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ABSTRACT The continuous urbanisation and increase in vehicle ownership have increasingly exacerbated
traffic congestion problems. In this paper, we advocate the use of epidemic theory to model the spreading of
traffic congestion in urban cities. Specifically, we use the Susceptible-Infected-Recovered (SIR) model but
propose to explicitly consider the road network structure in the model to understand the contagion process of
road congestion. This departs from the classical SIR model where homogeneous mixing based on the law of
mass action is assumed. For this purpose, we adopt the N-intertwinedmodeling framework for the SIRmodel
based on continuous-time Markov chain analysis. In our evaluation, we used two real-world traffic datasets
collected in California and Los Angeles. We compare our results against both classical and average-degree-
based SIR models. Our results show better agreement between the model and actual congestion conditions
and shed light on how congestion propagates across a road network. We see the potential application of
insights gained from this work on the development of traffic congestion mitigation strategies.

INDEX TERMS Congestion spread modeling, epidemics, SIR model, topology,traffic congestion, urban
road networks.

I. INTRODUCTION
Traffic congestion has been a persistent societal challenge
despite continuous efforts and technological advancements
in the last decades. The problem is exacerbated by rapid
urbanisation and the growth of motor vehicle ownership. It
not only increases journey times but also escalates excess
fuel consumption and environmental pollution as well as
decreases workforce productivity with increasing time loss
[1]. The UKDepartment for Transport [2] highlighted that the
rise in urban congestion is becoming a substantial problem for
cities. City transportation authorities worldwide introduced
various policies and campaigns for congestion mitigation
(e.g., motivating people to walk and cycle by introducing
congestion charge zones [3], improving public transport effi-
ciency [4], connecting infrastructure with smart traffic signal
optimisations [5] and dynamic traffic forecasting [6]).

One important aspect of these is understanding how con-
gestion spreads over time and space in urban road networks
[7], [8]. It offers city municipalities valuable insights on
which road segments will be impacted and when. Fundamen-
tally, the question is on how an inherently challenging process
like traffic congestion propagates and dissipates over time in
urban transport systems. It is known that traffic oscillation

itself has two components: formation and propagation [9],
[10]. The former can be caused by lane-changing activity
or any kind of moving bottleneck [9], [11]. The latter is
traffic propagation, the subject of this paper, which remains an
interesting research topic especially when traffic congestion
is a non-linear, non-equilibrium dynamic process that ex-
hibits emergent behaviours [12], [13]. Different approaches to
model the spread of traffic congestion have been investigated
in the literature (see Setion II).
In this paper, we follow the approach based on epidemi-

ology models where traffic congestion evolution is mod-
eled as a disease-spreading process. Basic yet versatile com-
partmental epidemic models such as the SI (Susceptible-
Infected), SIS (Susceptible-Infected-Susceptible), and SIR
(Susceptible-Infected-Recovered) models have been applied
for simulating the spreading processes in the networks. Wu
et al. [14] proposed to describe traffic congestion spreading
with the SIR model whereby a congested road junction or
segment is said to be “infected” and conversely, “susceptible”
if not congested and finally, the road junction/segment that
becomes uncongested after an episode of congestion can be
modeled as a “recovered” state. Furthermore, Saberi et al.
[7] provided empirical validation of traffic congestion prop-
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agation and its dissipation as a network epidemic spreading
phenomenon and discussed the different possible interpreta-
tions of basic epidemic models to represent traffic congestion
spreading process. We further extend this line of research.
While previous works have largely taken the basic simpli-
fying assumption of homogeneous mixing of nodes [15], in
this paper, we eschew this assumption and instead explicitly
consider the road network topology to model the congestion
spreading. Specifically, we adopt an individual-based mean-
field approach to model the congestion spreading and apply
the model on two real-world traffic datasets.

The rest of this paper is organised as follows. We review
the related work in Section II. In Section III, we develop
the topology-aware model advocated in this paper. Section
IV presents the evaluation of the model and compares it
against classical and average-degree-based SIR models. We
show better performance of our model using real-world traffic
datasets from two different cities. This is followed by the
conclusion of our work in Section V.

II. RELATED WORK
The literature on road congestion formation and spreading
has a long history and the topic has been investigated from
different perspectives. We broadly segregate them into three
levels, namely vehicle-level, link-level, and network-level.
Work adopting the vehicle-level perspective incorporates in-
dividual vehicle’s movement and its interactions with other
vehicles into consideration. Ahmed et al. [16] identified three
approaches to model these interactions: (1) car following
models (e.g., [17]; [18]; [19]) where the models take into
account how drivers behave when they are driving behind
another vehicle in proximity, (2) lane changing models (e.g.,
[20]) where the models endeavour to capture the idea of
replicating the driver’s decision to change lanes influenced
by diverse factors and (3) gap acceptance models (e.g., [21])
where themodels attempt tomimic human behaviour and take
into account the reasons for driving decisions. These mod-
els focus more on the question of congestion formation but
are not able to provide further insights into how congestion
spreads in a road network.

The work adopting the link-level view focuses on individ-
ual road segments instead and studies traffic as a continuous
and aggregated stream. One direction adopting this view em-
ploys queueing theory in which the road segment is modeled
as a queue with the vehicles traveling across it as the cus-
tomers [22], [23], [24]. Alternatively, Lighthill and Whitham
[25], Richards [26], Newell [27] advocated kinematic wave
theories to describe the vehicles’ behaviour across a road
segment in which traffic is modeled as shockwaves in a two-
dimensional time-space diagram either as forward or back-
ward moving. Such models are often applied to understand
traffic on a single freeway and can be extended to small road
networks. While they offer insights on the traffic evolution
within a road segment, they are unable to capture the complex
congestion evolution or behaviour of large-scale urban road
networks, such as those found in major cities, where the road

network topology offers rich possibilities of traveling routes
as well as opportunities of disruptions.
Finally, to understand how traffic congestion evolves over

time in large-scale road networks, network-level perspective
is adopted. The structure of road networks is known to affect
the traffic flow at city scale [28], [29], and [30]. Levinson [31]
underlined the importance of understanding and monitoring
urban street network structures for planning and evaluation
of the effectiveness of investments and land use changes
within cities. Considering the network-level traffic conges-
tion spread is more challenging as it evolves in multiple
directions over space and time. Some researchers attempted
to model this by abstracting it as a physical system [32],
[33]. For instance, Payne [34] and Whitham [35] developed
a traffic flow model using fluid dynamics law where the
flow of vehicles is represented as the flow of liquid in a
pipe. Helbing [36], on the other hand, developed a gas-kinetic
equation-based macroscopic traffic model while Vandaele et
al. [37] proposed the use of speed-flow and speed-density
diagrams for this purpose. Mahmassani et al. [38] investigate
the application of the network fundamental diagram (NFD)
as a means to observe, comprehend, and model the loading
and unloading processes of urban traffic. Furthermore, the
authors of [39], [40], and [41] explore congestion propagation
through the lens of network theory, assessing the severity
of congestion through clustering methods. However, these
works do not address the question on understanding the dy-
namics of congestion propagation which we look into in this
paper.
Meanwhile, recent advancements in artificial intelligence

have given rise to new machine learning (ML) and deep
learning (DL) models developed for traffic prediction. We
refer readers to Zheng et al. [42] and the references therein for
an overview of the evolution of the research along this direc-
tion from simple ML approaches (e.g., K-nearest neighbour
(KNN) algorithm [43], Artificial Neural Network (ANN)
[44], [45] to DL models (e.g., Recurrent Neural Networks
(RNN) and its variants (Long-Short Term Memory (LSTM)
and Gated Recurrent Unit (GRU) [46], Convolutional Neu-
ral Network (CNN) [47], and Graph Convolutional Neural
Network (GCN) [48]. Here, rather than understanding the
congestion spreading, the focus is on predicting the state of
the road traffic in the next prediction horizon (e.g., could be
set to 5-min or 10-min in the future) based on historical data.
The models, especially the recent ones, are usually complex,
entail high computational costs, and are dependent on the size
and quality of the dataset.
Finally, traffic congestion spreading has also been inves-

tigated as a contagion process (e.g., [49], [50], [51], [52],
[10]). In this approach, the road network is abstracted and
represented as a graph consisting of a collection of nodes
(road junctions/intersections in our case) and links (road seg-
ments). Traffic congestion evolution can then be replicated
as a spreading process on the graph via tools such as epi-
demic theory which originated from biological studies on
contagious disease spreading and has found applications in
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various domains (e.g., in communication networks [53], in
(online) social network [54], in hub protein and brain struc-
ture [55]). The analogy in our case is quite intuitive where
a congested road segment can “infect” its adjacent road due
to traffic queues extending and overflowing to the next junc-
tions. Collizza et al. [56] associated the epidemic spreading
with the traffic flow based on the metapopulation model. Wu
et al. [57], on the other hand, described traffic congestion
spread with the SIR epidemic model and conducted simula-
tion studies. They highlighted the importance of considering
the topological properties of the road network in affecting
the behaviour of the traffic system. Furthermore, there is
already evidence in the transportation domain that congestion
propagation patterns show similarity with the virus contagion
process in the real world [58], [59], and [60]. Specifically,
Saberi et al. [7] used empirical data from Google for different
cities and showed that congestion spreading behaves akin to
an epidemic process. Following the above, the literature has
highlighted the potential of the epidemic model in replicating
congestion spreading and at the same time, the model should
take into account the road network while not incurring expen-
sive computational costs or requiring large volume of data.

In this paper, we adopt this contagion view and model the
congestion spreading as a contagion process and we explicitly
consider the impact of the road connectivity into considera-
tion as we take as input the network topology, allowing us to
consider each road segment individually. The model is also
scalable via a mean-field approximation.

III. MODELING TRAFFIC CONGESTION SPREADING WITH
SIR TOPOLOGY-AWARENESS
As prior mentioned, there are three fundamental contagious
models of infectious diseases: SI, SIS, and SIR. From the
literature, the SIR model has been adopted as the suitable
model for replicating congestion propagation and provides a
realistic representation [57], [59], [7]. As such, we also adopt
the SIR epidemic model in this work.

A. PRELIMINARY
The SIR model [61] is a widely used epidemic model in
epidemiology. By compartmentalisation, a disease is broken
down into three distinct stages, namely Susceptible (state S)
to represent healthy individuals, Infected (state I) to represent
infected individuals who are also infectious and Removed
(state R) to represent an individual who has recovered from
an infection. As indicated in Section II, this model has gained
significant attention in the field of traffic congestion spread-
ing due to its simplicity and performance in capturing con-
gestion dynamics. In the context of this paper, the SIR model
is applied to represent the following states:

• Susceptible (S) – nodes which are not congested (free
flow traffic) but susceptible to be congested,

• Infected (I) – nodes which are congested, and the con-
gestion may over-spill to the neighbouring nodes,

• Recovered (R) – nodes that suffered from congestion,
but the congestion has since dissipated.

Using the law of mass action, the SIR model could be
modeled with the following system of ordinary differential
equations (ODEs) [61] and [15]:

ds(t)
dt

= −βs(t)i(t) (1)

di(t)
dt

= βs(t)i(t)− γi(t) (2)

dr(t)
dt

= γi(t) (3)

where s(t), i(t) and r(t) denote the number of nodes in
susceptible, infected and recovered state at time t respectively
while β and γ are the propagation and dissipation rates.
Hereafter, in this paper, we refer to the above model as the
classical SIR model.
Using the homogeneous mixing hypothesis, the classical

SIRmodel can further consider including the average contacts
of each node in a network into the system of equations as
follows [33]:

ds(t)
dt

= − < k > βs(t)i(t) (4)

di(t)
dt

= βs(t)i(t)− < k > γi(t) (5)

dr(t)
dt

= γi(t) (6)

where < k > denotes the average degree of the network.
Hereafter, we refer to this model as average-degree-based SIR
model. Both the above models neglect the heterogeneity of
nodes and thus, have not consider the network structure.

B. TOPOLOGY-BASED SIR MODEL
To account for the heterogeneity of the individual road seg-
ment in a road network, we adopt the modeling framework
proposed in [62], named the N-intertwined epidemic model.
The framework employs a continuous-time Markov chain
analysis to model spreading behavior. It has been studied and
extended in various directions (e.g., [63]; [64]; [60]; [65];
[66]). The framework is general and applicable to different
problem domains. It allows us to study how the underlying
network structure affects congestion spreading patterns.
In the context of our problem, consider a road network

represented by an undirected graph, G(V ,E), where V and
E are the set of N nodes and L links. In our case, the nodes
represent the sensors (e.g., inductive loops, roadside traffic
cameras, etc.) deployed at the roads to monitor traffic while
links represent road segments connecting neighbouring sen-
sors. Graph,G, can be represented by A, the N ×N adjacency
matrix, with an,m = 1 if there exists a link between nodes n
and m, and 0 otherwise.
We say a node gets infected when a node previously having

free-flowing traffic becomes congested (i.e., a transition from
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FIGURE 1: Physical mapping of congestion spreading on the
SIR model

state S to state I). Consistent with the previous models intro-
duced in Section III-A, this infection process takes place at an
average rate of β per unit of time. Similarly, a node is said to
have recovered from congestion (i.e., a transition from state
I to state R) when the traffic returns to a normal free-flowing
state (see Figure 1). Again, we use γ as the average recovery
rate per unit of time.

Next, we formally define the notion of ‘‘congestion’’.
Given the average vehicle speed recorded at node n between
time t and t−∆, vn(t)where∆ is the time interval dependent
on the dataset (e.g., 5-min) and the speed limit at node n, vmaxn ,
we define the following:

λn(t) =
vn(t)
vmaxn

(7)

as the measure of traffic flow at the node n. A low value of
λn(t) means the vehicle is moving slowly or non-moving if
λn(t) = 0. Conversely, the traffic is free-flowing when λn(t)
is high. Node n is considered as congested (i.e., ‘‘infected’’
in the epidemiology terminology) if λi(t) < ρ where ρ
represents different congestion levels [40]. Otherwise, a node
is considered not congested (i.e., λi(t) ≥ ρ ). The number
of congested nodes grows as ρ increases. ρ is a tuneable
threshold value (cf. Section IV on the impact of different
values of ρ).

Let sn(t), in(t), and rn(t) denote the probability of node n
being in the susceptible, infected, and recovered state at time,
t , respectively. Since each node can be in one and only one of
the three possible states at any one time, then we have:

sn(t) + in(t) + rn(t) = 1 (8)

and
dsn(t)
dt

+
din(t)
dt

+
drn(t)
dt

= 0. (9)

The complexity of the solution by applying the Markov
theory directly to the entire network is exponential (i.e.,
O(3N )) since all possible combinations of states for each
and every node have to be considered. This results in the
infinitesimal generator of the system,Q(t) to have the dimen-
sion of 3N × 3N . To address this issue, we advocate the use

of the N-intertwined epidemic framework ([63], [64], [60],
[65], [66]) for the SIR model which approaches the problem
by considering each node individually. Now, applying the
Markov theory, we will get N infinitesimal generators, Qn(t)
of the three-state continuousMarkov chain; one for each node
as follows:

Qn(t) =

−q1,2;n q1,2;n 0
0 −q2,3;n q2,3;n
0 0 0

 (10)

where q1,2;n is dependent on the states of other nodes within
the network. One way to account for this dependency is to
condition q1,2;n with all possible combinations of states for
all nodes. However, this reverts back to the exact Markov
chain solution of exponential complexity. Hence, we apply
a mean field approximation to the random variable q1,2;n and
compute its expected rate. By this, we remove the random
nature and it allows us to reduce the complexity of the solution
to polynomial (O(N )). The effective infinitesimal generator,
Qn(t), is then as follows:

Qn(t) =

−E [q1,2;n] E [q1,2;n] 0
0 −γ γ
0 0 0

 (11)

where E [q1,2;n] =
∑N

m=1 am,nin(t).

We can now obtain the following system of non-linear
governing differential equations for our case,

dsn(t)
dt

= −sn(t)β
N∑

m=1

am,nin(t) (12)

din(t)
dt

= sn(t)β
N∑

m=1

am,nin(t)− γin(t) (13)

drn(t)
dt

= γin(t) (14)

Note the explicit consideration on the road network topol-
ogy via the inclusion of the adjacency matrix elements in
the system. This allows us to validate the model against real
road networks and congestion data (cf. Section IV). Another
advantage of adopting this framework is that we can now
consider the state transitions of each node individually, as
opposed to the classical methods where the mean aggregate
behaviour of all nodes is considered.
We can now solve the above system of differential equa-

tions to obtain the instantaneous evolution of the nodes for
the three distinct states to discover the congestion spreading
patterns of road networks. By additionally using Eqs. 8 and 9,
we can reduce the problem from solving 3×N simultaneous
equations to 2× N equations.
Following the above, we can then obtain the epidemic

prevalence (i.e., the fraction of nodes in congested state (in-
fected)) at time t as follows:
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FIGURE 2: Sensor distribution of the PEMS-BAY dataset

P(t) =
1

N

N∑
n=1

in(t). (15)

At steady-state ( din(t)dt |t→∞ = 0), in∞ ≡ limt→∞ in(t) = 0

and consequently,
∑N

n sn +
∑N

n rn = N .

IV. EVALUATION WITH REAL-WORLD DATA

A. DATA DESCRIPTION
For our study, two real-world datasets, namely PEMS-BAY
and METR-LA [67] are used. The PEMS-BAY dataset is
collected from the California Transportation Agencies (Cal-
Trans) Performance Measurement System (PeMS) [13]. It
recorded traffic speed data from 325 sensor stations in Bay
Area. The locations of the sensor stations are shown in Fig-
ure 2. The traffic measurements cover a period of six months
between the 1st of January and the 30th of June in 2017. The
time interval for the data is 5 minutes and the total number of
observed traffic data points is 16,937,700 (= 52, 116× 325).
The second real-world dataset, METR-LA, shown in Fig-

ure 3, was collected from loop detectors in the highways of
Los Angeles County [68]. It includes 207 sensors and covers
traffic data for a period of four months from the 1st of March
to the 30th of June in 2012. The time interval between data
points is also 5 minutes, and the total number of observed
traffic data points is 7,094,304 (= 34, 272×207) with 8.11%
missed data points due to sensor incidents.

TABLE 1: Traffic speed characteristics of datasets

Datasets Max Min Mean Std Var Size
PEMS-BAY 85.1 0.0 62.62 8.56 85.41 136 MB
METR-LA 70.0 0.0 53.72 19.2 374.9 57 MB

Table 1 provides a summary of the basic statistics of both
datasets including maximum (Max), minimum (Min), mean
value (Mean), standard deviation (Std), and variance (Var)
of traffic speed data as well as the size of the dataset (in
MByte). From the table, it can be noted that METR-LA has
higher traffic fluctuations with larger standard deviation and
variance than PEMS-BAY.

FIGURE 3: Sensor distribution of the METR-LA dataset

Since we advocate the consideration of the actual road
topology, we also constructed the adjacency matrix for both
datasets based on road connectivity. The basic characteristics
of the road network topology derived from their respective
adjacency matrices are presented in Table 2.

TABLE 2: Characteristics of adjacency matrices

Datasets Nodes Edges Average node degree
PEMS-BAY 325 398 2.098
METR-LA 207 264 2.058

B. PARAMETER ESTIMATIONS
To determine the propagation (β) and dissipation (γ) param-
eters, we follow [69] and use an ordinary least squares (OLS)
approach along with a pattern search algorithm. The goal of
the estimation process is to minimise the root-mean-squared
error (RMSE) between the observed and modeled i(t) values
over the specified study period.

C. TEMPORAL EVOLUTION OF TRAFFIC CONGESTION
We compare the predictive capacity of the three models,
i.e., (1) classical SIR, (2) average-degree-based SIR, and (3)
topology-based SIR models, over time. For this, we first
show how themodels track the network-wide congestion state
focusing on the early peak hour period (i.e., between 06:00am
to 12:00pm) of a workday.
We show in Figure 4 for PEMS-BAY and Figure 5 for

METR-LA the fraction of nodes in different states over the
specified time period over three different congestion thresh-
olds (i.e., ρ = 0.4, 0.5, 0.6). The Sdata, Idata, and Rdata curves
are the actual traffic recorded in the dataset. Specifically, we
present the average traffic speed data taken on allWednesdays
across the measurement period as representative observa-
tions. The curves are qualitatively similar for other days of
the week. On the other hand, the Smodel , Imodel , and Rmodel
curves are computed by the respective models described in
Section III. For both figures, the first column includes the
performance of the classical SIR model, the second column
incorporates the average-degree-based SIRmodel’s outcomes
and the third column presents the results of our topology-
based SIR model.
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(a) Classical SIR model, ρ = 0.4 (b) Average-degree-based SIR model, ρ = 0.4 (c) Topology-based SIR model, ρ = 0.4

(d) Classical SIR model, ρ = 0.5 (e) Average-degree-based SIR model, ρ = 0.5 (f) Topology-based SIR model, ρ = 0.5

(g) Classical SIR model, ρ = 0.6 (h) Average-degree-based SIR model, ρ = 0.6 (i) Topology-based SIR model, ρ = 0.6

FIGURE 4: Models vs Data – Time evolution of node states for ρ = 0.4, 0.5, 0.6 on the PEMS-BAY dataset.

From the figures, we see that, in comparison, the proposed
topology-based SIR model captures most accurately all three
traffic states over the entire period and can generally track
the evolution of the congestion closely for the different ρ
considered as well as across both road networks. Taking
PEMS-BAY network at ρ = 0.4 as example, the real traffic
data indicates that there are approximately 70% of nodes in
the network that never suffered traffic congestion (conversely,
the remaining 30% have recovered from congestion at the
end of the peak period). The classical SIR model, however,
predicted only 20% of nodes avoided congestion during this
period (i.e., a 50% discrepancy from the ground truth). The
average-degree-based SIR model performed slightly better,
computed about 30% of nodes not congested. The topology-
based SIRmodel advocated here managed to correctly predict
the outcome at 70% of nodes. Further, despite having higher
traffic volatility in theMETR-LA dataset, our topology-based
SIR model can still track the congestion state closely.

By definition, when ρ is small, fewer nodes are considered
to be congested (i.e., vehicles must be traveling at a lower

speed or being stationary at the junction to be classified as
congested). We see this across both road networks. All three
models correctly capture this phenomena (i.e., higher peak for
Imodel when ρ is higher). However, by not explicitly consider-
ing the network topology, both classical and average-degree-
based SIR models showed higher node recovery, resulting in
disproportionately inflating the number of congested nodes
over the considered time period.
Comparing the two cities, despite having different road

topology and traffic demand patterns, they have a similar
number of congested nodes at peak for both ρ = 0.4 and 0.5
(see Figures 4 and 5). For a large ρ (ρ = 0.6), the observed
difference between the data and the model grows. This is
mainly due to the looser definition of congestion when ρ is
large, more nodes are considered congested even though they
are relatively still flowing at a decent speed. Therefore, we
expect to see a divergence between cities as ρ increases.
We show in Figure 6 (a)-(b) the fraction of nodes recovered

from congestion at the end of the observation period across
different ρ for PEMS-BAY andMETR-LA. In both networks,
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(a) Classical SIR model, ρ = 0.4 (b) Average-degree-based SIR model, ρ = 0.4 (c) Topology-based SIR model, ρ = 0.4

(d) Classical SIR model, ρ = 0.5 (e) Average-degree-based SIR model, ρ = 0.5 (f) Topology-based SIR model, ρ = 0.5

(g) Classical SIR model, ρ = 0.6 (h) Average-degree-based SIR model, ρ = 0.6 (i) Topology-based SIR model, ρ = 0.6

FIGURE 5: Model vs Data – Time evolution of node states for ρ = 0.4, 0.5, 0.6 on the METR-LA dataset.

we see the topology-based SIR model closely follows the
ground truth. The other two models, which have disregarded
the topology, have failed to correctly predict the congestion
state. Both the classical and average-degree-based SIR mod-
els have made similar predictions. The discrepancies with the
ground truth are significant. For instance, for PEMS-BAY,
the average difference between the actual traffic conditions
and that computed by the topology-based SIRmodel is 0.025.
In contrast, the differences for classical and average-degree-
based SIR models are 0.5 and 0.48 respectively. Interestingly,
for PEMS-BAY, we see that the model predicted a higher
number of recovered nodes despite predicting a lower peak
(cf. Figure 4). This is because the model computed that the
congestion spreads to more nodes but is distributed more
evenly over the period; thus, resulting in the peak being not
as high but having more congested nodes. Our work further
corroborates the literature (e.g., [58]; [14]; [59]; [7]) that
traffic congestion spreading mimics the contagion process of
an epidemic.

We correspondingly show in Figure 6 (c)-(d) the fraction
of nodes that never get congested across different ρ for both
networks. Similar insights could be found here whereby both
classical and average-degree-based SIR models unable to
track the ground truth while our topology-based SIR model
made successful predictions (the average discrepancies are
0.0275 and 0.07 for PEMS-BAY and METR-LA respec-
tively). In addition, we also note that the discrepancies for
our topology-based SIR model are higher in METR-LA than
in PEMS-BAY. This is due to the fact that traffic inMETR-LA
has higher volatility (as indicated in Table 1).

D. SPATIO-TEMPORAL EVOLUTION OF CONGESTION
One feature of the topology-based SIR model is the ability to
compute the state of each node individually. As such, we can
create congestion map over time to show spatially the spread
of traffic congestion. This is not possible for both the classical
and average-degree-based SIR models since they treat the
network as a whole and compute the aggregated fraction of
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(a) Recovered nodes PEMS-BAY (b) Recovered nodes METR-LA

(c) susceptible nodes PEMS-BAY (d) susceptible nodes METR-LA

FIGURE 6: (a)-(b) fraction of the recovered nodes from datasets and models at ρ = 0.4− 0.7 for PEMS-BAY and METR-LA,
(c)-(d) fraction of susceptible nodes from data and models at ρ = 0.4− 0.7 for PEMS-BAY and METR-LA respectively.

nodes in each state.
In the following, we present the mean absolute error

(MAE) and root mean square error (RMSE) comparing the
models against the ground truth in Figure 7 (a)-(b) and Fig-
ure 7 (c)-(d) respectively. From the figures, we can see that the
average-degree-based SIR model marginally performs better
than the classical SIR model but our topology-based SIR
model achieves significantly lower errors against the other
two models.

Finally, we illustrate the spatio-temporal evolution of traf-
fic congestion by showing how the state of the nodes is dis-
tributed geographically on the map. We use a series of hourly
congestion maps comparing the actual congestion (derived
from the dataset) and that computed by the topology-based
SIR model in Figure 8 and Figure 9 for PEMS-BAY and
METR-LA respectively. For both cases, the initial congested
nodes are based on the dataset (seed nodes depicted in black
in the maps). We set the same seed nodes for the model. In
the figures, nodes in green indicate the free flow traffic state,
nodes in red indicate congested locations and nodes in yellow

indicate locations that have recovered from the congestion
state during the considered period.
In general, we can see that the model offers a good ap-

proximation of the conditions of the traffic at different areas
or stretches of roads. For PEMS-BAY, we can see that at
6am, the network is largely free flowing but by 7am, several
roads are already congested (e.g., top right corner). Beginning
from 8am, the congestion gradually dissipates (more nodes
in yellow appearing). These are all captured by the model
(see the corresponding hourly maps Figure 8 (b), (d), (f), (h)
and (j)). For METR-LA, the data showed a slower build-up
of congestion in which the network stayed relatively free-
flowing between 6am-7am and congestion only gradually
appearing in the later hours. We can see from the counterpart
figures computed by the model equally up to the task in
capturing this spreading. Therefore, the model can provide
a good overall estimation of the traffic conditions in terms
of geographical areas but we also note that there are some
inaccuracies when specific nodes are of interest.
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(a) PEMS-BAY (b) METR-LA

(c) PEMS-BAY (d) METR-LA

FIGURE 7:Mean Absolute Error (MAE) of three models: (a) PEMS-BAY, (b) METR-LA and Root Mean Square Error (RMSE)
of three models: (a) PEMS-BAY, (b) METR-LA.

(a) Congestion Map from the dataset 06:00 am (b) Congestion Map based on the model 06:00 am
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(c) Congestion Map from the dataset 07:00 am (d) Congestion Map based on the model 07:00 am

(e) Congestion Map from the dataset 08:00 am (f) Congestion Map based on the model 08:00 am

(g) Congestion Map from the dataset 09:00 am (h) Congestion Map based on the model 09:00 am
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(i) Congestion Map from the dataset 10:00 am (j) Congestion Map based on the model 10:00 am

FIGURE 8: Hourly congestion map based on dataset and the model for PEMS-BAY. The first column represents dataset and the
second column illustrates output of the model.

(a) Congestion Map from the dataset 06:00 am (b) Congestion Map based on the model 06:00 am

(c) Congestion Map from the dataset 07:00 am (d) Congestion Map based on the model 07:00 am
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(e) Congestion Map from the dataset 08:00 am (f) Congestion Map based on the model 08:00 am

(g) Congestion Map from the dataset 09:00 am (h) Congestion Map based on the model 09:00 am

(i) Congestion Map from the dataset 10:00 am (j) Congestion Map based on the model 10:00 am

FIGURE 9: Hourly congestion map based on the dataset and the model for METR-LA. The first column represents dataset and
the second column illustrates output of the model.
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V. CONCLUSIONS
In this paper, we first advocate the use of the epidemic model
for modeling the spreading of traffic congestion. Despite
the complex nature of urban traffic, we show in this work
that the contagion-like process of traffic congestion can be
modeled using the SIR epidemic model that includes prop-
agation and dissipation characteristics of traffic dependent
on time-varying travel demand. Departing from the classical
and average-degree-based SIR models, which mostly con-
sider homogeneous mixing based on the law of mass action
([70]; [61]), we propose the explicit consideration of the road
network structure via the use of the corresponding adjacency
matrix that represents the network topology.

In this work, we tested the model against traffic data from
two cities, namely California and Los Angeles, and compared
the performance of the model against the classical SIR and
average-degree-based SIR models. We show that the pro-
posed topology-based SIR model outperforms these two SIR
models by a significant margin. Our results also demonstrate
better agreement, both temporally and spatially, between the
model and data despite the two cities having different traffic
profiles. We also illustrate the congestion spreading spatially
over time; a feature of our model that the other models are
incapable of computing. Our model can be applied to develop
control strategies with different objectives, such as minimiz-
ing the total duration of congestion, minimizing the total
number of congested roads and junctions, and minimizing the
recovery time.
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