
Your place or mine? The neural dynamics 
of personally familiar scene recognition 

suggests category independent familiarity 
encoding  

 

Hannah KLINK1,2, Daniel KAISER3,4, Rico STECHER3, Géza Gergely AMBRUS5, A, Gyula KOVÁCS2, A, CA 

 

1 Department of Neurology, Universitätsklinikum Jena, D-07747 Jena, Germany 

2 Institute of Psychology, Friedrich Schiller University Jena, D-07743 Jena, Germany 

3 Mathematical Institute, Department of Mathematics and Computer Science, Physics, Geography, 

Justus-Liebig-University Gießen, D-35392 Gießen, Germany 

4 Center for Mind, Brain and Behavior (CMBB), Justus-Liebig-University Gießen and Philipps-University 

Marburg, D-35032 Marburg, Germany 

5 Department of Psychology, Bournemouth University, Poole House, Talbot Campus, Fern Barrow, 

Poole, Dorset, BH12 5BB, United Kingdom. 

A - These authors contributed equally as senior authors. 

CA - Corresponding author. 

HK: Institute of Neurology, Universitätsklinikum Jena, D-07747 Jena, Germany. email: 

Hannah.klink@med.uni-jena.de 

DK: Mathematical Institute, Justus-Liebig-University Gießen, D-35392 Gießen, Germany. email: 

daniel.kaiser@math.uni-giessen.de 

RS:Mathematical Institute, Justus-Liebig-University Gießen, D-35392 Gießen, Germany. email: 

Rico.Stecher@math.uni-giessen.de 

GK: Institute of Psychology, Friedrich Schiller University Jena, D-07743 Jena, Germany. email: 

gyula.kovacs@uni-jena.de  

GGA: Department of Psychology, Bournemouth University, Poole House, Talbot Campus, Fern Barrow, 

Poole, Dorset, BH12 5BB, United Kingdom. ORCiD id: 0000-0002-8400-8178. email: 

g.ambrus@gmail.com 

 

Abstract  

Recognizing a stimulus as familiar is an important capacity in our everyday life. Recent 

investigation of visual processes has led to important insights into the nature of the neural 
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representations of familiarity for human faces. Still, little is known about how familiarity affects 

the neural dynamics of non-face stimulus processing.  Here we report the results of an EEG 

study, examining the representational dynamics of personally familiar scenes. Participants 

viewed highly variable images of their own apartments and unfamiliar ones, as well as 

personally familiar and unfamiliar faces. Multivariate pattern analyses were used to examine 

the time course of differential processing of familiar and unfamiliar stimuli. Time-resolved 

classification revealed that familiarity is decodable from the EEG data similarly for scenes and 

faces. The temporal dynamics showed delayed onsets and peaks for scenes as compared to 

faces. Familiarity information, starting at 200 ms, generalized across stimulus categories and 

led to a robust familiarity effect. In addition, familiarity enhanced category representations in 

early (250 – 300 ms) and later (>400 ms) processing stages. Our results extend previous face 

familiarity results to another stimulus category and suggest that familiarity as a construct can 

be understood as a general, stimulus-independent processing step during recognition.  
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Highlights 

1) Whether a face or scene is familiar can be decoded from the EEG signal with very similar 

temporal dynamics, starting at 200 ms and peaking around 400 ms after stimulus onset. 

2) The neural dynamics of this familiarity information generalizes across stimulus categories. 

3) Familiarity modulates stimulus category representations from 200 ms after stimulus onset, 

indicating deeper processing of familiar as compared to unfamiliar stimuli already during 

early processing stages. 

Introduction 
Stimulus recognition is a multifaceted task that requires several processing steps, among which the 

construction of familiarity– the feeling that a stimulus has been encountered before (Rugg and 

Yonelinas 2003) – stands out as a critical component. For face stimuli, research over the past few 

decades, has demonstrated a significant behavioral advantage for familiar faces, including fast and 

accurate recognition (Burton, 2005), automatic processing (Yan et al., 2017), and effortless matching 

of the same familiar identity across highly variable features (Jenkins et al. 2011). Neuroimaging and 

electrophysiological studies have recently expanded upon existing behavioral data to explore the 



neural representation of face familiarity. Functional magnetic resonance imaging (fMRI) studies have 

identified several cortical areas involved in processing face familiarity, which has facilitated the 

development of multiple models for understanding face familiarity (Duchaine and Yovel 2015; Kovács 

2020). Given its low temporal resolution, fMRI is not well-suited for capturing the temporal dynamics 

of these processes, therefore researchers have utilized uni- and multivariate EEG/MEG analyses to 

study the temporal aspects of face familiarity processing. Univariate event-related potential (ERP) 

studies have identified various face-specific ERP components that are sensitive to familiarity. 

Regarding the first face-selective ERP component (the N170; Bentin et al., 1996), there is currently no 

consensus on its sensitivity to face familiarity, as conflicting findings have been reported (Gosling and 

Eimer 2011; Barragan-Jason et al. 2015; Andrews et al. 2017). It is possible that the sensitivity of the 

N170 to face familiarity is contingent upon task context and may be more pronounced when 

familiarity is especially high  (Johnston et al. 2016; Caharel and Rossion 2021). This interpretation is 

consistent with findings supporting the early, feedforward modulation of perceptual information by 

high familiarity (Karimi-Rouzbahani et al. 2021). In contrast to the N170, the subsequent N250 ERP 

component is clearly modulated by familiarity, showing a more pronounced negative deflection for 

familiar compared to unfamiliar faces (Andrews et al. 2017). The N250 typically emerges between 200 

and 400 ms after stimulus onset and has an occipitotemporal scalp distribution. It is assumed to be 

related to the comparison of perceptual inputs to stored face representations (Wiese et al. 2019). 

Huang and colleagues (Huang et al. 2017) found a correlation between the N250 and reaction times 

in a face matching task, thus demonstrating the direct behavioral relevance of this component. Recent 

studies using multivariate pattern analysis (MVPA) have confirmed these results, demonstrating that 

information regarding face familiarity can be detected in the signal as early as 200 ms after stimulus 

onset (Ambrus et al. 2021; Dalski, Kovács, and Ambrus 2022; Li et al. 2022), with some studies 

suggesting an even earlier emergence of familiarity effects (Bayer et al. 2021) or an early modulation 

of stimulus properties by familiarity (Dobs et al. 2019). 

Although the exact timing of the onset of familiarity information remains a topic of ongoing research, 

both ERP and MVPA studies consistently indicate that the most robust signal for face familiarity is 

observed at around 400 ms (Ambrus et al. 2021). This time-frame around 400 ms overlaps strongly 

with a recently identified ERP component labelled as the ‘Sustained Familiarity Effect’ (SFE; Wiese et 

al., 2019). The SFE is a strong and reliable indicator of facial familiarity that develops only after a 

certain level of exposure to an individual and it is theorized to reflect the accumulated mnemonic, 

social, and affective information (Popova and Wiese 2022, 2023). Thus, the SFE may represent the 

integration of perceptual and stored representations, enabling the recognition of familiar individuals. 

Although at least a partial functional separation between the N250 and SFE has been proposed, recent 



MVPA studies suggest that there is a continuity in the signal, indicating a single, long-lasting and robust 

neural process underlying face familiarity that generalizes across participants, and even experiments 

(Dalski, Kovács, and Ambrus 2022; Dalski, Kovács, Wiese, et al. 2022). 

 

While recognition memory, including familiarity and recollection (Rugg and Yonelinas 2003; Dimsdale-

Zucker et al. 2022) has been explored for various types of stimuli, there has been limited research on 

whether the underlying neural processes of familiarity differ or are similar across stimuli categories, 

and if they generalize across different types of stimuli (Kwon et al. 2022). Recently, Ambrus (2022) 

conducted a cross-experiment classification analysis based on data from prior studies and found a 

significant overlap in neural signals of recognition memory processes between 400-600 ms, regardless 

of sensory modality, stimulus type, or memory age. Although these findings provided evidence for 

shared recognition effects across different types of stimuli, a systematic, direct comparison of the 

temporal dynamics of memory processes for face and non-face stimuli is still lacking.  

Therefore, in the current study we investigated the generalizability of the familiarity signal between 

faces and another stimulus category, scenes. Despite the available evidence from fMRI studies on the 

differential response of brain regions to familiar and unfamiliar scenes (Epstein, Higgins, et al. 2007; 

Epstein, Parker, et al. 2007; Bainbridge and Baker 2022; Silson et al, 2019), there is a paucity of 

research investigating the temporal dynamics of scene recognition, especially in comparison to the 

extensive M/EEG literature on face familiarity. In a recent cued recall experiment, Treder and 

colleagues (2021) used learned object/scene and scene/object associations to explore the time course 

of the switch from perceiving the environment to retrieving goal-relevant memories, but, to the best 

of our knowledge so far, no study contrasted familiar and unfamiliar scene processing directly using 

M/EEG. Thus, the first aim of the current study is to fill this gap by examining the temporal dynamics 

of personally familiar and unfamiliar scene recognition. We selected personally familiar scenes, 

specifically images of the participants' apartments as prior studies have shown that personal 

familiarity tends to elicit the strongest recognition signals for face stimuli (Ambrus et al. 2021; Dalski, 

Kovács, and Ambrus 2022; Li et al. 2022; Popova and Wiese 2022). In addition to personally familiar 

scenes, we also presented personally familiar and unfamiliar faces to compare the emerging scene 

familiarity signals to the previously established face familiarity representations. The second aim of the 

study was to test for a common neural signature of familiarity across faces and places, probing the 

generalizability of the familiarity signal between these two stimulus categories. 



Methods and Materials 

Participants 
32 participants (7 male; average age: 23.13, SD = 2.96) took part in the study in exchange for monetary 

compensation or partial course credits. Data from 3 participants (2 male) were excluded from the final 

analysis due to excessive noise in the EEG. Another 2 participants did not give consent to their EEG 

data being published. The final sample includes data from 27 participants (5 male; average age: 23.04, 

SD = 2.91). This sample size is comparable to that of previous studies investigating the neural 

correlates of personal face familiarity  (Ambrus et al., 2021; Bayer et al., 2021; Li et al., 2022; Wiese et 

al., 2019). Participants reported no history of neurological conditions, had normal or corrected-to-

normal vision, and were all right-handed. They were recruited through the institute’s mailing list or 

personal contacts. Participants provided written and informed consent prior to participating. The 

study was conducted in accordance with the guidelines outlined in the Declaration of Helsinki and was 

approved by the ethics committee of the Friedrich Schiller University Jena.  

Stimuli 
The stimuli were images of faces and scenes. Participants provided 20 photographs of faces of 

personally familiar people (4 images of 4 identities each + 4 images of the participants’ own face) and 

20 photographs of their own apartment (Figure 1). Personally familiar identities were defined as 

“people you are very close to”. Photographs of apartments did not feature people or animals and 

depicted typical interior scenes such as a home-office desk in front of a window or a bathroom sink 

with several objects scattered around. As unfamiliar stimuli we collected the 160 face sets and the 32 

scene sets, provided by the participants. As unfamiliar faces we used the 4 images of 5 unfamiliar face 

sets per participant. These five persons were selected semi-randomly from the available 155 face sets 

(32 participants * 5 sets minus the 5 face sets, provided by the given participant themself). The set of 

unfamiliar scenes comprised 20 photographs of unfamiliar apartments. These were also semi-

randomly selected from the available 31 (32 participants minus the own images of the given 

participants’ apartment). Please note that the unfamiliar stimulus selection was not fully random for 

two reasons. First, we had to ensure that the participants did not know each other and never visited 

the other participant’s apartment. Whenever it could not be reliably excluded (for example due to an 

unfamiliar person being the classmate of the participant) we used another stimulus set. Second, as we 

did not have control over the gender of the familiar face sets, provided by the participants, we ensured 

by the selection of the unfamiliar face sets, that the proportion of male and female faces across the 

recorded participants is similar for familiar and unfamiliar faces.  After the EEG recording, participants 

were asked to fill out a questionnaire to control for accidental familiarity. They were asked to rate 

their level of familiarity with the unfamiliar stimuli on a scale ranging from 0 to 5, with 0 indicating 



complete unfamiliarity and 5 indicating high personal familiarity. Note that we do not analyze the 

own-face trials in the present study as these results will be published in a separate report. 

 

Experimental design 
In total, 800 trials (80 stimulus images each repeated 10 times) were presented during the EEG 

recording. Stimuli were displayed on a grey background (hex color format: #808080; see Figure 1A for 

trial structure) for 600 ms, followed by gap of 1600 ms. All stimuli subtended 11.42° of visual angle. 

The image sequence was pseudo-randomized in a way that two images of the same category (e.g., the 

same face identity) could not appear back-to-back. To maintain attention throughout the experiment, 

10% of the trials were target trials, where images were rotated 10° clockwise. The participants were 

instructed to press a button when these stimuli appeared. The experiment was written in PsychoPy 

v2021.2.3 (Peirce et al. 2019). 

 



 

EEG acquisition and preprocessing 
EEG was recorded using a 64-channel Biosemi Active II system (512 Hz sampling rate) in a dimly lit, 

electrically shielded, and sound-attenuated chamber. EEG data preprocessing was carried out using 

MNE-Python (Gramfort et al. 2013). Data were bandpass filtered between 0.1 and 40 Hz, segmented 

between −200 and 1200 ms and baseline-corrected to the 200 ms preceding stimulus presentation. 

 
Figure 1. Experimental design and classification pipelines. (A) Stimulus presentation. Personally familiar and 
unfamiliar faces, the participants’ own face, and familiar and unfamiliar scenes were presented in a 
pseudorandom order. The presentation time was 600 ms, with a ca. 1650 ms inter-stimulus interval (fixation 
cross: 350 ms ± 100 ms temporal jitter, blank screen 1650 ms ± 200 ms temporal jitter). To maintain attention, 
participants were instructed to press the space bar for images rotated by 10° (target trials, not included in 
the analyses); no other response was required. (B) Familiarity classification. To examine the temporal 
dynamics of face and scenes processing, as well as the generalizability of the familiarity signal, leave-one-
subject-out familiarity decoding was performed both within-category (trained on faces / scenes, tested on 
faces / scenes) and cross-category (face and scene stimuli as test categories each).  (C) Category classification. 
To examine the effect of familiarity on stimulus category processing, leave-one-subject-out category decoding 
was performed with familiar and unfamiliar stimuli as test categories each. Example faces were created by AI  
for illustration purposes ( https://thispersondoesnotexist.com/). 

https://thispersondoesnotexist.com/


The data were downsampled to 100 Hz (resulting in 140 time points) and no artifact rejection was 

performed (Grootswagers et al. 2017; Delorme 2022). 

Analysis pipelines 
Within- and cross-participant classification analyses were conducted using linear discriminant analysis 

(LDA) classifiers. Training data trial counts were always balanced on the participant level by under-

sampling to the minimum image and trial count in the classes of interest. Time-resolved classification 

(Grootswagers et al. 2017), spatio-temporal searchlight, and temporal generalization (King and 

Dehaene 2014) analyses were conducted. In the time-resolved classification procedure, the classifiers 

were trained and tested at each of the 140 time points to distinguish between the classes of interest: 

familiar versus unfamiliar stimuli in the familiarity classification analysis or faces versus scenes in the 

category classification analysis. This procedure was used to assess the decoding accuracy for individual 

participant data in the within-participant analyses, and for data from a participant not included in the 

training set in the leave-one-participant-out analyses. Temporal generalization followed a similar 

approach, where classifiers trained at a specific time point were used to test data from all other time 

points, resulting in a cross-temporal classification accuracy matrix. Time-resolved classification and 

temporal generalization was performed over all electrodes as well as pre-defined regions of interest, 

which included six scalp locations along the median (left and right) and coronal (anterior, center, and 

posterior) planes. The spatio-temporal searchlight procedure involved systematically testing each of 

the 64 channels by training and testing on data from an electrode cluster that comprised the given 

sensor as well as channels in its immediate adjacency, employing the same time-resolved analysis as 

described previously. For further details, see Supplementary Information 1. 

Familiarity classification 
Cross-participant classification allows for better testing of generalization as it assesses the ability to 

classify stimuli across individuals, ensuring that the findings are not specific to individual 

characteristics. Furthermore, using participant-unique stimulus sets helps reduce stimulus-specific 

effects such as low-level image properties, resulting in increased generalizability of the findings. 

Previous studies investigating familiarity representations have consistently demonstrated strong 

generalization across participants within the same stimulus category (see e.g., Dalski, Kovács, and 

Ambrus 2022; Li et al., 2022). 

As the major aim of the current study was to test the generalization of familiarity effects across 

stimulus categories, here we only present the results of the cross-participant analysis in detail. For an 

in-depth description of training and test sets, as well as for the results of the within-subject 

classification analyses see the Supplementary Information (https://osf.io/m9q74/). 



To characterize the temporal dynamics of the generalizability of the familiarity signals across 

participants, leave-one-subject-out classification analyses were performed. We used a leave-one-out 

cross-validation approach, in which we held out the data from one participant for testing and used 

the aggregated data from all the other participants for training. This process was repeated iteratively, 

ensuring that each participant's data was held out for testing once. For every participant held out 

during the testing phase, a classification accuracy score was computed. These were then entered into 

the statistical analyses. Image trial counts for scenes, and image and identity trial counts for faces, 

were equalized for each participant to ensure a fully balanced dataset. A moving average of 30 ms 

(3 consecutive time points) was applied to all classification accuracy data at the participant level 

(Ambrus et al. 2021; Dalski, Kovács, and Ambrus 2022) 

Familiarity classification was conducted both within and across stimulus categories. Within-category 

classification refers to using data from the same stimulus type for both training and testing (e.g., 

training the classifier on faces and subsequently testing on faces, as well as training and testing on 

scenes). This was done to examine the temporal evolution of the familiarity signals for each stimulus 

type separately. Cross-category classification, on the other hand, refers to using the data from one 

stimulus type for training and the data from the other stimulus type for testing (e.g., training the 

classifier on faces and testing it on scenes, or vice versa). This analysis allows us to identify the shared 

neural signals of familiarity that are present across stimulus types and across participants (leave-one-

participant-out analyses). 

To probe the temporal dynamics of familiarity representation on the participant level, within-subject 

classification analyses were also conducted. To balance the trial counts, ERPs for all four personally 

familiar identities were used, while dropping the trials for one of the five unfamiliar identities. To 

balance the familiar scene data, an equal number of familiar and unfamiliar images were retained. See 

Supplementary Information 2 for more details on this procedure and results. 

In order to assess the extent of generalization from individual participants’ data to the complete 

sample, classifiers were trained sequentially on data from individual participants and then tested on 

the remaining participants (n-1 participants). To explore generalizability at the individual participant 

level, we conducted significance testing for each of these iterations using a two-tailed cluster 

permutation test. This iterative process was continued until data from each participant had been 

withheld once for training. Subsequently, we calculated the average classification accuracies across 

the test participants for each iteration. These averages were then subjected to two-tailed cluster 

permutation tests, allowing us to evaluate the overall generalizability at the sample level. We termed 



this approach train-on-one-subject for the purposes of this paper. See Supplementary Information 5 

for more details on this procedure and results. 

 

 

Category classification 
To test if familiarity also modulates the representational dynamics of category information, an 

additional cross-participant face versus scene classification was performed separately on evoked 

responses for familiar and for unfamiliar trials. 

Statistical inference 
In time-resolved analyses, classification accuracies were entered into two-tailed, one-sample cluster 

permutation tests (10,000 iterations) against chance (50%). In temporal generalization and searchlight 

analyses, two-tailed spatio-temporal cluster permutation tests were used against chance level (50%), 

with 10,000 iterations. Statistical analyses were conducted using python, MNE-Python (Gramfort et 

al. 2014), scikit-learn (Pedregosa et al. 2011), and SciPy (Virtanen et al. 2020). 

Results 

 
Figure 2. Time-resolved, leave-one-subject-out classification of familiarity. Classifiers were trained to 
categorize ERPs for familiar and unfamiliar stimuli.  (A) Within-category classification. Training and testing 
for familiarity was performed within the same stimulus category (face: iteratively trained on data form n-1 
participants’ ERPs for faces, tested on one participants’ ERPs for faces. scene: iteratively trained on data from 
n-1 participants’ ERPs for scenes, tested on one participants’ ERPs for scenes). (B) Cross-category 



 

Familiarity decoding of scene and face stimuli 
Figure 2A presents the results of the familiarity classification analysis, when performed within 

stimulus categories. For faces, we found significant clusters of familiarity information 

(cluster ps < 0.0001) at 180 ms, with a peak at 430 ms and lasting until the end of the epoch (peak 

Cohen’s d = 1.8). For scenes, familiarity information emerged slightly later at 210 ms, peaked at 

380 ms and lasted until 1030 ms (peak Cohen’s d = 1.4). A significant difference between the two 

stimulus categories was only observed in an early time-window between 120 and 290 ms, with a 

maximum difference at 240 ms (cluster p = 0.008, peak Cohen’s d = 0.73) with faces leading to higher 

classification accuracies than scenes. The spatio-temporal searchlight analyses revealed similar 

patterns. Robust clusters (cluster ps < 0.0001), encompassing all electrodes were observed for faces 

(onset: 120 ms, peak at 430 ms over PO10, peak Cohen’s d = 2.2) as well as for scenes (onset: 190 ms, 

peak at 1190 ms over PO10, peak Cohen’s d = 1.6). Temporal generalization results (Figure 3A-B) 

yielded robust (cluster ps < 0.0001) and sustained clusters until the end of the epoch both in the case 

of faces (from 110 ms train time and 120 ms test time, peak Cohen’s d = 1.859) and scenes (from 

170 ms train time and 180 ms test time, peak Cohen’s d = 1.486). 

Within-participant familiarity decoding yielded similar results as the above described cross-participant 

analysis. Onset, peak values, and corresponding statistics can be found in Supplementary Table 1A-C 

and Supplementary Table 2A-B. For the details of the searchlight results, see also Supplementary 

Table 3. 

Familiarity decoding across stimulus categories 
Although the previous analysis reveals that the neural patterns of familiarity representation exhibit 

remarkable similarity for both scenes and faces, it remains a possibility that these findings are 

attributed to two distinct or partially distinct neural mechanisms that share similar dynamics. To 

confirm whether the neural representations of face and scene familiarity are supported by common 

classification. Training and testing for familiarity was performed on different stimulus categories (face: 
iteratively trained on n-1 participants’ ERPs for scenes, tested on one participants’ ERPs for faces. scene: 
iteratively trained on n-1 participants’ ERPs for faces, tested on one participants’ ERPs for scenes). Two-sided 
cluster permutation tests, p < .05.  Top panels show results for analyses on all electrodes. Middle Panels: 
spatio-temporal searchlight results are shown as scalp maps, with classification accuracy scores averaged in 
100 ms steps. Sensors and time points belonging to the significant cluster when tested on faces are shown in 
the top row, sensors and time points belonging to the significant cluster when tested on scenes are shown in 
the bottom row. (Two-sided spatio-temporal cluster permutation tests, p < .05). Bottom panels: ROI analyses. 
The same analysis as in the top panel, repeated for six rep-defined electrode clusters separately (Ambrus et 
al. 2019). RA/LA: right/left anterior, RC/LC: right/left central, RP/LP: right/left posterior. The vertical line at 

600 ms denotes the end of the stimulus presentation. For detailed statistics, see Supplementary 
Table  1J-O., and Supplementary Table 3G-O. 



mechanisms, we conducted cross-category classification by training the classifier on data from one 

category and testing it on data from the other category (Figure 2B). 

In this analysis, we also found significant clusters lasting for a prolonged period (cluster ps < 0.0001) 

in both decoding directions. Cross-category classification was found for scenes to faces from 190 ms 

with a peak at 440 ms (peak Cohen’s d = 1.6) as well as for faces to scenes from 200 ms with a peak at 

400 ms (peak Cohen’s d = 1.5). A sharp rise in familiarity information was found at around 200 ms after 

stimulus onset, followed by a plateau until 450 ms with a peak at approximately 400 ms, after which 

a slow and steady decrease was observed. General familiarity information persisted until the end of 

the epoch, reflecting sustained processing. Again, spatio-temporal searchlight analyses revealed 

similar patterns for both decoding directions. Robust clusters (cluster ps < 0.0001), encompassing all 

electrodes, were observed for scenes to faces (onset: 160 ms, peak at 440 ms over TP8, peak 

Cohen’s d = 2.0) as well as faces to scenes (onset: 180 ms, peak at 430 ms over TP8, peak 

Cohen’s d = 1.8). Temporal generalization (Figure 3C-D) yielded robust (cluster p < 0.0001) and 

sustained clusters, for scenes to faces (train-time onset: 160 ms, test-time onset: 160 ms, 

peak Cohen’s d = 1.2) as well as for faces to scenes (train-time onset: 120 ms, test-time onset: 170 ms, 

peak Cohen’s d = 1.6). 



For the results of the cross-category analyses in the six pre-defined regions of interest electrode 

clusters, see Supplementary Table 1J-O and Supplementary Table 2G-J. For the details of the 

searchlight results, see Supplementary Table 3G-J. When performed within-participant, cross-

category decoding yielded similar results as the above described cross-participant, cross-category 

familiarity decoding. Onset, peak values, and corresponding statistics can be found in Supplementary 

Table 1D-F and Supplementary Table 2C-D. For the details of the searchlight results, see 

Supplementary Table 3. 

 

The effect of familiarity on category representation 
In our previous analyses, we demonstrated a differential representation for familiar and unfamiliar 

scenes and faces. Next, we investigated whether familiarity also improved the neural discriminability 

between the categories. Specifically, we examined whether classifiers were more successful in 

distinguishing between faces and scenes when they were familiar as opposed to unfamiliar. Time-

resolved leave-one-participant-out classification of stimulus category (Figure 4, top panel) for both 

 
Figure 3. Temporal generalization analyses of familiarity and category (leave-one-subject-out classification). 
(A, B) Within-category classification of familiarity. Classifiers were trained to categorize ERPs for familiar and 
unfamiliar stimuli. (face: iteratively trained on data form n-1 participants’ ERPs for faces, tested on one 
participants’ ERPs for faces. scene: iteratively trained on data form n-1 participants’ ERPs for scenes, tested 
on one participants’ ERPs for scenes). (C, D) Cross-category classification of familiarity. (face: iteratively 
trained on n-1 participants’ ERPs for scenes, tested on one participants’ ERPs for faces. scene: iteratively 
trained on n-1 participants’ ERPs for faces, tested on one participants’ ERPs for scenes). (E, F) Category 
classification. Stimulus category was classified for familiar and unfamiliar trials separately and iteratively 
trained on n-1 participants’ ERPs for the two stimulus categories (faces and scenes), and tested on a left-out 
participants’ ERPs. Two-sided cluster permutation tests, p < .05. For the results of the temporal generalization 
analyses in the pre-defined regions of interest, see Supplementary Table 2. 



familiar and unfamiliar stimuli revealed robust (cluster ps < 0.0001) and sustained clusters with an 

early onset. For familiar stimuli, the cluster onset was at 110 ms, with a peak at 160 ms (peak 

Cohen’s d = 3.8), while for unfamiliar stimuli, the onset of the significant cluster was at 90 ms, with a 

peak at 160 ms as well (peak Cohen’s d = 3.8). Importantly, both early and late differences between 

familiar and unfamiliar stimuli were observed. A cluster in a brief and early time-window, between 

220 and 300 ms (peak at 240 ms, cluster p = 0.040, peak Cohen’s d = 0.69), and two late clusters 

(between 400 and 800 ms, peak at 450 ms, cluster p = 0.0005, peak Cohen’s d = 1.0, and from 830 ms, 

peak at 1010 ms, cluster p = 0.0011, peak Cohen’s d = 0.79) were significant, indicating significantly 

higher category classification performance for familiar stimuli than for unfamiliar stimuli. Searchlight 

analyses (Figure 4, middle panel) yielded strong category decoding for both familiar and unfamiliar 

stimuli, both peaking over the PO8 electrode (cluster ps < 0.0001), with a cluster onset at 70 ms for 

familiar (peak Cohen’s d = 4.4), and a cluster onset at 60 ms for unfamiliar (peak Cohen’s d = 4.0) 

stimuli.  In both cases, temporal generalization (Figure 3E-F) yielded robust (cluster p < 0.0001) and 

sustained clusters, both for familiar stimuli (train-time onset: 110 ms, test-time onset: 110 ms, 

peak Cohen’s d = 3.7) and for unfamiliar stimuli (train-time onset: 90 ms, test-time onset: 90 ms, peak 

Cohen’s d = 3.8).  

Results of the leave-one-subject-out stimulus category time-resolved cross-classification and 

temporal generalization analyses for the pre-defined regions of interest can be found in 

Supplementary Table 1P-R and Supplementary Table 2K-L.  For the details of the searchlight results, 

see Supplementary Table 3P-R. When performed within-participant, the category decoding yielded 

similar results as the above described cross-participant category decoding. Onset, peak values, and 

corresponding statistics can be found in Supplementary Table 1G-I and Supplementary Table 2E-F.  

For the details of the searchlight results, see Supplementary Table 3G-I. 

 



 
Figure 4. Time-resolved, leave-one-participant-out classification of stimulus category. Classifiers were 
trained, across participants, to categorize stimulus category (faces vs. scene), for familiar and unfamiliar trials 
separately. Two-sided cluster permutation tests, p < .05.  Spatio-temporal searchlight results are shown as 
scalp maps, with classification accuracy scores averaged in 100 ms steps. Sensors and time points belonging 
to the significant cluster when tested on familiar stimuli are shown in the top row, sensors and time points 
belonging to the significant cluster when tested on unfamiliar stimuli are shown in the bottom row. (Two-
sided spatio-temporal cluster permutation tests, p < 0.05). RA/LA: right/left anterior, RC/LC: right/left central, 
RP/LP: right/left posterior. The vertical line at 600 ms denotes the end of the stimulus presentation. For 
detailed statistics, see Supplementary Table 1P-R., and Supplementary Table 3P-R. 

Discussion 

We investigated the temporal dynamics of familiarity processing for personally familiar scenes and 

explored the generalization of familiarity information across faces and scenes. The key results of the 

current study are as follows: 1) The temporal dynamics of familiarity processing for personally familiar 

scenes resembles that of personally familiar faces. A notable difference between the two categories 

is the onset of familiarity information, which is delayed for scenes. 2) Familiarity information emerges 

at 200 ms, generalizes between two personally familiar categories and leads to a robust and sustained 

familiarity effect that is independent of stimulus category. 3) Familiarity also modulates stimulus 



category representations by enhancing it in both early (250 – 300 ms) and later (>400 ms) processing 

stages. 

Similar temporal dynamics of familiarity processing for face and non-face stimuli 

Familiarity, reflecting previous exposure to a particular stimulus, serves as the basis of correct 

recognition memory (Yonelinas, 2002), and familiarity has long been a topic of interest in face 

perception research. Multiple recent human electrophysiological studies have characterized the 

processing dynamics of face stimuli, and observed robust and long-lasting familiarity effects (Wiese et 

al. 2019; 2022; Ambrus et al. 2021; Dalski, Kovács, and Ambrus 2022). However, due to the absence 

of empirical studies directly comparing this familiarity effect between faces and other highly familiar 

non-face stimuli, it remains still an open question if the observed familiarity effect is specific to the 

stimulus category of faces. We propose it to be a general signature of familiarity per se, representing 

a critical stage in the process of recognition memory that is not specific to any particular stimulus 

category. When exploring familiarity across faces and non-face stimulus categories, a critical challenge 

is that in our every-day life we tend to have extensive exposure to the faces we know (Young & Burton, 

2018). As a result, our ability to recognize highly familiar faces, such as those of our family members, 

is superior to the recognition of other faces and other, non-face objects  (Contini et al. 2017; Ramon 

and Gobbini 2018). Consequently, it is difficult to find non-face stimulus categories where exemplars 

are similarly well known to the observer as personally familiar faces. The major strength of this current 

study is that we used images of our participants’ own apartments as personally familiar scenes. These 

scenes provided a source of stimuli for which participants had acquired extensive prior exposure; thus 

we were able to compare the neural dynamics of personally and highly familiar face and non-face 

stimuli in a within-subject design. We hypothesized that if the previously observed familiarity effect 

in the neural signal is indeed a general signature of familiarity and if familiarity indeed enhances 

recognition for face and non-face stimuli similarly, we should find benefits in similar perceptual tasks 

for familiar faces and scenes. 

 

Indeed, the neural patterns reflecting familiarity generalized well between faces and scenes, similarly 

in both decoding directions. Furthermore, cross-category decoding also led to significant classification 

performance across participants, indicating its independence of both stimuli and participants. Our 

findings suggest that personally familiar faces and scenes are processed in sufficient detail to elicit a 

stimulus-independent and robust familiarity signal by 200 ms post stimulus onset. This effect had 

previously been shown for faces across participants, experiments, and different qualities of familiarity 

(Dalski, Kovács, and Ambrus 2022). Here we present evidence that a similar effect is present in across 



participants for personally familiar scenes. It is thus very likely that this effect extends to other 

experimental paradigms, different qualities of familiarity, and even different stimulus categories. 

Indeed, a recent cross-category classification study by Ambrus (2022) showed that the same 

processing dynamics observed for familiar faces also apply to other categories and experimental 

paradigms, such as familiar and remembered objects, remembered (vs. forgotten) object-scene 

associations, and even to music, reflecting a generalization across sensory modalities. Familiarity 

effects were observed for all categories examined in the analysis at a relatively later time range (post 

300-400 ms), while a shared and sustained effect was observed earlier (at 200 ms) only for personally 

familiar faces and experimentally familiarized objects later judged as subjectively familiar, but not for 

those judged as remembered. This finding of an earlier effect for objects aligns with the current study’s 

results, further strengthening the conclusion that the observed familiarity effect is not specific to 

faces. Instead, all evidence indicates that familiarity, as previously established, reflects a general and 

stimulus-independent process triggered by previously encountered exemplars of an object category, 

which can be seen as early as 200 ms after stimulus onset. It is likely that this process is related not 

just to a familiarity judgement per se, but, especially at later stages, to specific recall processes 

involving episodic memory and recollection (Ambrus 2022). 

The effect of familiarity is difficult to separate from top-down effects, such as expectation or attention 

(Summerfield and Egner, 2009) as they may also result from repeated stimulus exposures. Indeed, 

familiar items may attract more attention (Christie and Klein, 1995; Tong and Nakayama, 1999) or 

result in stronger a-priory predictions (Apps and Tsakiris, 2013). The similar time-course of the current 

familiarity effect and that of attentional enhancements (for a review on attentional modulation see 

Sereno et al, 2020) would support this connection and may explain the stimulus-independent nature 

of the effect.  

Dynamics of familiar scene processing 

The fact that familiarity information can be generalized across different stimulus categories suggests 

that it is processed by the same mechanisms and neural signals. Although the trajectory of face 

familiarity information has previously been established (e.g., Ambrus et al. 2021), empirical studies 

exploring the generalizability of familiarity information across different stimulus types remain scarce. 

Here, through direct investigation of cross-participant familiarity effects for both faces and scenes we 

provide compelling evidence in support of the generalizability of familiarity information, suggesting 

that the classification of familiarity is not restricted to particular stimulus categories or individuals. 

Our findings are in alignment with the previously established temporal patterns of familiarity 

processing in studies using event-related potentials and multivariate pattern analysis with face stimuli. 

Critically, the scene familiarity dynamics of the current study resemble the findings of the current and 



various prior studies with faces: the early onset, the highest decoding accuracies between 400 and 

600 ms, which reflect the Sustained Familiarity Effect, and the prolonged nature of familiarity 

processing, lasting well after 1000 ms (Dobs et al. 2019; Wiese et al. 2019; Ambrus et al. 2021). 

Expanding on the previous studies, the present research has demonstrated that highly personally 

familiar scenes exhibit a similar familiarity effect as highly familiar faces in terms of time course and 

scalp distribution of the neural signal. The sustained nature of this effect is consistent with an 

extended network of brain regions showing sensitivity to familiarity for natural videos in a recent fMRI 

study (Bainbridge and Baker 2022). One crucial difference between the familiarity classification 

dynamics of faces and scenes emerged in the earliest processing phase. While the familiarity effect 

for faces is characterized by an initial sharp increase shortly prior to 200 ms and an early peak before 

300 ms, a similar effect for scenes is delayed and attenuated. The onset of the scene familiarity effect 

occurs only after 200 ms and it increases more gradually until it reaches its peak around 400 ms. From 

400 ms onward, the classification performance for both face and scene familiarity declines, with the 

slight difference that scene familiarity information appears to be less sustained. A combination of two 

factors can be offered to explain these differences. First, it has been reliably shown that the visual 

processing of faces is prioritized, compared to any other stimulus categories (Langton et al. 2008; 

Kaneshiro et al. 2015; Contini et al. 2017; Morrisey et al. 2019). Second, compared to scenes, face 

images are less variable in terms of complexity, the arrangement of unique and distinct elements and 

the spatial position of continuous contours on the images. It is fair to note that the smaller image-to-

image variation for faces compared to scenes may have some impact on the timing of familiarity-

related signals. Overall, it is reasonable to assume a similar processing time course for familiarity in 

any other object category in future studies. While the very early emergence and secondary peak might 

be characteristic for only a few object categories (faces and very familiar objects; Ambrus, 2022), a 

general familiarity effect for any object category might look like the following: emergence around 300 

ms, peak and plateau between 400 and 600 ms, and then a decline until the effect vanished at around 

1000 ms. One can hypothesize that depending on the salience of the object category, a more sustained 

effect is also possible. 

Familiarity enhances category representations 

While deeper, more sustained processing for familiar exemplars of an object category has been 

demonstrated thoroughly, only a few studies have looked at the specific corresponding processing 

benefits. Dobs and colleagues (2019) found that identity and gender information were modulated by 

familiarity even prior to 200 ms, suggesting an inherent feed-forward enhancement of familiar stimuli. 

More recently, Kovács et al. (2023) found that the that familiarity enhances identity decoding in the 

time range of 200-400 ms, while earlier neural representations appear to be relatively insensitive to 



the level of familiarity.  Our study builds upon and extends these findings by demonstrating that 

familiarity enhances not only face representations but also those of non-face stimulus categories. The 

difference of category classification accuracies for familiar and unfamiliar stimuli revealed that 

familiarity enhances category classification performance both in an early (ca. 220 – 300 ms) and in a 

later (>400 ms) processing stage. The temporal dynamics of familiarity and category processing follow 

a similar pattern. An initial sharp increase is paired with a high peak early in the time course that is 

consistent with the N170, face-object discrimination, and scene (Jacques and Rossion 2006; Kaiser et 

al. 2020). This is followed by a plateau or drop in classification accuracy preceding a second, more 

gradual increase, leading to a more sustained effect with a late, secondary peak (between 400 and 

600 ms). It is suggested that the two (early vs. late) phases in classification accuracy index different 

levels of processing within the processing hierarchy. The initial rapid feedforward signal is driven by 

low-level stimulus properties, which is later modified by more elaborate recurrent feedback signals 

(Contini et al. 2017). Our study found that the effects of stimulus category emerged earlier than 

familiarity signals, with category decoding being unaffected by familiarity until approximately 200 ms, 

in line with previous ERP findings on the onset of familiarity. This was followed by a decline in the 

accuracy of decoding for both familiar and unfamiliar stimuli. However, this decline was less 

pronounced for familiar stimuli, resulting in a more persistent category effect around 300 ms for 

familiar compared to unfamiliar stimuli. Finally, between 400 and 600 ms and beyond, category 

classification performance increases again. The rise in classification accuracy was more prominent for 

familiar stimuli, especially in the posterior regions of interest. Previous research (e.g., van de 

Nieuwenhuijzen et al. 2013; Kaneshiro et al. 2015), has shown that human faces have a significant 

impact on visual category classification analyses in terms of both the timing and strength of the effects. 

The results of our category decoding analysis suggest that familiarity enhances the efficiency of neural 

coding for both faces and scenes, making them easier to read out by classifiers and downstream brain 

regions. This indicates that familiarity is not only important for recognizing individual entities, but also 

contributes to more efficient perceptual and memory representations. Future studies could explore 

whether this effect extends to other types of stimuli beyond faces and scenes, particularly when 

human faces are not present in the stimulus categories. 

The significance of a stimulus-independent familiarity effect 
Our results help answering the question how sensory representations activate person/scene 

memories. Recently, non-human primate studies tested this link between perception and memory 

directly on the single-cell level. Landi et al (2021) found that neurons of the macaque temporal pole 

discriminate between personally familiar and unfamiliar faces. Moreover, the neuron population also 

discriminated between identities of familiar monkey faces. The response dynamics of this 



familiarity/identity selective response was very similar to the findings of the current study in the sense 

that familiarity affected responses in a very long, sustained time-window, from around 100 to 500 ms 

post-stimulus. This long effect argues against the clear sequential processing of stimuli from 

perception towards recognition and memory and rather suggests a certain parallelity of functioning. 

For example, the prolonged nature of the response may give a chance for a quick first representation 

of familiar stimuli (Dobs et al, 2019), while the later response may reflect the parallel activation of 

other areas of the recognition network, responsible for more complex person/scene related 

knowledge representations. While Landi et al (2022) found response enhancement for familiar stimuli, 

more studies reported in the past repetition suppression, reflecting probably different memory 

mechanisms. More recently, Koyano et al (2023), testing the anterior medial face patch of the inferior 

temporal cortex in macaques found a gradual decline of the late-phase responses (from 100 to 300 

ms) during gradual familiarization. This later familiarity signal was interpreted by authors as 

represented by inter-areal interactions within an extensive network. The details of this process when 

external sensory information is converted into a specific memory, probably by the hippocampus 

(Treder et al, 2021) should be tested by multiple methods in the future.  

Limitations and future research directions 

Although our results strongly support the generalizability, category- and stimulus-independence of 

the observed familiarity signal, here we have only compared familiarity between personally familiar 

faces and scenes. Both share some processing features, such as holistic representations (Konkle et al. 

2010; Richler and Gauthier 2014; Kaiser and Cichy 2021)  and appear to activate many similar occipito-

temporal brain areas when highly familiar. One challenge that needs to be addressed in future studies 

is how the familiarity representation is implemented in the visual cortex despite the differences of 

dominantly face and scene processing areas (Kanwisher et al. 1997; Epstein and Kanwisher 1998; 

Taylor et al. 2007). One possibility is that familiarity is coded in a similar fashion across category-

selective populations that gives rise to similar activation patterns in the EEG (e.g., via similar anterior 

to posterior gradients and focal processing areas), despite differences in spatial coding. Another 

possibility is that the effect is mediated by regions placed downstream from these category-selective 

visual areas, such as anterior and medial temporal regions, at the interface between perception and 

memory  (Quiroga et al. 2005; Steel et al. 2021; Treder et al. 2021). Current studies show the familiarity 

sensitivity of the medial parietal cortex, the medial, ventral and inferior temporal cortex, as well as of 

the lateral and ventromedial prefrontal cortex during perception and recall, in a stimulis category 

independent manner (Silson et al, 2019; Bainbridge and Baker, 2022). Thus, these alternatives need 

to be explored in specific future fMRI studies. Furthermore, complete generalizability would require 



the comparison of several other non-face object categories and familiar stimuli from other modalities, 

such as auditory stimuli as well (Ambrus, 2022). Future studies should systemically investigate 

familiarity processing in a variation of non-face stimulus categories in the visual domain, to 

corroborate evidence from our study as well. Our results are further based on only highly personally 

familiar stimuli. Different degrees of familiarity (Li et al., 2022; Kovács et al, 2023), like perceptual and 

contextual familiarity (Kovács, 2020), should be related to the same processing mechanism but evoke 

slightly differential activations (Ambrus et al., 2021; Dalski et al., 2022a). Indeed, Beldzik and 

colleagues (2021)have shown that personally familiar scenes and known, but personally unfamiliar 

scenes, engage different brain networks related to an egocentric or more allocentric worldview, 

respectively. As the level of familiarity is closely related to and enhances face identity processing 

gradually (Dobs et al., 2019; Kovács et al (2023), it would be interesting to test if a similar identity 

effect exists for scenes as well, e.g., a differentiation between ones’ very well known, own bathroom 

and the bathroom at a railway station which is visited only irregularly. This, however, should only be 

a byproduct of scene processing, since identification is not the primary goal of scene perception and 

neural mechanisms should not be tuned explicitly towards it (Steel et al., 2021). Still, the results might 

shed more light on identity processing in general or how the brain distinguished between highly similar 

exemplars of the same stimulus category. To gain a comprehensive understanding of familiarity and 

its effect on neural processing, future studies need to vary analysis approaches and recording 

methods. This includes the univariate analysis of ERPs (Wiese et al., 2019) as well as the application of 

time-frequency analysis (Sáringer et al., 2023). Whereas right now, we were only able to speculate on 

the existence of a scene familiarity network, fMRI studies could examine brain areas related to scene 

familiarity processing for different familiarity qualities.  

We can not directly provide any evidence against the notion that perhaps participants imagined 

familiar faces when viewing images of their own apartments. We however think that this is an unlikely 

explanation for the current findings, as imagery-related signals in the EEG are quite weak even in tasks 

that involve explicit imagery of concrete objects (see, e.g., Xie et al., 2020). Note that participants did 

not provide any indications of being familiar with the unfamiliar stimuli we presented. Even in the 

improbable scenario if some of our participants deliberately refrained from disclosing this 

information, such an occurrence would only enhance the robustness of our results, as they would 

survive this confounding factor (i.e., an unfamiliar stimulus being actually familiar to the participants 

and therefore sorted into the wrong class of stimuli). 

A potential concern could be raised regarding the possibility that the outcomes observed for scenes 

are influenced primarily by certain familiar objects within the images, rather than familiarity with the 

scene itself. Dissociating the effects of objects versus the scene itself is difficult, as scenes are 



ultimately always consist of an arrangement of objects: familiarity with a scene thus practically always 

entails familiarity with its constituent objects. While this observation might have some validity, 

particularly in the context of within-participant and within-category analyses, the cross-participant 

results serve to mitigate any dependence on a participant's familiarity with specific elements of the 

image. Nonetheless, we acknowledge that the observed scene familiarity effect can be based on 

certain diagnostic objects. To separate the role of objects in determining scene familiarity one should 

perform specific fMRI experiments in the future and try to localize the effects to either scene or object 

selective regions in the ventral temporal cortex. It is also likely that adding more ecologically relevant 

tasks like explicit recognition or visual search in may affect the results. Our prediction for such studies 

would be that more naturalistic tasks would increase the effect of familiarity even further. 

Another, albeit mild confound of our design relies in using different number of face and scene 

identities. While for faces we used 5 identities, for practical reasons only one scene identity was used 

per familiarity category: the participants’ own apartment was compared to another unfamiliar one. 

Nonetheless, the number of trials, used for faces (4 images of 5 identities) and scenes (20 images of a 

given scene identity) was identical ensuring an unbiased familiarity decoding. Still, the fact that we 

only used many images of a single scene makes it possible that certain low-level idiosyncratic features 

contributed to the results of within-participant analysis (Supplementary Information 2). This is 

however unlikely to explain the results of the main, group-level analysis where decoding was 

performed on a cross-participant level. Nonetheless, the encoding of familiarity degree for scenes is 

an interesting field and should be tested in the future, similarly to that of faces (Li et al, 2022; Kovács 

et al, 2023).   

Summary 

The present study examined the generalizability of familiarity information between two different 

stimulus categories (faces and scenes). Previous face familiarity results, related to the established 

dynamics of face familiarity processing as well as the generalizability of this familiarity signal across 

participants, were confirmed. This familiarity classification was extended to the stimulus category of 

scenes. The temporal dynamics of scene familiarity revealed an onset shortly around 200 ms and a 

peak around 400 ms, followed by a slow decrease. Besides an earlier onset and a sharper rise of face 

familiarity information the familiarity signal generalized in a remarkably robust way between faces 

and scenes emerged. We further found good generalizability of the familiarity signal across stimulus 

categories not only within-participant but also cross-participant, indicating that the previously 

described familiarity effects are not face-specific. Our results thus emphasize the robust and sustained 

nature of a general familiarity effect, independent of stimulus category and participant. Finally, we 



tested whether and how familiarity modulates the neural dynamics of category representations. We 

found that familiarity enhances the category information in both early and late processing stages, 

leading to a deeper processing of familiar stimuli.  
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