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Abstract 

In this research, we propose a two-level control strategy for simultaneous gait generation and stable control 

of planar walking of the ATRIAS biped robot with unlocked torso, utilizing active spring-loaded inverted 

pendulum (ASLIP) as reference models. The upper-level consists of an energy-regulating control calculated 

using the ASLIP model, producing reference ground reaction forces (GRFs) for the desired gait. In the 

lower-level controller, PID force controllers for the motors ensure tracking of the reference GRFs for 

ATRIAS direct dynamics. Meanwhile ATRIAS torso angle is controlled stably to make it able to follow a 

point mass template model. Advantages of the proposed control strategy include simplicity and efficiency. 

Simulation results using ATRIAS’s complete dynamic model show that the proposed two-level controller 

can reject initial condition disturbances, while generating stable and steady walking motion.  

Keywords: Bipedal Walking, Underactuated Robot, Two level control, Force Control 

1. Introduction 

Using underactuated biped models with point feet to generate walking and running gaits can result in 

improvements over flat-foot models, both qualitative (more natural looking) and quantitative (greater 

efficiency). Although standard methods like zero moment point (ZMP) [1] can generate walking and 

running in fully-actuated flat-foot biped robots, underactuated-robot gait generation and control remain 

active areas of research. One approach utilizes the Poincare return map of the gait stability analysis, applied 

to passive gaits in [2] and active gaits in [3]. Utilizing the hybrid zero dynamics (HZD) with Poincare map 

techniques can generate asymptotically-stable bipedal walking [4] and running [5]. An event-based discrete 

LQR controller can stabilize the fixed point in a Poincare map of a passive biped running gait, where the 

model has springy, massless feet [6]. Previously, the first author extended the previous LQR method to 

mailto:b.dadashzadeh@tabrizu.ac.ir


 

 

 

 

 - 2 -        

 

stabilize active fixed points of the Poincare map in more general active gaits [7]. 

Another control strategy for underactuated biped robots uses the spring loaded inverted pendulum (SLIP) 

model proposed by Blickhan [8]. The SLIP-based control approach can generate the same center of mass 

(COM) trajectory and ground reaction force (GRF) profile as human bipedal walking and running, 

qualitatively speaking [9]. For a restricted range of initial condition inside a basin of attraction, the SLIP 

model shows stable walking and running gaits; but outside this region SLIP has periodic unstable gaits. 

Thus, researchers have proposed several active SLIP, or ASLIP, architectures and controllers: for example 

an energy level control in stance phase [10], swing leg retraction [11], dead-beat control [12], and variable 

free-leg length and stiffness [20].  

Due to the SLIP model’s advantages (including stability and energy efficiency), using it as a simple 

reference model in order to produce walking and running biped gaits for more complicated machines is a 

possible approach – one pursued in this paper. The challenge in this approach is due to multibody robots 

differing significantly from the SLIP model: more degrees of freedom, additional torso angle control, and 

significant energy losses and discontinuities in touch-down. A three-link hopper tracked a SLIP trajectory, 

using feedback linearization in [13] and HZD in [14]. Garoffalo [16] presented a two-level control strategy 

for walking in a five-link rigid biped model, by following a SLIP trajectory; they used feedback linearization 

in the lower-level controller, but we use their idea for a higher-level energy regulating control in this paper.  

In previous work, the first author proposed a two-level controller for generating running gaits for the 

‘Assume The Robot Is A Sphere’ (ATRIAS) robot at Oregon State University [15], with an active SLIP 

stabilization and ATRIAS leg-force control occurring in each running phase. SLIP model was used for 

dimension reduction of ATRIAS planar [17] and 3D [18] walking model by using HZD method. Rezazadeh 

[19] proposed a step-by-step control strategy for ATRIAS walking including foot placement, leg length 

adjustment and torso stabilization. In some recent works, Gupta et al [24] optimized walking gait variables 

and utilized artificial neural networks for generating walking gaits on uneven surfaces. Janardhan et al [25] 

investigated biped trajectory generation for crossing large ditches and proposed point of feasibility to bring 

the robot to rest at the end of ditch crossing. Kajita et al [26] controlled HRP-2Kai walking by discretizing 

the continuous system by a constant unit length along the walking direction. Our work differs from these 

works by utilizing a basic template model to generate gait. 

In this work, we present a two-level controller for SLIP-based stable walking of multibody biped robots 

with legs and torso inertia. In the upper-level control, active SLIP models provide simple reference models 

for each phase - controlled so as to return to the nominal SLIP trajectory. The resulting ground reaction 

forces (GRF) from the trajectory become reference signals in the lower-level control. The lower-level 

control regulates the leg force of the stance leg and the trajectory of the swing leg in ATRIAS. In this way, 

the higher-level control provides the motor controllers with reasonable tracking error i.e. avoiding actuator 
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saturation. We view this as a generalization of the two-level running controller [15] to walking. Our method 

significantly differs from previous works [14],[16]-[19] by using force control in the stance leg to track 

stabilized SLIP gaits, motivated by the fact that force control provides particular advantages for walking 

and running on soft terrain [21]. We demonstrate the beneficial effect of swing-leg trajectory planning on 

overall gait stability through simulations using a full dynamic simulation of ATRIAS [21].  

2. Dynamic Modeling of ATRIAS Walking 

A walking gait includes a single support phase, a touch-down event, a double support phase, and a take-

off event. In this paper we consider planar walking of ATRIAS on the sagittal plane. Each leg of ATRIAS 

contains a four bar mechanism, as well as two motors in the hip which actuate the upper links (Fig. 1). The 

robot legs in the sagittal plane contain four brushless motors with torques 𝑢1, 𝑢2, 𝑢3  and 𝑢4 : exerted 

between torso and links BH, CH, FH and GH, respectively. A bending plate between each motor shaft and 

its corresponding leg link acts as a torsional spring in series to each motor. Also, a harmonic drive with 

reduction ratio of 50:1 provides sufficient torque. The robot has point feet (no actuators), making the system 

underactuated. A boom, connected to the torso, constrains the robot to move in a circular path on the sagittal 

plane. We assume the torso angle on the sagittal plane should be controlled by the leg motors. The 

calculations of the torso mass and moment of inertia include all the components with motors mounted. We  

 

Table 1- Kinematic and kinetic parameters of ATRIAS dynamic model 

Quantity Value (in SI units) Description 

𝑚1, 𝑙1, 𝑎1, 𝐼1̅ 0.626, 0.5, 0.1691, 0.0198 mass, length, COM and moment of inertia of the links 

BH and FH 

𝑚2, 𝑙2, 𝑎2, 𝐼2̅ 0.609, 0.4, 0.1462, 0.0156 mass, length, COM and moment of inertia of the links 

CH and GH 

𝑚3, 𝑙3, 𝑎3, 𝐼3̅ 0.510, 0.5, 0.1055, 0.0143 mass, length, COM and moment of inertia of the links 

AB and EF 

𝑚4, 𝑙4, 𝑎4, 𝐼4̅ 0.475, 0.5, 0.0788, 0.0109 mass, length, COM and moment of inertia of the links 

CD and GI 

𝑚𝑠, 𝑎𝑠1, 𝑎𝑠2, 𝐼�̅� 1.704, 0.0448, 0.0726, 

0.0231 

mass, COM position and moment of inertia of the spring 

complex 

𝑚9, 𝑎9, 𝐼9̅ 50.647, 0.1873, 3.8316 mass, COM and moment of inertia of the torso 

𝐾𝑔 50 Gear reduction ratio of the harmonic drive 

�̅�  0.0987   Torque constant of the motors (Nm/A) 

𝐽𝑟 0.00121   Moment of inertia of rotor and harmonic drive (kg.m2) 

𝐾𝑠 4119 Torsional spring stiffness (Nm/rad) 

𝐶𝑠 1.46 Damping ratio of spring (Nm s/rad) 

𝐶ℎ𝑑 19.0 Damping ratio of harmonic drive (Nm s/rad) 
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Fig 1. Generalized coordinates of ATRIAS in single support phase 

 

model the damping of the springs and the harmonic drives as linear and velocity-dependent. ATRIAS 

kinematic, mass and damping parameters are shown in Table 1. 

2.1. Single-support phase 

In the single-support phase, Leg 1 provides the support (Fig. 1). It has a passive revolute joint and touches 

the ground at point A. Leg 2 swings around the hip. Each leg has 4 degrees of freedom (DOF), including 

two independent angles for the leg links (connected to the output side of the springs) and two independent 

angles for the harmonic-drive output shafts (connected to the input side of the springs). Thus, the robot has 

9 DOF in single support phase, and we designate the generalized coordinates by [𝐪𝑠𝑠]9×1 . Using 

Lagrange’s equation with dissipations is 

d L L R

dt

   
   

   
Q

q q q
 (1)   

Where L is Lagrangian function, Q is generalized coordinates vector, and Raileigh dissipation function R 

includes damping power of the harmonic drives and springs. The result is the ATRIAS single support 

dynamic model 

         
4 19 1 9 49 9 9 1

.  , .ss ss ss ss ss ss ss   
       q q qD C q B u  (2)   

Where, Dss is the inertia matrix, Css contains Coriolis and gravity terms, and Bss is the input matrix. Because 

motor torques are exerted to the inputs of harmonic drives of links 3, 4, 7 and 8, the input matrix is 
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0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
 

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

ss

T

gK

 
 
 
 
 
 

B  (3)   

2.2. Touch-down event 

The touch-down event occurs at the end of the single-support phase, when contact point E touches the 

ground. So an impact �̂� = �̂�𝑥𝒊 + �̂�𝑦𝒋  affects point E in the stance dynamic model. Lagrange’s impact 

model for this event becomes  

    ˆ.ss ss ss ss
  D q q Qq  (4)   

in which, superscripts + and – show instances just after and before touch-down, and generalized impact �̂� 

is written as a function of �̂�𝑥 and �̂�𝑦 using virtual work. Also the relationship between single support and 

double support generalized coordinates provides two more equations for finding the unknowns. 
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q
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q

q

 (5)   

Double support phase generalized coordinates and angles 𝜃5 and 𝜃6 appear in Fig. 2b. Equations (4) and 

(5) constitute a touch-down map whose solution provides an initial condition for the double-support phase.  

2.3. Double-support phase 

In the double-support phase both feet are pivoted to the ground with a known distance a (Fig. 2). Angles 

𝜃5 and 𝜃6 are dependent variables and we derive 7 DOF equations of motion of this phase instead of 

solving 9 DOF equations (2) with 2 holonomic constraint equations. Leg 1 is the rear leg and Leg 2 is the 

front leg. The equations of motion in double support phase in terms of the double support generalized 

coordinates 𝐪𝑑𝑠 become 

         
4 17 1 7 47 7 7 1

.  , .ds ds ds ds ds ds ds   
       q q qD C q B u

 
(6)   

where the input matrix is defined as 

0 0 1 0 0 0 0

0 0 0 1 0 0 0
 

0 0 0 0 1 0 0

0 0 0 0 0 1 0

T

ds gK
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Fig 2. Generalized coordinates and numbers of the links of ATRIAS in double support phase 

 

2.4. Take-off event 

The take-off event occurs at the precise moment in the double-support phase when the vertical ground 

reaction force (GRF) of Leg 1 becomes zero while the vertical GRF of Leg 2 is positive. In simulations, the 

take-off event can be detected by mapping motor torques to GRF components and finding the root of 

𝐺𝑅𝐹𝑦,1. By neglecting the masses of the leg links compared to the torso mass, the torque-force map as a 

function of double-support coordinates becomes 

   
   

1

, 1 1 7 1 1 7

, 3 2 7 3 2 7 1

cos sin

cos sin

s
x i i

s
y i i

GRF Tl q q l q q

GRF l q q l q q T





     
     

          

 (8)   

in which, 𝐺𝑅𝐹𝑥,𝑖 and 𝐺𝑅𝐹𝑦,𝑖 are components of the GRF on Leg i, and 𝑇𝑖
𝑠 and 𝑇𝑖+1

𝑠  are spring torques 

of leg i in the counter-clockwise direction. 

The take-off is an energy-conserved event without any impact discontinuities or velocity discontinuities; 

thus its map is defined by converting the link labels between the two phases as (9) in which superscripts + 

and – show instances just after and before take-off. 

   
5 6 1 2 3 4 75 6, , , , , , , ,

T

ss ds ds ds ds ds ds ds ds dsq q q q q q q           
 

q q q  (9)   

2.5. Hybrid model of walking 

The walking hybrid model includes both single-support and double-support continuous-time equations 
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and instantaneous-events maps. In this map 𝐱𝑠𝑠 = [𝐪𝑠𝑠; �̇�𝑠𝑠] denotes the state vector of the single-support 

phase and 𝐱𝑑𝑠 = [𝐪𝑑𝑠; �̇�𝑑𝑠] for the double-support phase. The Poincare section 𝑆1 consists of the set of 

𝐱𝑠𝑠 vectors that reaches the touch-down event, and the set of 𝐱𝑑𝑠 vectors that reaches the take-off event 

defines set 𝑆2. 
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x x x

x f x g x u

x x x

 (10)   

3. Passive and Active SLIP Walking 

Passive and active SLIP models consist of a point mass and massless legs, so their take-off and touch-

down events occur without energy losses or velocity discontinuities. Successive models of single-support 

phase, touch-down map, double-support phase, and take-off map constitute the SLIP walking model.  

3.1. Single-support phase 

In the single-support phase of SLIP, the stance leg consists of a massless linear spring bearing a point 

mass m pivoted to the ground (Fig. 3). The massless swing leg pivots about the hip and is assumed to clear 

the ground without extra energy expenditure. The spring stiffness of the leg is 𝐾𝑆𝐿𝐼𝑃, and the free leg length 

is 𝑙0. The single support generalized coordinates are chosen as 𝐪𝑠𝑠
𝑆𝐿𝐼𝑃 = [𝑙, 𝜃]𝑇 in which 𝑙 is the stance 

leg length and 𝜃 is the stance leg angle with respect to vertical (Fig. 3a). The dynamic model of the single-

support phase for passive SLIP is 

   
2 12 2 2 1

.  , 0SLIP SLIP SLIP SLIP SLIP SLIP
ss ss ss ss ss ss

 

          
D qq q C q  (11)   

        
(a)                                  (b) 

Fig 3. Generalized coordinates of (a) SLIP and (b) ASLIP models in single-support phase 
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in which 𝐃𝑠𝑠
𝑆𝐿𝐼𝑃 and 𝐂𝑠𝑠

𝑆𝐿𝐼𝑃 are well-known matrices [22]. 

An active SLIP (ASLIP) model for the stance phase with a force actuator parallel to the leg spring that 

will be appropriate for our control strategy is shown in Fig. 3b. The generalized coordinates of ASLIP 

𝐪𝑠𝑠
𝐴𝑆𝐿𝐼𝑃 remains the same as in the SLIP model. The dynamic model of the ASLIP in stance phase becomes 

   
2 1 2 12 2 2 1

. .  ,ASLIP ASLIP ASLIP ASLIP ASLIP ASLIP ASLIP
ss ss ss ss ss ss s sss F

  

             
D q q C q Bq  (12)   

in which, control input 𝐹𝑠𝑠 is the force of the leg actuator and the coefficient matrices can be obtained 

easily.  

3.2. Double-support phase 

In the double-support phase, both legs pivot from the ground with a known distance of a (Fig 4). The 

SLIP model in the double-support phase has 2 DOF with generalized coordinates 𝐪ds
𝑆𝐿𝐼𝑃 as shown in Fig. 

4a. Given a known the step length a from touch-down configuration, we can write the length and angle of 

Leg 2 as a function of 𝐪𝑑𝑠
𝑆𝐿𝐼𝑃. The dynamic model of the SLIP model in double-support phase is  

   
2 12 2 2 1

.  , 0SLIP SLIP SLIP SLIP SLIP SLIP
ds ds ds ds ds ds

 

          
D qq q C q  (13)   

In the double-support phase our model uses a simple force actuator in series in each leg (Fig. 4b); thus it 

becomes an active SLIP model, with 2 DOF and full controllability. The proposed model provides a simple 

efficient model to use in calculating a way to return the system to the desired trajectory. Using the 

generalized coordinates 𝐪𝑑𝑠
𝐴𝑆𝐿𝐼𝑃, its dynamic equation is written as 

       
2 12 12 2 2 1 2 2

.  , .ASLIP ASLIP ASLIP ASLIP ASLIP ASLIP ASLIP ASLIP
ds ds ds ds ds dsds ds ds   

              
D q q C q B qq F  (14)   

in which control vector 𝐅𝑑𝑠 = [𝐹𝑑𝑠1
, 𝐹𝑑𝑠2

]
𝑇
 contains the forces of leg actuators, positive in the extending 

direction. Also, using the concept of virtual work produces the input matrix  

 

(a)                                             (b) 

Fig 4. Generalized coordinates of (a) SLIP and (b) ASLIP models in double support phase 
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B . (15)   

4. Controller Design 

The controller aims to make the real robot follow the SLIP dynamics (specifically its GRF profile) and 

generate a stable walking gait. To have SLIP-like dynamics, ATRIAS uses torsional springs in series with 

the motors (note control methods like feedback linearization [13] are not possible because series-elastic 

actuation would cause a singularity in the control law [22]). In this research we use a force control that, 

given a known initial condition, will result in a leg GRF profile that brings the system back to the desired 

trajectory.  

First, an optimization problem/solution produces a periodic gait with constant forward velocity.  

 
   

0

0 0
,

0 ,

min 1

. .

SLIP
ss TD

SLIP SLIP
ss ss

k

x x d

k k

s t V V


 



x
x x

 (16)   

The cost functional for minimization is defined by the norm of the error of the initial state 𝐱𝑠𝑠0
𝑆𝐿𝐼𝑃 =

[𝑙0, 𝜃0, 𝑙0̇, �̇�0]
𝑇
 of the current step to the next step. The constraint is that the initial horizontal velocity 𝑉𝑥0 

to be equal to the desired forward velocity 𝑉𝑥,𝑑. The optimization parameters consist of the initial state of 

the SLIP single support phase 𝐱𝑠𝑠0
𝑆𝐿𝐼𝑃  and the attack angle 𝜃𝑇𝐷 . The algorithm performs numerical 

simulation of the SLIP walking dynamic equations, using these initial conditions, to calculate the trajectory 

of the periodic SLIP walking gait (COM trajectory shown by solid line in Fig. 5). 

We utilize a two-level control strategy to make ATRIAS follow the desired SLIP gait. Because the 

periodic SLIP gait is unstable, tracking it directly in successive steps will accumulate error and result in an 

unstable walking motion. To make the system return to the desired path, we propose an intermediate ASLIP 

model for each phase. Thus, the upper-level controller runs in simulation on the reference ASLIP model, 

bringing the simulated SLIP back to the desired trajectory. The lower-level control produces signals for the 

ATRIAS motors to track the commanded GRF profile resulting from the reference SLIP simulation. 
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Fig 5. COM trajectory of SLIP periodic walking with forward velocity of 1.15 m/s 

4.1. Upper level controller 

In the upper-level controller, SLIP is the template and ASLIP is its anchor. ATRIAS has deviations from 

the desired path at the beginning of each phase and ASLIP has the same initial condition as ATRIAS. We 

choose an appropriate ASLIP model for each walking phase appropriate for its initial errors, returning it to 

the desired SLIP trajectory.  

4.1.1. Single support phase 

ATRIAS with an unlocked torso has no external torques exerted from the ground to the leg or to the torso, 

and its only control input is its leg force. Its equivalent ASLIP model should have a similar structure in 

order to serve as an efficient template for the real robot. Thus, we consider the ASLIP model for this phase 

as illustrated in Fig. 4b, with a force actuator parallel to the leg spring. This system is underactuated and 

classic controllers are not applicable for trajectory tracking. Therefore we use a SLIP energy level control 

law [14] for the model given in (12) as below, so that the ASLIP force actuator can return it to the desired 

(constant) energy level of SLIP 

   
1

E ASLIP
ss p ssF t K q E t E      (17)   

in which 𝐾𝑝
𝐸  is a positive proportional coefficient, 𝑞𝑠𝑠1

𝐴𝑆𝐿𝐼𝑃  is the stance leg length (Fig. 3b), 𝐸(𝑡)  is 

ASLIP mechanical energy and �̅� is SLIP constant mechanical energy. To understand the intention of the 

control law, consider that if the leg is contracting and the energy of the system is larger than the nominal 

energy level, then the controller increases the leg force in order to slow down the mass (and vice versa). If 

the leg is extracting and the energy of the system is larger than the nominal energy level, then the controller 
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decreases the leg force in order to slow down the mass (and vice versa). Because the motors of the real 

robot will not able to track large deviations in the leg force, the ASLIP dynamic equations (12) are solved 

with control law (17) to return it the nominal gait (Fig. 5). Then the ASLIP trajectory and its toe force 

profiles are derived numerically. 

Note the swing leg desired angle before touch-down would be  

d TD  . (18)   

4.1.2. Double support phase 

The 2 DOF fully actuated ASLIP model in double support phase (Fig. 4b) is controlled using feedback 

linearization to track the desired SLIP trajectory. The vector of tracking error is defined as the subtraction 

of ASLIP and SLIP generalized coordinates in the double support phase 

ASLIP SLIP
ds ds e q q  (19)   

To achieve �̈� + 𝐊𝑑  �̇� + 𝐊𝑝𝐞 = 0, we derive the ASLIP control law for double support phase as 

    1 1
ASLIP ASLIP ASLIP SLIP SLIP ASLIP ASLIP

ds ds ds ds ds ds ds d ds p

 

   F B C D D C D K e D K e  (20)   

where 𝐊𝑝 and 𝐊𝑑 are 2 × 2 matrices that can be appropriately selected to have asymptotically stable 

response with a desired overshoot and rise time. The values of these controller coefficients have a critical 

effect on the overall stability of the robot walking. We select these matrices so that the rise time is equal to 

the double-support duration. In this way, the tracking error in the double support phase is reduced using a 

gradual variation in the GRF. 

By solving the ASLIP double support dynamic equations (14) with the same initial condition as the 

ATRIAS center of mass at the current double support phase, control law (20) results in an ASLIP double-

support trajectory in numerical simulation. Using the resultant leg forces as commands, the algorithm can 

calculate the leg angles and horizontal/vertical components of the GRF for each leg. These forces would be 

the desired leg force profiles for ATRIAS in the double support phase. 

4.2. Lower level controller 

In the lower level controller, the ASLIP-generated GRF profile serves as a reference for ATRIAS. For 

this approach to be successful, the ATRIAS and ASLIP model must be similar enough; thus we assume that 

ATRIAS has virtual legs from its COM to its toes. The lower-level control includes stance-leg control, 

swing-leg control and torso-angle control. The stance leg feedback loop uses force control, the swing leg 

loop uses position control along a desired path, and the torso loop has a force-angle-deviation controller. 
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4.2.1. Stance leg control 

To control the stance leg of ATRIAS its motors are commanded to track ASLIP toe force profiles 

generated in the upper level control using laws (17) and (20) for each of the walking phases. The algorithm 

converts the toe forces into motor torques by the mapping in (8). Then we choose a PID force control for 

the stance-leg motors similar to that used in the stance phase of running from [15] 

, , ,

Δ Δ Δ Δ
s d s d s d

s s
P D

s ss i i i
i i i I i i

g s s s

T T TK
u K K dt K

K K K K
   

     
           

     
     

  (21)   

in which 𝑢𝑖 is the torque of motor i of a stance leg, ∆𝜃𝑖
𝑠 is deflection of the torsional spring i, and 𝑇𝑖

𝑠,𝑑
 

is the desired torque of spring i. In this controller, the proportional and derivative parts control the value 

and time rate of the toe force, whereas the integral part controls the applied impulse to the robot. Since the 

momentum of a system varies with the applied impulse, controlling the applied impulse (to a system with 

known initial velocity) will determine its final velocity at the end of the phase.  

4.2.2. Swing leg control 

In the single support phase, in order to ensure smooth movement of leg 2 from take-off to touch-down 

we define a parabolic curve for point E (toe of swing leg) as (22). The coefficients are calculated using the 

position of the swing toe and the hip joint at the beginning and end of single support phase, taken from the 

SLIP gait. 

2
1 2 3d d dE E Ey c x c x c    (22)   

After establishing 𝑦𝐸𝑑
 as a function of 𝑥𝐸𝑑

, the algorithm needs to plan a time trajectory for 𝑥𝐸𝑑
 for 

which we examine two trajectory types: 

1) As the first solution, constant velocity is assumed for 𝑥𝐸𝑑
(𝑡) during the time duration 𝑡′ of the 

SLIP single support phase over the distance of SLIP swing toe range on the ground. 

2) The second solution for trajectory profile 𝑥𝐸𝑑
(𝑡)  starts with velocity zero, accelerates with 

constant acceleration 𝑎′ up to time 𝑡′ 2⁄ , and then decelerates with constant acceleration −𝑎′ to 

end with velocity zero at time 𝑡′ to reach the touch-down point of SLIP model.  

Using the real position of the hip joint and the desired toe position at each instance, the algorithm 

calculates the desired angle of the leg links. A PID controls the position of the swing leg in order to track 

its desired trajectory 

     2 2 2 2 2 2
d d d
i i ii P D i iI iu K q q K q q dt K q q            (23)   

in which, 𝑢𝑖 is the torque of motor i of the swing leg and 𝑞𝑖+2 is its relevant harmonic drive output angle 
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(Fig. 1). Because of different loads, different PID coefficients are needed for the stance leg and swing leg. 

A numerical optimization problem minimizes position error of ATRIAS swing toe at touch-down 𝑥𝐸
𝑇𝐷 for 

one step of a typical walking gait (Fig. 2 and 4), where the optimization parameters are PID coefficients.  

, ,

min
K K KP I D

TD
E A SLIPx x a   (24)   

4.2.3. Torso angle control 

The body mass model signifies the major difference between the ATRIAS and SLIP models. The body 

mass of SLIP is a point mass on the hip, whereas the torso of ATRIAS is a distributed mass with a moment 

of inertia. Therefore, in addition to control of ATRIAS COM based on SLIP model, its torso angle should 

be controlled independently. To this purpose we use a PD controller that deviates the desired angle of GRF 

with the amount of 𝛿𝜃𝐺𝑅𝐹 to return the torso angle to zero. 

   9 9
F F

GRF p ss d ssK q K q    (25)   

In the above equation, 𝐾𝑝
𝐹  and 𝐾𝑑

𝐹  are proportional and differential coefficients of force angle 

controller, and 𝑞𝑠𝑠9 is the ATRIAS torso angle. This controller generates a torque around the COM of 

ATRIAS, and rotates its torso in the opposite direction of the torso angle.  

4.3. Overall two level controller 

Fig. 7 shows the schematic block-diagram of the proposed two level controller as well as output 

parameters for each controller. The relevant equation number is written inside each block for easy reference. 

 

Fig 7. The proposed two level controller scheme 
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5. Results 

5.1. Numerical Parameters 

The kinematic and kinetic models in our ATRIAS simulation use the real robot’s parameters [15]. 

Regarding ATRIAS parameters, its equivalent SLIP model has a free leg length of 𝑙0 = 0.95 𝑚, spring 

stiffness of 𝐾𝑆𝐿𝐼𝑃 = 16000
𝑁

𝑚
 and point mass 𝑚 = 61.90 𝑘𝑔 equal to ATRIAS total mass. A periodic 

SLIP walking gait with forward velocity of 𝑉𝑥 = 1.15 
𝑚

𝑠
  defines the desired gait. The optimization 

procedure (16) using constrained Newtonian optimization of MATLAB fmincon produces initial conditions 

𝜃𝑇𝐷 = 21.15° and 𝐱ss,0
SLIP = [0.9478    0.1939    0.001584   − 1.2408]𝑇 for the periodic gait.  

In the upper-level control (17) a value of the coefficient is selected manually as 𝐾𝑝
𝐸 = 120 so that the 

tracking error approaches gently to zero during the single support phase without generating large variations 

in leg force.  

In the lower-level control for stance leg control (21) the PID coefficients for proper force tracking have 

been selected manually as 𝐾𝑃 = 5000, 𝐾𝐼 = 10000, 𝐾𝐷 = 50. Due to possible saturation of the ATRIAS 

motors we put a ±13 𝑁𝑚 saturation block to the output of control law. To ensure the swing toe clears the 

ground we assume its height in mid-stance in (22) as 𝑦𝐸𝑚𝑖𝑑
= 0.06 𝑚. For swing leg control (23) PID 

coefficients resulted by Newtonian optimization (24) using fmincon have the values of 𝐾𝑃 = 1033, 𝐾𝐼 =

−66.2, 𝐾𝐷 = 69.5. The controller coefficients values in (25) to minimize torso angle error at the end of 

single support phase are 𝐾𝑝
𝐹 = 0.6, 𝐾𝑑

𝐹 = 0.3 using a search algorithm. 

5.2. Simulation Results  

In the results section we refer to the upper-level numerical procedure that generates the GRF profiles i.e. 

the SLIP-plus-feedback-control simulation, as the virtual simulation since this numerical procedure would 

be required even when controlling a real robot. The simulation of ATRIAS is referred to as the experimental 

simulation, as this would be replaced by the experimental ATRIAS robot.  

Initializing consists of finding a condition for the desired periodic walking gait of SLIP model (Fig. 5) 

and then calculating the state vector for ATRIAS in the single support phase (using numerical rooting to 

generate the same COM state vector for ATRIAS as with SLIP in its initial condition). In this procedure, 

we assume the deflection of the torsional springs of the take-off leg is zero and the angular velocity of both 

sides are equal. In order to show robustness to uncertainty in the initial conditions, we perturb the initial 

stance state vector of ATRIAS by a uniformly distributed pseudorandom vector with ±10% amplitude and 

apply it to all simulations with accelerated and decelerated toe. 

In the upper-level, the ASLIP virtual simulation rejects disturbances and follows the SLIP gait very well 
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in both walking phases.  

In the single-support phase ASLIP has 2 DOF and only one control input (for energy level). Fig. 8 shows 

the energy-level tracking error of ASLIP in the single-support phase (virtual simulation). Fig. 8a 

corresponds to three steps of walking with constant velocity of 𝑥𝐸𝑑
 having no deviated initial condition. 

Fig. 8b is for four steps of walking with accelerated swing 𝑥𝐸𝑑
  having ±10%  uniformly distributed 

deviations of initial condition. The planned swing-toe error in each step starts with a nonzero value and 

approaches zero during the single-support phase. 

For the double-support phase, Fig. 9 shows the result of the virtual ASLIP simulation with control law 

(20). In this phase the 2 DOF of ASLIP are fully actuated and controllable. The tracking error components 

include leg length error (shown by blue thick curves) and leg angle error (shown by green thin line with 

zero value). One conventional method of trajectory tracking in fully actuated systems is to determine 

coordinates q𝑆𝐿𝐼𝑃 desired trajectory as a function of time and to calculate the error vector using the current 

coordinates q𝐴𝑆𝐿𝐼𝑃 in each instance. However, this method would cause instability of the controller for the 

case when the ASLIP leg angle is larger than the SLIP leg angle at the beginning of the stance phase. In 

these cases, instead of forward motion, the controller tries to move ASLIP backwards in order to match 

SLIP trajectory. This action generates improper GRFs in double support phase and sometimes the foot takes 

off early in the double-support phase. Thus, instead of interpolating the desired SLIP state vector with a 

time index we interpolate it using the leg angle 𝑞2
′ . The error vector then follows from the desired state 

vector of ASLIP at the current leg angle. In the virtual simulation, the leg angle error remains zero and the 

leg length error is converging toward zero (Fig. 9).  

  

(a)                                              (b) 

Fig 8. Energy level tracking error of ASLIP in single support phase (a) for 3 steps of ATRIAS unstable walking with 

constant velocity of 𝑥𝐸 (b) for 4 steps of ATRIAS stable walking with accelerated and decelerated 𝑥𝐸 
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(a)                                              (b) 

Fig 9. Trajectory tracking error of ASLIP in double support phase (a) for 3 steps of ATRIAS unstable walking with constant 

velocity of 𝑥𝐸 (b) for 4 steps of ATRIAS stable walking with accelerated and decelerated 𝑥𝐸 

 

In the experimental simulation that includes the lower-level control, ATRIAS tracks the planned toe force 

profiles of ASLIP. Fig. 10 shows the desired and real GRF components for one leg of ATRIAS. Fig. 10a 

depicts three walking steps with a fixed value of horizontal velocity of the swing toe that becomes unstable, 

and Fig. 10b shows four steps of walking with an accelerated and decelerated toe that is stable. In Fig. 10b, 

the time interval from 0 to 0.19 s is related to leg 1 of the single-support phase, and the time interval 0.19 s 

to 0.33 s is for leg 1 of the double-support phase. At the end of this interval, one step of walking has been 

completed and the leg numbers become switched for the next step. The time interval 0.33 s to 0.52 s is 

related to leg 2 of the single-support phase, the swing leg, and thus no GRF exists. The curves in time 

interval 0.52 s to 0.67 s represent the GRF components of leg 2 in the double-support phase. At the end of 

this interval, the two walking gaits of the robot and one periodic orbit for one leg of the robot has been 

completed. In Fig. 10 the solid cyan lines depict ASLIP GRF profiles from the SLIP gait using control laws 

(17) and (20); dashed lines represent ATRIAS’s desired GRFs in order to keep the torso upright using 

control law (25). Oscillations and deviations of the desired force profile from the ASLIP force profile are 

due to the attempts to keep torso equilibrium. Thin (blue and green) solid lines depict ATRIAS’s resulting 

GRFs generated by control law (21) and the ATRIAS dynamic model solved during walking phases. Blue 

curves having both positive and negative small values show horizontal components and green curves (with 

only positive values) show the vertical components of GRFs. At the beginning of each step there is a 

deviation from the initial condition of the nominal SLIP gait, and so the generated desired force profiles for 

ATRIAS by ASLIP in each step has deviations from the nominal SLIP gait. The deviation in initial condition 

at each step is due to the existence of force tracking errors, trajectory tracking errors, and the imprecise 

touch-down state due to having series springs with motors and damping in the system (although series 
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spring have the advantage of isolating motors from touch-down impact, they generate undesirable vibrations 

in the swing leg and cause errors in trajectory tracking and touch-down).  

The variations in mechanical energy of ATRIAS, single support ASLIP, and SLIP model for 4 steps of 

stable walking with ±10% deviated initial condition are depicted in Fig. 11. The acronyms SS and DS 

specify single support and double support phase, respectively. Note the ASLIP energy level approaches the 

SLIP energy level in two initial steps, and still remains in the vicinity for the subsequent steps. However, 

the ATRIAS mechanical energy is larger and has considerably larger variations due to the rotational energies 

of its rigid body parts. 

 

 

(a)                                              (b) 

Fig 10. Vertical and horizontal components of the desired and real GRFs for one leg of ATRIAS (a) for 3 steps of ATRIAS 

walking with constant velocity of 𝑥𝐸 (b) for 4 steps of ATRIAS walking with accelerated and decelerated 𝑥𝐸 

 

 

Fig 11. Mechanical energy of SLIP, ASLIP and ATRIAS for 4 steps of ATRIAS walking 
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The ATRIAS motor torques for 5 steps of walking with accelerated velocity of 𝑥𝐸 are shown in Fig. 12. 

Solid lines stand for the single-support phase and dashed lines for the double-support phase. The torques of 

motors 1, 2, 3 and 4 are shown by lines with thicknesses 1, 2, 3 and 4, respectively. The saturation torques 

of the motors in ATRIAS are 13 Nm. Due to the short interval of single support phase and undesirable 

passive vibrations of leg links, the swing leg needs to reach the desired touch-down length and angle in 

almost the minimum possible time. This effort causes torque saturation of the swing leg motors in stance 

phase. If the settling time of the ASLIP controllers (17) and (20) are chosen very small, then ASLIP 

converges to the SLIP trajectory quickly but ATRIAS motors cannot track the resulting signals and the gait 

becomes unstable. To avoid this problem, we choose the rise time of the ASLIP controllers for each walking 

phase almost equal to time interval of that phase. 

The stick diagram for three steps of unstable walking using the designed two-level controller with a fixed 

velocity of 𝑥𝐸  is shown in Fig. 13, and four primary steps of stable walking with accelerated and 

decelerated 𝑥𝐸 appear in Fig. 14. In these figures there are three COM trajectories including the SLIP 

trajectory, the ASLIP trajectory, and the ATRIAS COM trajectory. The trajectory of the desired SLIP gait 

has been plotted by a dashed red line. Cyan thick curves depict the ASLIP trajectory that jumps to ATRIAS 

COM position at the beginning of each walking phase and then tracks SLIP energy level and trajectory 

using control laws (17) and (20). Blue thin curves are the ATRIAS COM trajectory resulting from tracking 

the ASLIP toe force profiles using (21). Trajectory errors increase at each step using the controller with a 

fixed horizontal velocity of swing leg and the robot with no deviated initial condition falls down in 4th step 

(Fig. 13). For the controller with accelerated swing leg, the errors are reduced and restricted to a limited 

bound - generating a stable walking motion even with ±10% deviated initial condition (Fig. 14). 

 

Fig 12. ATRIAS motor torques for 4 steps of SLIP based walking with accelerated velocity of 𝑥𝐸 
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Fig 13. Stick diagram of 3 steps of SLIP based walking of ATRIAS with constant velocity of 𝑥𝐸 

 

 

Fig 14. Stick diagram of 4 steps of SLIP based walking of ATRIAS with accelerated velocity of 𝑥𝐸 
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impact, existence of series elastic actuation system, and tracking errors of the controllers. Also, there are 

some tracking errors between ASLIP and SLIP models that are due to ASLIP underactuation in single 

support phase and choosing not very large coefficients of the feedback linearization controller because of 

the mentioned considerations in double support phase. Small deviations between ATRIAS COM and ASLIP 

trajectories are due to toe force tracking errors resulted mainly from motors saturation. The force tracking  

errors are maintained small enough by PID controller to be compensated at the next step and generate a 

stable and steady walking motion. Note that for this robot the touch-down event causes very low energy 

loss (about %0.1) mainly due to three qualities: the series-elastic actuation, relatively low velocities during 

walking, and very light-weight legs compared to the torso mass. 

To show stability and steadiness of the generated walking motion, horizontal and vertical components of 

the ATRIAS COM velocity just after touch-down for 25 steps of walking with accelerated and decelerated 

𝑥𝐸  and ±10%  deviated initial condition is demonstrated in Fig. 15. It shows that the COM velocity 

fluctuates considerably during initial four steps, then converges to a very narrow range around 1.2 𝑚/𝑠 

and remains steadily in that range. Its oscillations for walking with unlocked torso is much less than for 

running [15], because walking has less degrees of underactuation than running. According to Fig. 15 the 

horizontal velocity of the robot COM (forward velocity) converges to a value 2.6% less than the desired 

value for SLIP gait. This velocity deviation is inevitable in this control strategy because of complicated 

multibody hybrid dynamics, damping, the unlocked torso of the robot, and the system underactuation. 

5.1. Real-time execution considerations 

Our simulations show that the proposed controller in this paper is implementable in real time. The most 

  

Fig 15. Post touch-down horizontal and vertical components of ATRIAS COM velocity for 25 steps of SLIP based walking 

with accelerated velocity of 𝑥𝐸 
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time consuming calculations are related to solving differential equations for ASLIP GRF planning in upper 

level control. In single support phase, the numerical solution of differential equation (12) with control law 

(17) has an average time step of 7.6 ms. The average execution time for each time step with its GRF 

calculations is 11.9 ms using MATLAB on a computer with 3.5 GHz processor. Moreover, its equivalent C 

code takes just 0.24 ms for each time step, appropriate for real-time implementation. This is the main 

advantage of using SLIP in the higher level control, since equivalent numerical optimization and simulation 

with the ATRIAS model would most likely not run in real time with current technology.   

6. Conclusions 

In this work we designed and implemented a two-level control strategy for stable biped walking, suitable 

for the experimental biped robot known as ATRIAS. Since the ATRIAS dynamics are complex, in our novel 

approach ATRIAS follows some simple calculated SLIP dynamics i.e. SLIP motion defines a template while 

ATRIAS is the anchor. To prevent instability of the template, we developed active SLIP models for each 

walking phase. In this upper-level control, we choose the ASLIP controller gains such that the rise time is 

almost equal to the relevant phase duration. The trajectory of ASLIP is kept in a vicinity of the SLIP model, 

which avoids error accumulation. These high-level controls run in an ASLIP simulation, the virtual 

simulation, that results in a reference GRF profile (which the low-level ATRIAS controls can track). 

Because the ATRIAS torso is free to rotate (unlike SLIP), the low-level controls must also regulate torso 

angle. In addition, we also show that planning an appropriate trajectory and velocity profile for the swing 

leg has a vital role in gait stability. We find that a constant horizontal velocity for swing toe generates motors 

torques saturation, high tracking errors, and gait instability. Therefore, we tried planning acceleration and 

deceleration profiles for the swing toe, with zero velocity at take-off and touch-down, and found this results 

in a stable gait. Simulations of the ATRIAS dynamics with control, the experimental simulations, show that 

the proposed control generates a steady and stable walking gait with up to ±10% uniformly distributed 

deviated initial condition. For some uniformly distributed deviations with larger amplitude, the walking 

motion becomes unstable. This controller results in improved computationally efficiency compared to other 

methods, e.g. hybrid zero dynamics, and provides a framework for control of underactuated robots. Due to 

our use of a leg force controller, this controller has the potential for improved walking and running on 

uneven and soft terrains. 

For future work, this control strategy can guide the real robot walking and running, allowing 

determination of robustness to terrain softness. Also, SLIP could be replaced by an active template model, 

like point mass biped (PMB) [23], which should be able to generate more general gaits including 

asymmetric trajectories. 
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