No.22JC037), and Key Science and
Technology Program of Shaanxi Province under grant num-
ber (No.2019GY-067).

Availability of data and material

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Figure 14. Position RMSE for AFGBICKF with various initial
process noise covariances.

Figure 15. Velocity RMSE for AFGBICKF with various initial
process noise covariances.

Figure 16. Ballistic coefficient RMSE for AFGBICKF with
various initial process noise covariances.

Mu et al. 13



Compliance with ethical standards

Conflicts of interest The authors declare that they have no
conflict of interests.

ORCID iD

Jing Mu https://orcid.org/0000-0002-7098-4434

References

1. Kalman RE. A new approach to linear filtering and pre-

diction problems. J Basic Eng 1960; 82: 35–45.
2. Mehra RK. Approaches to adaptive filtering. IEEE

Trans Automat Contr 1972; 17: 693–698.
3. Juler SJ and Uhlmann JK. Unscented filtering and non-

linear estimation. Proc IEEE 2004; 92: 401–422.
4. Arasaratnam I and Haykin S. Cubature kalman filters.

IEEE Trans Automat Contr 2009; 54: 1254–1269.
5. Qiu ZB and Guo L. Improved cubature Kalman filter

for spacecraft attitude estimation. IEEE Trans Instrum

Meas 2021; 70: 1–13.
6. Fang X and Huang D. Robust adaptive cubature Kal-

man filter for tracking manoeuvring target by wireless

sensor network under noisy environment. IET Radar

Sonar Navig 2023; 17(2): 179–190.
7. Zhang Y, Huang Y, Li N, et al. Interpolatory cubature

Kalman filters. IET Control Theory Appl 2015; 9: 1731–

1739.
8. Ma H, Zhang X, Lu Z, et al. An improved central differ-

ence Kalman filter for satellite attitude estimation with

state mutation. Int J Robust Nonlinear Control 2022; 32:

3442–3468.
9. Wilson KC. An optimal control approach to designing

constant gain filters. IEEE Trans Aerosp Electron Syst

1972; AES-8: 836–842.
10. Rao SK. Modified gain extended Kalman filter with

application to bearings-only passive manoeuvring target

tracking. IEE Proc Radar Sonar Navig 2005; 152: 239–

244.
11. Xu T, Zhu X and Zhang X. Infrared imaging Maneuver-

ing Reentry Vehicle counter target lost algorithm using

Modified Gain Extended Kalman Filter. In: International

Conference on Electronics, Communications and Control

(ICECC), Ningbo, China, 9–11 September 2011,

pp.1507–1511. New York, NY: IEEE.
12. Chernoguz N. Adaptive-gain tracking filters based on

minimization of the innovation variance. In: IEEE inter-

national conference on acoustics speech and signal process-

ing proceedings, Toulouse, France, 14–19 May 2006,

pp.III–III. New York, NY: IEEE.
13. Liu C, Shui P, Wei G, et al. Modified unscented Kalman

filter using modified filter gain and variance scale factor

for highly maneuvering target tracking. J Syst Eng Elec-

tron 2014; 25: 380–385.
14. Wang S, Feng J and Tse CK. Analysis of the characteris-

tic of the Kalman gain for 1-D chaotic maps in cubature

Kalman filter. IEEE Signal Process Lett 2013; 20: 229–

232.
15. Rashedi M, Liu J and Huang B. Distributed adaptive

high-gain extended Kalman filtering for nonlinear sys-

tems. Int J Robust Nonlinear Control 2017; 27: 4873–4902.
16. Mohamed AH and Schwarz KP. Adaptive Kalman filter-

ing for INS/GPS. J Geod 1999; 73: 193–203.

17. Zhu H, Zhang GR, Li YF, et al. An adaptive Kalman fil-

ter with inaccurate noise covariances in the presence of

outliers. IEEE Trans Automat Contr 2022; 67: 374–381.
18. Assa A and Plataniotis KN. Adaptive Kalman Filtering

by Covariance Sampling. IEEE Signal Process Lett 2017;

24: 1288–1292.
19. Wang H, Deng Z, Feng B, et al. An adaptive Kalman fil-

ter estimating process noise covariance. Neurocomputing

2017; 223: 12–17.
20. Chang GB, Chen C, Zhang QZ, et al. Variational Baye-

sian adaptation of process noise covariance matrix in

Kalman filtering. J Franklin Inst 2021; 358: 3980–3993.
21. Wang J and Hao G. Robust estimation algorithm based

on prior probability statistics. Int J Robust Nonlinear

Control 2021; 31: 7957–7970.
22. Chi J, Qian C, Zhang P, et al. A novel ELM based adap-

tive Kalman filter tracking algorithm. Neurocomputing

2014; 128: 42–49.
23. Akhlaghi S, Zhou N and Huang Z. Adaptive adjustment

of noise covariance in Kalman filter for dynamic state

estimation. In: IEEE power & energy society general meet-

ing, Chicago, IL, 16–20 July 2017, pp.1–5. New York,

NY: IEEE.

24. Assa A, Janabi-Sharifi F and Plataniotis KN. Sample-

based adaptive Kalman filtering for accurate camera pose

tracking. Neurocomputing 2019; 333: 307–318.
25. De Vivo F, Brandl A, Battipede M, et al. Joseph covar-

iance formula adaptation to Square-Root Sigma-Point

Kalman filters. Nonlinear Dyn 2017; 88: 1987–1987.
26. Zhang Y, Huang Y, Li N, et al. Embedded cubature Kal-

man filter with adaptive setting of free parameter. Signal

Process 2015; 114: 112–116.
27. Tseng CH, Lin SF and Jwo DJ. Robust Huber-based

cubature Kalman filter for GPS navigation processing. J

Navig 2017; 70: 527–546.
28. Sierociuk D and Dzielinski A. Fractional Kalman filter

algorithm for the states, parameters and order of frac-

tional system estimation. Int J Appl Math Comput Sci

2006; 16: 129–140.
29. Torabi H, Pariz N and Karimpour A. A novel cubature

statistically linearized Kalman filter for fractional-order

nonlinear discrete-time stochastic systems. J Vib Control

2018; 24: 5880–5897.
30. Liu T, Cheng S, Wei Y, et al. Fractional central differ-

ence Kalman filter with unknown prior information. Sig-

nal Process 2019; 154: 294–303.
31. Ramezani A, Safarinejadian B and Zarei J. Fractional

order chaotic cryptography in colored noise environment

by using fractional order interpolatory cubature Kalman

filter. Trans Inst Meas Control 2019; 41: 3206–3222.
32. Ramezani A, Safarinejadian B and Zarei J. Novel hybrid

robust fractional interpolatory cubature Kalman filters. J

Franklin Inst 2020; 357: 704–725.
33. Tripathi RP, Singh AK and Gangwar P. Innovation-

based fractional order adaptive Kalman filter. J Electr

Eng-Elektrotechnicky Casopis 2020; 71: 60–64.
34. Kaur H and Sahambi JS. Vehicle tracking in video using

fractional feedback Kalman filter. IEEE Trans Comput

Imaging 2016; 2: 550–512.
35. Gao Z. Cubature Kalman filters for nonlinear

continuous-time fractional-order systems with uncorre-

lated and correlated noises. Nonlinear Dyn 2019; 96:

1805–1817.

14 Measurement and Control

https://orcid.org/0000-0002-7098-4434


36. Tichavsky P, Muravchik CH and Nehorai A. Posterior
Cramer-Rao bounds for discrete-time nonlinear filtering.
IEEE Trans Signal Process 1998; 46: 1386–1396.

37. Genz A and Keister BD. Fully symmetric interpolatory
rules for multiple integrals over infinite regions with
Gaussian weight. J Comput Appl Math 1996; 71: 299–
309.

38. Arasaratnam I, Haykin S and Hurd TR. Cubature Kal-
man filtering for continuous-discrete systems: theory and
simulations. IEEE Trans Signal Process 2010; 58: 4977–
4993.

39. Jiang H and Cai Y. Adaptive fifth-degree cubature infor-
mation filter for multi-sensor bearings-only tracking. Sen-
sors 2018; 18: 3241–3259.

40. Mu J and Cai Y. Likelihood-based iteration square-root
cubature Kalman filter with applications to state

estimation of re-entry ballistic target. Trans Inst Meas

Control 2012; 35: 949–958.
41. Farina A, Ristic B and Benvenuti D. Tracking a ballistic

target: comparison of several nonlinear filters. IEEE

Trans Aerosp Electron Syst 2002; 38: 854–867.
42. Bar-Shalom Y, Li XR and Kirubarajan T. Estimation

with applications to tracking and navigation. New York,
NY: John Wiley &Sons, 2001.

43. Mu J, Tian F, Wang C, et al. Adaptive Masreliez-Martin
fractional interpolatory cubature Kalman filter with
recursive noise estimation. J Vib Control 2023; 29(17–18):
3907–3924.

44. Zheg Y, Ozdemir O, Niu R, et al. New conditional pos-
terior Cramér-Rao lower bounds for nonlinear sequential
Bayesian estimation. IEEE Trans Signal Process 2012;
60: 5549–5556.

Mu et al. 15


