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Abstract 
This research focuses on modeling and gait generation optimization of four different real biped models that include 

practical extended models of the theoretical SLIP and compass gait as a novelty of the work. The first model is kneed Biped 

model without spring that is a 5-rigid-link robot with four actuators in its hip and knees. The second model, kneed biped 

model with springs in shins is very similar to the first model, but its shins have linear springs. The 3rd model is a semi-

telescopic springy biped model and the 4th model is a semi-compass gait with kneed swing leg. Optimization parameters of 

their walking gait, objective functions and constraints are presented and successive stages of optimization are completed to 

find the optimal gaits. The efficiency of the gaits and required motor torques for the optimal gait of each model are 

illustrated. 
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1. Introduction 
A wide range of applications has been predicted for biped robots. These robots have lots of advantages such 

as adaptability with surroundings, high maneuverability, and demonstrating a better energy performance in 

dynamic walking gait (specifically biped robots with point feet). Biped robots are categorized into two 

groups of active and passive. Passive robots have advantages such as their minimum energy use, hence 

being economical energy-wise, lack of complexity in design and build, and giving an idea for the design of 

active robots. They also have some disadvantages such as limitation in motion, instability to external 

perturbations, and special environment requirement. Developing humanoid and animal-like robots that 

mimic the real case in kinematics, kinetics, and physiologic structure is very challenging. For example, 

humans are capable of doing a wide range of dynamic maneuvers with lots of complexities in different 

environments and at the same time handling external perturbations.  

To build a robot comparable to humans from efficiency, stability and strength point of view, it is required 

to have a better understanding of human walking. Therefore, a variety of models for human walking have 

been proposed and it is demonstrated that the simple passive SLIP (Spring Loaded Inverted Pendulum) 

model can mimic human motion on a flat surface more closely (Geyer et al., 2006). Energy consumption is 

another important factor in robot design. The problem of optimum gait for a robot, considering energy 

expenditure is usually formulated as a standard energy optimization problem. There are a couple of popular 

methods such as the shooting method (Rostami & Bessonnet, 2001) and parameter optimization method 

(Saidouni & Bessonnet, 2003).  

(Rummel et al., 2010) used a bipedal spring-mass model as the base of their model. This model predicts hip 

movement, single and double support phase and reaction force of the ground accurately. They investigated 

the effect of attack angle for the leg and its stiffness and showed that symmetrical gait with a smaller angle 

of attack will result in a better compromise between gait robustness and energy efficiency. They also 

demonstrated that there is a direct relationship between higher stiffness and robustness of walking gaits. (L. 

C. Visser et al., 2013) proposed a hybrid model for a biped walker with variable leg stiffness and a control 

strategy for a stable gait. They also showed that this control strategy is energy efficient. 
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(Hao et al., 2020) applied generating functions approach to an unconstrained biped robot to get optimum 

gaits. He also developed a PD controller to reduce the modeling error. (Bauer et al., 2016) optimized the 

walking energy efficiency of biped using elastic couplings at 0.3 to 2.3 m/s speed ranges. (Kai & Shibata, 

2015) developed a unique method based on the nonlinear optimization technic and discrete mechanics for 

compass-type biped on irregular grounds. They formulated a discrete gait generation method on the 

irregular ground and optimized it using the nonlinear control strategy with finite dimensions. Then, they 

proved their method for generating a stable gait for the CCBR (Continuous-time Compass-type Biped 

Robot) on irregular grounds. (Liu et al., 2019) developed a novel chattering-free pi sliding mode control 

for compass gait biped model that is a nonlinear underactuated system. 

(Srinivasan & Ruina, 2006) used a model to describe walking and running with an infinite variety of gaits. 

Simple optimization methods showed that biped motion can be controlled extensively via control of work 

performed of the legs. (Rokbani & Alimi, 2012) introduced an approach that can generate a gait for biped 

robots. Their method is combing a classic dynamic model with an inverse kinematic solver based on Particle 

Swarm Optimization (PSO). (Adolfsson et al., 2001) studied a passive three-dimensional model with ten 

degrees of freedom using simple models (McGeer & Alexander, 1990). Their model includes force 

discontinuities and instantaneous changes like impact in state variables. (Millard et al., 2011) focused on 

examining a control system that allows the robot to move at constant speeds like a human. Although the 

kinematics of the final model was very similar to the kinematic of human joints, the reaction force profile 

of the ground was different. (S. Shimmyo et al., 2010) used preview control with the virtual plane method 

to generate a pattern of walking. Using preview control, errors related to simple models can be reduced. 

With their developed pattern, model errors can be reduced directly and without using the preview control 

method. (Martin & Schmiedeler, 2014) studied four and six-link planar models with knee and rigid circular 

feet. The difference between the four and six-link models was the addition of ankle to the six-link model. 

They generated stable walking gaits for both models using the hybrid zero dynamics-based method. 

Compared to human walking, the six-link model could match closely, but the four-link model could not, 

which highlights the importance of the ankle in human walking. (Gamus & Or, 2015) investigated the 

hybrid dynamics of biped robots under slip-stick transitions of foot. They worked on two simple planer 

models with point feet including a rimless wheel and a compass biped. (Mandava et al., 2019) generated 

balanced gaits of a biped robot on stairs and sloping surfaces using an analytical approach. 

This research focuses on modeling, optimization, and gait generation of four different biped models. The 

models are the kneed biped model without spring, kneed biped model with spring in shins, semi-telescopic 

springy biped model, and semi-compass gait biped with kneed swing leg. These models are based on the 

TARMER (Tabriz Running Mechatronical Robot) that has been fabricated by our team with the capability 

of executing these gaits. This robot is shown in Fig. 1. Optimization is done based on the COT (Cost Of 

Transport) and periodic gait error improvement. The main contribution of this paper is developing novel 

practical extended models of the theoretical SLIP and compass gait models and comparing their efficiencies 

to the standard kneed model. These extended models have not been investigated in the previous works. 

Resulted different gaits for these biped models are compared and discussed based on the COT and required 

motor torques. 

 



 

Fig. 1. The TARMER robot with lockable springy legs 

2. Robot Models 

2.1 Kneed robot model without spring 
The first model is a robot with kneed leg and without spring. Each link for thigh and shin consists of a bar 

with a known mass, center of mass, and moment of inertia. Mass of the torso is assumed to be concentrated 

in the hip joint. Walking gait is composed of the single support phase, touch-down event, double support 

phase, and take-off event.  

2.1.1 Single support phase 

As shown in Fig. 2, in the single support mode, point 𝐴 is a pivoted connection and robot has four degrees 

of freedom, assuming a locked torso angle. Components of the generalized coordinates for this phase, 

angles of the links, are [𝒒𝑠𝑠]4×1. Locations of the COM (Center of Mass) of the links and torso are described 

in terms of the generalized coordinates. Linear and angular velocities of the COM of the links are written 

as a function of the time derivative of the generalized coordinates. It is assumed that the robot's body is 

constrained for rotation by a boom, so its angular velocity is zero. To use the Lagrangian equation to derive 

the equations of motion, kinetic and potential energies are calculated   

(1) 
𝑇 =

1

2
∑(𝑚𝑖𝑣𝑖
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(2) 𝑉 = ∑𝑚𝑖𝑔ℎ𝑖
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where  𝑣 is the velocity of the COM in 𝑚/𝑠, 𝜔 is the angular velocity in 𝑟𝑎𝑑/𝑠, 𝑚 is the mass in 𝑘𝑔, 𝐼 is 

the moment of inertia in 𝑘𝑔.𝑚2 and  ℎ is the height of the COM in 𝑚.  

 



 

Fig. 2. Kneed biped without spring in single support configuration. 

Using the Lagrangian function as 𝐿 = 𝑇 − 𝑉, Lagrange equation is 

(3) 𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝑄𝑖 , 𝑖 = 1,2,3,4 

where 𝑞𝑖 is the 𝑖th component of the generalized coordinates. Neglecting friction in the joints and applying 

the virtual work method, the generalized forces, 𝑄𝑖, will be 

(4) 𝑄1 = 𝑢1, 𝑄2 = 𝑢2, 𝑄3 = 𝑢3, 𝑄4 = 𝑢4 

 

After intruding Eq. 4 into Eq. 3, the general dynamic model of the stance phase will be 

(5) [𝐷𝑠𝑠(𝑞𝑠𝑠)]𝑛×𝑛[�̈�𝑠𝑠]𝑛×1 + [𝐶𝑠𝑠(𝑞𝑠𝑠, �̇�𝑠𝑠)]𝑛×1 = [𝐵𝑠𝑠]𝑛×𝑚[𝑢𝑠𝑠]𝑚×1 

 

In the equation above 𝐷𝑠𝑠(𝑞𝑠𝑠) is the matrix of inertia and 𝐶𝑠𝑠(𝑞𝑠𝑠, 𝑞𝑠𝑠̇ ) encompass Coriolis, gravity, and 

elastic effects. The degree of freedom is 𝑛 = 4, the number of control inputs is 𝑛 = 4 and 𝑢𝑠𝑠 is the input 

vector composed of torque of the motors. 𝐵𝑠 matrix results from Eq. 4 as follows 

(6) 
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0 0 0 1
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The state vector is defined as 𝑥𝑠𝑠 = [𝑞𝑠𝑠;  �̇�𝑠𝑠] and four second-order differential equations resulted from 

Eq. 5 are rewritten as eight first-order differential equations that will be the state equations as follows. 

(7) �̇�𝑠𝑠 = 𝑓𝑠𝑠(𝑥𝑠𝑠) + 𝑔𝑠𝑠(𝑥𝑠𝑠). 𝑢𝑠𝑠 

where 



(8) 
𝑓𝑠𝑠(𝑥𝑠𝑠) = [

�̇�𝑠𝑠(𝑥𝑠𝑠)

−𝐷𝑠𝑠
−1(𝑥𝑠𝑠). 𝐶𝑠𝑠(𝑥𝑠𝑠)
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(9) 

𝑔𝑠𝑠(𝑥𝑠𝑠) = [
0𝑛×𝑚

𝐷𝑠𝑠
−1(𝑥𝑠𝑠). 𝐵𝑠𝑠

] 

 

These equations are solved numerically by MATLAB. 

2.1.2 Double support phase 

The double support phase for this model is a two degree of freedom model. In this configuration, the motion 

of the front leg is fully dependent on the rear leg which is the reference leg. This method is an alternative 

to the method of using equations with four degrees of freedom and two constraint equations on the single 

support phase equations. The generalized coordinates and angles for the front leg are depicted in Fig. 3. 

Stride length, 𝑎, is the distance of legs’ toes on the ground in the double support phase. This distance is 

known from the final condition of the single support phase. 

 

 

Fig. 3. Double support phase for kneed biped without spring. 

 

Using Fig. 3, 𝑥𝑇 and 𝑦𝑇 are written in terms of the generalized coordinates by assuming the origin of the 

coordinates in point A. Then, to get 𝜃3 and 𝜃4 for the front leg in terms of the generalized coordinates (𝑞𝑑𝑠1, 

𝑞𝑑𝑠2), geometric relations from the triangle made by the front leg and ground is used. The dynamic equation 

of this 2 DOF system is written as follows, in which 𝑛 = 2 and 𝑚 = 2. 

(10) [𝐷𝑑𝑠(𝑞𝑑𝑠)]𝑛×𝑛[�̈�𝑑𝑠]𝑛×1 + [𝐶𝑑𝑠(𝑞𝑑𝑠, �̇�𝑑𝑠)]𝑛×1 = [𝐵𝑑𝑠]𝑛×𝑚[𝑢𝑑𝑠]𝑚×1. 

 

2.1.3 Energy performance of the robot 

Mechanical energy consumption of a mechanism with rotational actuators is written as, (Dadashzadeh et 

al., 2014) 



(11) 𝑊𝑡𝑜𝑡𝑎𝑙 = ∑ ∫ |�̇�𝑖 . 𝑢𝑖|
𝑡𝑠𝑡𝑒𝑝

0
𝑚
𝑖=1 𝑑𝑡. 

  

In this equation, 𝑢𝑖, �̇�𝑖 and 𝑡𝑠𝑡𝑒𝑝 are the number of the motors, torque of the motors, angular velocity of the 

motors and the time needed for one step including both single and double support phases. The COT is 

defined as the energy used per unit of weight per distance traveled. 

(12) 
𝐶𝑂𝑇 =

𝑊𝑡𝑜𝑡𝑎𝑙

𝑚𝑡𝑜𝑡𝑎𝑙 . 𝑔. 𝑎
 

where 𝑚𝑡𝑜𝑡𝑎𝑙 is the sum of all parts used in the robot.  

 

2.2 Kneed robot model with springy shin 
This model is a kneed biped where shins are telescopic springy, and only the hip and knees joints are active. 

Each link has mass and moment of inertia. The only difference with the previous model is in the springy 

shin that adds one passive joint and one degree of underactuation to the system in the single support phase 

and two degrees in the double support phase. The method of deriving governing equations is similar to the 

previous model.  

2.2.1 Single Support Phase 

This robot model has 5 DOF in this phase and its schematic view is similar to Fig. 2 with a variable length 

of AB segment which is assumed as the third component of the generalized coordinates for this phase. 𝑞𝑠𝑠1 

and 𝑞𝑠𝑠2 are angles of stance leg links and 𝑞𝑠𝑠4 and 𝑞𝑠𝑠5 are angles of swing leg links similar to the previous 

model. By calculating the linear and angular velocity of the links total kinetic energy of the robot is written 

using Eq. (1) and (2). The potential energy of the robot is calculated as 

(13) 
𝑉 = ∑𝑚𝑖𝑔ℎ𝑖

5

𝑖=1

+ ∑
1

2
𝑘𝑗𝑥𝑗

2

2

𝑗=1

 

where, ℎ is the height of the COM for each component in 𝑚, 𝑘 is the spring constant in 𝑁/𝑚, and 𝑥 is the 

change of the length of the spring in 𝑚. 

Similar to the previous model, the dynamic equation of this model in the stance phase is written as Eq. (5), 

in which 𝑛 = 5 and 𝑚 = 4. 𝐵𝑠𝑠  matrix for this model is 

 
(14) 

𝐵𝑠𝑠 =

[
 
 
 
 
1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1]

 
 
 
 

. 

 

2.2.2 Double Support Phase 

The kneed springy shin biped model in the double support phase is a four degree of freedom model whose 

generalized coordinates components are depicted in Fig. 4. 𝑞𝑑𝑠3 and 𝑞𝑑𝑠4 are the lengths of springy shins 

that vary due to their passive joints. Stride length, a, is a known parameter. 



 

Fig. 4. Kneed springy shin biped in the double support phase. 

The position of the torso is written as a function of the generalized coordinates. Then using triangle TCD 

and law of the cosines, the angles 𝜃3 and 𝜃4 of the second leg can be written as a function of 𝑞1 , 𝑞2, 𝑞3 and 

𝑞4. 

(15) 𝜃3 = 𝑡𝑎𝑛−1(
𝑎 − 𝑞3 𝑠𝑖𝑛( − 𝑞2 − 𝑞1) − 𝑙1 𝑠𝑖𝑛( − 𝑞1)

𝑌𝐴 + 𝑞3 𝑐𝑜𝑠( − 𝑞2 − 𝑞1) + 𝑙1 𝑐𝑜𝑠( − 𝑞1)
) + 𝑐𝑜𝑠−1(

𝑙1
2 − 𝑞4

2 + 𝑇𝐷
2

2𝑙1𝑇𝐷
) 

(16) 𝜃4 = 𝜋 − 𝑐𝑜𝑠−1(
𝑙1

2 + 𝑞4
2 − 𝑇𝐷

2

2𝑙1𝑞4
) 

Again, using the Lagrange equation, the dynamic model of this phase is derived as Eq. (10) in which 𝑛 = 4 

and 𝑚 = 2. 

Applied ground reaction forces to the toes are calculated by simultaneously solving Newton-Euler equations 

of all the links, having their velocities and accelerations known in each instance. These forces are used to 

detect a take-off event that ceases the double support phase. 

 

2.2.3 Touch-down 

When the stance leg of the robot in the single support phase swings forward and hits the ground, the single 

support state turns into a double support state. In this instance, ground impacts cause changes in the 

velocities of the links. Impact equation is written as 

(17) 𝐷𝑠𝑠(𝑞𝑠𝑠). (�̇�𝑠𝑠
+ − �̇�𝑠𝑠

−) = �̂� 

where 𝐷𝑠𝑠 is the inertia matrix of the single support phase. At touch-down instance, impact force �̂� at point 

D is exerted perpendicular to the springy leg link (Hu et al., 2011) making angle −𝜃4 − 𝜃3 with ground line 

according to Fig. 4. Virtual work resulted from this force can be written as 

(18) 
∑(�̂�𝑥

𝜕𝑥𝐷

𝜕𝑞𝑖
+

5

𝑖=1

�̂�𝑦

𝜕𝑦𝐷

𝜕𝑞𝑖
)𝛿𝑞𝑖 = ∑�̂�𝑖𝛿𝑞𝑖

5

𝑖=1

 

 



where  𝑞𝑖 is the 𝑖th component of the variable 𝒒𝑠𝑠 and, 𝑥𝐷 and 𝑦𝐷 are functions of 𝒒𝑠𝑠. Although there is 

an impact force applied to the leg 1 at pivoted point A, its virtual work is zero because of the zero 

displacement of the pivoted joint. Eq. (18) along with constraint equations of switching the generalized 

coordinates between the single support and double support phase, constitute touch-down map. Solving them 

together results in the post-impact velocities that are used as the initial condition of the next phase.  

2.3 Springy semi-telescopic leg robot model with kneed swing leg 
In the current study, the theoretic telescopic leg biped model was extended to a semi-telescopic leg robot 

model with a kneed swing leg to ensure clearance of swing leg from the ground and make the model 

practical. In this robot model according to Fig. 5, during the single support phase, the stance leg has a 

straight telescopic springy joint. The swing leg at first has a knee to swing forward and clear the ground 

and later when the shin is aligned with the thigh, the angle for the swing leg is locked and remains straight 

until touch-down. Then the double support phase is started, and both of the legs are springy telescopic. The 

dynamic model of the stance phase is derived as Eq. (5) with 𝑛 = 4 and 𝑚 = 3 for the first sub-phase, and 

𝑛 = 3 and 𝑚 = 2 for the second sub-phase. In the double support phase, it is derived as Eq. (10) with 𝑛 =

2 and 𝑚 = 1. For the details of deriving the equations for this type of robot, refer to (Dadashzadeh et al., 

2019).  

 

(a)                                                                      (b) 

Fig. 5. Springy semi-telescopic leg robot model with kneed swing leg in (a) single support and (b) double support phase. 

2.4 Semi-compass gait robot model with kneed swing leg 
As shown in Fig. 6, this model is similar to the previous model, but it does not have any springs. Also, this 

model does not have a double support phase as the single support phase switches to the next single support 

phase by an instantaneous touch-down event. Details of deriving equations for this robot can be found in 

the research conducted by (Dadashzadeh et al., 2019).  

 



     

(a)                                                                      (b) 

Fig. 6. Semi-compass gait robot model with kneed swing leg in the (a) first and (b) second sub-phase of single support phase. 

3. Gait Generation by Optimization 
To generate optimal gaits, two targets are considered for optimization. The first target is a periodic gait 

considering the error created between system states at the beginning of the gait and the end of the walking 

gait. The other target is optimizing the energy consumption of the robot’s motors during the gait.  

3.1 Kneed biped model without spring 
The optimization approach for the kneed biped robot is described here and the same approach applies to 

the rest of the models. The motors' torque functions are discretized as a first-order hold function with 4 

points, i.e. the discrete points are linearly interpolated to calculate torque value at any time. OP 

(Optimization Parameters) vector for one complete step of this robot model is considered as 

𝑂𝑃 = [𝑥𝑠𝑠1
, 𝑥𝑠𝑠2

, 𝑥𝑠𝑠3
, 𝑥𝑠𝑠4

, �̇�𝑠𝑠1
, �̇�𝑠𝑠2

, �̇�𝑠𝑠3
, �̇�𝑠𝑠4

, 

𝑈𝑠𝑠11
, 𝑈𝑠𝑠12

, 𝑈𝑠𝑠13
, 𝑈𝑠𝑠14

, 𝑈𝑠𝑠21
, 𝑈𝑠𝑠22

, 𝑈𝑠𝑠23
, 𝑈𝑠𝑠24

, 

𝑈𝑠𝑠31
, 𝑈𝑠𝑠32

, 𝑈𝑠𝑠33
, 𝑈𝑠𝑠34

, 𝑈𝑑𝑠11
, 𝑈𝑑𝑠12

, 𝑈𝑑𝑠13
, 𝑈𝑑𝑠14

, 

𝑈𝑑𝑠21
, 𝑈𝑑𝑠22

, 𝑈𝑑𝑠23
, 𝑈𝑑𝑠24

] 

 

(19) 

where, for example in motor torque 𝑈𝑆𝑆13
, subscripts 𝑆𝑆 stands for the Single Support phase, number 1 is 

the motor number and number 3 means the third point from four points of the first-order hold torque 

function, and 𝑑𝑠 shows the double support phase.  

The objective function considered for the optimization is the sum of the state error and energy expenditure 

function. Fig. 7 shows the optimization process for our first biped model and Fig. 8 shows optimized input 

torque for all motors during one complete step. Jumps of the torque values after 0.2 s is due to the phase 

change from single support to double support. The torque of motor 1, which is the motor actuating the hip 

of the stance leg, shows large values because it moves the robot forward. Also, motor 3 shows high values 

of positive and negative values as it accelerates and decelerates the thigh of the swing leg to move forward. 

Motors 3 and 4 are off in the double support phase.  

 



 

Fig. 7. Optimization process for the kneed biped robot. 

 

Fig. 8. Motors torque profiles for the kneed biped robot. 



 

Fig. 9. Error variation, cost of transport and linear velocity of the kneed biped robot during the optimization process 

Because the dynamic model is highly nonlinear with discontinuities, its optimization solution is likely 

trapped in local minimums. To resolve this problem, successive optimizations were used whose start points 

are the final points of the previous optimization. Fig. 9 shows the progression of the successive 

optimizations. The velocity in 𝑥 direction remains constant, because of the penalty function. The red curve 

shows the change in the state error which is reduced substantially during 5 times optimization. COT 

function also shows a smooth drop. The Stick diagram of the robot for the resultant gait is shown in Fig. 

10. The COM path in this gait is a curve with a very large radius of curvature that looks like a line in the 

figure. The phase diagram of the thigh is shown in Fig. 11 where it shows a periodic motion. This model 

generates an efficient gait with a COT of 0.66. 

 

Fig. 10. Stick diagram of the resultant walking gait for the kneed biped robot. 



 

Fig. 11. Phase diagram for the thigh of the kneed biped robot 

 

3.2 Kneed biped robot with Springy shins 
Due to the high degrees of underactuation and passive motion of the springs in this robot model, gait 

optimization was very challenging. Therefore, the gait generated for this robot after several stages of 

optimization has a COT of 4.2, which is not very efficient. Fig. 12 shows the stick diagram of the resultant 

walking gait for this robot model.  

 

Fig. 12. Stick diagram for the kneed biped robot with spring legs 

3.3 Springy semi-telescopic leg robot with kneed swing leg 
Successive optimization processes are used to generate optimal gait for this robot model. The resultant 

motor torques after successive optimization stages are shown in Fig. 13. Two discontinuity points are 

noticed in the graph. The first one is due to the switching between the sub-phases of the single support 

phase, in which the swing leg is straightened and locked. The second one is at the touch-down event and 

switching to the double support phase. The torque of motor 1, which is controlling the thigh of the stance 

leg, shows a negative peak value at the beginning of the single support phase to accelerate the robot. The 



torque of motor 2 is zero since the knee is locked. The torque of motor 4, which is controlling the motion 

of the shin of the swing leg, is constant in all cases because this joint has a fixed planar trajectory. 

Fig. 14 shows the stick diagram of the walking gait of this robot. This gait generates a bigger stride length 

than the kneed models, but it has a larger COT equal to 1.09. 

 

 

 

Fig. 13. Motors torque profiles for the springy semi-telescopic leg robot. 

 

 

Fig. 14. Walking gait for the springy semi-telescopic biped. 

 



3.4 The semi-compass gait robot with kneed swing leg 

Again, successive optimizations are used to find an energy efficient periodic gait for the semi-

compass gait robot model with kneed swing leg. The resulted torque profiles of the motors for this 

model are shown in Fig. 15. There is only one discontinuity in this graph related to the switching 

between the single support sub-phases. There is no continued double support phase for this model. 

This figure shows that the motors of the thigh and shin of the swing leg during the single support phase do 

not need noticeable torque values, but motor 1 for the stance leg thigh needs bigger torques to accelerate 

the robot mass for a periodic motion.  

Fig. 16 illustrates the stick diagram for a full cycle of this model for periodic walking gait; the COT is 0.91. 

 

 

Fig. 15. Torque profiles for motors of semi-compass biped. 

 

 

Fig. 16. Motion graph for semi-compass robot 

 

 



4. Comparison of the Robot Models 
The cost of transport gives a useful understanding of the robot’s energy expenditure, therefore many 

researchers use this criteria to compare robots (Sellers et al., 2005). Our robot’s total mass is 4.076 kg and 

a velocity of 0.6 m/s is considered for all models. Table 1. Summarizes the COT, Error, and velocity 

comparison for the different models. The reason that error of the semi-compass robot is small is because of 

its lower degrees of freedom and not using a passive and non-controllable spring element in its 

configuration. It is important to note that the robot’s configuration is underactuated in springy versions. 

While the ideal compass gait model has passive walking gaits with COT of zero, and for its active gaits 

with different step length and forward velocity optimized gaits have been generated with COT less than 

0.02 (An et al 2015), our model has much higher COT at the order of real robots. This is because our model 

possesses real-world condition such as a kneed swing leg to clear the ground. 

 

Table 1. Comparing different models of robots 

Robot Model Velocity (m/s) Error COT (𝐽. 𝑁−1𝑚−1) 

Kneed without spring 0.6 0.19000 0.6658 

Kneed with springy shin 0.6 1.3129 4.267 

Springy semi-telescopic robot 0.6 0.00320 1.0945 

Semi-compass gait robot 0.6 0.00006 0.9146 

Human (Soo & Donelan, 2010) - - 0.3 

ASIMO Robot (Collins et al., 2005; Y. 

Sakagami et al., 2002) 

- - 3.2 

MIT Robot (Tucker, 1975) - - 10.5 

Delft Robot (Collins et al., 2005; Y. 

Sakagami et al., 2002) 

- - 5.3 

 

From the COT point of view, the robots are ranked from the best to the worst as the kneed robot without 

spring, semi-compass gait robot with kneed swing leg, semi-telescopic leg robot with kneed swing leg, and 

kneed robot with springy shins. There is no motor to control telescopic joints in springy versions of the 

robot models. Motors act indirectly to control springs’ deformation and their speed, which makes 

optimization inefficient. During the running gait of the springy semi-telescopic biped, when the front leg 

of the robot hits the ground, impact and inertia forces resulted from the impact are stored in the spring. This 

stored energy is used to pass the robot from the support point and saves some energy, but during walking 

motion, the spring force is not used efficiently for the next phase and results in a waste of energy.  

The error for the kneed models with a higher degree of freedom is higher since the dynamic of the system 

is more complicated and the optimization parameters are more. The kneed robot also has the lowest COT 

which shows the advantages of the kneed leg in humans and animals. This is mainly because in the semi-

telescopic and semi-compass biped robot, the stance leg motor should apply a larger toque to move the 

body around the whole leg, compared to the kneed robot that the stance leg is divided by the knee and the 

torques are distributed more efficiently. Table 1. compares the models in this project with the works of 

others. Our models have reasonable and less cost of transports relative to the other real multibody biped 

robots. 

 



Conclusion 

This research focuses on generating realistic gaits for the theoretic biped models extended to practical ones 

while optimizing the performance of the robot. To reach this goal, different architectures of a real biped 

robot were studied. These models are kneed biped robot without spring, kneed biped with springy shins, 

springy semi-telescopic robot, and semi-compass robot with kneed swing leg. All walking phases of these 

robots were modeled. Initial conditions and torque of the motors were calculated by solving optimization 

problems to find periodic gaits with a minimum cost of transport.  

Based on the results of the simulation, the most efficient robot structure considering the cost of transport 

for planar walking with a constrained angle of the torso is the kneed biped robot without spring. 

Surprisingly, this standard kneed biped model has better performance in walking of a multibody robot than 

semi-compass gait and semi-telescopic springy leg robot. Although the theoretic compass gait model and 

SLIP model have high efficiencies, they neglect how the swing leg clears the ground. The main contribution 

of this work is to extend these theoretic models to real-world conditions and comparing their efficiencies 

with the standard kneed mechanism. The semi-compass and springy semi-telescopic robot models stand on 

a straight leg and push the body forward and at the same time, the other leg bends the knee and clears the 

ground. The walking gait of the semi-compass robot had the second rank regarding the COT. This was 

mainly because moving and straightening the kneed swing leg in a real way increased the COT. The springy 

semi-telescopic robot although has a good performance from the energy point of view in running mode, by 

storing and releasing the energy of the motors in the stance leg spring, it is not efficient in walking mode. 

The presence of the springs caused uncontrollable motions and wasted the energy of the motors; 

consequently increasing the COT. For the kneed robot with spring, because of the nonlinearity and presence 

of two springs in the shins of the robot, motors could not control the robot properly. Spring’s deflection 

wasted a portion of the energy from the motors and made the robot not energy efficient. Due to all these 

issues, optimized gait had the worst efficiency.  

Optimizing spring stiffnesses of the different models investigated in this work can be done in future works 

to explore more optimal models and gaits. 
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