

A New Generative Adversarial Network

for Improving Classification

Performance for Imbalanced Data

Emilija Strelcenia (S5223247)

A New Generative Adversarial Network for

Improving Classification Performance for

Imbalanced Data

2

A thesis submitted in partial fulfilment for the

degree of Doctor of Philosophy

in the

Department of Creative Technology Bournemouth

University

September 2023

3

Abstract

 Data is a common issue in many industries, particularly in fields such as fraud detection and medical diagnosis.

Imbalanced data refers to datasets where the distribution of classes is not equal, resulting in an over-

representation of one class and an under-representation of another. This can lead to biassed and inaccurate

machine learning models, as the algorithm may be inclined to favour the majority class and overlook important

patterns in the minority class. Various sectors have utilised deep neural networks for data synthesis. However,

according to research papers in these fields, balanced data outperforms imbalanced data when it comes to deep

neural networks. Although deep generative approaches, such as Generative Adversarial Networks (GANs), are

an efficient method of augmenting high-dimensional data, there is a lack of research on their effectiveness with

credit card or breast cancer data and the current methods demonstrate limitations. Our research focuses on

obtaining a great number of sets of data that are valid and resemble the minority class, in this case, fraudulent or

malignant samples. Having more data like this can be used to train a binary classifier so it's effective against

fraud or cancer diagnosis. To overcome challenges opposed to existing methods we have developed a novel

GAN-based method called K-CGAN, which has been tested on credit card fraud and breast cancer data. K-

CGAN is designed to generate synthetic data that resembles the minority class, effectively balancing the dataset

and improving the performance of binary classifiers. Our research demonstrates the effectiveness of K-CGAN

in handling complex data imbalance problems often encountered in practical applications. In addition, the

experiments performed on different datasets indicate that K-CGAN can be used for various purposes. The

application of machine learning algorithms in various industries has become increasingly popular in recent years.

However, the quality and quantity of available data are crucial factors that directly impact the accuracy and

reliability of these models. The scarcity and imbalance of datasets in certain domains pose challenges for

researchers and practitioners, and the need for effective solutions is more pressing than ever. In this context, K-

CGAN provides a promising approach to address data imbalance and improve the performance of machine

learning models. Our results show that K-CGAN can be applied to different datasets with different

characteristics, making it a valuable tool for data scientists and practitioners in various fields.

4

4

Acknowledgements

 I am deeply grateful to my supervisor, Professor Simant Prakoonwit, for his unwavering support and guidance

throughout my entire PhD journey. His expertise and faith in my abilities were instrumental in helping me

successfully complete this challenging endeavor. Even during the toughest times, his motivational words and

insightful yet critical suggestions pushed me to constantly strive for improvement.

 I am also immensely thankful to Bournemouth University, a place that has not only provided me with a world-

class education but has also introduced me to a community of inspiring individuals. The collaborative and

nurturing environment fostered at the university has played a significant role in shaping my academic and

personal growth.

 Furthermore, I cannot express enough gratitude towards my family, especially my mother, for her unwavering

support and understanding during the difficult phases of my life. Although my father is no longer with us, his

legacy of strength and determination continues to inspire me every day. I owe them a tremendous debt of

gratitude for their unwavering dedication, love, and constant motivation that kept me going through the

challenges of my PhD journey. I consider myself incredibly proud and privileged to have such supportive parents

who have been my pillars of strength.

 I am deeply honoured and grateful to have received several prestigious Awards at the IEEE 2022 International

conferences. These accolades, including the Significant Contribution Award at CAIT 2022, the Best Presentation

Award at the same conference, the Best Paper Award at CoNTESA '22, and the Excellent Presentation Award at

ICPES 2022, represent a culmination of dedicated effort and passion in the field of computer science and artificial

intelligence. I extend my heartfelt gratitude to the organizers, reviewers, and fellow participants for their

recognition and support. These Awards serve as a motivating force to continue pushing boundaries and

contributing meaningfully to the advancement of these critical domains. Thank you for this tremendous honour.

 In conclusion, I am truly humbled and honoured to have had the privilege of working with remarkable mentors,

being part of a nurturing academic community, and having the unwavering support of my family. Their collective

contributions have shaped me into the researcher I am today, and for that, I will forever be grateful.

5

5

 Contents

Abstract ... 3

List of Publications ... 13

Chapter 1 ... 15

1.0 Introduction .. 15

1.1 Background of the Problem ... 16

1.1.1 Statement of the Problem ... 17

1.1.2 Purpose of the Study .. 17

1.1.3 Objectives .. 18

1.1.4 Impact of the Study .. 18

1.1.5 Importance of the Study ... 18

1.2 Link to Existing Knowledge ... 19

1.2.1 Industry Insights .. 19

1.3 Contributions of This Thesis ... 20

1.4 Thesis structure... 22

Chapter 2 ... 23

Literature review .. 23

2.1 Introduction .. 23

2.2 Algorithm-Level Approaches .. 25

2.3 Data-Level Approaches .. 27

2.3.1. Sampling Based Techniques ... 33

2.3.2. GAN-Based Techniques ... 34

2.4 Classifiers .. 38

2.4.1 XGBoost .. 38

2.4.2 Random Forest ... 38

2.4.4 MLP ... 39

2.4.5 Logistic Regression .. 39

2.5 Overview of State-of-the-art Methods .. 39

2.5.1 Resampling (Oversampling and Undersampling) .. 40

2.5.2 SMOTE .. 41

2.5.3 ADASYN ... 43

2.5.4 Ensembling methods .. 43

2.5.4 GAN based methods .. 44

2.5.5 Sampling vs GAN-based techniques ... 48

2.5.6 Summary .. 48

2.6 Methodology .. 49

Chapter 3 ... 51

Kullback-Leibler Divergence Conditional GAN (K-CGAN) .. 51

3.1 Introduction .. 51

3.2 K-CGAN Architecture and Implementation .. 51

3.2.1 KL-Divergence Loss Function ... 62

3.2.2 The Binary Cross-Entropy Loss... 64

3.2.3 Loss Functions of K-CGAN .. 65

3.2.4 Advantages of using Novelty Loss .. 70

6

6

3.2.5 Disadvantages of using Novelty Loss .. 70

3.3 The Discriminator and the Generator Architectures of K-CGAN 71

Chapter 4 ... 77

Novelty Loss development: Implementation and Experiments using Multiple Methods 77

4.1. Introduction ... 77

4.2 Datasets Pre-processing and Architectures .. 77

4.3 Experimental Settings .. 78

4.3.1 Hyperparameter Settings of GAN-based Oversampling Methods 79

4.3.2 Hyperparameter Settings of Oversampling Methods ... 81

4.3.3. Hyperparameter Settings of Classification Methods .. 82

4.3.4 Original and Balanced Datasets using Oversampling Techniques 83

4.3.5 Generator and Discriminator Architectures of GAN based Methods 84

4.3.6 GAN Training: Generator and Discriminator Losses .. 88

4.3.7 Results and Comparisons of Classification Models ... 90

4.4 Development of K-CGAN Framework: Impact of Custom Loss 97

4.4.1 Experiment 1: K-CGAN with Novelty KL Loss without SMOTE 98

4.4.2 Experiment 2: K-CGAN with Novelty KL Loss with SMOTE 99

4.4.3 Experiment 3: K-CGAN without KL Loss with SMOTE .. 102

4.4.4 Experiment 4: K-CGAN with Novelty KL Loss without SMOTE 104

4.4.5 Comparison and Analysis of 1-4 Experiments .. 105

4.4.6 PCA Representation Analysis .. 109

4.4.7 Impact of KL Loss in Training .. 111

4.4.8 Experiments with Batch Normalisation ... 112

4.5 GAN-based methods Hyperparameter tuning with credit card fraud and breast cancer

data ... 113

4.5.1 Hyperparameter tuning with credit card fraud data ... 113

4.5.2 Hyperparameter tuning with breast cancer data ... 121

4.6 Optimised K-CGAN Novelty Loss Evaluation comparison with other methods on credit

card fraud data.. 129

4.6.1 Hyperparameter Settings .. 131

4.6.2 Results Analysis ... 136

4.6.3 Classification performance with original dataset ... 148

4.6.4 Classification performance with balanced dataset using Novelty K-CGAN 149

4.6.5 Classification performance with balanced dataset multiple models comparison 150

4.6.6 Impact of Oversampling using Novelty K-CGAN .. 155

4.7 Optimized Novelty Loss Evaluation comparison breast cancer data 156

4.7.1 Hyperparameter Settings .. 157

4.7.2 Results Analysis ... 163

4.7.3 Classification performance with original breast cancer data 173

4.7.4 Classification performance with balanced dataset ... 174

4.7.5 Classification performance with balanced dataset multiple models comparison 176

Chapter 5 ... 181

Discussion .. 181

Chapter 6 ... 189

Conclusion and Future Work .. 189

6.1 Contributions .. 190

6.2 Further work ... 192

7

7

List of References .. 193

Appendix .. 209

8

8

List of Figures
Figure 1: GANs Architecture .. 35

Figure 2: Techniques to handle imbalanced classification issues ... 40

Figure 3: Experiment flow .. 50

Figure 4: Process steps of CGAN architecture ... 53

Figure 5: Architecture of K-CGAN method ... 54

Figure 6: For similar probability distributions KL Divergence is closer to 0 and for dissimilar probability

distributions they are high values highlighting divergence ... 55

Figure 7: TensorFlow’s representation of K-CGAN: (a) Discriminator; (b) Generator and (c) Network Layers

& Training Architecture... 72

Figure 8: The WGAN Generator (a) and Discriminator (b), SDG GAN Generator (a) and Discriminator (b),

NS GAN Generator (e) and Discriminator (f), LS GAN Generator (g) and Discriminator (h), K-CGAN

Generator (j) and Discriminator (k) ... 85

Figure 9: (a) The discriminator and generator losses of WGAN, (b) the discriminator and generator losses of

SDG GAN (b), (c) the discriminator and generator losses of LS GAN, (d) the discriminator and generator

losses of NS GAN, (e) the discriminator and generator losses of K-CGAN ... 88

Figure 10: (a) ROC curve for original imbalanced dataset, (b) ROC curve for balanced dataset utilising

SMOTE, (c) ROC curve for balanced dataset utilising ADASYN, (d) ROC curve for balanced dataset utilising

B-SMOTE, (e) ROC curve for balanced dataset utilising WGAN, (f) ROC curve for balanced dataset utilising

SDG GAN, (g) ROC curve for balanced dataset utilising NS GAN, (h) ROC curve for balanced dataset

utilising LS GAN, (i) ROC curve for balanced dataset utilising K-CGAN ... 90

Figure 11: Cosine Similarity strategy ... 97

Figure 12: Distribution charts showing the similarity scores of anonymized features (V1 to V28) and Amount.

The feature columns (and Amount feature): Amount, V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12,

V13, V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V14, V15, V16, V17, V18, V19, V20, V21, V22,

V23, V24, V25, V26, V27, and V28 for experiment 1 .. 99

Figure 13: Distribution charts showing the similarity scores of anonymized features (V1 to V28) and Amount.

The feature columns (and Amount feature): Amount, V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12,

V13, V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V24, V25, V26, V27, and V28 for experiment 2

with implementation of SMOTE to assist with K-CGAN (with KL divergence) training 101

Figure 14: Distribution charts showing the similarity scores of anonymized features (V1 to V28) and Amount.

The feature columns (and Amount feature): Amount, V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12,

V13, V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V24, V25, V26, V27, and V28 experiment 3

without KL Loss GAN with SMOTE .. 103

Figure 15: Distribution chart showing the similarity scores of anonymized features (V1 to V28) and Amount.

The feature columns (and Amount feature): Amount, V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12,

V13, V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V24, V25, V26, V27, and V28 experiment 4 ... 105

Figure 16: PCA comparison original and generated data: (a) and (b) experiment 1, (c) and (d) experiment 2,

(e) and (f) experiment 3, (g) and (h) experiment 4 .. 110

Figure 17: K-CGAN discriminator loss without batch normalisation (a), K-CGAN discriminator loss with

batch normalisation (b), K-CGAN discriminator loss extremely large networks (c) 112

Figure 18: K-CGAN generator (a) and discriminator (b) loss credit card fraud data 130

Figure 19: Correlation metric comparison of Original dataset, SMOTE, ADASYN, B-SMOTE, Vanilla

CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN credit card fraud data 136

Figure 20: Single column ‘Amount’ distribution comparison of Original dataset, SMOTE, ADASYN, B-

SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN credit card fraud data (a),

‘V1’ (b), ‘V2’ (c), ‘V3’(d), ‘V4’ (e), ‘V5’ (f),‘V6’ (g), ‘‘V7’ (h), ‘V8’ (i), ‘V9’ (j), ‘V10’ (k),‘V11’ (l), ‘V12’

(m), ‘V13’ (n), ‘V14’ (o), ‘V15’ (p), ‘V16’ (q), ‘V17’ (r), ‘V18’ (s), ‘V19’ (t), ‘V20’ (u), ‘V21’ (v), ‘V22’

(w), ‘V23’ (x), ‘V24’ (y), ‘V25’ (z), ‘V26’ (z2), ‘V27’ (z3), ‘V28’ (z4) ... 140

Figure 21: Bi-variate distribution ‘Amount vs V6’ comparison of Original dataset, SMOTE, ADASYN, B-

SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with Credit card fraud data

9

9

(a), ‘Amount vs V7’ (b), ‘Amount vs V14’ (c), ‘V1 vs V3’ (d), ‘V1 vs V4’ (e), V1 vs V5’ (f), ‘V1 vs V7’ (g),

V1 vs V10 (h),‘V1 vs V11’ (i),‘V1 vs V16’ (j), ‘V1 vs V17’(k), ‘V1 vs V5’ (l), ‘V2 vs V11’ (m), ‘V3 vs V5’

(n), ‘V3 vs V7’ (o) .. 146

Figure 22: ROC curves (a) original imbalanced dataset, (b) balanced dataset with SMOTE, (c) balanced

dataset B-SMOTE, (d) balanced dataset with ADASYN, (e) balanced dataset with Vanilla CGAN, (f) balanced

dataset with WGAN, (g) balanced dataset with SDG GAN, (h) balanced dataset with NS GAN, (i) balanced

dataset with LS GAN, (j) balanced dataset with K-CGAN ... 151

Figure 23: K-CGAN generator (a) and discriminator (b) loss breast cancer data .. 156

Figure 24: Correlation metric comparison of Original dataset, SMOTE, ADASYN, B-SMOTE, Vanilla

CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN breast cancer data .. 163

Figure 25: Single column ‘area_mean’ distribution comparison of Original dataset, SMOTE, ADASYN, B-

SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN breast cancer data (a),

‘area_se’ (b), ‘area_worst’ (c), ‘compactness_mean’ (d), ‘compactness_se’ (e), ‘compactness_worst’ (f),

‘concave points_mean’ (g), ‘concave points_se’ (h), ‘concave points_worst’ (i), ‘concavity_mean’ (j),

‘concavity_se’ (k), ‘concavity_worst’ (l), ‘fractal_dimension_mean’ (m), ‘fractal_dimension_se’ (n),

fractal_dimension_worst’ (o), ‘perimeter_mean’ (p), ‘perimeter_se’ (q), ‘perimeter_worst’ (r),‘radius_mean’

(s),‘radius_se’ (t), ‘radius_worst’ (u), ‘smoothness_mean’ (v), ‘smoothness_se’ (w), ‘smoothness_worst’ (x),

‘symmetry_mean’ (y), ‘symmetry_se’ (z), ‘symmetry_worst’ (z1), ‘texture_mean’ (z2), ‘texture_se’ (z3),

‘texture_worst’ (z4) ... 167

Figure 26: Bi-variate distribution ‘area_mean vs symmetry_worst’ comparison of original dataset, SMOTE,

ADASYN, B-SMOTE, Vanilla GAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN on breast cancer

data (a), ‘compactness_worst vs symmetry_worst’ (b), ‘concavity_se vs symmetry_se’ (c),

‘fractal_dimension_worst vs area_se’ (d), ‘fractal_dimension_worst vs radius_se’ (e),

‘fractal_dimension_worst vs symmetry_worst’ (f), ‘perimeter_se’ vs concavity_mean’ (g), ‘perimeter_worst

vs radius_mean’ (h), ‘radius_mean vs smoothness_se’ (i), ‘radius_se vs area_worst’ (j), ‘smoothness_se vs

concavity_se’ (k), ‘smoothness_se vs perimeter_se’ (l), ‘symmetry_se vs compactness_worst’ (m),

‘symmetry_worst vs compactness_se’ (n), ‘texture_mean vs fractal_dimension_se’(o) 171

Figure 27: ROC curves (a) original imbalanced dataset, (b) balanced dataset with SMOTE, (c) balanced

dataset ADASYN, (d) balanced dataset with B-SMOTE, (e) balanced dataset with Vanilla CGAN, (f) balanced

dataset with SDG GAN, (g) balanced dataset with NS GAN, (h) balanced dataset with WGAN, (i) balanced

dataset with LS GAN, (j) balanced dataset with K-CGAN ... 176

10

10

List of Tables

Table 1: Novelty K-CGAN Optimised hyperparameter settings for credit card fraud data 58

Table 2: Novelty K-CGAN Optimised hyperparameter settings for Breast cancer data 59

Table 3: Vanilla CGAN, WGAN and NS GAN hyperparameter settings .. 80

Table 4: LS GAN, SDG GAN and Custom K-CGAN initial experimental hyperparameter settings 81

Table 5: SMOTE, ADASYN and B-SMOTE hyperparameter settings .. 81

Table 6: Classification methods hyperparameter settings ... 82

Table 7: Original imbalanced credit card fraud dataset .. 83

Table 8: Balanced credit card fraud dataset by oversampling the minority class with SMOTE, B-SMOTE and

ADASYN and GAN based methods .. 83

Table 9: Classifiers performance on original imbalanced dataset .. 91

Table 10: Classifiers performance on balanced dataset SMOTE oversampling the minority class.................... 92

Table 11: Classifiers performance on balanced dataset ADASYN oversampling the minority class 92

Table 12: Classifiers performance on balanced dataset B-SMOTE oversampling the minority class................ 93

Table 13: Classifiers performance on balanced dataset using SDG GAN by oversampling the minority class . 94

Table 14: Classifiers performance on imbalanced dataset NS GAN oversampling the minority class 94

Table 15: Classifiers performance on imbalanced dataset using LS GAN to oversampling the minority class 95

Table 16: Classifiers performance on imbalanced dataset using Novelty Loss K-CGAN by oversampling the

minority class ... 96

Table 17: Cosine Similarity Scores comparison of each variable in experiments 1, 2, 3 & 4 106

Table 18: LS GAN hyperparameter tuning parameters .. 113

Table 19: LS GAN top 5 experiments .. 114

Table 20: NS GAN hyperparameter tuning parameters .. 115

Table 21: NS GAN top 5 experiments .. 115

Table 22: SDG GAN hyperparameter tuning parameters ... 117

Table 23: SDG GAN top 5 experiments ... 117

Table 24: WGAN hyperparameter tuning parameters .. 118

Table 25: WGAN top 5 experiments .. 119

Table 26: Novelty loss K-CGAN hyperparameter tuning parameters .. 120

Table 27: Novelty loss K-CGAN top 5 experiments .. 120

Table 28: Novelty loss K-CGAN hyperparameter tuning large set of parameters for breast cancer data 121

Table 29: Novelty loss K-CGAN top 5 experiments large set of parameters for breast cancer data 123

Table 30: Novelty loss K-CGAN hyperparameter tuning narrow set of parameters for breast cancer data 125

Table 31: Novelty loss K-CGAN top 5 experiments utilising narrow set of parameters 126

Table 32: Novelty loss K-CGAN hyperparameter tuning least set of parameters for breast cancer data 127

Table 33: Novelty loss K-CGAN top 5 experiments utilising least set of parameters...................................... 127

Table 34: Balanced credit card fraud dataset using optimised methods ... 130

Table 35: Oversampling methods hyperparameter settings .. 131

Table 36: Vanilla CGAN, WGAN and NS GAN optimised hyperparameter settings 131

Table 37: LS GAN and SDG GAN optimised hyperparameter settings ... 132

Table 38: Novelty optimised K-CGAN hyperparameter settings for credit card fraud data 133

Table 39: Classification methods hyperparameter configuration settings .. 135

Table 40: Classifiers performance on original imbalanced credit card dataset .. 148

Table 41: Classification performance with balanced credit card fraud dataset using Novelty K-CGAN

oversampling minority class .. 149

Table 42: Precision values for classification methods multiple methods comparison 152

Table 43: Recall values for classification methods multiple methods comparison .. 153

Table 44: F1 Score values for classification methods multiple methods comparison 154

Table 45: Accuracy values for classification methods multiple methods comparison 155

Table 46: Balanced breast cancer dataset using optimised methods ... 157

11

11

Table 47: Oversampling methods hyperparameter settings .. 157

Table 48: Vanilla CGAN, WGAN and NS GAN optimised hyperparameter settings 158

Table 49: LS GAN and SDG GAN optimised hyperparameter settings ... 159

Table 50: Novelty K-CGAN optimised hyperparameter settings for breast cancer data 160

Table 51: Classification methods hyperparameter configuration settings .. 162

Table 52: Classification methods on original imbalanced breast cancer data .. 173

Table 53: Classification performance with balanced breast cancer dataset using Novelty K-CGAN

oversampling minority class .. 174

Table 54: F1 Score values for classification methods multiple methods comparison 177

Table 55: Accuracy Score values for classification methods multiple methods comparison 178

Table 56: Recall Score values for classification methods multiple methods comparison 179

Table 57: Precision Score values for classification methods multiple methods comparison 180

Table 58: Summary of Classifiers performance on original imbalanced credit card fraud data 184

Table 59: Classification performance with balanced credit card fraud data by leveraging K-CGAN for

oversampling the minority class .. 184

Table 60: F1 Score values for classification methods multiple methods comparison credit card fraud data ... 185

Table 61: Summary of Classifiers performance on original imbalanced breast cancer data 186

Table 62: Classification performance with balanced breast cancer data using K-CGAN to oversample minority

class.. 187

Table 63: F1 Score values for classification methods multiple methods comparison breast cancer data 187

12

12

Abbreviations
Adaptive Synthetic Sampling Approach (ADASYN)

Area under the ROC Curve (AUC)

Artificial Intelligence (AI)

Artificial Neural Network (ANN)

Borderline Synthetic Minority Oversampling (B-SMOTE)

Central Processing Unit (CPU)

Conditional GAN (CGAN)

Extreme Gradient Boosting (XGBoost)

False Negative (FS)

False Positive (FP)

Generative Adversarial Network (GAN)

Graphics Processing Unit (GPU)

Input/ Output (IO)

Kullback-Leibler Divergence Conditional Generative Adversarial Network (K-CGAN)

K-Nearest Neighbours (KNN)

Logistic Regression (LR)

Least Squares GAN (LS GAN)

Machine Learning (ML)

Multi-layer Perceptron (MLP)

Neural Network (NN)

Non-Saturating GAN (NS GAN)

Principal Component Analysis (PCA)

Random Forest (RF)

Receiver Operating Characteristic Curve (ROC)

Synthetic Data Generation GAN (SDG GAN)

Support Vector Machine (SVM)

Synthetic Minority Oversampling (SMOTE)

True Negative (TN)

True Positive (TP)

Wasserstein GAN (WGAN)

13

13

List of Publications

Journal Papers

Strelcenia, Emilija and Prakoonwit, Simant, Improving Cancer Detection Classification Performance

Using GANs in Breast Cancer Data. IEEE Access, 2023.

Strelcenia, Emilija and Prakoonwit, Simant, Improving Classification Performance in Credit Card Fraud

Detection by Using New Data Augmentation. AI Systems: Theory and Applications. International Journal

on International Journal of Artificial Intelligence (AI), 2023.

Strelcenia, Emilija and Prakoonwit, Simant, Effective Feature Engineering and Classification of Breast

Cancer Diagnosis, a Comparative Study. Feature Paper in Computational Biology and Medicine.

International Journal of BioMedInformatics, 2023.

Strelcenia, Emilija and Prakoonwit, Simant, A Survey on GAN techniques for Data Augmentation to

address the Imbalanced Data issues in Credit Card Fraud Detection. Privacy and Security in Machine

Learning. International Journal of Artificial Intelligence (AI), 2023.

Conference Papers

Strelcenia, Emilija and Prakoonwit, Simant, Generating synthetic data for credit card fraud detection

using GANs. IEEE 2022 The Third International Conference on Artificial Intelligence Technology (CAIT

2022). Proceedings. Zhejiang, China.

Strelcenia, Emilija and Prakoonwit, Simant, GAN-based Data Augmentation for Credit Card Fraud

Detection. IEEE 2022 International Conference on Big Data (IEEE BigData2022). Proceedings. Osaka,

Japan.

Strelcenia, Emilija and Prakoonwit, Simant, Comparative Analysis of Machine Learning Algorithms using

GANs through Credit Card Fraud Detection. IEEE 2022 3rd International Conference on Computing,

Networking, Telecommunications & Engineering Sciences Applications (CoNTESA '22). Proceedings.

North Macedonia.

Strelcenia, Emilija and Prakoonwit, Simant, A New GAN-based data augmentation method for Handling

Class Imbalance in Credit Card Fraud detection. IEEE 2023 10th International Conference on Signal

Processing and Integrated Networks (SPIN 2023) Proceedings. Delhi-NCR, India.

14

14

Awards

Significant contribution Award at IEEE 2022 3rd International Conference on Computers and Artificial

Intelligence (CAIT 2022).

Best presentation Award of the conference at IEEE 2022 3rd International Conference on Computers and

Artificial Intelligence (CAIT 2022).

Best Paper Award at IEEE 2022 3rd International Conference on Computing, Networking,

Telecommunications & Engineering Sciences Applications (CoNTESA '22).

Excellent presentation Award at IEEE 2022 12th International Conference on Power and Energy Systems

(ICPES 2022).

15

15

Chapter 1

1.0 Introduction

 Data imbalance is a common issue in many types of businesses and industries (Peng et al., 2022; Saripuddin

et al., 2022) and the financial or health industries are no exception. Imbalanced data refers to datasets where one

class is overrepresented and the other is underrepresented (He and Garcia, 2009). This can lead to Machine

Learning (ML) models that are biased and inaccurate, as the algorithm may be inclined to favour the majority

class and ignore key patterns in the minority class. As technology advances, new enterprise techniques have

emerged, with the credit card network being one of them. Every industry—from the household appliance industry

to the automobile, health or banking sectors, and everywhere in between—is susceptible to data imbalance. In

finance, when a third party uses another user's credit card to make a transaction, card fraud has taken place. This

can happen when the third party obtains the card, the cardholder's PIN, login, or other details. Electronic fraud

includes, for example, the unlawful usage of personal credit card information (Asha and KR, 2021). Despite the

introduction of fraud prevention systems, data imbalance remains a significant problem. The prevalence of

fraudulent transactions has grown rapidly due to the expansion of e-commerce and payment services

(Chandrakanth, 2023). Credible Reports claim that between 2000 and 2015, the amount of debit card and credit

card fraudulent transactions rose rapidly (Fanai and Abbasimehr, 2023). Furthermore, it has been demonstrated

that fraudulent credit card uses and illegal transactions represent 75–80% of financial value, although only

comprising 10–15% of all fraud instances (Saia and Carta, 2019). As a result of this data imbalance, credit card

users and the industry as a whole are suffering considerable losses. This has prompted the need for better

solutions to mitigate the issue of data imbalance and reduce the losses caused by fraud.

 Data imbalance is also a problem in breast cancer diagnosis (Trister et al., 2017). This is due to the fact that

mammograms, the most common form of diagnosis, are often prone to False Positives (FP) and under-diagnosis,

resulting in incorrect conclusions and delayed treatments (Shams et al., 2018). Moreover, despite recent advances

in deep learning and computer vision, there is still a lack of resources and human error that can lead to inaccurate

diagnoses. This is compounded by the fact that mammography often requires multiple techniques to improve its

accuracy, such as noting two views per breast, double reading, analysis of previous mammograms, and yearly

interval screening, which can be costly and time-consuming (Kowal et al., 2013; Ramik R., 2020). Clearly, data

imbalance is a serious issue in the diagnosis of breast cancer and must be addressed to prevent costly losses and

ensure the best outcomes for patients. In order to seamlessly evaluate and detect minority activity given the

volume of majority class samples numerous companies and firms significantly depend on Artificial Intelligence

(AI). Moreover, machine learning-based techniques for detecting fraud with credit cards have grown into

practice. Classification imbalances (Xie et al., 2019), features redundant complexity (Singh et al., 2021),

validating latency (Zheng et al., 2018), data characteristic pre-processing, and concept drift were the key

elements in the network training stage of the overall detecting fraud process (Ni et al., 2023). Further,

classification technique that can discriminate between legitimate and illegal payments was a common method

for addressing the issue of detecting fraud (Fanai and Abbasimehr, 2023). Building reliable and precise fraud

detection systems requires incorporating the raw data from the fraud datasets into a lesser form. Investigators

can assess whether entering a transaction was fake by using deep learning (Alejo et al., 2013). Further, similar

to this, (Sanober et al., 2021) contended that resampling the data is a successful method for changing the

distribution of imbalanced datasets. To improve the classifier's further development this may be done. That is

only feasible, though, if they eliminate noisy information, minimise the extent of imbalance, watch out for data

lost, and maintain sample points that are valuable for the classifier's training. Nevertheless, the reliability of the

training datasets has a positive influence on how well machine learning algorithms function (Sanober et al.,

2021), and the imbalance in the data is an ongoing challenge. The data typically shows a tiny portion of minority

cases. This has a substantial impact on how well a machine-learning system can identify minority class samples.

16

16

Because classifier systems for AI are designed for well-proportioned training datasets, skewed data provides a

special challenge. According to Xue and Zhang (2016), classifying all data as classifications with overwhelming

samples may improve the accuracy of classification. Furthermore, according to Bahnsen et al. (2016), there are

several difficulties with the task of identifying minority activity employing classification approaches. Such as

class imbalance (Salekshahrezaee et al., 2023), cost sensitivity (the outlays of incorrectly labelling deceitful and

ordinary transaction records are not the same) (Chandrakanth, 2023), temporal dependence among transactions

(Karthika and Senthilselvi, 2023), concept drift (Van Belle et al., 2023), and necessitating classifier updates

(Ahmad et al., 2023). Additionally, enthused by the efficacious claim of the deep learning approaches in

numerous areas for instance computing vision (Dev et al., 2021; Sultana et al., 2020; Xue and Qin, 2022),

translation (Luong et al., 2015), speech recognition (Chorowski et al., 2015), and forecasting complex time series

data (Abbasimehr and Paki, 2022; Abbasimehr et al., 2020).

 Further, there are different machine learning algorithms used to resolve the problem of class imbalance in

credit card transactions. Machine learning (Abdulhayan et al., 2023), deep learning (Alharbi et al., 2022), data

mining (Esmail et al., 2023), genetic programming (Prusti et al., 2023), and fuzzy logic (Kumar and Gupta, 2023)

are all examples of cutting-edge technologies that have led to novel approaches of identifying various types of

credit card fraud (Ashwin et al., 2023). There is still room for improvement in the efficiency of current AI-based

algorithms for classifying minority classes due to the significant duplication of feature data and imbalance of

class distribution in transactions (Ni et al., 2023). As a result, optimised feature engineering and sampling

strategies must be incorporated into fraud detection algorithms.

 Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are a powerful tool for augmenting high-

dimensional data (Ullah and Mahmoud, 2021). However, there is limited research on their use in fraud detection

or cancer diagnosis. This research seeks to address this gap by obtaining a large number of valid data points that

are representative of the minority class, such as fraudulent transactions or malignant tumours. Having more data

like this can be used to train a binary classifier so it's effective against minority class, for instance, fraud or

cancer diagnosis. Further, Numerous GAN-based algorithms, including Vanilla GAN (Goodfellow et al., 2014),

Non-Saturating GAN (NS GAN) (Shannon et al., 2020), Conditional GAN (CGAN) (Mirza & Osindero, 2014),

Synthetic Data Generation GAN (SDG GAN) (Charitou et al., 2021), Least Squares GAN (LS GAN) (Mao et

al., 2017), and Wasserstein GAN (WGAN) (Arjovsky et al., 2017) as well as sampling based techniques Adaptive

Synthetic Sampling Approach (ADASYN) (He et al., 2008), Synthetic Minority Oversampling (SMOTE)

(Chawla et al., 2002) and Borderline Synthetic Minority Oversampling (B-SMOTE) (Han et al., 2005). However,

these techniques have some problems and limitations. In our research we’re exploring the potential of GANs to

address the issue of data imbalance, as well as introducing a novel GAN technique called K-CGAN to address

the limitations of the existing GAN models.

1.1 Background of the Problem

 This section provides a succinct overview of the current technologies in research before discussing and

highlighting the knowledge gaps that should be addressed.

 Data scarcity is a significant problem since a large quantity of data is required in minority class detection to

train deep learning models. Data augmentation is one of the most efficient ways to deal with this problem (Bansal

et al. 2021; Langevin et al. 2021). In recent years, researchers have conducted various studies in this particular

area. One of the main issues being faced while training datasets is that there is limited training data available in

many application domains (Bansal et al. 2021). In some areas, data collection is not possible. For instance,

training data is not possible in credit card fraud or breast cancer detection due to privacy concerns. Data collection

is a time-consuming and costly task. On the contrary, financial and medical institutions need extensive data to

detect minority class cases. An effective way to deal with limited training data issues is data augmentation. It is

a method used to generate data from the existing data synthetically. Data augmentation saves both time and cost

in gathering required data. Furthermore, it decreases the issue of sample inadequacy in deep learning models

(Langevin et al. 2021, Shorten and Khoshgoftaar 2019). Besides limited training data, lack of relevant data is

also a fundamental challenge to regress datasets. Large quantities of relevant data are required to improve the

accuracy of deep learning models. Data augmentation can provide solutions through different methods to

enhance the size and quality of training datasets to gain a better outcome (Bansal et al. 2021; Langevin et al.

17

17

2021). Furthermore, model overfitting is also regarded as a big challenge. Deep learning models require

significant data to avoid the issue of overfitting. Overfitting is a modelling error when a model too closely fits

the available dataset. In addition, when a model is trained on an inadequate dataset, it will be difficult for the

model to generalise it perfectly for a new dataset. In addition, when these models are tested for any new data,

they will not provide accurate predictions, making the model impractical. Therefore, the model needs more

datasets to deal with the challenge of overfitting (Bansal et al. 2021). However, data augmentation lessens the

issue of overfitting by training the model with a large set of appropriate data. Furthermore, data augmentation

regularises the model and enhances its ability of generalisation.

 Besides the above challenges, imbalanced data is also a significant problem to deal with real-life applications

(Salekshahrezaee et al., 2023). This problem is prevalent in financial and medical institutions, especially with

credit card fraud detection, as fraud transactions are too few compared with legal transactions. In addition, deep

learning models need a large quantity of data to classify correctly, but occasionally available data is imbalanced,

which creates difficulty in training deep models and affects the overall accuracy. Data can be re-sampled to solve

this challenge; however, data augmentation can help this issue by dealing with highly imbalanced datasets by

creating data for training machine learning models (Bansal et al., 2021; Langevin et al., 2021). Augmentation of

data can be done through several approaches, for instance, the adversarial approach developed by (Goodfellow

et al., 2014), the heuristic approach by (Ratner et al., 2017), and the style transfer approach proposed by (Gatys

et al., 2016), and so on.

 GANs developed by Goodfellow et al., (2014), are used to augment data effectively. GAN is a class of

generative models that can create new data based on actual training data. It comprises two Neural Networks

(NN), the Generator and the Discriminator, which work in opposite directions. The first one creates new data

instances from actual data, while the other evaluates the synthetic data for authenticity. The applicability of

GANs is high, and they can be used in various fields, such as credit card fraud or breast cancer detection. Deep

learning models have transformed our daily life since they are doing well in mitigating real-world challenges.

However, the issue of data scarcity is a significant problem as a large quantity of data is required to test the

authenticity of data. On the other hand, augmentation of data is an effective way to deal with scarce data. The

issue with data imbalance is also a major challenge and deep learning models, once sufficiently trained, can be

effective in balancing the dataset and improving classification performance.

 GANs have revolutionised the AI field, but there is still much work to be done in order to apply them

effectively within the financial and medical sectors, as well as address their limitations. GANs are very successful

in generating synthetic data, however, due to their current limitations such as mode collapse, unstable training,

and difficulty of convergence, to name a few, GANs can be a challenge to implement. More research is needed

to resolve these challenges.

1.1.1 Statement of the Problem

 Due to the highly imbalanced nature of many datasets in machine learning, existing models for supervised

learning are often unable to accurately identify rare events. For example, credit card fraud datasets typically

contain a majority of valid transactions and a small minority of fraudulent ones. Similarly, medical imaging

applications such as breast cancer detection usually have far more examples of healthy tissue than cancerous

ones. This problem is compounded by the fact that imbalanced datasets can cause supervised learning algorithms

to suffer from poor performance or even bias. As a result, there is an urgent need for better models that are able

to address the challenge of imbalance in order to improve accuracy and reliability.

 The potential for GANs to address this challenge has been demonstrated in existing research studies

(Goodfellow et al., 2014; Shannon et al., 2020; Mirza & Osindero, 2014; Charitou et al., 2021; Mao et al., 2017;

Arjovsky et al., 2017). However, further development of GAN based models is needed in order to provide an

effective solution that can be applied across a wide range of datasets. In particular, optimised GAN architectures

are required in order to ensure a high degree of accuracy and reliability when dealing with imbalanced datasets.

1.1.2 Purpose of the Study

 This research aims to develop a robust machine learning methodology capable of generating high quality

synthetic dataset, resolving class imbalance and thus improving classification algorithms accuracy in detecting

minority class. By developing a new GAN approach for re-balancing data, providing an optimised system to

18

18

guide the training process and validating its performance on widely adopted datasets, it is hoped that this research

will provide insight into how these machine learning technologies can effectively be deployed in real-world

applications.

1.1.3 Objectives

Specifically this research may be divided into four main objectives:

1. To develop a new GAN technique to generate high quality re-balanced data. Thus, by balancing the dataset

improving classification performance of defecting minority classes. The research focuses on developing an

effective model to generate synthetic dataset, rebalance dataset, and improve classification performance in

detecting fraud in credit card transactions as well as breast cancer detection. In doing so, a new approach is

proposed whereby data has been re-balanced and custom hyperparameter optimised GAN architecture along with

the Kullback-Leibler divergence loss has been applied in order to reduce the noise and increase accuracy.

2. To develop optimised hyperparameter fine-tuned training processes of the GAN method (once the GAN is

trained, human intervention is not required).

3. To validate the primary performance metrics and evaluate the accuracy of the proposed GAN on widely

adopted datasets such as real-world credit card fraud and breast cancer datasets. This will involve running

experiments on these data sets and assessing its primary performance metrics such as f1-score, precision, recall

and accuracy, and comprehensive data quality evaluation.

4. The research also aims to evaluate how this system can be effectively deployed to cloud-based platforms. This

will involve exploring the scalability of the proposed GAN and identifying any issues that may arise from its

deployment. This will allow for an effective scaling up of the system to handle larger datasets as well as future

proofing it against any potential bottlenecks.

1.1.4 Impact of the Study

 The results of this study can also be used to inform the future development of more effective minority class

detection systems. The proposed GAN method could prove to be an innovative and reliable approach for

generating minority class transactions in real-time, which would have far reaching benefits for both individuals

and organisations. By introducing a new model it will provide a cost-effective solution that can help generate

synthetic data in the finance field. Additionally, the study aims to contribute to the field of medical breast cancer.

 This research could also provide useful insights into how GANs can be used to generate other types of data

and by resolving data imbalance help organisations improve classification accuracy. This would be an invaluable

resource to the industry and could lead to further advancements in credit card fraud and breast cancer detection

systems by developing effective synthetic data generation methods and resolving data imbalance challenges. The

innovative GAN approach for generating minority class transactions holds the promise to transform data

handling practices across diverse domains. As organizations increasingly depend on data-driven decision-

making, addressing data imbalance becomes crucial to enhance the performance of machine learning algorithms.

1.1.5 Importance of the Study

 The study to address data imbalance issues using GANs is important for many reasons. Firstly, it has the

potential to improve current methods and in the context of real life scenarios facing imbalanced data such as

improving detection of credit card fraudulent activity would help protect customers and businesses from being

victims of such crimes. Further example of breast cancer detection where early cancer detection could save

patients' lives. As GANs utilise machine learning algorithms to identify patterns in large datasets, they are better

able to detect target activity than traditional methods. Furthermore, this type of detection is more easily scalable

and can be implemented across a variety of platforms. On the other hand, organisations can reduce their costs

associated with investigations and reimbursements that occur as a result of fraudulent activity. Furthermore,

implementing GAN-based detection can be more cost-effective than other methods, as it requires less manual

labour to set up and maintain. Finally, this research will be a significant contribution to the development of more

effective solutions for imbalance data and help in credit card fraud and breast cancer detection domains. By

testing the performance of a GAN model against these datasets, we are able to gain insights into the best practices

19

19

for implementing such detection methods. This research will also help to inform future developments in solutions

to imbalance data and assist in credit card fraud or breast cancer detection. Overall, this study is significant as it

has the potential to improve current methods of imbalance data and detecting target activity and benefit

individuals and organisations alike.

1.2 Link to Existing Knowledge

 Our new proposed K-CGAN method is a GAN based approach proposed in our research study to enhance the

performance of classifiers generating high quality synthetic data. It's based on CGAN architecture (Mirza and

Osindero, 2014) with custom architecture loss functions and custom optimised hyperparameters. K-CGAN was

tested on credit card fraud and breast cancer datasets to demonstrate its effectiveness in data generation and

resolving class imbalance issues.

1.2.1 Industry Insights

 Our proposed K-CGAN framework has proven to be highly efficient in addressing the issue of data imbalance

through its optimised architecture. This has translated into improved results, making it a valuable tool for various

types of datasets. The capability of the framework to work with such datasets ensures that it provides a

comprehensive solution to the industry's data imbalance challenge. This paves the way for the use of GAN based

models in a variety of applications, from medical diagnostics to credit card fraud detection.

 In particular, this method could be beneficial in tasks that require accurate and reliable classification results in

an environment with scarce or imbalanced data. It is expected that further research and experimentation will lead

to even better performance. Thus, GAN based models are becoming increasingly attractive to industry

practitioners seeking a reliable and effective solution to data imbalance. Furthermore, the use of GANs in other

domains such as natural language processing and image recognition is growing rapidly due to their robustness

and scalability. As the technology continues to mature, it is anticipated that the applications of these models will

become more widespread, providing greater accuracy and efficiency across a wide range of fields. With its

potential to revolutionise data analysis and classification, GAN based models are sure to be an important tool for

industry professionals in the near future. Ultimately, this could lead to more reliable and accurate data-driven

decisions that can benefit both businesses and consumers.

20

20

1.3 Contributions of This Thesis

 In recent years, imbalanced datasets have been a major challenge in various domains including credit card

fraud and breast cancer classification. To address this challenge, the K-CGAN model has been introduced in

this research, offering an effective solution to generate synthetic data. The model has been tested using

classification techniques, and its performance has been compared with the baseline models. The results have

shown that the K-CGAN model outperforms the baseline models, with a significant improvement observed in

credit card fraud detection tasks. The K-CGAN model introduces a new architecture that includes a custom

loss function and custom optimized hyperparameters. This architecture is capable of generating high-quality

synthetic datasets, which can be used to augment existing datasets, resolve data imbalance issues thus

providing better accuracy and performance in classification tasks. This is a crucial contribution to the field of

deep learning methods and machine learning classification techniques, as the K-CGAN model can be applied

to various fields and tasks. The main areas of contributions are outlined below:

● Kullback-Leibler Divergence Conditional Generative Adversarial Network (K-CGAN): The K-

CGAN network is proposed to improve the quality of the generated synthetic minority data to improve

the performance of classification by balancing the dataset. The results show that K-CGAN generates

high quality synthetic datasets and improves the classification performance significantly when

compared to other augmentation techniques. The K-CGAN novel method is published in the Journals

IEEE Access (Strelcenia and Prakoonwit, 2023), AI Systems: Theory and Applications (Strelcenia and

Prakoonwit, 2022), conference papers IEEE: International Conference on Big Data (Big Data)

(Strelcenia and Prakoonwit, 2022), International Conference on Computers and Artificial Intelligence

Technologies (CAIT) (Strelcenia and Prakoonwit, 2022), 10th International Conference on Signal

Processing and Integrated Networks (SPIN) (Strelcenia and Prakoonwit, 2023). Our research achieved

four Awards at IEEE 2022 CAIT for significant contribution and best presentation, IEEE 2022 ICPES

for excellent presentation and best paper award at IEEE 2022 Contesa international conferences.

● Generative Oversampling data-driven approach to address the issue of imbalanced datasets on

Credit Card Fraud Detection and Breast Cancer Diagnosis: The method utilises the K-CGAN deep

learning model, which incorporates a custom architecture and hyperparameters tailored to each dataset.

This meticulous optimization process ensures superior performance and consistency across all classification

methods, with a specific focus on credit card fraud and breast cancer detection. By leveraging this novel

approach, we can achieve more accurate and reliable results in these critical domains.

● Effective features engineering and evaluation of the existing data augmentation and

classification methods: Extensive feature engineering and evaluation of data augmentation and

classification methods, our studies also published in journals BioMedInformatics (Strelcenia and

Prakoonwit, 2023), Make: Privacy and Security in Machine Learning (Strelcenia and Prakoonwit,

2022) and conference papers IEEE: International Conference on Computing, Networking,

Telecommunications & Engineering Sciences Applications (CoNTESA) (Strelcenia and Prakoonwit,

2022) achieving Best Paper Award at IEEE 2022 3rd International Conference on Computing,

Networking, Telecommunications & Engineering Sciences Applications (CoNTESA '22).

● Custom Optimised GAN architecture: The K-CGAN model incorporates a Conditional Generative

Adversarial Network (CGAN) to generate synthetic data that not only mimics the original data

distribution but also aligns with specific class attributes. It achieves this by conditioning the generator

to produce fake data based on target class labels. The K-CGAN utilises different activation functions

for the generator and discriminator networks. The generator employs the widely-used ReLU activation

function, while the discriminator leverages the LeakyReLU activation function. This combination

allows the model to effectively handle complex datasets and improve convergence. The generator

21

21

network utilises a combined loss function, consisting of the trained discriminator loss and the KL

divergence, to ensure that generated samples closely match the original data distribution and improve

the quality of synthetic data. Carefully optimised hyperparameters, including learning rate, dropout

rate, neuron sizes, kernel initializer, and kernel regularizer, enhance the K-CGAN's performance,

prevent overfitting, and ensure stable convergence. The activation function in the nodes is deliberately

set to decrease noise's influence, making the K-CGAN robust to noisy data. Additionally, the K-CGAN

addresses the exploding gradient problem by utilising the glorot_uniform kernel initializer, which can

hinder the training process of deep neural networks.

● Optimised hyperparameter settings were obtained for other GAN based methods: Our research

performed hyperparameter tuning to find the optimal hyperparameters for other GAN based methods,

including Vanilla CGAN, NS GAN, LS GAN, SDG GAN and WGAN. The results of this study can

greatly assist in making informed decisions when selecting the appropriate data augmentation method.

By leveraging these findings, researchers and practitioners can enhance their understanding and

effectively choose the most suitable approach for their specific needs.

● Multiple classification and oversampling methods implementation: Popular classification methods

implemented and tested in different conditions with original imbalanced and balanced datasets. The

results can be useful when selecting classification methods for minority class detection resolving

important areas demonstrated in credit card fraud and breast cancer detection. We have demonstrated

the impact of SMOTE’s application to assist in GAN training. This contribution not only enhances

the performance of GANs but also proves to be a valuable asset for various other methods in the field.

● Extensive application of visualisation of synthetic and original data: During our extensive

experimentation, we have extensively applied visualisation techniques to both synthetic and original

data. By leveraging these techniques, we were able to gain a deeper understanding of the underlying

patterns and relationships within the datasets. To evaluate the quality of the datasets, we employed

various methods, including cosine similarity approaches, bivariate and univariate correlations. These

approaches not only provided quantitative metrics for assessing data quality but also revealed valuable

insights into the characteristics and distribution of the data. Furthermore, our comprehensive analysis

allowed us to thoroughly compare the performance of the K-CGAN method with other existing

approaches, highlighting its superiority in terms of data quality and accuracy. With this in-depth

exploration, we were able to uncover the true potential and value of our approach, paving the way for

future advancements in the field.

Most importantly its ability to generate synthetic data, the K-CGAN model framework provides a system and

process that is highly beneficial for resolving imbalanced dataset issues. These contributions have been

discussed in detail in Chapter 6, highlighting the importance of the K-CGAN model in addressing the

challenges posed by imbalanced datasets. The contributions made by this research are significant, and the K-

CGAN model framework has the potential to enhance the accuracy and performance of classification tasks in

various domains.

22

22

1.4 Thesis structure

 This research is structured as follows.

 Chapter 2 provides a comprehensive literature review, offering an in-depth overview of the technologies

employed in this research. The review encompasses various areas, including GAN development, testing

methodologies, classification performance evaluation techniques, data analysis approaches, and synthetic data

generation methods to address dataset imbalance issues.

 In Chapter 3, the K-CGAN framework is introduced, detailing its architecture, implementation steps, and

providing optimized hyperparameter settings specifically tailored for credit card fraud and breast cancer

datasets. The chapter highlights the significance of the K-CGAN framework in addressing the challenges faced

in these domains and emphasizes the potential impact it can have as a reliable data augmentation method on

improving classification performance.

 Chapter 4 documents the detailed development process of the K-CGAN framework, starting from its initial

stages to the final optimised custom version. It explores the impact of KL (Kullback-Leibler) loss and custom

hyperparameter tuning on different datasets, presents comprehensive classification performance results, and

compares the performance of other existing GAN and oversampling methods, such as SMOTE, B-SMOTE,

and ADASYN. The chapter aims to provide a thorough understanding of the strengths and limitations of the

K-CGAN framework in comparison to alternative approaches.

 The objective of this thesis extends beyond knowledge acquisition and performance improvement. It also

aims to provide a solid foundation for future system design and implementation in the field. Chapters 5 delves

into the detailed analysis of the experimental results, discussing the implications, insights, and potential areas

of further research based on the conducted experiments. Ultimately, this research presents the K-CGAN model

as a promising and versatile solution applicable in various domains, such as credit card fraud and breast cancer

detection. This study significantly contributes to the understanding of both fields, offering valuable insights

and a robust solution for future implementation and advancement in the respective areas.

23

23

Chapter 2

Literature review

2.1 Introduction

 Most production datasets are susceptible to class imbalance. The issue of class imbalance is important to

resolve in machine learning because it can significantly affect the performance of classifiers and lead to biased

predictions (Zhou et al., 2020). When there is a significant difference in the number of samples between

classes, classifiers tend to bias towards the majority class, resulting in poor performance for the minority class.

Consequently, this can have serious consequences in real-world applications where the minority class may be

of particular interest or importance. For instance, in medical diagnosis, a classifier that biases towards the

majority healthy class may miss important diagnoses for rare diseases (Zhou et al., 2020). Furthermore,

traditional evaluation metrics such as accuracy may not be appropriate for imbalanced datasets and can provide

misleading results. This can lead to incorrect conclusions about classifier performance and potentially harmful

decisions based on these conclusions (Zhou et al., 2020). Therefore, it is essential to recognize the problem of

class imbalance and take appropriate steps to combat it when dealing with machine learning and real-world

applications. Given its versatility, machine learning is quickly becoming the industry standard for different

applications. In machine learning, algorithms focus on the ability to learn and improve autonomously through

exposure to relevant data. Different algorithms and, in some cases, statistical models are used in machine

learning to enable computers to perform tasks automatically by learning the characteristics of the data.

 Machine learning methods have since played an important role in automated minority class detection. With

the use of machine learning, researchers can determine whether an incoming transaction is in the minority class

(Alejo et al., 2013). However, the performance of machine learning techniques greatly depends on the quality

of the training data (Sanober et al., 2021; Xue and Zhang, 2016) and the imbalance in the data is not a trivial

issue, especially when credit card frauds are considered. In general, only a small percentage of fraudulent

transactions are presented in the data. This significantly affects how a trained machine learning algorithm can

correctly detect fraud cases. Machine learning techniques are framed for well-balanced training data; thus

imbalanced data pose a unique problem to classifier frameworks. According to Xue and Zhang (2016), we can

attain greater classification accuracy through the classification of all samples as the classification with the

majority of samples. Similarly, Sanober et al. (2021) argued that resampling of the data is an effective way to

alter the distribution of datasets that are not balanced. This can be performed to get better subsequent progress

of the classifier. However, it is only possible if we remove noise information, lessen the intensity of the

imbalance degree, ensure to reduce information loss, and keep sample points which are helpful for the learning

of the classifier. To address this issue, there exist many data augmentation techniques, such as SMOTE

(Chawla et al., 2002), ADASYN (He et al., 2008), B-SMOTE (Han et al., 2005), CGAN (Mirza & Osindero,

2014), Vanilla GAN (Goodfellow et al., 2014), WGAN (Arjovsky et al., 2017), SDG GAN (Charitou et al.,

2021), NS GAN (Shannon et al., 2020), and LS GAN (Mao et al., 2017) to balance the data. These methods

are capable of synthetically generating additional data to balance the majority and minority class distribution.

It is noted that the conventional classification techniques achieve higher accuracy over the positive class and

poor accuracy over the negative class. Hence, the classification ability of the binary classifiers typically

24

24

decreases in imbalanced datasets with the high imbalance rate. Past details reveal that most of the classifiers

would lose their efficiency when the imbalance rate hits (Xue and Zhang, 2016). The SMOTE technique was

introduced to reduce the shortcomings faced by the random over sampling method. Similarly, GANs were

presented in order to address the limitations of SMOTE. In addition, multiple GAN variants have been

developed recently to improve the accuracy and address limitations of GANs. Further, different data

augmentation methods have various characteristics suitable for different applications. Our study presents an

investigation into how different data augmentation techniques affect the performance of classification

algorithms on imbalanced data.

 According to Xue and Zhang (2016), machine learning is used to train machines how to manage data better

and more effectively. ML can be used to deduce details from the extracted data. In more recent years, due to

the availability of data, the demand for ML has been very high. Furthermore, the study used data level and

algorithm level approaches to resolve the issue of class imbalance in data. Our current study is mostly

concerned with data level approaches instead of algorithm level approaches to address the issue of class

imbalance in data sets. Further, data-level methods use data augmentation techniques to improve the class

distribution in the data and produce more balanced data as compared to algorithm level approaches, which are

more suitable for classifiers performance. Moreover, our study employs a new technique, known as K-CGAN.

Some examples of well-established classification algorithms, i.e., Extreme Gradient Boosting (XGBoost)

(Chen & Guestrin, 2016), Random Forest (RF) (Breiman, 2001), K-Nearest Neighbours (KNN) (Cover & Hart,

1967), Multi-layer Perceptron (MLP) (Rosenblatt, F., 1957), and Logistic Regression (LR) (DeMaris, A.,

1995) are then used to evaluate the performance of the data augmentation techniques. Our suggested K-CGAN

method is also a similar attempt to address the class imbalance issue and improve the overall efficiency of

machine learning techniques.

 The standard oversampling algorithm SMOTE’s results can often be too noisy when the majority and

minority classes are hard to distinguish, as well as not being flexible enough to handle high-dimensional data.

For this very reason, modifications such as Borderline SMOTE and ADASYN have been developed in an

effort to improve classification accuracy by enhancing the distinction between these two types of classes.

Though oversampling techniques can help generate new samples that appear similar to the original data on its

surface, in detail these replicates may differ from one another. This is especially true when it is hard to extract

features in a regularised manner from the imbalanced dataset. SMOTE’s method presents a certain degree of

risk due to its lack of consideration for the majority class when aggregating minority regions. This danger is

especially pronounced in cases with imbalanced classes as, oftentimes, the minority group is minuscule

compared with the larger one and thus more likely to encounter crossover issues.

 Building on the success of generative models, GANs (Langevin et al., 2022) have gained momentum in

recent years as a reliable and versatile way to approximate real data distributions. These networks are highly

adaptable and particularly easy to comprehend due to their general safety factor. Specific examples that

leverage this technology can be created with relative ease. For studies and surveys that work with restricted

budgeting, a precision technique grants specialists and analysts a sense of control over the process. This can

be especially beneficial when concentrating on narrowly defined speculation since inspections can then be

systematically curated to suit certain restrictions. Thus, precise techniques supply researchers with an

invaluable degree of accuracy while keeping costs low. Despite its adaptable and general nature, with the

careful fine-tuning of GANs it is possible to eliminate any potential drawbacks. Ultimately this could lead to

the creation of an optimised architecture design which can be implemented for various machine learning

applications.

25

25

2.2 Algorithm-Level Approaches

 The primary focus of the algorithm-level study is on enhancing an established classification method so that

it can handle imbalanced data, with the ultimate goal of boosting minority class classification performance

while still maintaining a high bar for overall accuracy (Soh and Yusuf, 2019). The issue of imbalanced data

categorization may be addressed with cost-sensitive learning, which is currently one of the most popular

algorithm-level techniques (Ding et al., 2023). The cost-sensitive approach aids in improving the identification

accuracy of positive samples by guiding the classifier to adjust the weight of incorrectly classified positive

samples. For instance, Fu et al., (2022) suggested a Cost-Sensitive Support Vector Machine (CSSVM), a cost-

sensitive model that takes its cues from both Support Vector Machine (SVM) and the asymmetric Linear

Exponential (LINEX) loss function. By assigning a separate cost to each event, the model can perform

instance-level sensitivity learning. To address the issue of imbalanced data categorization, the SVM classifier

employs a cost-sensitive loss function to regulate the expense of misclassifying positive and negative samples.

Two cost-sensitive KNN classifiers, Direct-CS-KNN and Distance-CS-KNN, were suggested by Zhang (2020)

to reduce the negative impact of incorrect labels. The algorithmic level is both more intuitive and more

productive than the data level (Ding et al., 2023). As a result, it excels in the categorization of data within a

given domain. However, although it is possible to enhance algorithms, this is not always the best approach. It

is clear from the concept of the cost-sensitive technique that providing the matching cost-sensitive matrix is

crucial to the design of the algorithm. In a cost-sensitive matrix, the weight setting is often determined by

domain specialists and is thus extremely domain-specific. As an added downside, budget-friendly learning

methods developed for one area are famously hard to adapt for use in a different one.

 In another study, Xue and Zhang (2016) proposed a Gradient Boosting Decision Tree (GBDT) to explore

the impacts of factors on traffic accident indicators. The results showed that the GBDT can identify and

prioritise the influential factors on traffic accident prediction. In addition, findings showed that this model

outperforms all classical machine learning models featuring a ‘black-box’ in accuracy and prediction. The

study conducted by (Chen et al., 2018) is a recent comprehensive survey of machine learning systems. In their

study, the authors provided an overview of techniques introduced for the evaluation of machine learning

explanations. Furthermore, they identified the traits of explainability after reviewing the explanations of

explainability. Their findings demonstrated that the qualitative metrics for both example-based and model-

based explanations are mainly used for the evaluation of interpretability. Furthermore, credit card fraud

detection using auto encoder-based clustering based on auto-encoders was proposed by (Ngwenduna and

Mbuvha, 2021). The system, which features three hidden layers and clusters data using k-means, was evaluated

on a European dataset and was shown to perform favourably when compared with other systems. To handle

the disparity dataset and avoid noise, Paasch (2008) suggested a misrepresentation location framework with a

non-overlapped risk-based bagging ensemble algorithm. Bagging models eliminate noise and outliers from

datasets. The sacking model is a goal achieved by a group of students working together to take calculated risks.

Bag creation solves the problem of skewed data, and Naive Bayes eliminates the problem of transactional

noise. Using a NBRE, they were able to reduce the cost of detecting fraud by 2–2.5 times while increasing the

accuracy by 5–10 percentage points. The NRBE model was identified as the most suitable for fraud detection

and the most suitable for a business dynamic method.

 Further, Jiang et al. (2018) utilised an approach that blended Bayesian-based hyper parameter optimization

with tuning by eye. They achieved this by utilising two distinct public datasets, one including fraudulent

transactions and the other containing legitimate ones from the real world. Compared with other methods, their

proposed approach performed better in terms of accuracy, precision, and f1 score.

 Since the ratio of fraudulent to legitimate transactions is relatively high, Kumar and Iqbal (2019) developed

an ensemble learning approach to avoid class imbalance in data. They found that compared with neural

networks, random forest is superior at detecting fraud incidents. Large credit card transactions were also used

as an experimental variable. Ensemble learning combines different machine learning techniques, such as

random forest and neural networks. The findings of Lamba (2020) showed that credit card theft has been on

the rise over the past few years. Several techniques use machine-learning algorithms to identify fraudulent

26

26

transactions and prevent them from being processed. In order to determine the precision of fraud detection,

Makki et al., (2019) developed an application that makes use of machine learning techniques such as the k-

nearest neighbour, decision tree, extreme learning machine, support vector machine, and multilayer

perceptron. Using a combination of kNN, SVM, and DT, they made use of web-based protocols such as simple

object access protocol and representational state transfer to transmit data effectively between many

incompatible systems. The results of five different machine learning algorithms were evaluated using a metric

that measured how well they predicted the results. Although SVM outperformed competing algorithms by a

margin of 81.63%, the hybrid system they presented achieved an even greater accuracy of 82.58%.

 In their study, Chen and Wasikowski (2008) introduced a hybrid machine learning technique to predict bus

passenger flow. They named it Scaled Stacking Gradient Boosting Decision Trees (SS-GBDT). The findings

of their study revealed that this novel method outperformed conventional machine learning models and did

well in handling multicollinearity between influential factors. Further, using random forest methods, Prusti

and Rath (2019) developed a model to tackle the issue of class imbalance in data sets. The supervised machine

learning technique known as the random forest algorithm relies on a Decision Tree, with performance

measured by means of a confusion matrix. Assuming a 90% accuracy, the suggested technique is quite

promising. While Zheng et al., (2018) argued that credit card usage has been increasing day by day for online

purchasing, the authors pointed out that online shopping has enhanced the number of credit card fraud cases

as well. They emphasised the need to stop these cases. Furthermore, they introduced a novel technique that

integrates Spark with a deep learning framework. They also implemented various methods to resolve class

imbalance issues in datasets. These methods were SVM, RF, KNN and Decision Tree. The findings of the

comparative study showed that 96% accuracy was obtained for the training and testing of data sets.

 In a study, Singh et al., (2022) pointed out that the classification of imbalanced class datasets has gained

much attention across many domains, including fraud detection. This is due to the negative impact of

overlapping on the achievements of imbalanced class learning. The suggested method of this study was based

on an augmented R-value, which aimed to pick features that obtained data with the least overlap degree, thus

improving the classification performance. Moreover, their study presented three feature selection frameworks,

RONS, ROS, and ROA, designed via sparse feature selection to lessen the overlapping and carry out binary

classification. In addition, the findings of their study suggested that their presented frameworks that feature

selection techniques manage the variation of a false discovery rate at the time of the main features for the

modelling process. Finally, their empirical study used four credit card datasets to check the performance of

their methods. The findings confirmed that their methods are superior to classical feature selection techniques.

 To better understand the state of the art in Master Card fraud detection using machine learning algorithms,

Sethia et al., (2018) conducted a comprehensive literature review of the methods currently in use. The field

has been the subject of a great deal of study. They argue that a more robust system that can adapt to any

circumstance is required. However, these techniques have some limitations. For instance, Langevin et al.

(2022) argued that algorithmic approaches to improving classifiers for imbalanced data may not be effective

if the minority class is too small or too noisy because if the minority class is too small, it may be difficult for

the model to learn meaningful patterns from the available data. In this case, even with algorithmic approaches

such as cost-sensitive learning or ensemble methods, the model may still struggle to accurately classify

minority class samples. Similarly, if the minority class is too noisy (i.e., contains a high proportion of

mislabelled or irrelevant samples), it may be difficult for the model to learn useful patterns. In this case, pre-

processing techniques such as data cleaning or feature selection may be necessary before applying algorithmic

approaches (Karthik et al., 2022). The authors also note that in some cases, pre-processing techniques such as

sampling methods may not be effective if the minority class is too small or too noisy. Further, it is pointed out

that algorithm level approaches involve adapting present classifier learning algorithms to bias the learning

toward the minority class (Galar et al., 2011). However, the research noted that these methods may not be

feasible in all cases because they require special knowledge of both the corresponding classifier and the

application domain. In particular, algorithm level approaches may not be feasible when there is limited

knowledge about the underlying data generating process or when there are complex interactions between

features that make it difficult to identify which features are most important for predicting the minority class

27

27

(Rtayli, 2022). In these cases, it may be more effective to use other techniques like ensemble methods or data

augmentation to report the class imbalance problem.

 Overall, while algorithm level approaches can be effective for improving classifiers on imbalanced datasets,

they may not always be feasible or practical depending on the specific characteristics of the dataset and

problem being addressed. Zhou et al., (2020) argued that algorithm level approaches heavily rely on the quality

and quantity of data used for training. In their research the authors used patent data to train their deep learning

classifiers. However, patent data may not always be available or may not be representative of all emerging

technologies. Further, algorithm level approaches may not capture all aspects of emerging technologies

because emerging technologies are complex and multifaceted, and algorithm level approaches may not be able

to capture all the nuances and subtleties associated with them (Zhou et al., 2020). For example, some emerging

technologies may have social or ethical implications that cannot be captured by algorithm level approaches.

Furthermore, algorithm level approaches may not be able to adapt to changes in emerging technologies over

time but emerging technologies are constantly evolving and changing, and algorithm-level approaches may

become outdated or ineffective as new technologies emerge. Finally, algorithm level approaches require

significant expertise in machine learning and data analysis to develop and implement effectively. This can

limit their accessibility to researchers who do not have expertise in these areas (Zhou et al., 2020).

 Moreover, Charitou et al., (2020) pointed out that the algorithm level approach relies on the assumption that

the minority class can be represented by a low-dimensional manifold. This may not always be true in practice,

and in cases where the minority class is highly complex or has high variability, the generated synthetic samples

may not accurately represent the true distribution of the minority class (Charitou et al., 2020). Further, the

framework is able to generate synthetic samples of minority-class data, but it does not provide any guarantees

about their quality or usefulness. In some cases, the generated samples may be unrealistic or irrelevant to the

problem at hand, which could negatively impact classifier performance (Charitou et al., 2020). Furthermore,

the framework is able to address imbalanced data issues without relying on traditional oversampling or

undersampling techniques, it still requires labelled data for training. This means that if labelled data is scarce

or expensive to obtain, this approach may not be feasible. Finally, while the proposed framework outperforms

other classification methods in terms of F1 score on several datasets used in their study, it is unclear how well

it would perform on other datasets with different characteristics (Charitou et al., 2020). Further research is

needed to evaluate its generalizability and robustness across different domains and applications.

2.3 Data-Level Approaches

 The goal of a data-level technique is to resample the data until the negative and positive samples are about

equal before classifying the data. Since the data-level processing approach is not dependent on the

classification model, it is frequently employed to address the issue of imbalanced data sets that need to be

categorised. Oversampling, undersampling, and hybrid sampling are the primary categories into which the

individual data-level approaches fall. The goal of oversampling is to correct this difference by increasing the

size of positive samples while leaving negative samples alone. Ding et al., (2023) argued that oversampling of

positive samples may be broken down into two distinct categories: local information-based and global

information-based. SMOTE oversampling is the most common technique used in local information-based

oversampling (Ding et al., 2023). By performing random linear interpolation between nearby samples, the

SMOTE technique creates additional positive samples (Chawla et al., 2002). The SMOTE algorithm has

inspired the development of many similar but more advanced approaches, including ADASYN, SMOTE-ENN,

LORAS, and many more (Maldonado et al., 2022). Although samples close to the decision boundary are crucial

for classification, a lot of research has been done on how to reliably produce them (Wei et al., 2020). The

global oversampling technique generates new data by taking into account the variance, mean value, and

probability distribution of positive samples, as opposed to generating new samples only based on local

information (Abdi and Hashemi, 2015). The combined probability distribution of data characteristics and

Gibbs sampling was introduced by Das et al., (2014) as a method for creating new minority samples.

28

28

 Since GAN has a high degree of accuracy when it comes to fitting data, it is often used for synthesis and the

resolution of imbalanced learning issues (Fan et al., 2022). Consider the sequence GAN-based credit default

collection and analysis technique presented by Fan et al., (2022) for the production of discrete data. In order

to create credit default swap transaction data that is diverse and useful, this technique incorporates a reinforced

learning approach into the original GAN network (Ger and Klabjan, 2019). The reduction of negative samples

(undersampling) helps even out the distribution of classes while preserving the integrity of the data (positive

samples) (Zhang et al., 2021). Undersampling’s fundamental principle is to eliminate samples that have

negligible influence on the total data distribution, to maintain a balance between the positive and negative data

(Vuttipittayamongkol and Elyan, 2020). Xie et al., (2021) introduced density and distance as measures of

sample significance, built a sampling sequence based on this importance, and then chose the most

representative negative samples from this series. Further, data preparation can be improved via hybrid

sampling, which combines oversampling and undersampling algorithms (Nabulsi et al., 2021).

 Class decomposition, as suggested by Elyan et al., (2021) is one approach to optimising classification

accuracy when dealing with imbalanced data. In order to deal with the problem of binary imbalanced data

classification, Yu et al., (2021) suggested a hybrid classifier ensemble architecture (HCE). Adaptive two-stage

undersampling (ATUP) and metric-based data space transformation (MDST) are the core components of the

methodology. For a well-rounded dataset, they employ MDST to locate the proper embedding space and ATUP

to pick representative samples (Yang et al., 2021). Traditional oversampling approaches create fresh samples

locally, leading to poor generalisation capacity and inability to deliver improved classification judgements,

and are thus among the methods based on the data level that have the potential to improve accuracy. Using an

undersampling technique typically involves eliminating relevant data, which might alter the original data's

distribution. Because of this, standard GAN methods frequently experience mode collapse and fail to account

for the sparseness of positive class data in the class overlap region (Ding et al., 2023). Further, researchers

have also used data-level approaches to address the imbalanced class challenge. These data-level approaches

used the sampling technique to deal with this challenge.

 Furthermore, to justify a data-level approach to be a better technique different studies have their own point

of views. For instance, Abdallah et al., (2016) argued that the data level approaches such as undersampling

and oversampling can be used in fraud detection systems to address class imbalance issues. This can lead to

the solution of an issue of biassed classification results, where the classifier tends to forecast the majority class

more often than the minority class. Undersampling and oversampling techniques have been widely used in

fraud detection systems (Abdallah et al., 2016). For example, Phua et al., (2010) utilised undersampling and

oversampling techniques to balance imbalanced datasets. However, both undersampling and oversampling

have their limitations. Undersampling may lead to a loss of information from the majority class while

oversampling may lead to overfitting and reduced generalisation performance (Ng et al., 2020). In conclusion,

the data level approach is an important technique used in fraud detection systems to address class imbalance

issues and improve classification performance by balancing datasets and reducing noise (Singh et al., 2022).

Further, López et al., (2013) argued that data-level approaches aim to modify the real dataset in some way to

balance the class distribution before applying a classification algorithm. One common technique is

oversampling, where instances from the minority class are replicated or synthesised to increase their

representation in the dataset. Another technique is undersampling, where instances from the majority class are

detached to decrease their dominance (López et al., 2013). Further, the authors cited several studies that have

used oversampling and undersampling techniques with success. For example, Chawla et al., (2002) used

random oversampling and undersampling on several imbalanced datasets and found that both techniques

improved classification performance compared to using the original dataset. Similarly, He and Garcia (2009)

used the SMOTE on several datasets and found that it outperformed random oversampling and undersampling.

 However, López et al., (2013) noted that data-level techniques have some limitations. Oversampling can

lead to overfitting if synthetic instances are too similar to existing ones (Gupta and Sharma, 2022) while

undersampling can discard useful information from the majority class. Additionally, both techniques can

increase computational complexity and training time (López et al., 2013). In conclusion, data-level approaches

offer a way to address imbalanced datasets by modifying the original data before classification. While they

29

29

have shown promise in improving performance on certain datasets, they also have limitations that should be

considered when choosing an approach for a particular problem (López et al., 2013). Singh et al., (2022)

discussed the use of data-level approaches to handle class imbalance. The authors evaluated the performance

of diverse data-level techniques to avoid the issue of class imbalance and employed several performance

measures. Data-level approaches involve manipulating the training data to address the class imbalance (Singh

et al., 2022). The study compared several data-level algorithms, including oversampling, undersampling, and

hybrid sampling techniques (Kaur and Gosain, 2018). They noted that using a combination of different

algorithms can improve performance. Singh et al., (2022) cited several previous studies that have used data-

level approaches for fraud recognition, including Batista et al., (2004) and Phua et al., (2004). They also

reference other studies that have compared different sampling techniques for imbalanced datasets, such as He

et al., (2008). Overall, the research provided a detailed discussion of data-level approaches for class imbalance

in datasets. The authors used these data-level approaches to manipulate the training data and improve model

performance for class imbalance in datasets. They evaluate the performance of different algorithms using

metrics such as accuracy and F1 score. These measures are generally employed in machine learning and

classification tasks to evaluate model performance (Singh et al., 2022). The authors report these performance

measures for each data-level algorithm evaluated in their study. They found that hybrid sampling techniques

outperformed other methods in terms of F1 score and accuracy. Specifically, they reported an accuracy range

from 0.977 to 0.994, an F1 score range from 0.758 to 0.919, and an Area under the ROC Curve (AUC) -
Receiver Operating Characteristic Curve (ROC) range from 0.971 to 0.996 for different hybrid sampling

techniques.

 Werner de Vargas et al., (2023) discussed various data-level approaches that have been implemented to

address the issue of data imbalance in machine learning. According to the article, data-level approaches involve

modifying the original dataset by either undersampling the majority class or oversampling the minority class.

The article cited several studies that have used oversampling techniques, such as SMOTE and ADASYN, to

address data imbalance. A study by Batista et al., (2004) found that combining undersampling with

oversampling using SMOTE resulted in better classification performance than using either technique alone.

The article also discussed hybrid approaches that combine oversampling and undersampling techniques and

cost-sensitive learning and ensemble learning methods (Werner de Vargas et al., 2023). The article provided a

comprehensive overview of various data-level approaches that have been implemented to address data

imbalance in machine learning. The study systematically maps and analyses the existing literature on

imbalanced data preprocessing techniques in machine learning. The authors identified 364 relevant studies and

analysed them based on several criteria, including the type of imbalanced data problem, the type of

preprocessing technique used, and the performance measures reported. In terms of data-level approaches, the

study found that oversampling and undersampling techniques were the most commonly used methods to

address imbalanced data (Werner de Vargas et al., 2023). Specifically, oversampling techniques such as

SMOTE and undersampling techniques such as Tomek links were frequently used in the studies analysed. The

study also found that hybrid approaches, which combine oversampling and undersampling techniques, were

effective in improving classification performance on imbalanced datasets. For example, combining SMOTE

with ENN was found to be effective in several studies (Werner de Vargas et al., 2023).

 Moreover, Hordri et al., (2018) discussed two methods to resolve the issue of imbalanced data. One of these

methods is the oversampling and the second is undersampling. A combination of both methods can also be

used to achieve a balanced dataset. The research cited several studies that have used these resampling

techniques to tackle the class imbalance issue. Specifically, the authors divide their dataset into training and

testing sets and then apply under and over sampling methods to balance the distribution of fraudulent and non-

fraudulent transactions in the training set. They use ratios of 30:70 and 50:50 for fraudulent to legal

transactions, respectively (Hordri et al., 2018). The authors then train several classification models on these

balanced training sets. They evaluate the performance of these models using different performance methods

such as F1-measure, sensitivity, accuracy, specificity, and precision. The results showed that these techniques

can improve classification performance for various classification models. Several performance measures were

used to evaluate the effectiveness of resampling techniques in class imbalance data. In the article, the accuracy

value is 0.90, the precision value is 0.70, and the F1-measure value is 0.77.

30

30

 Further, Zhou et al., (2020) used a data-level approach to address the issue of limited training samples when

employing deep learning to estimate evolving technologies. Specifically, they propose a GAN-based data

augmentation method to generate synthetic samples that are similar in distribution to the original ones. The

data-level approach involves manipulating the input data directly, rather than modifying the model architecture

or training process (Mohindru et al., 2021). By generating synthetic samples that are similar in distribution to

the original ones, this approach can increase the size and diversity of the training dataset, which can improve

the performance of deep learning models by reducing overfitting and improving generalisation (Tiwari et al.,

2021). Overall, this study demonstrates how data-level approaches such as GAN-based data augmentation can

be used to address the issue of limited training samples in deep learning applications (Zhou et al., 2020).

Furthermore, the authors used several performance measures to appraise the efficiency of their suggested

approach. The authors reported that the estimating accuracy extended 0.77 when using 1000 synthetic samples

generated by their GAN-based data augmentation method. This means that out of all the samples in their

dataset, 0.77 were correctly classified by their DNN classifiers. The precision, recall, and F1-score were also

reported for each class in their dataset (Zhou et al., 2020). For the emerging technology (ET) class, the precision

was 0.78, recall was 0.76, and F1-score was 0.77. For non-emerging technology (NET) class, the precision

was 0.76, recall was 0.78, and F1-score was 0.77 (Zhou et al., 2020).

 Furthermore, Vijayaraghavan and Guan (2022) utilized the data level approach to address the issue of class

imbalance. The authors proposed using two different data augmentation methods to upsurge the size of the

training dataset and improve classification results: random oversampling and GAN-based data augmentation.

With random oversampling, they simply duplicate existing samples from the minority class to balance the

dataset (Mqadi et al., 2021). With GAN-based data augmentation, they train a GAN to produce synthetic

examples of the minority class that are more diverse and representative of real-world examples. By using these

data level approaches, they are able to address class imbalance and increase the efficiency of learning models.

The first method they use is random oversampling. This involves duplicating existing samples from the

minority class to balance the dataset (Mqadi et al., 2021). For example, if there are only 100 positive samples

and 900 negative samples, they would duplicate some of the positive samples to create a new dataset with 500

positive and 900 negative samples. While this method is simple and easy to implement, it can lead to overfitting

because it does not add any new information about the minority class (Vijayaraghavan & Guan, 2022).

 Fan et al., (2016) proposed a data level approach to address the issue of class imbalance in pattern

recognition. The authors note that conventional data level methods are often used to preprocess datasets and

balance the classes before training a classifier. However, these methods have limitations, such as the loss of

information and increased computational complexity (Fan et al., 2016). To overcome these limitations, the

authors propose a new approach called One-sided Dynamic undersampling No-Propagation Neural Networks

(ODUNPNN). The approach involves dynamically undersampling the majority class during training, which

reduces the computational complexity and preserves information. Additionally, the authors use a one-sided

neural network architecture that only propagates information from hidden layers to output layers, further

reducing computational complexity (Fan et al., 2016). In terms of references, the authors cite several studies

that have addressed class imbalance in pattern recognition using data level approaches. For example, they cite

Derrac et al., (2015), who developed the Keel software tool for data mining and experimental analysis. They

also cite several studies that have used undersampling techniques to balance datasets, such as Batista et al,.

(2004). Overall, the article provides a detailed discussion of data level approaches for addressing class

imbalance in pattern recognition and proposes a new approach that overcomes some of the limitations of

conventional methods. The authors support their claims with experimental results and references to related

studies in the field. The performance measures used in this article include G-Mean, AUC, and F1-score. The

results of the experiments show that ODUNPNN outperforms in terms of AUC, G-Mean, and F1-score.

Specifically, on binary-class imbalance datasets, ODUNPNN achieves an average AUC value of 0.962, which

is higher than other compared approaches such as NPNN (0.947), RUS-NPNN (0.951), OSS-NPNN (0.952),

LASVM-AL (0.954), EasyEnsemble (0.956), AdaBoost (0.957), and 1-NN (0.946) (Fan et al., 2016).

Similarly, on multi-class imbalance datasets, ODUNPNN achieves an average AAUC value of 0.874, which

is higher than other compared methods such as SMOTEBoost (0.862) and AdaBoost.M2 (0.864) (Fan et al.,

2016).

31

31

 Further, Han et al., (2005) proposed a data-level approach to address the problem of imbalanced data sets.

The authors introduced two new minority oversampling methods which only oversample minority instances

close to the borderline (Wan et al., 2017). The authors explain that traditional oversampling methods such as

SMOTE produce fake examples by inserting among existing minority examples. The proposed borderline-

SMOTE approaches report this issue by focusing on the minority instances that are near to the decision

boundary between the minority and majority classes (Han et al., 2005). The performance measures used in this

article include precision, recall, and F1-value (Wan et al., 2017). These measures are commonly employed to

assess classification performance in imbalanced data sets (Han et al., 2005). Further, the results of the

experiments showed that both borderline-SMOTE2 and borderline-SMOTE1 outperformed SMOTE and

random over-sampling in terms of performance measures. For example, on the "ecoli" data set, borderline-

SMOTE1 achieved a TP rate of 0.8 and an F1-value of 0.57, while SMOTE attained a TP rate of 0.6 and an

F1-value of 0.43. In addition to TP rate and F1-value, the authors also reported other performance measures

such as precision, recall, FP rate, and AUC. These measures provide additional insights into the classification

performance of the proposed methods. For example, on the "yeast" data set, borderline-SMOTE1 achieved a

precision of 0.5 and a recall of 0.67, while SMOTE attained a precision of 0.33 and a recall of 0.5.

 Moreover, Singh et al., (2022) pointed that data augmentation involves generating synthetic examples by

applying transformations to existing data points. Further, the authors argued that data augmentation can

generate more synthetic samples for the minority class by applying transformations to existing data points

which can help the classifier learn more features and patterns of the rare class. Furthermore, Langevin et al.

(2022) argued that data augmentation can be used to generate more synthetic samples for the minority class.

The proposed method is called majority-minority GAN transfer, which involves training GAN on the majority

class and then using it to generate synthetic samples for the minority class (Zhou et al., 2020). Further,

Langevin et al., (2022) argued that data augmentation can increase the size of the training dataset by generating

new synthetic samples that are similar to the existing ones. This is particularly useful for imbalanced datasets

where the minority class has very few samples compared to the majority class (Langevin et al., 2022). This

can help balance out the dataset and prevent overfitting on the majority class (Langevin et al., 2022). However,

Vijayaraghavan and Guan (2022) pointed out that the use of data augmentation can reduce the risk of

overfitting in machine learning models by increasing the diversity and size of the training dataset. By doing

so, they are able to increase the size of the training dataset and provide more examples for the machine learning

algorithm to learn from (Sethia et al., 2018). This helps to reduce overfitting by preventing the model from

memorising specific examples in the training set and instead learning more generalizable patterns that can be

applied to new data. Additionally, by comparing GAN-based data augmentation with vanilla oversampling,

they are able to evaluate which method is more effective at reducing overfitting and improving classification

results (Awoyemi et al., 2017).

 Further, the sampling methods are generally based on oversampling, undersampling, or the combination of

both oversampling and undersampling techniques to deal with the imbalanced class challenge. The majority

class represents valid transactions and the minority represents invalid or fraudulent transactions. In production

environments, the majority of transactions made are legitimate, while a small fraction consists of invalid or

fraudulent activity. Oversampling methods generate more balanced data by reproducing samples from minority

groups. The data-level sampling techniques are used to adjust either by decreasing the samples of the majority

class or by increasing the samples of the minority class. Generally, the outcomes of sampling techniques alter

the distribution of datasets until it becomes balanced. The literature has shown that the balanced datasets can

enhance the ability of the classifier. For instance, the SMOTE technique, or SMOTE, introduced by Chawla

et al., (2002) is an intelligent data-level approach which adds artificial data points in the minority instances. In

SMOTE, the minority class is oversampled by generating artificial examples instead of by using the

replacement approach. In this approach, the minority class is oversampled by taking each minority sample as

well as by introducing artificial examples besides line-segments joining the k minority class nearest

neighbours, while the B-SMOTE (Chen et al., 2018) technique is a modified version of SMOTE (Ullah and

Mahmoud, 2021). It pin-points the exact boundary between each class to improve the predictions. In addition,

He et al., (2008) introduced an adaptive learning technique, ADASYN, for imbalanced data classification

challenges. The technique has the ability to adaptively produce artificial data instances for the minority class

32

32

to lessen the bias due to imbalanced data distributions. Moreover, this algorithm shifts the classifier decision

boundary to be more focused on those difficult to learn samples, thus enhancing the learning ability. In more

recent years, many GAN-based techniques have emerged to deal with the imbalanced data, such as Vanilla

GAN (Goodfellow et al., 2014), NS GAN (Shannon et al., 2020), CGAN (Mirza & Osindero, 2014), SDG

GAN (Charitou et al., 2021), LS GAN (Mao et al., 2017), and WGAN (Arjovsky et al., 2017). Many way outs

have been offered by these techniques at the data level and algorithmic level. At the data level, many GAN-

based sampling frameworks are used to generate synthetic data to rebalance the dataset.

 Furthermore, Lamba (2020) in their research work, introduced a Sparse Auto Encoder (SAE) and GAN-

based model to differentiate fraudulent credit card transactions from non-fraudulent credit card transactions.

This model is unique because it can be treated as a one class classification technique since it does not need

mixed-type data sets comprised of negative and positive instances. The authors argue that cardholders have

varying behavioural patterns while conducting monetary transactions via cards, so it may become hard to

extract anti-fraud patterns. On the other hand, deep learning methods offer novel ways for detection. Therefore,

in their empirical work, (Chen et al., 2018) attempted to apply a sparse autoencoder for separating fraudulent

and non-fraudulent transactions. Ullah and Mahmoud (2021) presented optimal ways to identify financial

frauds. The aim of their work is to discuss telecom fraud. The reasons behind this fraud are a lack of private

information privacy, sloppy banking regulations, shortcomings in telecom supervision, the low rate of the

detection of fraud cases, and identity theft. To address these challenges, authors have proposed a novel

framework and named it an “Adversarial Deep De-Noising Auto-encoder” for detecting Telecom fraud at the

receiving bank. It is noteworthy here that this novel approach is based on GAN. The proposed approach

employs a deep denoising auto encoder to control noisy inputs and incorporates two high-end classifiers (for

classification and discrimination) to boost learning efficiency. The findings of this empirical study reveal that

this proposed model has significant rewards in terms of the misclassification rate and the sound classification

accuracy than other state-of-the-art approaches. In addition, this anticipated framework was applied to two

conventional banks and effectively detected 321 fraud cases.

 To conclude, this approach successfully lessened customer losses and enhanced the repute of commercial

banks. Recently, Li et al., (2021) conducted a study on cyber-attacks. The authors argue that fraudsters are

using unique and novel methods to conduct cyber-attacks. They emphasize that deep machine learning

techniques have convinced researchers by detecting anomalies effectively. They argue that neural networks

are excellent substitutes for the detection of anomalies. In their study, the authors introduced an anomaly-based

intrusion method for IoT networks. They implemented their model with the help of neural networks (NN) in

1D, 2D, and 3D. In their study on data-level algorithms, Grandini et al., (2020) argued that credit card-based

fraud has become the biggest cyber-based fraud faced by cardholders. To mitigate such fraudulent activities,

deep machine learning-related detection systems are a better option.

 Nevertheless, designing machine learning methods is challenging due to problems associated with class

imbalance in datasets. Data level augmentation techniques are effective in addressing the challenges arising

due to imbalanced data. They can reduce bias by generating new samples of minority classes which can be

used while training a classifier. However, they require careful tuning and selection of parameters to ensure that

the generated samples are appropriate for training and to enable better performance on unseen data. Therefore,

further research is needed to explore the effectiveness of these techniques for different datasets and

applications. In more recent times, GANs have gained immense success in various domains. Many researchers

have contrasted GANs for imbalanced data scenarios against other well-known methods. It is imperative to

mention that the detection of fraudulent transactions is an expensive and time-consuming task. In the past,

unsupervised methods have been proposed to deal with this challenge. Data level augmentation approaches

methods such as GANs have the ability to simulate high dimensional and complex data distributions can be

employed to learn the behavioural instances of normal data to detect anomalies. These developments in GAN

are making it the most effective method. However, more research work is needed in order to improve the

predictability, efficacy, accuracy, and applicability of GAN variants. In this study, we concentrate on data

augmentation approaches.

33

33

2.3.1. Sampling Based Techniques

 In this study, we consider existing data augmentation techniques, i.e., Vanilla GAN (Goodfellow et al.,

2014), NS GAN (Shannon et al., 2020), CGAN (Mirza & Osindero, 2014), SDG GAN (Charitou et al., 2021),

LS GAN (Mao et al., 2017) and WGAN (Arjovsky et al., 2017) as well as sampling based techniques have

been ADASYN (He et al., 2008), SMOTE (Chawla et al., 2002), B-SMOTE (Han et al., 2005) and our

proposed K-CGAN. To conduct our experiments we utilised Python, Jupiter notebook, and Tensorboard. We

have utilised the following libraries, such as Tensorflow, as our Machine Learning Framework, and required

layers to define a neural network such as Input, Embedding, Dense, Dropout, Flatten, Activation, Reshape,

Concatenate from tensorflow.keras.layers library, and further libraries such as numpy, pandas,

sklearn.processing, min.maxscaler, seaborn, sys, time, SMOTE, ADASYN, BorderlineSMOTE from

imblearn.over_sampling, roc_curve from sklearn.metrics, stats from scipy, LogisticRegression from

sklearn.linear_model, GaussianNB from sklearn.naive_bayes, KNeighborsClassifier from sklearn.neighbors,

RandomForestClassifier from sklearn.ensemble, xgb from xgboost, os, norm from numpy.linalg, plt from

matplotlib.pyplot, PCA from sklearn.decomposition, Axes3D from mpl_toolkits.mplot3d, ArgumentParser

from argparse, and train_test_split from sklearn.model_processing.

2.3.1.1. SMOTE

 Since its introduction in 2002, SMOTE (Chawla et al., 2002) has been successfully used in a wide range of

contexts and fields. The development of several distinctive supervised training paradigms, such as incremental

learning, multi-label classification, multi-instance learning, and semi-supervised learning, has been influenced

by SMOTE, which seeks to overcome the issue of class imbalance. The method is unequalled for learning from

different data sources. SMOTE performs better when the dataset size is small. However, if the size of the

dataset is large, SMOTE takes time to create artificial data points, and SMOTE’s efficiency drops significantly.

Furthermore, while creating artificial data points, the chance of overlapping data points for the minority class

is high in SMOTE. In the first step of basic principle of SMOTE, each sample 𝑥𝑖 is selected in turn from the

minority samples as the root sample for the synthesis of the new sample. After that, the process randomly

selects a sample from the K neighbour samples of the same category of 𝑥𝑖 as the auxiliary sample for the

synthesis of new sample, the process is repeated n times. After that, linear interpolation between the sample 𝑥𝑖

and each auxiliary sample through Eq. (1), and at last n synthesized samples are generated.

 𝑥𝑛𝑒𝑤,𝑎𝑡𝑡𝑟 = 𝑥𝑖,𝑎𝑡𝑡𝑟 + 𝑟𝑎𝑛𝑑 (0,1) × (𝑥𝑖𝑗,𝑎𝑡𝑡𝑟 − 𝑥𝑖,𝑎𝑡𝑡𝑟) (1)

Among them, 𝑥𝑖,𝑎𝑡𝑡𝑟 is the 𝑎𝑡𝑡𝑟 attribute value of the i sample in the minority class. Moreover, 𝑟𝑎𝑛𝑑 (0,1) is

a random integer betwen [0,1]. 𝑥𝑖𝑗,𝑎𝑡𝑡𝑟 is the j nearest neighbor sample of sample 𝑥𝑖. Whereas, 𝑥𝑛𝑒𝑤is a new

sample synthesized between 𝑥𝑖𝑗and 𝑥𝑖. The Eq. (1) demonstrates that the new sample 𝑥𝑛𝑒𝑤 is a sample derived

from the interpolation between 𝑥𝑖 and 𝑥𝑖𝑗.

2.3.1.2 ADASYN

 ADASYN (He et al., 2008) is used to create minority data samples with distributions that reflect those of

the underrepresented groups with the goal of generating more data to address the data imbalance. ADASYN

has the ability to generate data samples for minority class samples which are hard to learn. Furthermore, the

generated data points using ADASYN (Chen et al., 2018) not only balance the dataset well but also reduce

the learning bias of the actual dataset. Additionally, this method is also applicable for the multiple-class

imbalanced learning challenge. On the other hand, the major drawback of this algorithm is that ADASYN’s

precision may suffer due to the nature of adaptability. In addition, each of the neighbourhoods only contain

34

34

one minority example for minority samples which are sparsely distributed. Further, both SMOTE and

ADASYN have a common ancestor. However, ADASYN introduces a tiny random bias to the points after the

samples are formed, making them less closely related to their parents. The variance of the synthetic data is

increased although this is a small adjustment. To provide fake information, a synthetic adaptive algorithm is

used to create minority data samples that have distributions that are typical of the underrepresented groups in

order to address the data imbalance.

 𝑠𝑖 = 𝑥𝑖 + (𝑥𝑧𝑖 − 𝑥𝑖)𝜆 (2)

Whereas, minority cases 𝑥𝑖 and 𝑥𝑧𝑖 in the same neighbourhood as the innovative synthetic example are

generated using a random integer between 0 and 1. Moreover, 𝑥𝑧𝑖is minority sample from the K nearest

neighbors of 𝑥𝑖. In addition, 𝑠𝑖 is synthetic data example that is generated according to Eq. (2), among them 𝜆

is a random number 𝜆∈[0,1].

2.3.1.3 B-SMOTE

 A Borderline-SMOTE (Han et al., 2005) only generates synthetic instances for the minority occurrences

that are close to the boundary of two categories. In the majority of classification systems, researchers used B-

SMOTE (Chen et al., 2018; Han et al., 2005) during training to pin-point the exact boundary between each

class to improve the predictions.

 𝑃 = {𝑃1, 𝑃2, … … , 𝑃𝑝𝑛𝑢𝑚}, 𝑁 = {𝑛1, 𝑛2, … , 𝑛𝑛𝑛𝑢𝑚} (3)

In the Eq. (3), the entire training set is assumed as T i.e., both P and N. The entire minority class is supposed

as P and the majority class is assumed as N. Moreover, 𝑝𝑛𝑢𝑚 represents the total number of minority instances,

and 𝑛𝑛𝑢𝑚 represents the total number of majority cases. Moreover, for each 𝑃𝑖{𝑖 = 1, 2, 3, . . . , 𝑃𝑝𝑛𝑢𝑚in the

minority class P, its m nearest neaghbors are calculated from the entire training set T.

2.3.2. GAN-Based Techniques

2.3.2.1 Vanilla GAN

 Goodfellow et al., (2014) introduced Vanilla GAN as a method to generate data from a given set of

observations. In order to produce new data, the generator G first seeks to identify the distribution within the

training data. The discriminator has been trained to output the likelihood that the input data is derived from

noise from the generator or the training set. In order to trick the discriminator into classifying the data it creates

as the training set data, the generator seeks to provide data that is slightly closer to the training dataset

(Langevin et al., 2022).

35

35

Figure 1: GANs Architecture

The architecture of a GAN, commonly used, is depicted in the graphical schematic representation shown in

Figure 1.

 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔 𝐷(𝑥)] + 𝐸𝑍~𝑃𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺)(𝑧))] (4)

To learn the distribution 𝑃𝑔 over data 𝑥, Generator 𝐺 buids a mapping function from noise distribution 𝑃𝑧(𝑧)

to data space. Moreover, the Discriminator 𝐷 outputs a single scalar signifying the probability that 𝑥 came

from training data instead from 𝑃𝑔.

Where, 𝐸𝑍~𝑃𝑧(𝑧) is a random noise (usually standard Gaussian) and 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
 is the true data distribution. In

addition, parameters are adjusted for 𝐷 to [𝑙𝑜𝑔 𝐷(𝑥)] and parameters are adjusted for 𝐺 to minimize [𝑙𝑜𝑔 (1 −

𝐷(𝐺)(𝑧))] as both 𝐷 and 𝐺 follow min-max game with value function 𝑉(𝐷, 𝐺).

2.3.2.2 CGAN

 GANs can be extended to conditional frameworks by conditioning both the G and D on additional

information. A type of GAN augmentation known as CGAN (Mirza and Osindero, 2014), takes into account

extra limitations. To satisfy this requirement, the discriminator and the generator must both consider a third

piece of information, denoted y. This third piece of information might be anything from data from a different

domain to a classifier.

 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
[𝑙𝑜𝑔 𝐷(𝑥

𝑦
)] + 𝐸𝑍~𝑃𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧

𝑦
)))] (5)

Here, 𝐷 represents the discriminator, 𝐺 represents the generator, 𝑦 and 𝑃𝑧(𝑧) as input noise are combined in

the 𝐺 in joint hidden representation. Eq. (5) presents mathematical representation of conditional GAN which

consists of two adversarial models: a generative model 𝐺 that captures data distribution and a discriminative

model 𝐷 that calculates the probability that a sample is from the training data rather than 𝐺. In order to learn a

generator distribution 𝑃𝑔 over 𝑥, the 𝐺 build a mapping function from a noise distribution 𝑃𝑧(𝑧). Moreover, the

𝐷 outputs a single scalar signifying the probability that 𝑥 came from training data rather than 𝑃𝑔. In addition,

both 𝐺 and 𝐷 are trained simultaneously. Moreover, GANs function is extended in Eq. (5) to a conditional

model where both G and D are conditioned on some extra information 𝑦. Whereas, 𝑦 is auxiliary information,

for instance class labels. In cGANs, conditioning is performed by feeding 𝑦 into 𝐺 and 𝐷 as additional input

layer. Moreover, parameters are adjusted for 𝐺 to minimize [log (1 − 𝐷(𝐺(𝑧

𝑦
)))] and parameters are adjusted

for 𝐷 to minimize [𝑙𝑜𝑔 𝐷(𝑥

𝑦
)] as both these neural networks follow min-max game with value

function 𝑉(𝐷, 𝐺).

36

36

2.3.2.3 WGAN

 To encourage effective training, this architecture alters the loss role of the default application and uses a

weight clip (Arjovsky et al., 2017). They propose to compute the loss function using the earth mover distance

rather than the Jensen–Shannon divergence. This reserve metric, which assesses the similarity of the data

distributions from the exercise dataset and the created dataset, is constant and observable throughout.

 𝑊(𝑃𝑟 , 𝑃𝑔) = 𝐸(𝑥,𝑦)~𝛾[‖𝑥 − 𝑦‖]
𝛾∈𝛱(𝑃𝑟,𝑃𝑔)

𝑖𝑛𝑓
 (6)

Eq. (6) presents the earth mover distance also known as Wasserstein-1. Among them, 𝛱(𝑃𝑟, 𝑃𝑔) is the

combination of all distributions γ(𝑥, 𝑦) whose marginal are 𝑃𝑟and 𝑃𝑔, respectively. Moreover, γ(𝑥, 𝑦)

demonstrates the quantity of mass must be shifted to 𝑦 from 𝑥 to transform 𝑃𝑟 distributions into

𝑃𝑔 distributions. By doing so, the earth mover distance will be the cost of most desirable transport plan.

2.3.2.4 SDG GAN

 The generator and discriminator of the SDG GAN (Charitou et al., 2021) are both convolutional channels

with an MLP design in the SDG GAN framework. A standard GAN’s generator seeks to produce fake data

that closely resemble the true distribution (Taha and Malebary, 2020). Synthetic Data Generation GAN has

the capacity to outperform density-based oversampling methods and enhances the classification ability of

benchmark datasets and real fraud datasets.

 In addition, original GAN uses regular loss, however, instead of using regular loss, the SDG GAN utilizes

feature matching loss to improve GAN training. The feature matching objective function is shown in Eq. (7).

Moreover, SDG GAN used conditional GAN method to calculate the 𝑃
𝑥

𝑦
, which denotes conditional

distribution. The conditional distributions allow us to sample the minority class by conditioning the 𝐺 on the

minority class label, which is presented by 𝑋𝑛𝑒𝑤 = 𝐺(𝑧, 𝑦 = 𝑦𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦). In order to reduce the statistical

disparities between the characteristics of the actual data and the produced data, feature matching adjusts the

objective functions for the generator. As a result, the generative network's focus shifts from deceiving the

adversary to matching features in the actual data. On the other hand, 𝐷 is trained same as to a regular GAN

discriminator. The empirical findings in original SDG GAN paper indicate that feature matching is an effective

approach where a regular GAN suffers instability. The original SDG GAN achieved the following objective

function:

 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷‖𝐸𝑧~𝑝𝑑𝑎𝑡𝑎𝑓(𝑥
𝑦⁄) − 𝐸𝑧~𝑝𝑧(𝑧

𝑦⁄)𝑓(𝐺(𝑧))‖2
2 + 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎[𝑙𝑜𝑔(𝐷(𝑥 𝑦⁄))] (7)

In Eq. (7), the term ‖𝐸𝑧~𝑝𝑑𝑎𝑡𝑎𝑓(𝑥
𝑦⁄) − 𝐸𝑧~𝑝𝑧(𝑧

𝑦⁄)𝑓(𝐺(𝑧))‖2
2 is the feature matching loss. Moreover, the rest

of objective function is binary cross entropy, or simply BCE between true class labels 𝑦 ∈ (0, 1) and the

predicted class probability.

2.3.2.5 NS GAN

 Non-saturating GANs (NS GAN) (Shannon et al., 2020) is an improved version of GANs (Goodfellow et

al., in 2014). The form of GAN that is most widely used as a benchmark in research and practical applications

is non-saturating GAN (NS GAN). However, the NS GAN algorithm lacked theoretical justifications (Taha

and Malebary, 2020), like other GANs such as WGAN. The loss function performs poorly in practice; despite

37

37

being outstanding for theoretical results. The GAN has difficulty converging, stabilising its training, and

offering a range of samples. The aforementioned loss function for G should not be trained, but rather improved

gradients from prior training should be utilized (Taha and Malebary, 2020).

In the adversarial game, the 𝐷 tries to classify which data is fake or real. On the other hand, the objective of 𝐺

is to fool 𝐷 into thinking that the fake data it produces is real data. According to the original paper, in which

GAN was introduced, maximizing the objective of 𝐷 after swapping data (NS GAN) gives better results than

minimizing the objective of 𝐷 (Saturating GAN) directly. The mathematical representation of NS GAN can

be shown as the following two steps:

 𝑚𝑎𝑥𝐷:𝑋→[0,1]𝐸𝑥∼𝑃 [𝑙𝑜𝑔(𝐷(𝑥))] + 𝐸𝑧∼𝑃𝑧[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))] (8)

 𝑚𝑎𝑥𝐺:𝑋→[0,1]𝐸𝑧∼𝑃𝑧 [𝑙𝑜𝑔(𝐷(𝐺(𝑥)))] + 𝐸𝑥∼𝑃[𝑙𝑜𝑔(1 − 𝐷(𝑧))] (9)

In Eq. (8) and (9), 𝑃 is the real data distribution on domain 𝑋 and 𝑍 is the domain of 𝑃𝑧. It is noteworthy to

mention that the fake data distribution is formed by 𝐺(𝑧) as Q.

Moreover, Eq. (10) and Eq. (11) are generalized in the following matters:

 𝑚𝑎𝑥𝐷:𝑋→𝑑𝑜𝑚𝑓𝐸𝑥∼𝑃 [𝑓(𝐷(𝑥))] + 𝐸𝑧∼𝑃𝑧[(𝑔(𝐷(𝐺(𝑧)))] (10)

 𝑚𝑎𝑥𝐺:𝑍→𝑋𝐸𝑧∼𝑃𝑧 [𝑓(𝐷(𝐺(𝑥)))] + 𝐸𝑥∼𝑃[(𝑔𝐷(𝑧))] (11)

Whereas, both 𝑓 and 𝑔 are scalar-to-scalar functions selected in order to predict the chances of the data being

real by the 𝐷. Generally, 𝑓 is a monotone increasing and on the other hand, 𝑔 is monotone decreasing.

2.3.2.6 LS GAN

 The foremost benefit of LS GANs (Mao et al., 2017) is that unlike conventional GANs, where there is nearly

no loss for samples that lie on the correct side of the decision boundary, LS GANs can penalize samples

although they are rightly classified. The other benefit is that the decision boundary can produce more and more

gradients when updating the G, this then lessens the issue of the vanishing gradient (Sohony et al., 2018). This

design shows that the model trains more steadily and is better able to handle the gradient vanishing problem

than the vanilla method by using the least square error as the loss. The aim of 𝐺 is to learn the distribution 𝑃𝑔

over data 𝑥. The 𝐺 begins from sampling input variables 𝑧 from a Gaussian distribution 𝑃𝑧(𝑍) then maps the

input variables to data space 𝐺(𝑧) via a differentiable network. In addition, 𝐷 is a classifier 𝐷(𝑥) that tries to

recognize the instance from training data or from 𝐺.

 𝑚𝑖𝑛𝐷𝑉𝐿𝑆𝐺𝐴𝑁(𝐷) =
1

2
𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[(𝐷(𝑥)−𝑏)2] +

1

2
𝐸𝑧~𝑝𝑧(𝑍)[(𝐷(𝐺(𝑧))−𝑎)2] (12)

 𝑚𝑖𝑛𝐺𝑉𝐿𝑆𝐺𝐴𝑁(𝐺) =
1

2
𝐸𝑧~𝑝𝑧(𝑍)[(𝐷(𝐺(𝑧)) − 𝑐)2] (13)

Where 𝑏 is the label for real data, 𝑎 for fake data, and 𝑐 is used as a label for testing the discriminator 𝐷 with

generator 𝐺 samples(𝑥)i.e. 𝑏 = 1, 𝑎 = 0, and 𝑐 = 1.

38

38

2.4 Classifiers

 Five popular classification techniques XGBoost (Chen and Guestrin, 2016), Random forest (Breiman,

2001), K-Nearest Neighbor (Cover and Hart, 1967), Multilayer Perceptron (Rosenblatt, F., 1957), and Logistic

regression (DeMaris, A., 1995) are implemented to evaluate the performance of the data augmentation methods

in this study.

2.4.1 XGBoost

 XGBoost (eXtreme Gradient Boosting) is a widely used machine learning technique, developed by (Chen

and Guestrin, 2016). This technique improves the initial gradient-boosting technique. By using ensemble

techniques, it improves functionality in general. To solve the issue of a non-uniform majority class, researchers

modify traditional classification algorithms utilizing ensemble approaches. To complete a categorization

exercise as an “ensemble,” a group of students is gathered. The performance of a classifier is increased by

combining numerous weak learners into a small number of robust ones (Hajek et al., 2022). The loss functions

in which ′𝑡′ iteration needs to be minimized is given below:

 𝐿(𝑡) ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑡−1 + 𝑓𝑡 (𝑥𝑖)) + Ω(𝑓𝑡) 𝑛
𝑖=1 (14)

The XGBoost model is trained in an ‘addictive’ way. Where, 𝑙 is a differentiable convex function that computes

the difference between 𝑦̂𝑡−1 and 𝑦𝑖. Moreover, Ω penalizes the complexness of the regression tree functions.

It is noteworthy to mention that 𝑦𝑖 is the real label known as the training dataset, whereas 𝑙 is a function of

CART learners which is sum of the previous and current addictive trees. In addition, 𝑦̂𝑡 is the prediction of 𝑖-
th instance at 𝑡-th iteration. The introduction of 𝑓𝑡 is to minimize the objective function.

2.4.2 Random Forest

 Random Forest (Breiman, 2001) is a supervised machine learning technique that can be used to solve

regression and classification issues (Sadgali et al., 2019). It builds several Decision Trees during training and

employs a majority vote to decide the outcome in order to improve accuracy and produce more reliable forecasts.

To increase precision, Bootstrap aggregation and entropy criteria are applied.

The most common element in all the processes is that the 𝑘-th tree, a random vector 𝜃𝑘is produced, which is

independent of the previous random vectors 𝜃1, … , 𝜃𝑘−1, however, having the same distribution. Moreover, tree

is grown using the training set and 𝜃𝑘 resulting in a classifier ℎ(𝑥, 𝜃𝑘) in which 𝑥 is an input vector. For example,

in bagging the random vector 𝜃 is produced as the counts in 𝑁 boxes as a result from 𝑁 darts thrown at box

randomly, in which 𝑁 is number of instances in the training set. In random split selection 𝜃 comprises of a

number of independent integers from 1 to K. The nature of 𝜃 depends on its utilization in tree construction. In

addition, when multiple trees are created, they pick the most well-known class, which are known as Random

Forests (Breiman, 2001).

Moreover, a Random Forest is a classifier having a collection of tree like classifiers {ℎ(𝑥, 𝜃𝑘, 𝑘 = 1, … } where

the {𝜃𝑘} are independent identically distributed random vectors and each of the tree case a unit vote for the

well-known class at input 𝑥.

2.4.3 K-Nearest Neighbor

 The K-Nearest Neighbor introduced by (Cover and Hart, 1967) is a supervised method widely adopted within

machine learning. KNN methods choose an integer k that separates the data from the closest neighbours again

(Makki et al., 2019). Its principal usage is the classifying process. The similarity of a new data point to previously

classified data affects its classification. Integer k is selected by KNN algorithms to once more split the data from

its nearest neighbours.

39

39

 𝑑(𝑝, 𝑞) = √∑ (𝑝𝑖 − 𝑞𝑖)2𝑛
𝑖=1 (15)

The distance between points is calculated using a specific norm. The class with most of the K closest points is

given to the new observation. An observation is defined as Rn, and the norm is typically employed to calculate

the distance among 2 observations, 𝑞 and 𝑝.

2.4.4 MLP

 The Multi-layer Perceptron (MLP) was first introduced by (Rosenblatt, F., 1957), several decades later MLP

was used to develop ANNs. A multi-layer perceptron is a synthetic system with at least three layers of nodes

(hidden, input and output). Each node makes use of an encoder. The activated function adds bias after computing

the weighted sum of its inputs. This allows researchers to select which transistors have to be removed and ignored

while making outside networks (Lamba, 2020).

 𝑥𝑓
2 =

12𝑁

𝐾(𝐾+1)
 [∑ 𝑅𝑗

2 −
𝐾(𝐾+1)2

4
] (16)

Where 𝐾 stands for the total set of algorithms, 𝑁 stands for the number of data sets, and 𝑅𝑗
2 represents the

algorithm 𝑗′s average rank.

2.4.5 Logistic Regression

 Logistic regression, as its name suggests, is a kind of regression model that makes use of a categorical

dependent variable (DeMaris, A., 1995). Using logistic regression, one or more independent variables can be

used to estimate the probability of a binary response. Forecasts are transformed into probabilities using the

sigmoid function (Wang and Zhao, 2022). Linear regression’s loss function is squared loss. Similarly, the logistic

regression’s loss function is log loss, which can be defined as follows:

 𝑙𝑜𝑔 𝑙𝑜𝑠𝑠 = ∑ −𝑦 𝑙𝑜𝑔(𝑦̂) − (1 − 𝑦) 𝑙𝑜𝑔(1 − 𝑦̂)(𝑥,𝑦)∈𝐷 (17)

Among them (𝑥, 𝑦) ∈ 𝐷 is the dataset which contains multiple labelled samples which are (𝑥, 𝑦) pairs. In

addition, 𝑦 is the label in labelled example. In logistic regression, every value of 𝑦 must be either 0 or 1.

Moreover, 𝑦̂ is predicted value which must be anywhere between 0 and 1, given the set of features in 𝑥.

2.5 Overview of State-of-the-art Methods

The diagram in Figure 2 illustrates various methods for handling imbalanced classification issues.

40

40

 Figure 2: Techniques to handle imbalanced classification issues

 To provide justification for using GAN over other existing approaches, we conducted an analysis of various

techniques. Below are the pros and cons of these techniques, based on which we chose GAN for comparison.

Names of the techniques previously used:

1) Resampling, which includes oversampling and undersampling.

2) SMOTE.

3) Ensembling methods.

4) GAN based methods.

 Ensemble techniques are techniques that improve the accuracy of results in models by combining many

models rather than relying on just one. The precision of the results is significantly increased by the integrated

models. Therefore, ensemble methods for machine learning have become more popular (Sohony, Pratap and

Nambiar, 2018).

2.5.1 Resampling (Oversampling and Undersampling)

According to (Amin et al., 2016), resampling has key features as follows:

1) It relies on the assumption of a known or reasonably approximated population size. For example, if

researchers aim to study the size of rodents in a specific region, an estimation of the rodent population is

necessary to determine a starting point or sample size effectively.

2) Resampling requires a certain level of randomness in the population. When the population exhibits a

consistent pattern, there is a higher risk of inadvertently selecting cases that are excessively regular.

 To address data imbalance, common techniques are oversampling and undersampling. Downsampling

reduces data for majority classes, while oversampling increases data for minority classes. Downsampling,

however, may result in the loss of important information about the majority classes, while oversampling

without careful consideration can lead to overfitting.

41

41

2.5.2 SMOTE

 The position of the minority class has an impact on SMOTE techniques. When classifications overlap or

there is subtraction in the data, SMOTE reveals issues. If classes overlap inside a bigger cluster, this is known

as a disjunction (Prati et al., 2004). This implies that the method may generate more data in a region that is

difficult to separate and needs more sophisticated classifiers. This is taken into consideration by cluster-based

SMOTE expansions, such as ADASYN, but it is limited by presumptions. According to Cordón et al., (2018),

it's possible that these presumptions do not apply to producing these complicated distributions. Further,

SMOTE technique is unparalleled for learning from many data sources. At smaller dataset sizes, SMOTE

works remarkably well. SMOTE's efficiency decreases noticeably when the dataset is huge since it takes a

long time to generate fake data points. Also, the likelihood of overlying data points for the minority class in

SMOTE is significant when constructing false data points. It is observed that the sensitivity of SMOTE is

lower as compared to other GAN based models (Fiore et al., 2019). However, SMOTE generates examples

that are similar to existing ones and related to a learning algorithm, the newly created instances are not exact

duplicates. Resultantly, the decision boundary is softer as an outcome.

 Nevertheless, when constructing the synthetic examples, SMOTE ignores the placements of the nearby

instances from other classes (Fiore et al., 2019). Moreover, SMOTE tries to manipulate the instances

mindlessly without taking the data distribution into account, leading to the creation of incorrect instances that

end up in the majority of regions when there is class dissemination or class noise (Cao et al., 2017).

Furthermore, SMOTE misclassifies several majority models as a minority, lowering SVM classification

efficiency, particularly for complicated classification problems resulting from complicated distributions (Cao

et al., 2017). For instance, class overlap, whereas the data distribution becomes more distinguishable in the

kernel space by locating with a suitable kernel matrix, helping to ensure that the instances created seem to be

more precise than oversampling in the original feature space. This illustrates that the premise that features

space is a better place for oversampling than input space is correct. Through transferring with a suitable kernel

matrix, the distribution of the data reduces the possibility of class overlapping in feature space, guaranteeing

that the instances created are more precise than the frame interpolation in the original space (Cao et al., 2017).

Furthermore, there is a notable rise in the concentration of artificial minority samples near prominent examples

of the challenging minority class, compared with earlier examples of the same (Sun et al., 2020). As a

countermeasure, SMOTE will probably have fewer synthetic minority samples surrounding the easy minority

class samples that were properly categorised by the previous base classifier. Moreover, there is a smaller drop-

off in the frequency of synthetic minority samples surrounding more recent easy minority class samples

compared to those surrounding earlier easy minority class samples (Sun et al., 2020).

 Further, He and Garcia (2009) pointed out that one potential drawback of SMOTE seems to be that noisy

samples might be created due to the difficulty in distinguishing between minority and majority class clusters.

Furthermore, it is observed that SMOTE generates inappropriate accuracy for class imbalance data (Douzas

and Bacao, 2018). In place of sample replication, cutting-edge oversampling techniques such as SMOTE

(Chawla et al., 2002), produces synthetic training instances from the minority class using interpolation. Such

approaches have some important downsides. For instance, the possibility of oversampling and undersampling

leading to overfitting (Chawla et al., 2002). Further, it is examined that when SMOTE is employed, the

precision measure significantly decreases (Charitou et al., 2021). Though the ability to produce synthetic data

makes oversampling approaches, such as the SMOTE, a popular choice among academics. Newly generated

minor samples might overlap with existing major samples, which is one of SMOTE's major drawbacks. This

raises the risk that machine learning techniques will exhibit bias when it comes to the way they perform for

major class increases (Manjurul Ahsan et al., 2022). Nevertheless, conventional SMOTE generates additional

noise and cannot deal with high-dimensional data (Maldonado et al., 2022; Wang et al., 2021). Further, the

SMOTE technique preprocessing is helpful in identifying the decision boundary because of the imbalance

distribution of user features, but still, it takes more time to build the appropriate model on a substantial number

of virtual datasets.

42

42

 In addition, the placement of the minority class has an impact on SMOTE algorithms. When there are

disparities in the data or overlap between classes, SMOTE encounters challenges. These sections of a larger

cluster, where classes intersect, are known as disjoints (Prati et al., 2004). Consequently, the algorithm might

generate additional data in areas that are hard to differentiate and necessitate more advanced classifiers. Due

to its unpredictability, the random oversampling-based approach, which repeats certain samples, raises the

total number of minority classes but is unable to effectively retrieve the samples close to the border between

the minority and majority classes (Zhang et al., 2019). Focusing on a few criteria, SMOTE-based oversampling

algorithms frequently extend the data to several class samples. These techniques circumvent the problem of

sampled data but are still unable to lower the rate of false sample overlaps (Ni et al., 2023).

 Nevertheless, the issue of overgeneralization in oversampling approaches, and particularly for the SMOTE

algorithm, is primarily linked to the method used to construct synthetic samples. SMOTE properly creates the

same number of the synthesised dataset for each actual minority instance without taking into account nearby

instances, which enhances the chance of class overlap (Wang and Japkowicz, 2004). Further, Chawla et al.,

(2002) argued that one of the most popular and productive techniques is that SMOTE uses k Nearest Neighbors

for every minority sample to produce synthetic data based on the shared characteristics between the minority

class samples. The primary drawback of this method is that the samples of simulated data may intersect with

the data of the majority class (Chawla et al., 2002). Moreover, the cornerstone of the SMOTE method is

resampling all along sample points that intersect each sample from the negative class and its designated nearest

neighbours, and thus can successfully prevent the unintended consequence of the random oversampling

approach (Xue and Zhang, 2016). Nevertheless, SMOTE overlooks the distribution of the positive class

samples close to the negative samples in the phase of generating negative class data because it assumes that

the neighbours still pertain to the same class. There is a certain opacity in the closest neighbour selection

technique since it does not take the training set's features into account. Furthermore, the SMOTE is the primary

oversampling method that aims to normalize the dataset by adding a few fictitious minority samples (Chawla

et al., 2002). Minority samples are created using SMOTE and its variations (Das et al., 2014; Han et al., 2005;

Lim et al., 2016; Zhang and Li, 2014) by spontaneously interpolating between a minority sample and its closest

minority neighbours. The primary flaw in these approaches is that they fail to take into account the dataset's

initial distribution, which might lead to an inaccurate expansion of the minority location. Moreover, the

SMOTE algorithm includes flaws such as variance and generalisation (Wang and Japkowicz, 2004).

Advantages and Disadvantages of SMOTE

As discussed in previous section, SMOTE has several advantages and disadvantages (Chou et al., 2020). Below

we summarise the list:

Advantages:

1) It is relatively easy to develop and implement specific examples, making it suitable for studies or

surveys with limited budgets.

2) It provides a sense of control and interaction for specialists and analysts, especially when dealing

with precise limits or narrowly framed speculation.

3) It eliminates group selection issues.

4) It is a generally a safe factor, with a low probability of data being impaired.

Disadvantages:

1) SMOTE's method of indiscriminately summing up the minority class can lead to overgeneralization,

especially in cases of highly skewed class distributions.

2) The number of synthetic samples generated by SMOTE is fixed in advance, lacking flexibility in the

re-balancing rate.

3) SMOTE is not efficient for high-dimensional data.

43

43

2.5.3 ADASYN

 The multiple-class imbalanced learning problem may also be solved using this strategy. On the other hand,

the main disadvantage of this algorithm is that because of flexibility, ADASYN's (He et al., 2008) precision

may deteriorate. Also, for the poorly dispersed minority samples, each of the neighbourhoods only has one

minority case. Further, it is observed that ADASYN misclassifies several majority samples as a minority,

reducing the SVM efficiency of the classifier, particularly for complicated classification problems stimulated

by complex distribution (Cao et al., 2017). For instance, class overlap, whereas mapping with a suitable kernel

matrix makes the data distribution more decomposes in the kernel space, making sure that the instances

produced seem to be more precise than the oversampling in the original feature space. This proves that feature

space is better for oversampling than input space. However, the distribution of the data reduces class

overlapping in the training dataset by mapping with a suitable kernel matrix, making the instances created

more precise than the oversampling in the original feature space (Cao et al., 2017). Furthermore, it is observed

that ADASYN generates inappropriate accuracy for class imbalance data (Douzas and Bacao, 2018).

Moreover, it is pointed out that ADASYN has a lower precision value and F-1 score as compared to CGAN

(Mirza & Osindero, 2014), SDG GAN (Charitou et al., 2021), B-SMOTE (Han et al., 2005) and SMOTE

(Chawla et al., 2002). However, Singh et al., (2021) pointed out that ADASYN generates lower recall and

accuracy values as compared to other GAN based models.

2.5.4 Ensembling methods

Advantages:

 Ensembling techniques have become effective tools with a number of advantages over conventional

approaches.

1) According to Sharma et al., 2017, ensemble approaches outperform individual models like Support

Vector Machines (SVM) and Artificial Neural Networks (ANN) in terms of classification

effectiveness.

2) In comparison to previous AI approaches, ensemble learning models have been shown to exhibit

improved prediction accuracy. As a result, they are appropriate for real-time applications such as

system failure detection (Wang et al., 2018).

3) Machine learning models may efficiently minimize bias and variance by using ensemble neural

networks, which results in overall error reduction. The ensemble's capacity to generalize is improved

by this property, which also strengthens and improves the accuracy of the ensemble (Mehmood et al.,

2021).

4) According to (Ahmad and Brown, 2013) several ensemble approaches, such the new Random

Projection Random Discretization Ensembles, have shown to be resilient to class noise.

Disadvantages:

1) Ensembling typically requires training and combining multiple models, leading to increased

computational resources and time consumption. As the number of models in the ensemble grows, so

does the complexity, making it less practical (Breiman, 1996).

2) Ensembling introduces additional hyperparameters that need to be tuned, such as the choice of base

models, their weights, and the combination method (e.g., averaging, voting, stacking). Selecting the

right combination can be challenging (Caruana et al., 2004).

3) Each individual model in the ensemble requires memory for storage, and when combining several

models, the overall memory footprint increases. This could be a problem for resource-constrained

environments (Fernández-Delgado et al., 2014)

4) They often create more complex models, making it difficult to interpret the combined model's

predictions and understand the underlying decision-making process. The lack of interpretability can

44

44

be a concern in certain applications, especially those requiring transparency and accountability

(Wolpert, 1992).

5) Although ensembling is often used to reduce overfitting, there is still a risk of overfitting if the

individual models in the ensemble are themselves overfitting the training data. If the base models are

too complex or trained on insufficient data, the ensemble may not generalize well to new and unseen

data (Dietterich, 2000)

6) For ensembling to be effective, the individual models in the ensemble should have diverse strengths

and weaknesses (Caruana et al., 2004).

7) In some cases, if the individual models in the ensemble are already strong performers, the marginal

gain achieved by ensembling may not justify the additional computational cost and complexity.

(Fernández-Delgado et al., 2014).

2.5.4 GAN based methods

 Recently, GANs initially proposed by (Goodfellow et al., 2014), have attracted researchers to data

generation due to their performance and elegant theoretical base (Xie et al., 2018). The purpose of generating

synthetic data is to create data that can perform just like the real-world dataset for analysis tasks, for instance,

classification. However, GANs have a few classification problems where it needs to consider class labels

during synthetic data generation. To deal with the class label problem, researchers introduced GAN extensions.

For instance, (Mirza and Osindero 2014) introduced Conditional GANs that consider class labels while

generating new data. In their study, (Vega-Márquez et al., 2020) used Conditional GAN instead of

conventional GAN to evaluate the practicality of generated data. The authors argue that Conditional GAN

performs well in datasets with target class as they consider these details to train the network. In addition, a

Conditional GAN-based framework generates synthetic data from the training data, which can be utilised for

the same tasks without revealing the real data. Generally, researchers argue that training GAN framework is a

difficult task (Mescheder et al., 2018). One of the main reasons is that the Generator has limited modelling

capacity which prevents it from reproducing all nuances of the data. Also, the stability of GAN is a crucial

concern while training GAN as it is challenging to balance GAN's component networks. If the Discriminator

outperforms the Generator, the entire GAN training would not be efficient. Similarly, if the Discriminator

performs poorly than its counterpart, the overall training results will be useless. Thus, in severe imbalancing

state, the entire GAN framework needs to catch up to one component's failure against the other (Fiore et al.,

2019).

 Moreover, in their study, (Arjovsky and Bottou 2017) also points out that GANs are extremely hard to train,

and researchers need more understanding of the instability of GANs while training. Many GAN extensions

have also been proposed to counter this issue, but they rely on heuristics highly sensitive to modification. Thus,

their limited applicability makes it challenging to test with new GAN extensions or employ them in new areas.

The study by (Fiore et al., 2019) presented a GAN framework to resolve class imbalance in data. The study

trained a GAN to generate only minority class instances and merged them with training data into an augmented

training set to improve the classifier's effectiveness. Their empirical study observed that injecting artificial

samples in the training set increases FPs. Thus, ineffective in setting where the FPs is costlier. Their framework

depended on the availability of labelled instances of fraudulent credit card transactions. So, their proposed

framework is observed to be ineffective in an unsupervised setting. Moreover, their GAN-based framework

could not detect fraud patterns that are completely new in nature and have no details for generalisation.

However, the authors emphasise that these shortcomings of their GAN framework are because the training was

done on a small set of training data. There is a need for more research in this domain to check the effectiveness

of their tuned GAN framework.

 Recently, researchers used GANs to generate accurate synthetic data and tackle the issue of class imbalance

(Efimov et al., 2020). GANs were able to generate accurate data samples. At the same time, GANs are hard to

train. As GAN trains two networks concurrently, it means that when the parameters of a model are updated,

45

45

the problem of optimization changes. This framework setting constructs a dynamic system that is not easy to

control. Non-convergence is a common problem while training GAN. Usually, deep learning methods are

trained using an optimization algorithm that achieves the lowest point of a loss function. On the contrary, the

game theory-based two-player situation may not reach equilibrium. Thus, the gradients may not converge and

cannot attain the optimum minima. In other words, when the Generator gets too good, it may trick the

Discriminator and can halt receiving critical feedback. As a result, the Generator will only receive bad

feedback, leading towards output quality collapse (Eckerli and Osterrieder, 2021). In addition, mode collapse

is the most common issue in the GAN framework while generating synthetic data and avoiding the problem of

class imbalance. Mode collapse is a failure of GANs that occur because of training deficiencies. Mode collapse

can happen when the Generator does not consider a region of the target data distribution. In other words, the

Discriminator will learn to discriminate against the Generator's fake samples when the Generator upholds itself

in a local minimum limited sample generation. Ultimately, this will end the learning phase and leads to an

undiversified output (Eckerli and Osterrieder, 2021). This is a considerable issue as in generative modelling.

The purpose is not only to generate realistic samples but also to be capable of producing a wide variety of

samples (Takahashi et al., 2019).

 Recent studies of GAN have demonstrated that when the Discriminator dominates the training process, the

Generator can fall short. This failure is because an optimal Discriminator needs to give adequate feedback for

the Generator to learn properly. This problem is known as the vanishing gradient problem, where the gradient

gets too minimal that in back-propagation it does not change the weight values of the initial layers of the

Generator, so the learning comes to an end due to slow learning (Zhang et al., 2020). Even though the plain

Vanilla GAN is the simplest GAN form, still this GAN type has a few common issues while generating

synthetic data in the financial domain (Sauber-Cole and Khoshgoftaar, 2022). Vanilla GAN is extremely hard

to train due to multiple factors such as hyper-parameters, the loss function and the Generator, which fools the

Discriminator easily. In the Vanilla GAN design, Oscillatory loss is a common issue in the training phase. An

effective training process needs the loss to be stable or gradually increase/ decrease over a more extended

period. On the contrary, this does not always happen in Vanilla GAN training. Another significant issue with

the loss function is that it usually needs to provide more information. For instance, binary cross-entropy is the

Generator's generally used loss function. One drawback of this is that there needs to be more correspondence

between the output quality and the Generator's loss. Therefore, the training can sometimes be challenging to

monitor (Gulrajani et al., 2017; Sabuhi et al., 2021; Takahashi et al., 2019). A categorical column imbalance

is not taken into account by Vanilla GANs (McIver, 2021).

 According to (Xu et al., 2019), if any rows fall into a small category, they won't be well depicted throughout

training. This is a result of the random sampling of the data. They tackle this issue by resampling in such a

way that discrete characteristic categories are uniformly sampled whilst still retrieving the original data

distribution throughout testing. Further, generator G 1st attempts to detect the delivery within the training data

before creating new data. The chance that the input data is created by noise from the training set or generator

is what the discriminator has been taught to produce. The generator makes an effort to deliver data that is

marginally nearer to the training sample to pretend the discriminator into thinking that the data it produces is

the training dataset (Goodfellow et al., 2020). Further, (Gangwar and Ravi, 2019) employed Vanilla GANs to

identify class balance in datasets. The authors pointed out that Vanilla GAN worsens the objective function of

the distribution. Furthermore, it is observed that Vanilla GANs may not perform well for original datasets

because they are less similar to original datasets. Moreover, (Goodfellow et al., 2014) pointed out that a min-

max game's training will always be insecure. Therefore, Vanilla GANs have an issue with convergence since

the moment at which to end training is unpredictable. Moreover, the mode collapse property of Vanilla GAN

might result in a vanishing gradient (Goodfellow et al., 2014). Additionally, it is observed that Vanilla GAN

is quite sensitive to hyperparameters (Kar et al., 2020).

 The research by (Zhang et al., 2020) combined Long Short-Term Memory (LSTM) network with GAN to

generate negative samples. They evaluated the validity of generated data from the distribution of the data. The

empirical findings of their study show that their proposed method has a higher overall rating. In addition, the

classification findings also revealed that this novel method has higher recall and precision than baseline

46

46

methods on new datasets. Although the combined LSTM and GAN model achieved excellent results, the model

came across several problems while training the model. From the model outlook, discriminators and generators

have to be carefully balanced. The Generator is prone to fall into the local optimum, causing a single sample

and inadequate diversity. The model needs improvements from the perspective of gradient penalty, loss

function and so on. Other than that, the LSTM-GAN model can only generate data similar to the original

dataset and cannot generate possible patterns that have not occurred yet under the latent space. Moreover, there

is a lack of diversity in the generated samples, and the model may not detect potential fraud transactions which

have not occurred. Overall, the LSTM-GAN model performed very well in generating synthetic data, but the

model has several loopholes which need to be addressed in future studies.

 In an empirical study, (Sethia et al., 2018) employed popular adversarial networks to generate data to

improve the model's performance synthetically. The study employs Least Squares, Vanilla implementation,

Wasserstein, Relaxed Wasserstein and Margin Adaptive models. This study generated artificial synthetic data

using different GAN variants, augmented the real dataset, and compared the results with the real dataset. Their

study aimed to deal with the imbalanced class issue by generating artificial data and improving the overall

training performance. The study's empirical findings (Sethia et al., 2018) found that LSGAN attained the

highest performance based on classification accuracy than the other four models. At the same time, LSGAN

also faced difficulties such as mode collapse as the Generator generated similar and limited data, thus leading

to a loss of diversity in the produced data. Moreover, the Vanilla GAN model demonstrated considerable

classification accuracy compared to the real dataset, but findings suggest that it is sensitive and unstable to its

hyper-parameters. The study also indicated that the data generated by Vanilla GAN might also need more

diversity and quality. Similarly, the WGAN performed better than Vanilla GAN regarding stability and

classification accuracy. WGAN needs more computational resources and training time than the other models.

In addition, the training phase can be complex due to the Wasserstein distance metric. Overall, all the models

used in the study performed well in terms of classification performance. However, GAN-based models

observed mode collapse during the training phase.

 In almost all GANs, general issues may arise in the training phase via the gradient descent technique

(Arjovsky et al., 2017). For instance, when the Discriminator makes a false judgement, the Generator cannot

get accurate feedback, and its loss function cannot learn as it should be (Salimans et al., 2016). Similarly, if

the Discriminator makes an accurate judgement, then the gradient of the loss function converges to 0. As a

result, a major disturbance or delay occurs in the learning speed. Hwang and Kim (2020) argued that the

WGANs had compensated for these GAN limitations as WGANs use Wasserstein distance. Wasserstein

distance index uses the distance of the two probability distributions. On the other hand, the distance value is 0

under the KL Divergence when distributions overlap one another. It is constant or infinite when two

distributions do not overlap each other, thus presenting an extreme distance value. The redefinition of the loss

function in WGANs employing Wasserstein distance is effective as it provides smooth training and generates

improved data that resemble, as much as possible, the original dataset.

 In another study, (Hilal et al., 2022) argue that Vanilla GANs face the issues of vanishing gradient and mode

collapse frequently. These problems are more common in real-world datasets with many modes associated

with each different class. Unlike the Vanilla GANs, the loss function of WGAN depends on the quantity of

generated distribution and the distance. Hence, it does not have flat regions where the distribution becomes

different. As a result, the Discriminator is barred from enhanced improvement, and the challenge of vanishing

gradient is addressed, while the likelihood of mode collapse challenge is reduced. The conventional GAN uses

the Jensen-Shannon divergence to learn data distribution. Conventional GAN suffers from a weak, unstable

signal when the Discriminator approaches a local optimum, this scenario is known as a vanishing gradient

issue. The conventional GAN can also experience mode collapse due to these limitations. In addition to these

issues, conventional GANs do not provide any inference model to capture the inverse mapping. Thus,

additional training is required to achieve an inference model, increasing the computational cost of training

(Perera et al., 2019).

47

47

 To deal with the issues of conventional GANs converging to the Nash equilibrium and mode collapse,

(Arjovsky et al., 2017) introduced Earth Mover distance instead of JS divergence in their study. WGAN

improves GAN stability by altering the cost function. Even though the WGAN network deals with the mode

collapse problem, the weight clipping employed in its Discriminator makes convergence extremely tricky. So,

(Gulrajani et al., 2017) introduced an enhanced version of WGAN-GP. Researchers added a gradient penalty

to the Discriminator model of WGAN as an alternative to weight clipping. This enhancement improved

training speed, sample quality and convergence by allowing the Discriminator to learn smoother decision

boundaries.

 GANs are popular generative methods, however, they suffer from unstable training. On the other hand,

Wasserstein GAN was introduced to deal with training instability, though WGAN occasionally generates poor

samples or fails to converge. (Gulrajani et al., 2017) in their study highlighted that these issues are due to the

use of weight clipping in WGAN to enforce a Lipschitz constraint on the critic, which can result in unwanted

behaviour. This architecture employs a weight clip and adapts the evasion application's loss function to

promote efficient training. They propose applying the earth mover distance to compute the loss function instead

of the Jensen-Shannon divergence. This reserve metric is maintained during the whole process and is always

accessible. It measures the degree to which the data distributions of the training dataset and the generated

dataset are similar to one another. Further, it is observed that WGANs may not perform well for original

datasets because they are less similar to original datasets. Further, it is observed that WGANs are unfortunately

not as efficient as well as expected and continue to experience unsteady training and sluggish convergence

following weight clipping. Gulrajani et al., (2017) have discussed the various improvements that can be done

to the WGANs. They found that weight clipping, which is used to impose a Lipschitz restriction on the critic

and can result in undesirable behaviour, was frequently the cause of these WGAN issues. Instead, they

suggested penalising the critic's norm of the gradient concerning its input as an alternative to clipping weights

(Gulrajani et al., 2017). The SDG GAN approach includes convolutional channels with an MLP architecture

as both the discriminator and the generator (Xue and Zhang, 2016). A typical GAN generator attempts to create

fictitious data that thoroughly resembles the real distribution (Taha and Malebary, 2020). In addition to

improving the classification accuracy of standard datasets and real fraud datasets, SDG GAN has the potential

to surpass density-based oversampling techniques. It is observed that SDG GAN has a lower recall value as

compared to cGAN, SMOTE, ADASYN, B-SMOTE, and SMOTE (Charitou et al., 2021). However, it is

observed that SDG GAN is less similar to the original datasets because this technique may not be appropriate

for these datasets.

Advantages and Disadvantages of GAN-based techniques

 According to recent studies (Cao et al., 2018, Mullick et al., 2019) the following are the main advantages

and disadvantages of GANs:

Advantages:

1) GANs are highly versatile and adaptable, capable of generating data that closely resembles real data.

For instance, when given an input image, GANs can generate a modified version of the image that

closely resembles the original. They can also generate various versions of content, videos, and audio.

2) GANs excel at capturing the intricacies of data and can easily generate diverse variations, making them

valuable for various AI tasks.

3) Unlike traditional machine learning models that require labelled data, GANs can be trained using

unlabelled data as they learn the internal representations of the data.

4) GANs learn intricate representations of data, allowing them to tackle complex AI problems.

5) Compared to classical machine learning algorithms, GANs leverage adversarial training and are more

effective in representation and feature learning.

48

48

Disadvantages:

1) GANs are more challenging to train as they require a diverse range of data to ensure accurate

performance.

2) Generating text or speech results with GANs is complex.

3) Mode collapse can occur, where the generator produces limited variation in output.

4) Vanishing gradients can be a problem, hindering effective training.

5) Internal covariate shift can impact performance.

 However, due to the adaptability and versatility of GANs, meticulous fine-tuning can alleviate these

drawbacks, leading to optimised architecture designs that can be applied to various machine learning purposes.

2.5.5 Sampling vs GAN-based techniques

 It is observed that sampling based techniques leads to overgeneralization (Chou et al., 2020). Such as,

SMOTE's method is inalienably risky since it indiscriminately sums up the minority region regardless of the

greater part class. This system is especially risky on account of exceptionally slanted class disseminations

since, in such cases, the minority class is extremely meagre regarding the larger part class, accordingly,

bringing about a more prominent possibility of class combination (Chou et al., 2020). Further, it leads to an

absence of flexibility. For instance, the quantity of engineered tests created by SMOTE is fixed ahead of time,

accordingly, not taking into consideration any adaptability in the re-adjusting rate. Furthermore, SMOTE are

not efficient for high dimensional data (Chou et al., 2020). On the other hand, GANs are very general and

adaptable, and can generate data that appears to be resembling unique data (Cao et al., 2018). In the event that

input for GAN is a picture, at that point it will generate another form of the picture which will resemble the

first picture. Essentially, it can generate various variants of the content, video, sound e.g. Further, GANs

expand into subtleties of data and can undoubtedly decipher into various forms so it is useful in accomplishing

AI work (Cao et al., 2018). Gaining marked information is a manual interaction that takes a ton of time. GANs

don't require marked information; they can be prepared utilising unlabelled information as they gain

proficiency with the inside portrayals of the information. As referenced earlier, GANs can learn chaotic and

convoluted disseminations of information (Cao et al., 2018). This can be utilised for many AI issues. Compared

to the classical machine learning algorithms, GAN operates through an adversarial training approach and is

more capable in representation and feature learning (Cao et al., 2018). However, GANs models also have some

disadvantages. For instance, GANs models are harder to prepare because GANs require various kinds of

information to be provided to GAN consistently to check in the event that it works precisely (Mullick et al.,

2019). Producing results from text or discourse is intricate. Further, GANs model has also problems of mode

collapse, vanishing gradients, and internal covariate shift (Mullick et al., 2019). Therefore, the current study

introduces an improved GAN variant, the K-CGAN model to address these challenges and the problem of class

imbalance data.

2.5.6 Summary

 After extensive review of existing techniques and literature, we have meticulously chosen GANs as the

approach for our proposed model. Through rigorous research and experimentation with hyperparameters and

architectures, we are presenting our innovative method K-CGAN method. This novel approach for comparison

incorporates various GAN-based methods and employs cutting-edge oversampling techniques to effectively

address the data imbalance problem, ensuring accurate comparisons and robust analysis.

 Our K-CGAN model is purposefully designed to overcome the limitations commonly found in existing

GANs. By leveraging the adaptability and versatility of GANs, our model is optimized to cater to the specific

needs in credit card fraud and breast cancer data analysis. It tackles the challenges associated with GANs,

effectively improving the quality and reliability of generated datasets. As a result, the performance of our

classification methods is significantly enhanced, providing more accurate and reliable insights.

49

49

 In summary, our K-CGAN model represents a significant advancement in the field, revolutionizing the way

we address data imbalance and improve the performance of classification methods. Through a meticulous

approach and attention to detail, we have ensured that our model surpasses the limitations of existing GANs,

resulting in datasets of the highest quality and reliability.

2.6 Methodology

 This study adopted a mixed-method research approach, combining quantitative and qualitative research

methodologies to comprehensively analyse breast cancer diagnosis and credit card fraud detection. This

allowed the study to leverage the strengths of both these methods and avoid expected limitations that could

emerge when a single methodology is adopted. In the quantitative phase, the study utilized oversampling

techniques, popular GAN methods and classification methods to identify trends and make predictions.

Moreover, in the quantitative phase, the study performed a thematic analysis of both datasets to understand

the implications of our findings in the broader context. Thus, the mixed-method approach allowed this

study to understand the credit card fraud detection and breast cancer diagnosis phenomena and provided

valuable insights into the underlying mechanism of the techniques used. Our methodology also focused on

extensive feature engineering and evaluation of data augmentation and classification techniques. Therefore,

we’ve implemented and tested multiple classification and oversampling methods to assess their

performance in handling imbalanced datasets. Our study evaluates the performance of classification

techniques using the K-CGAN model against baseline models. The core experiment flow is depicted in

Figure 3.

 In addition, the study also incorporated case studies with breast cancer and credit card datasets to provide

an in-depth exploration of these instances. The first case study focused on fraudulent credit card

transactions. The mixed research approach helped identify patterns of fraudulent transactions. The GAN

methods, oversampling techniques, and our proposed K-CGAN model were employed to resolve the class

imbalance issue. The synthetic data generated using these methods helped to improve the predictive model's

performance. In the second case study, the study focused on the breast cancer diagnosis. This approach

helped identify the trends and patterns within the breast cancer data. The synthetic data generated by the

GANs effectively identified malignant tumours with high accuracy.

 Quantitative research, an integral component of our study, involves objective data collection and

systematic analysis. By adopting this approach, the study quantified relationships and made predictions.

The methodology of this study began with defining research questions and hypotheses. In addition, this

approach allowed us to resolve the imbalanced dataset issue by generating synthetic data for the minority

class. This approach, combined with objective data collection and systematic analysis, is intended to

address both datasets' imbalanced distributions, thus avoiding biased models and inaccurate classification

results. For the said purpose, research questions and hypotheses were formulated to guide the collection of

numerical data. The quantitative approach was adopted as it is instrumental in exploring relationships,

making accurate predictions and identifying trends. In addition, common methods such as experiments,

analysis and data mining techniques were used. By doing so, this study provides insights and patterns that

would have otherwise remained hidden. For instance, the data mining techniques used in this study helped

discover patterns in these large datasets.

 In addition to quantitative research, the qualitative approach was also adopted in our research. The

qualitative approach is key in any research as it provides a nuanced understanding of the data. This

approach involves a more subjective, interpretative analysis to discern patterns and themes within the data.

The qualitative methodology of the study began with the collection of the data. Moreover, thematic

analysis, a core aspect of this study, was adopted to interpret and identify recurring themes and patterns in

the data. The study carefully reviewed data, followed by coding and categorizing the data into themes.

Additionally, the qualitative methodology used in this study was iterative, as repeated revisions were made

to ensure the reliability and accuracy of the identified themes.

50

50

 The qualitative approach also provided a deeper understanding of the imbalance class phenomena. Also,

the study interpreted the reasons for the performance of various GANs and other oversampling methods

based on the themes identified in the data. By doing so, the study offers insights that were difficult to

achieve through the quantitative method alone. Moreover, qualitative research enables this study to

comprehend the implications of our findings in the broader category of breast cancer diagnosis and credit

card fraud detection. The qualitative research complemented the quantitative research of this study, thus

offering an in-depth and comprehensive understanding of credit card and breast cancer datasets. The

integration of both these methodologies allowed this study to provide a balanced view of our findings, thus

ensuring a comprehensive and robust conclusion of our study. Our research study focuses on resolving

imbalance dataset issue by generating synthetic credit card and breast cancer data for minority class

transactions. The existing datasets for these tasks suffer from imbalanced distributions, which can lead to

biased models and inaccurate classification results. Therefore, we aim to create a more balanced resource

by exploring GANs and oversampling techniques.

Figure 3: Experiment flow

51

51

Chapter 3

Kullback-Leibler Divergence Conditional GAN (K-CGAN)

3.1 Introduction

 In this research study we have experimented GANs to generate synthetic credit card and breast cancer data

for minority class transactions. Our experiments have implemented various GAN-based architectures,

including WGAN (Arjovsky et al., 2017), LS GAN (Mao et al., 2017), NS GAN (Shannon et al., 2020), and

SDG GAN (Charitou et al., 2021) to evaluate their effectiveness in creating high-quality synthetic data. To

improve the quality of the generated data, we have developed a novel optimised custom GAN, referred to as

K-CGAN. The main goal of our research is to develop a reliable synthetic dataset and address the issue of

imbalanced datasets in classification tasks. The existing credit card fraud and breast cancer datasets suffer

from an imbalanced distribution of data points. Therefore, our aim is to create a more balanced resource by

exploring GANs and several oversampling techniques, such as ADASYN (He et al., 2008), SMOTE (Chawla

et al., 2002) and B-SMOTE (Han et al., 2005), to improve our research results.

 This approach aims to create a more balanced resource that can enhance the accuracy and reliability of

classification models for detecting credit card fraud and breast cancer. The K-CGAN model has been

extensively tested on credit card fraud and breast cancer data. The study evaluates the performance of

classification techniques using the K-CGAN model against baseline models. The results demonstrate that

the K-CGAN model, with its custom loss function architecture and hyperparameters, provides superior

accuracy and performance compared to the baseline models, particularly in credit card fraud detection tasks.

Furthermore, the K-CGAN model is capable of generating high-quality synthetic data that can be used to

augment existing datasets, resulting in improved accuracy and performance. This approach offers a practical

solution to address imbalanced datasets and contributes to the advancement of credit card fraud detection

and breast cancer classification tasks.

3.2 K-CGAN Architecture and Implementation

 Various extensions of GAN based methods have been developed since its introduction Goodfellow et al.

(2014). To some extent, these GAN extensions have addressed the irregularities associated with the original

GAN method. Motivated from the recent development in GAN-based synthetic generative frameworks we

propose K-CGAN method to address the imbalanced class issue. This proposed method is based on a

conditional GAN (cGAN) (Mirza & Osindero, 2014) framework with a novel custom loss function for the

Generator where an additional Kullback-Leibler (KL) Divergence loss is introduced along with the binary

cross entropy loss. We show in this study that addition of this KL Divergence loss helps in enhanced data

sampling from latent space and smoother training convergence. Due to the addition of this custom loss

52

52

function we named our proposed method Kullback-Leibler divergence Conditional GAN (K-CGAN). Our

custom K-CGAN model is displayed in Figure 4. In addition to a custom loss function, we make use of state-

of-art training techniques for smoother and faster convergence e.g. Kernel Regularizers (L2), Kernel

Initializers (Glorot_Uniform), Batch-Normalization, Dropouts and other optimal hyperparameters. Kernel

Regularizer methods like L2 (Bishop, 2006) help in smoother training, Kernel Initializer methods like

Glorot_Uniform (Glorot, 2010) help in initializing the parameters of the model (weights & biases) in suitable

loss regions, helping in avoiding local optimas and faster convergence of training loss routines. The full list

of hyperparameters and their values are presented in Tables 1 and 2. K-CGAN method is composed of two

sub-networks: the Generator and the Discriminator. Also, the CGAN process is displayed in Figure 3.

K-CGAN comprises two Neural networks (NNs), the Generator and the Discriminator which compete with

each other in adversarial settings. The goal of Generator is to learn the inherent data sampling distribution of

original training samples and be able to generate more synthetic samples mimicking the original sample

distribution. The goal of Discriminator is to be able to differentiate between samples from the original

distribution and synthetic samples. The goal of the Generator when generating synthetic samples is to make

it close enough from the original distribution so that the Discriminator is not able to differentiate it from the

original distribution. Hence, the adversarial setting. Both Generator and Discriminator force each other to

learn better.

 Generator Network: Takes random noise and class labels as inputs and generates synthetic data samples.

The generator is conditioned on the class labels, making it a conditional GAN. It consists of multiple dense

layers with dropout and batch normalisation.

 Discriminator Network: Takes real or generated data samples along with their corresponding class labels

as inputs and classifies them as genuine or fake. The discriminator uses LeakyReLU activation, dropout, and

batch normalization to discriminate between real and fake data samples.

 The Generator start-off with random data distribution and attempts to imitate a specific type of distribution.

Through training, the Discriminator gets better at differentiating fake distributions from the real ones. In this

way, both the NNs play a mini-max game in which both try to outsmart one another. The training architecture

of GAN looks simplistic, but at times, both these NNs do not learn the way they are trained to. GANs have

a tendency to show some irregularities in performance. These irregularities are linked to their training and

are active fields for research. Through meticulous tuning of K-CGAN we’re able to achieve superior results.

Some Notation:

- 𝑥 (original input sample space) 𝜀 𝑅𝑚

- 𝑧 (latent space) 𝜀 𝑅𝑑

- 𝑦 (class labels) 𝜀 𝑅1 [# class labels = 2; label 1 (real samples), label 0 (fake samples)]

- 𝑥 (synthetic/fake samples generated by Generator) 𝜀 𝑅𝑚

- Batch_Size (𝑏) (number of samples used for model training in each iteration)

- 𝑁 (total number of training samples)

- 𝐷 (Discriminator Network)

- 𝐺 (Generator Network)

- 𝑝(𝑥), 𝑝(𝑦) e.g. represent probability distributions

Generator Network (𝐺):

- Takes

● random sample from latent space (𝑧𝑖), class label (𝑦𝑖) as inputs

● and generates a new synthetic sample (𝑥𝑖)

- The Generator output is conditioned on the class labels (𝑦), hence the name conditional GAN

53

53

Discriminator Network (𝐷):

- Takes

● as input:

○ real input sample (𝑥𝑖), class label (𝑦𝑖)

○ or synthetic sample (𝑥𝑖), class label (𝑦𝑖)

● and tries to respectively classify them as real or fake

- The Discriminator output is also conditioned on the class labels (𝑦), in accordance with the name

conditional GAN

Figure 4: Process steps of CGAN architecture

 Here are the key steps in the operation of CGAN architecture. A CGAN architecture uses a discriminator

network to separate the real data from the created data, a generator network to create synthetic data that is

reliant on the input vector, and a discriminator network to distinguish between the real and generated data

(Padmanabhuni and Gera, 2022). Since the CGAN is trained by minimising the loss function, it may be used

to provide synthetic data that is appropriate for a certain task or application (Wickramaratne and Mahmud,

2021). Based on the results of numerous studies (Ba, 2019; Wickramaratne and Mahmud, 2021), it is clear

that GAN is a powerful tool for generating synthetic data that can be used to aid in the categorization of data,

such as in credit card fraud detection. As per the above, based on CGAN architecture our proposed optimised

method K-CGAN the generator G and discriminator D of K-CGAN are constantly in conflict with one

another. The generator’s purpose is to perplex the discriminator. The discriminator’s job is to distinguish

events produced by the generator from those in the provided dataset. If the discriminator has no issue

identifying which instances came from the generator, the generator’s data will be of a low quality. It is

reasonable to think of the K-CGAN setup as the generator’s training ground, with the discriminator giving

the generator input on the instances it generates and guiding its evolution. The K-CGAN architecture is

presented in Figure 4.

54

54

Figure 5: Architecture of K-CGAN method

 During the training Generator and Discriminator are trained in sequence while freezing the parameters

(weights & biases) of the other for adversarial setting to take effect. First the Discriminator parameters can

be trained keeping parameters of Generator frozen and then in the next phase the Generator parameters get

trained keeping parameters of Discriminator frozen.

 In the initial stage of training the K-CGAN involves generating synthetic samples from random noise

vectors of latent space and class label space. Generator takes input of dimensionality [𝒃, 𝟐𝒅]. Since we are

working with CGAN we incorporate class label (𝑦𝑖 𝜀 𝑅1) after passing it through an 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝐿𝑎𝑦𝑒𝑟 and

concatenating it to the random noise sample (𝑧𝑖 𝜀 𝑅𝑑) of latent space. The Generator of novelty K-CGAN

transforms this batch of [𝒃, 𝟐𝒅] input samples into output batch of synthetic data of dimensionality [𝒃, 𝒎],

as each output sample (𝑥𝑖) is of same dimensionality as input (𝑥𝑖). The Discriminator links both the real data

and the generated synthetic data with their labels to shape the combined labels and combined data. Our

proposed framework then prepares target labels to form a binary label that discriminates real data from fake

data. Layer transformations and input-output dimensionality are explained clearly in Figure 5.

 The next phase of K-CGAN involves training the Discriminator. In this phase, the Discriminator is used

to classify the combined labels and data to minimise the Discriminator loss, defined by the loss function

between the predictions and true labels. During this training phase parameters of Generator remain frozen

and parameters of Discriminator get trained. The gradients of the loss with respect to the Discriminator's

trainable weights were computed and used to update the parameters of the Discriminator. The

Discriminator’s loss was calculated in this stage of training. The Discriminator loss is the binary cross-

entropy between misleading labels and prediction. Furthermore, the gradients and update weights were

calculated. This process is known as back-propagation, in which the gradients of the loss with respect to the

weights are calculated. The optimizer was then utilised to update the weights, ultimately leading to the

minimum possible loss.

55

55

 The next steps of training novelty K-CGAN involve the preparation of data and the start of the Generator

training. In this training phase, the Generator is trained to transform the noise and real labels into fake data,

and uses the Discriminator to classify these fake data samples. Moreover, the Generator aims to maximise

the loss defined by the loss function between the misleading labels and the Discriminator's predictions of the

fake data. The Generator loss was calculated after the Discriminator loss. The Generator loss consists of two

terms: binary cross-entropy between true labels and predicted labels by the Discriminator, and KL

Divergence between the original data and fake data generated by the Generator. The Kullback-Leibler (KL)

divergence is a measure of the difference between two probability distributions. This function is used to

optimise the parameters of the Discriminator model based on the difference between the original data

distribution and the fake data distribution of the Generator model. In the last step of training, tracking of the

Discriminator and the Generator loss is performed using the Generator loss tracker and Discriminator loss

tracker objects, returning these losses as a dictionary.

 KL Divergence is a way to measure matching between two distributions, and in our case, the Original and

Generated Data are our two distributions. As we consider KL Divergence as a loss function our goal is to

have minimum loss and as the training process goes, both distributions come close to each other, as

demonstrated in Figure 5. In most of the GAN networks, difference between two distributions is never

considered as a loss. The main loss function is binary classification between real and fake samples. So as we

added KL Divergence in the Generator loss and if KL loss approaches 0 (zero), it means both distributions

are achieving optimum closeness.

Figure 6: For similar probability distributions KL Divergence is closer to 0 and for dissimilar probability

distributions they are high values highlighting divergence

 To create convincing synthetic fraudulent transactions, a novel loss approach has been suggested for the

generator to guarantee that an accurate classification model can be effectively trained. In order to ensure that

the K-CGAN-generated synthetic data properly reflects the distribution of the original dataset, we utilised

KL Divergence to guarantee higher accuracy performance. Since the KL divergence is continuously

differentiable, gradient-based optimisation methods such as deep learning may utilise it as a loss function

(Günder et al., 2022). In the field of information theory, the KL divergence, also known as relative entropy,

was first presented by Solomon Kullback and Richard Leibler in 1951. By comparing two probability

distributions, this statistical tool calculates the distance between them (Chen et al., 2018). Further, Xu and

Veeramachaneni (2018) used TGAN model to detect frauds in credit card transactions. They used Adam

Optimizer to train their model (LeCun et al., 2015). They optimised the generator to make it as effective at

deceiving the discriminator as feasible. They jointly optimise the cluster vector of continuous variables and

the KL divergence of discrete variables by adding them to the loss function in order to more effectively warm

56

56

up the model. The KL divergence term can help improve the stability of the model (Xu and Veeramachaneni,

2018). To efficiently produce discrete features, they modify the loss function by including noise and KL

divergence. They observe that GANs are more scalable for big datasets and can efficiently capture the

correlations between features.

 However, it is observed that the proposed K-CGAN model provides better parameters performance by

using KL divergence because it uses combined binary cross entropy and KL divergence in generator loss

while still using binary cross entropy in discriminator loss, along with the optimised custom hyperparameter

settings and layers for each dataset. This ensures that our synthetic data is sufficiently precise and accurately

resembles its source material. By utilising this technique for credit card fraud detection, financial institutions

can trust in more dependable results from our project. Finally, to test the efficacy of K-CGAN-generated

synthetic data in credit card fraud detection, K-CGAN model was trained on a credit card fraud transaction

dataset and its performance has been evaluated using metrics such as precision, recall, and F1 score. Further

analysis, training and optimization of the K-CGAN on breast cancer data has revealed that utilising these

synthesised datasets improves the accuracy of minority class detection models significantly. Additionally,

other GAN-based and oversampling techniques were trained using the same datasets as K-CGAN and

assessed for their performance.

K-CGAN implementation

 The K-CGAN training procedure is remarkably similar to that of the Conditional GAN. The logistic cost

function for the gradient is obtained by feeding a mini batch (𝑏) of training samples and noise random

samples. In order to trick the Discriminator into categorising the dataset and create it as the training dataset,

the Generator seeks to provide data that are relatively close to the training set. The Generator is trained to

generate fake data samples that are conditioned on certain additional information, such as class labels. The

Generator model is designed to take two inputs:

‘Noise Input’ is a random noise vector sampled from a normal distribution in the latent space (𝑅𝑑). It acts

as a source of learning training data sample distribution for the Generator and helps generate diverse new

synthetic/fake data samples which are close to the original data sample distribution.

‘Label Input’ is the class label corresponding to the data samples that the Generator needs to generate. For

example, in our dataset, the label "0" corresponds to fraudulent Finance transactions, and the label "1"

corresponds to valid transactions.

The idea is to guide the Generator in producing data samples that are specifically tailored to a particular

class. By providing the label as an additional input to the Generator, the model can generate data samples

that align with the desired class and hence the name Conditional GAN for this kind of method. The noise

input and the transformed label input are then concatenated to create a combined input for the Generator.

This combined input is fed into a series of dense layers to generate the fake data samples. The output of the

Generator is passed through a tanh (Hyperbolic Tangent) activation function to ensure that the generated data

is within the range of -1 to 1, which is the desired range of the dataset after normalisation. By providing both

the noise input and the label input to the Generator during training, the Generator learns to generate data

samples that align with specific classes, as specified by the label input. This way, the Generator can produce

realistic fake data samples that resemble either valid or fraudulent transactions based on the given label.

Training and Testing

 Table 1 highlights the custom optimised hyperparameter values for the training process of the K-CGAN

for credit card fraud data. The goal of these hyperparameters was to ensure effective training while mitigating

the impact of noise on the model's performance. To address the influence of noise, the activation function of

57

57

the nodes in the K-CGAN method was deliberately set to minimize its impact. Previous studies commonly

employed the Rectified Linear Unit (ReLU) and leaky ReLU activation functions due to their superior

convergence properties and faster computation. In this study, the Generator neural network leveraged the

widely-used ReLU activation function, while the Discriminator neural network incorporated the LeakyReLU

activation function known for its exceptional performance on complex datasets.

 The loss function of Generator network is a modified version of binary cross entropy loss consisting only

of fake data (as during Generator network training we are only working with fake samples), along with an

additional KL Divergence loss which we introduce in our study. This hybrid custom loss function consisting

of modified binary cross entropy and KL Divergence loss for Generator network ensures that the generated

samples closely resemble the original data distribution. The exact derivations of Discriminator loss function

are given in Eq. (24 – 28). The exact derivations of Generator loss function is given in Eq. (36 – 37). Both

the Generator and Discriminator networks consisted of three layers, each with specific neuron sizes. The

Generator network has three layers (2 hidden layers, 1 output layer) with 64 , 32, 29 neurons resp., the

Discriminator network has three layers (2 hidden, 1 output layer) with 20, 15 and 1 neurons resp. Network

and layer architecture are clearly explained in Figure 6 (c). To prevent overfitting and enhance generalization

performance, a dropout value of 0.1 was applied to both networks.

 For optimization, the Adam optimizer was used for training both the Generator and Discriminator

networks. The Adam optimizer is known for its excellent convergence rate and stability, making it an ideal

choice for this task. A learning rate of 0.0001 was adopted for both the Generator and Discriminator to ensure

convergence to the global minimum. Moreover, the Generator network employed a random noise vector size

of 100 (𝑑) for generating synthetic data. The kernel initializer utilized in the Generator network was

glorot_uniform, which uniformly initializes weights and effectively addresses the exploding gradient

problem. Additionally, a kernel regularizer based on L2 regularization was implemented in both the

Generator and Discriminator networks to control overfitting during the training process. These

hyperparameter choices were carefully selected and fine-tuned to achieve optimal performance in generating

synthetic data that closely resembles the real credit card fraud data distribution while minimizing the impact

of noise and overfitting.

58

58

Table 1: Novelty K-CGAN Optimised hyperparameter settings for credit card fraud data

Hyperparameter Generator

Neural Network

Discriminator

Neural Network

Activation ReLU LeakyReLU

Loss function Modified Binary Cross Entropy +

KL Divergence

Binary Cross Entropy

Hidden Layers (3 - 2 hidden, 1 output) 64, 32, 29 (3 - 2 hidden, 1 output) 20, 15,

1

Dropout 0.1 0.1

Output Optimizer Adam Adam

Learning Rate 0.0001 0.0001

Random Noise Vector 100 -

Kernel Initializer glorot_uniform -

Kernel Regularizer L2 method L2 method

Total Learning Parameters 36,837 1,519

 Further, Table 2 presents the custom optimised hyperparameter settings for the K-CGAN model for the

breast cancer data. The table presents the hyperparameters for the generator and the discriminator neural

networks. The Generator network has three layers (2 hidden layers, 1 output layer) with 64 , 32, 29 neurons

respectively, the Discriminator network has three layers (2 hidden, 1 output layer) with 20, 15 and 1 neurons

respectively. The activation function used in the generator neural network is ReLU. The loss function used

in the generator neural network is the trained discriminator loss plus KL divergence. The output optimizer

used in the generator neural network is Adam, and the learning rate is set to 0.0001. The generator neural

network also includes a dropout layer with a dropout rate of 0.2. The activation function used in the

discriminator neural network is LeakyReLU. The loss function used in the discriminator neural network is

binary cross-entropy. The output optimizer used in the discriminator neural network is Adam, and the

learning rate is set to 0.0001. The discriminator neural network also includes a dropout layer with a dropout

rate of 0.2.

59

59

Table 2: Novelty K-CGAN Optimised hyperparameter settings for breast cancer data

Hyperparameter Generator

Neural Network

Discriminator

Neural Network

Activation ReLU LeakyReLU

Loss function Modified Binary Cross Entropy +

KL Divergence

Binary Cross Entropy

Hidden Layers (3 - 2 hidden, 1 output) 64, 32, 29 (3 - 2 hidden, 1 output) 20, 15, 1

Dropout 0.2 0.2

Output Optimizer Adam Adam

Learning Rate 0.0001 0.0001

Random Noise Vector 100 -

Kernel Initializer glorot_uniform -

Kernel Regularizer L2 method L2 method

Total Learning Parameters 10,226 1,386

 3.3 The Application of Kullback-Leibler (KL) divergence in GANs

 In probability theory, statistics, and information theory, the Kullback-Leibler divergence (KL-divergence)

is a well-known quantity. It was first proposed by Kullback and Leibler (Kullback and Leibler, 1951) and

measures relative entropy in the domain of the theory of information simultaneously evaluating the similarity

among two distributions of probability in the framework of statistics and probability. Further, an indicator

of how divergent two probability distributions are from one another is the KL divergence. Furthermore, KL-

divergence has several uses, including multivariate data analysis, estimation, approximation, and regression.

Examples of these applications include pattern recognition and discriminant evaluation (Olszewski, 2012a).

In other words, KL divergence is a metric in machine learning and information theory to compare the

similarity between two probability distributions (Doria et al., 2022; Pitsane et al., 2022). It measures how

different two probability distributions are from each other and can be interpreted as a measure of the bits of

information lost when using one distribution as an approximation for the other. It is often used in machine

learning to compare a model's predicted distribution to the true distribution of the data (Langevin et al.,

2022).

 Different scholars have used KL divergence in GANs model for different purposes. For instance,

Olszewski (2012) employed the Latent Dirichlet Allocation method of GANs model to detect fraud in

telecommunications. The authors pointed out that KL divergence in GANs is an indicator of how divergent

two probability distributions are from one another. The KL-divergence is a key component of the proposed

method for fraud detection in telecommunications (Olszewski, 2012a). It is used to evaluate the difference

between a classified account's LDA model and a reference account's LDA model. This evaluation is then

used to classify the account as either fraudulent or non-fraudulent. Furthermore, the KL-divergence is a

metric for determining the distinction among two distributions of probability (Breskuvienė and Dzemyda,

2023). This study, it is used to compare the LDA models of a classified account and a reference account. The

60

60

LDA model represents the topics that are most likely to be associated with the account's communication

patterns (Olszewski, 2012a). By comparing the LDA models using KL-divergence, the method can determine

whether an account is more similar to fraudulent or non-fraudulent accounts. Further, the paper proposed 3

techniques for resembling the KL divergence among LDAs: Monte Carlo sampling, variational inference,

and Taylor series expansion. These methods were evaluated in an experimental study which showed that

Monte Carlo sampling provides the most accurate results.

 Furthermore, the use of KL-divergence in this study allows for a probabilistic approach to fraud detection

in telecommunications that takes into account the unique communication patterns of each user (Park et al.,

2021). Moreover, the authors argued that the Kullback-Leibler (KL) divergence is a key component of the

proposed method for fraud detection in telecommunications. It is used to evaluate the difference between a

classified account's LDA model and a reference account's LDA model. This evaluation is then used to

classify the account as either fraudulent or non-fraudulent. Furthermore, Langevin et al., (2022) used the

GANs model to detect fraud and augmented data in credit card transaction data. In the context of their study,

KL Divergence is used to compare the observed error rates in a model to the true error rates (Langevin et al.,

2022). This means that the difference between the observed and true error rates is very small, with a high

degree of confidence (Langevin et al., 2022).

 Moreover, Olszewski (2012b) employed Kullback-Leibler divergence and Latent Dirichlet Allocation for

fraud detection in telecommunications Dominik Olszewski provided a detailed discussion of KL-divergence

and its application in fraud detection. In the context of their study it is used to compare the probability

distributions of topics generated by LDA for different telecommunications accounts (Olszewski, 2012b).

Further, KL-divergence is a useful tool for comparing probability distributions and detecting anomalies in

data. The paper provides a thorough explanation of its application in fraud detection using LDA. In addition

to its use in fraud detection, as discussed in the previous answer, KL-divergence has many other applications.

For example, in machine learning, KL-divergence can be used as a function for training generative models

such as variational autoencoders. Further, in information theory, KL-divergence can be used to quantify the

amount of information gained when moving from one probability distribution to another. However, in

statistics, KL-divergence can be used to compare different models or estimate model parameters.

 Furthermore, Zioviris et al., (2022) employed a deep learning multistage model to detect frauds in credit

card transactions. In the context of this article on credit card fraud detection using a deep learning multistage

model, KL divergence is used as a loss function to train the deep learning models. Specifically, the authors

use a multistage model consisting of three stages: feature extraction, anomaly detection, and classification

(Zioviris et al., 2022). The anomaly detection stage uses KL divergence as its function to measure the

difference between the probability distribution of normal transactions and that of anomalous transactions. In

the context of anomaly detection, KL divergence can be used to identify the difference between the

possibility of dissemination of normal transactions and that of anomalous transactions. Further, the goal of

this study is to identify anomalous transactions that deviate significantly from normal behaviour. To do this,

the model first learns a representation of each transaction using a deep neural network in the feature

extraction stage. Then, in the anomaly detection stage, it uses KL divergence as a measure of how different

each transaction's representation is from that of normal transactions (Zioviris et al., 2022). Moreover, when

comparing the performance of both models, K-CGAN outperformed the others. In particular, K-CGAN

demonstrated a precision of 0.999598, recall of 0.9972, accuracy of 0.9984, and F1-score of 0.998400 which

will be further presented in the upcoming chapter.

 Jiang et al., (2018) used KL divergence as one of the metrics to evaluate their proposed method for fraud

detection. Specifically, they calculate the KL divergence among the dissemination of features in normal

transactions and that in fraudulent transactions. They then use this metric to determine whether a new

transaction is more likely to be normal or fraudulent. To calculate KL divergence, we first need two

probability distributions: P and Q. These distributions can represent anything from the frequency of certain

61

61

words in a text corpus to the likelihood of different types of transactions occurring in a credit card dataset

(Jiang et al., 2018). Additionally, the authors present the performance measures for their proposed method,

AggRF+FB (aggregation strategy with a feedback mechanism), using various feature selection techniques

and classifiers. The precision values range from 0.965 to 0.985, recall values range from 0.935 to 0.975, F1-

score values range from 0.950 to 0.980, and accuracy values range from 0.970 to 0.990. However, upon

comparing the performance of both models, K-CGAN demonstrates superior results. In comparison, K-

CGAN achieved a precision of 0.999598, recall of 0.9972, accuracy of 0.9984, and F1-score of 0.998400.

Once researchers have these distributions, they can calculate KL divergence. In credit card fraud detection,

researchers might use KL divergence to compare the distribution of features (such as transaction amount or

location) in normal transactions to that in fraudulent transactions. Further, they could then use this metric to

determine whether a new transaction is more likely to be normal or anomalous. For example, Bockel-

Rickermann et al. (2022) planned an HMM-based method for detecting fraud in real time for merchants.

They used KL divergence as one of their metrics for detecting concept drift (i.e., changes in the underlying

distribution of data).

 Moreover, the authors compare the accuracy and recall of their proposed method using AggRF+FB with

those of two other methods (AggRF and RawLR) (Chole et al., 2022). The outcomes display that their

suggested technique attains higher accuracy and recall than the other two methods (Jiang et al., 2018).

Overall, these results demonstrate that the proposed method using AggRF+FB with appropriate feature

selection techniques and classifiers can effectively detect credit card fraud with high precision, recall, F1-

score, and accuracy values compared to existing methods (Chole et al., 2022). To evaluate their proposed

method, the authors use several metrics, comprising recall, precision, F1-score, and KL divergence. They

calculate KL divergence among the dissemination of features in normal transactions and that in fraudulent

transactions. They then use this metric to determine whether a new transaction is more likely to be normal

or anomalous. Moreover, the authors pointed out that KL divergence is used as a metric to appraise the

effectiveness of the proposed method for credit card fraud recognition and as a tool for detecting concept

drift.

 On the other hand, Shen (2021) argued that KL Divergence is a commonly used measure in machine

learning and information theory, and it has been used in various fraud detection models. It is often used to

compare a model's anticipated probability distribution with the actual probability distribution of the data

(Shen, 2021). In credit card fraud detection models, KL Divergence can be used to measure the difference

between the normal transaction distribution and the fraudulent transaction distribution. For example, Lei and

Ghorbani (2012) used KL Divergence to compare the normal network traffic distribution with the anomalous

network traffic distribution in order to detect network intrusions. However, anomalies are transactions that

deviate significantly from the normal transaction pattern (Lei and Ghorbani, 2012). By comparing the normal

transaction distribution with the fraudulent transaction distribution using KL Divergence. Moreover, in the

context of credit card fraud detection using autoencoder-based deep neural networks (Shen, 2021). The

autoencoder would be trained to diminish the KL Divergence among the input data and its reassembled

output. This would encourage the autoencoder to absorb a compacted depiction of the input data that captures

its essential features while filtering out noise and irrelevant information. Further, the authors report the

accuracy value as the primary performance measure for their hybrid model. The accuracy values for the

hybrid model has an accuracy value between 0.9561 and 0.9637, with a mean AUC value of 0.9609 and a

standard deviation of 0.0022. The individual models for normal transactions and fraud transactions have

accuracy values between 0.9525 and 0.9543, with mean AUC values of 0.9537 and 0.9534, respectively.

However, when the performance of both the models compared then the results of K-CGAN displays

improved performance because in comparison, K-CGAN achieved accuracy of 0.9984. Further, the article

does not report other performance measures such as precision, recall, F1 score, it does mention that the hybrid

model has a mean accuracy value.

62

62

 Moreover, Anh et al., (2020) used KL divergence to estimate the marginal log-likelihood of input data,

which is a measure of how well their model fits the data. It is often used in machine learning and information

theory to compare an approximate distribution to a true distribution (Anh et al., 2020). By using KL

divergence in this way, they can compare their approximate posterior distribution to the true posterior

distribution and estimate how well their model fits the data (Anh et al., 2020). This allows them to detect

fraud in credit card and e-commerce transactions more accurately. Their suggested technique achieved a

precision of 97.62%, which is higher than the values reported by (Jain et al., 2016) and (Srivastava et al.,

2008). The anticipated technique yielded impressive results, with a recall of 97.94%, an F1-score of 96.69%,

and an accuracy of 97.33%. Upon comparing the performance of both models, it became evident that K-

CGAN outperformed the deep neural variational autoencoder oblique random forest. The latter achieved a

precision of 97.62%, a recall of 97.94%, an accuracy of 97.33%, and an F1-measure of 96.69%. In contrast,

K-CGAN exhibited superior performance, boasting a precision of 99.98%, a recall of 99.72%, an accuracy

of 99.84%, and an F1-score of 99.84%.

 Moreover, KL divergence plays a key role in this article's proposed method by providing a loss function

for training the generator network in their semi-supervised GAN framework. In this article, the authors

evaluate the performance of their proposed semi-supervised GAN framework for fraud detection in online

gambling using several performance measures (Charitou et al., 2020). These measures include accuracy,

recall, precision, and F1-score. The authors present the mean values and standard deviations for performance

measures from 10 different runs in their experiments. They report an average accuracy of 0.998, an average

recall of 0.999, an average precision of 0.997, and an average F1-score of 0.998. When comparing the

performance of both models, K-CGAN demonstrates superior results. In comparison, SSGAN achieved a

precision of 99.54%, recall of 86.73%, accuracy of 97.07%, and F-measure of 92.31%. On the other hand,

K-CGAN achieved a precision of 99.98%, recall of 99.72%, accuracy of 99.84%, and F1-score of 99.84%.

These impressive values indicate that the K-CGAN method excels in detecting fraud in credit card data.

However, it is important to note that these results are specific to their dataset and experimental setup, and

further testing and validation are necessary to determine their generalizability to other datasets or

applications.

3.2.1 KL-Divergence Loss Function

 In order to ensure that the GAN-generated synthetic data properly reflects the distribution of the original

dataset, the K-CGAN method utilised KL Divergence to guarantee high accuracy according to Shlens

(2014). Furthermore, KL divergence is a commonly used metric in machine learning and information theory

to compare the similarity between two probability distributions (Doria et al., 2022; Pitsane et al., 2022). It is

often used in machine learning to compare a model's predicted distribution to the true distribution of the data

(Langevin et al., 2022). KL divergence is a primary equation of machine learning that measures the nearness

of two probability distributions. In another study, Weijs et al., (2010) argued that KL divergence in statistics

that measures the closeness of probability distribution P to a model distribution Q.

 The KL divergence or relative entropy is a way to measure the dissimilarity between two probability

distributions (Luo et al., 2022). The KL divergence between two probability distributions, P and Q is

usually represented using the below term (Brownlee, 2019).

 KL is a non-systematic metric that measures the difference in information or relative entropy

characterized by two distributions. In other words, it measures the distance between two data distributions

signifying how the distributions vary from one another. These probability distributions are P(x) and Q(x).

The idea of the KL divergence score is that if the probability of an event in P is larger and the probability

for that event in Q is smaller, then the divergence will be larger. On the other hand, if the divergence from

63

63

P is smaller than the probability from Q, the divergence will be larger too but not as that in the first case.

The KL divergence between two distributions P and Q is usually represented using the notation below:

𝐾𝐿 (𝑃‖𝑄) (18)

Where, “‖” point to the divergence of P from Q.

Moreover, in order to calculate the KL Divergence, there are two forms: discrete form and continuous form.

The discrete form of KL divergence is represented as follows:

 𝐷𝐾𝐿(𝑝(𝑥)‖𝑞(𝑥)) =
1

𝑁
∑[𝑝(𝑥𝑖) 𝑙𝑜𝑔(

𝑝(𝑥𝑖)

𝑞(𝑥𝑖)
)]

𝑁

𝑖=1

 (19)

Where "𝐷𝐾𝐿" is “≥ 0” and non-symmetric in 𝑝 and 𝑞. Moreover, 𝑥𝑖 represent input data samples. While,

𝑝(𝑥𝑖), … . , 𝑝(𝑥𝑁) and 𝑞(𝑥𝑖), … , 𝑞(𝑥𝑁) represent probability distribution values for the observed data

samples and 𝐷𝐾𝐿(𝑝(𝑥)‖𝑞(𝑥)) calculates the difference in probability values to measure how much distinct

𝑝 and 𝑞 are, for instance when 𝑝 and 𝑞 are closer to each other as probability distribution, they would assign

similar values to each 𝑥𝑖 and "𝐷𝐾𝐿" would be 0 but when 𝑝 and 𝑞 are very distinct probability

distributions "𝐷𝐾𝐿" would be non-zero and higher the magnitude of "𝐷𝐾𝐿" more the divergence a.k.a.

dissimilarity between 𝑝 and 𝑞. More details about the KL Divergence can be found in literature e.g. Taboga,

Marco (2021). Moreover, KLD becomes zero if these distributions are the same and can more likely be

close to infinity. Moreover, a common practical interpretation of KLD is that it is the “coding penalty”

related to choosing distribution 𝑞 to approximate the true distribution of 𝑝 (Weijs et al., 2010).

 Moreover, there is a continuous form of the KL divergence which is represented as below:

 𝐷𝐾𝐿(𝑝(𝑥)‖𝑞(𝑥)) = ∫ 𝑝(𝑥)𝑙𝑛
𝑝(𝑥)

𝑞(𝑥)
. 𝑑𝑥

∞

−∞
 (20)

 The KL divergence is utilised to minimise the difference between the distribution of the synthetic data

created by the GAN and the distribution of the original data in the context of the suggested novelty loss

strategy for the generator in the credit card fraud detection. The K-CGAN is urged to produce synthetic

data that closely matches the properties of the original data by minimising the KL divergence between

these two distributions.

The use of KL divergence (KLD) in the loss function of a K-CGAN has various advantages:

a) Encourages the generator to produce samples that are similar to the real data:

The generator is encouraged to produce samples that closely match the distribution of the

real data by minimising the KLD between the distribution of the generated data and the

distribution of the real data. This results in higher-quality synthetic data and better

performance of downstream tasks such as classification.

b) Helps prevent mode collapse: Mode collapse is a typical problem in GANs, when the

generator creates just a few samples that are highly similar to each other, resulting in a

confined diversity of produced samples. By adding KLD into the loss function, the generator

is encouraged to generate a broader variety of samples that encompass the complete true

data distribution.

c) Provides a more stable training process: The inclusion of KLD in the loss function can

enhance K-CGAN training stability by preventing the generator from diverging and creating

low-quality samples. This is due to the fact that KLD is a more stable metric than other

distance measurements such as the Euclidean distance or the Wasserstein distance.

64

64

d) Allows for better control of the generated data distribution: The user may regulate the

degree of similarity between the produced and real data distribution by altering the weight

of the KLD component in the loss function. This provides greater flexibility and control over

the generated data distribution and can help to achieve better performance in downstream

tasks.

 In general, including KLD into the K-CGAN loss function has proven to increase the quality and variety

of generated samples, allow greater control over generated data distribution, and result in a more stable and

reliable K-CGAN training.

3.2.2 The Binary Cross-Entropy Loss
 Binary cross-entropy (BCE) loss function, also known as log loss (Galdran et al., 2023), is a widely used

loss function in machine learning, particularly in binary classification problems. The BCE is a model metric

that locates incorrect labelling of the class of data by a model (Saxena, 2021). It calculates the distance

between the predicted probability distribution and the true probability distribution by computing the average

difference between the presented output and the ideal output (Saxena, 2021).

The low log value indicates higher accuracy value. The BCE loss function is widely used in the training of

NNs.

The mathematical representation of BCE loss function is given below:

 𝐵𝐶𝐸_𝐿𝑜𝑠𝑠 = −
1

𝑁
∑[𝑦𝑖 𝑙𝑜𝑔(𝑦𝑖)̂ + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑦𝑖̂)] (21)

𝑁

𝑖=1

Where 𝑥𝑖 are training data samples, 𝑦𝑖 stand for the actual class labels and the probability of the actual class

𝑦𝑖 predicted by the model is represented as 𝑝(𝑦𝑖) or 𝑦𝑖̂. Moreover, the probability of the class one is

𝑝(𝑦𝑖) or 𝑦𝑖̂ and the probability of class zero is "1 − 𝑝(𝑦𝑖)" or "1 − 𝑦𝑖̂" (Saxena, 2021). For smoother training

purposes in machine learning and deep learning we work with 𝑙𝑜𝑔 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 e.g. log(𝑦𝑖̂) because for

low probability value 𝑦𝑖̂, log(𝑦𝑖̂) is a large negative number and hence leads to smoother training for gradient

updates. Total number of data samples is 𝑁[𝑖 ∈ 𝑁]. Binary cross-entropy is widely used in the loss function

of a GAN a neural network architecture used for creating synthetic data that is similar to real data. In GANs,

two networks are trained together - a generator network that creates synthetic data and a discriminator

network that distinguishes between the synthetic and real data. The goal of the K-CGAN is to find the optimal

balance between the generator and the discriminator network, such that the generator creates synthetic data

that is convincing and the discriminator is unable to distinguish between the synthetic and real data.

 The binary cross-entropy loss function is used in K-CGAN to guide the learning of the discriminator

network. The discriminator is trained to maximise the binary cross-entropy loss, penalizing incorrect

predictions and improving its ability to distinguish between synthetic and real data. On the other hand, the

generator is trained to minimise the binary cross-entropy loss of the discriminator, producing synthetic data

that is more similar to real data.

Binary cross-entropy offers several advantages in K-CGAN:

a) Well-Defined and Widely Used Loss Function: Binary cross-entropy is one of the most well-defined

loss function in deep learning applications. The mathematical interpretation of binary cross-entropy

is straightforward and easy to grasp. Its primary function is to measure the dissimilarity between two

probability distributions - the predicted and the actual distribution of the target variable. By

minimising the loss function (binary cross-entropy) using gradient descent techniques, the GAN

architecture can be easily optimised. This optimization process enables the creation of high-quality

synthetic data, which can be used to train deep learning models for a wide range of applications in

image and text processing.

65

65

b) Robust to Class Imbalance: Class imbalance is a common issue in real-world datasets, where data

distributions may be skewed towards one class more than the other. This can affect the performance

of a GAN architecture that relies on a loss function that is not robust to class imbalance. However,

binary cross-entropy is known to be robust to class imbalance, making it an ideal choice for GAN

applications. This is because the loss function's computation does not care about the frequencies of

the target variable classes but rather the probabilities assigned to them. By using binary cross-entropy

as a loss function in K-CGAN, it becomes more resilient to class imbalance and more capable of

producing quality synthetic data.

c) Creation of Diverse and Realistic Synthetic Data: One of the most significant advantages of binary

cross-entropy in GANs is its capability to produce realistic and diverse synthetic data. An important

aspect of GANs is their ability to learn the underlying distribution of the real data, which they then

use to generate new data points. The use of binary cross-entropy in GANs allows the generator

network to learn a distribution that is as close as possible to the original data distribution. This results

in the generation of diverse and realistic synthetic data, which can closely mimic the real data. The

produced synthetic data can be used in various applications, including training deep learning models,

data augmentation, and vision-based tasks like image recognition and segmentation.

3.2.3 Loss Functions of K-CGAN

 A loss function quantifies how well a machine learning model is performing on a given task or issue. A

machine learning algorithm's objective is to minimise the loss function, which implies it is looking for the

optimum combination of parameters to use in order to complete the task at hand. In GAN models

Discriminator (D) and Generator (G) play a two-play minimax game in adversarial settings for value function

V(G,D). In this setting both Generator and Discriminator force each other to learn better. Generator becomes

better at generating synthetic fake data close to that from original training sample distribution. The

Discriminator learns to differentiate between samples from the original distribution and synthetic samples.

The goal of the Generator when generating synthetic samples is to make it close enough from the original

distribution so that the Discriminator is not able to differentiate it from the original distribution. Hence, the

adversarial setting. The Discriminator tries to maximise the value function V(G,D) while Generator

minimises the value function V(G,D).

 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔 𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))] (22)

which can be equivalently represented as:

 𝑚𝑖𝑛𝐺 𝑚𝑎𝑥𝐷 𝑉(𝐺, 𝐷) =
1

𝑁
∑[𝑙𝑜𝑔(𝐷(𝑥𝑖)) + 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧𝑖)))]

𝑁

𝑖=1

 (23)

Traditional Discrimination Training:

 𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 [
1

𝑁
∑ 𝑙𝑜𝑔(𝐷(𝑥𝑖)) + 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧𝑖)))]

𝑁

𝑖=1

 (24)

which for binary classification cases (2 labels) can be equivalently written as:

66

66

 𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 [
1

𝑁
∑[𝑦𝑖 𝑙𝑜𝑔(𝐷(𝑥𝑖)) + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧𝑖)))]

𝑁

𝑖=1

 (25)

or as in machine learning convention of using 𝑦𝑖̂ as model outputs/predictions:

 𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 [
1

𝑁
∑[𝑦𝑖 𝑙𝑜𝑔(𝑦𝑖)̂ + (1 −

𝑁

𝑖=1

𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑦𝑖̂)] (26)

or equivalently as minimising the 𝐵𝐶𝐸_𝐿𝑜𝑠𝑠:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒[−
1

𝑁
∑[𝑦𝑖 𝑙𝑜𝑔(𝑦𝑖)̂

𝑁

𝑖=1

+ (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑦𝑖̂)] (27)

e.g.

 𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐷_𝐿𝑜𝑠𝑠 = −
1

𝑁
∑[𝑦𝑖 𝑙𝑜𝑔(𝑦𝑖)̂

𝑁

𝑖=1

+ (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑦𝑖̂)] (28)

Traditional Generator Training:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒[
1

𝑁
∑[𝑙𝑜𝑔(𝐷(𝑥𝑖)) + 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧𝑖)))]

𝑁

𝑖−1

 (29)

which for binary classification cases (2 labels) can be equivalently written as:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 [
1

𝑁
∑[𝑦𝑖 𝑙𝑜𝑔(𝐷(𝑥𝑖)) + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧𝑖)))] (30)

𝑁

𝑖=1

 but, since during training of Generator we are only dealing with fake inputs e.g. 𝑦𝑖 = 0 it becomes:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 [
1

𝑁
∑ 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧𝑖)))] (31)

𝑁

𝑖=1

or as in machine learning convention of using 𝑦𝑖̂ as model outputs/predictions:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 [
1

𝑁
∑ log(1 − 𝑦𝑖̂)]

𝑁

𝑖=1

 (32)

which is modified version of 𝐵𝐶𝐸_𝐿𝑜𝑠𝑠 with first term as zero e.g.:

67

67

𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐺_𝐿𝑜𝑠𝑠 =
1

𝑁
∑ log(1 − 𝑦𝑖̂)

𝑁

𝑖=1

 (33)

Novel K-CGAN Generator Loss:

 In this study, along with using traditional Discriminator and Generator losses, we have additionally added

KL divergence loss to our Generator loss to ensure better sampling of the generated fake data distribution.

The main goal of a custom generator loss is to encourage the Generator to produce samples that are

qualitatively close to the distribution of the training data, in order to generate new instances that can expand

the training set and improve the generalisation of the model.

 𝐾𝐿𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝐿𝑜𝑠𝑠 = 𝐷𝐾𝐿(𝑆𝑎𝑚𝑝𝑙𝑒 𝐷𝑎𝑡𝑎, 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎) (34)

KL divergence is a measure of the difference between two probability distributions, and can be used to

compare the distribution of real and fake samples in terms of their feature distributions, rather than just their

binary labels. By adding KL divergence loss to the Generator, we can encourage it to produce samples closer

to that of original data distributions. Adding KL Divergence Loss to the Generator increases the

computational cost and training time of the model, as it requires calculating the distributions of the real and

fake samples and computing their divergence. Therefore, it was necessary to tune the weighting of the

different loss terms and the learning rate of the optimizer to ensure convergence and stability of the training

process.

Using our novel modified BCE_Loss + KLDivergenceLoss for the Generator leads to faster and smoother

training convergence. The Generator loss consists of the binary cross-entropy loss for measuring

effectiveness of minimizing Discriminator scores with fake data and the KL Divergence Loss minimization

helps in effectiveness of generating fake data closer to original data distribution.

Adding KL divergence loss to the generator may increase the computational cost and training time of the

model, as it requires calculating the distributions of the real and fake samples and computing their

divergence. Therefore, it was necessary to tune the weighting of the different loss terms and the learning rate

of the optimizer to ensure convergence and stability of the training process.

Effect of modified BCE_Loss:

• binary cross entropy loss for fake data

• Generator produces fake data to minimize Discriminator’s score on fake data

• minimizing this loss effectively guides Generator in direction of being able to deceive Discriminator

by reducing its score

Effect of KLDivergenceLoss:

• The Generator learns better to produce samples closely matching the distribution of the real data.

• Helps prevent mode collapse

• Provides a more stable training process

• Allows for better control of the generated data distribution

So for our K-CGAN model setting new loss functions become:

 𝐶𝑈𝑆𝑇𝑂𝑀 𝐺𝐴𝑁 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝐿𝑜𝑠𝑠 = 𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐷_𝐿𝑜𝑠𝑠 (35)

 𝐶𝑈𝑆𝑇𝑂𝑀 𝐺𝐴𝑁 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝐿𝑜𝑠𝑠 = 𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐺_𝐿𝑜𝑠𝑠 + 𝐾𝐿𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝐿𝑜𝑠𝑠 (36)

68

68

a. K-CGAN Discriminator Loss

 The Discriminator loss of K-CGAN has two parts: the binary cross-entropy loss for the real data and the

binary cross-entropy from the generated data. The first part deals with the accuracy of the Discriminator to

identify real data. The Discriminator takes in the original data and creates a prediction, which is compared

to the true label. The objective is to lessen the loss term. Moreover, the second term, binary cross-entropy

for generated data, measures the efficiency of the Discriminator network to discriminate between real and

generated data. The objective is to lessen the loss term.

 Furthermore, in the discriminator loss, the gradients and update weights are calculated. This process is

known as back-propagation, in which the gradients of the loss with respect to the weights are calculated.

The optimizer is utilized to update the weights, ultimately leading to the minimum possible loss.

Mathematical representation of Discriminator (D) loss is minimization of BCE_Loss:

𝐷_𝐿𝑜𝑠𝑠 = −
1

𝑁
∑[log(𝐷(𝑥𝑖)) + log(1 − 𝐷(𝐺(𝑧𝑖)]

𝑁

𝑖=1

which can be equivalently represented as:

𝐷_𝐿𝑜𝑠𝑠 = −
1

𝑁
∑[𝑦𝑖 log(𝑦𝑖)̂ + (1 − 𝑦𝑖) log(1 − 𝑦𝑖̂)]

𝑁

𝑖=1

 (37)

Where, 𝑥𝑖 are training data samples, 𝑦𝑖 stands for the actual class labels of training data (total data samples

=𝑁[𝑖 ∈ 𝑁]), the probability of the actual class 𝑦𝑖 predicted by the model is represented as 𝑝(𝑦𝑖) or 𝑦𝑖̂. The

probability of class one is 𝑝(𝑦𝑖) or 𝑦𝑖̂ and the probability of class zero is 1 − 𝑝(𝑦𝑖) or equivalently1 − 𝑦𝑖̂.

The binary cross entropy loss function estimates the average cross entropy of all real and fake data samples,

where “𝑦𝑖" denotes the class label, and "log(𝑝(𝑦𝑖))" [or equivalently " log(𝑦𝑖̂)"] denotes the predicted log-

probability of the data for the 𝑖𝑡ℎ sample. The Discriminator loss consists of the binary cross-entropy loss

for the measurement of genuine data and the binary cross-entropy loss for the assessment of false data.

The first term, " −
1

𝑁
∑[𝑦𝑖 𝑙𝑜𝑔(𝑦𝑖̂)]" is binary cross entropy loss for the real data, measures how

𝑁

𝑖−1

effectively the Discriminator can accurately identify genuine data. With the help of binary cross-entropy

loss, the Discriminator network compares its prediction against the true label after receiving the actual data.

Minimising this loss term is the objective.

The second term, " −
1

𝑁
∑[(1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑦𝑖̂)] "

𝑁

𝑖=1

is binary cross − entropy loss for the fake data,

measuring the ability of the Discriminator to discriminate between real and false data.

 The Discriminator network receives false data generated by the Generator network, which is then fed

into it. The Discriminator network's prediction is then compared against the fake label using binary cross-

entropy loss. This loss term's duration must also be kept to a minimum for the optimized performance. The

objective of training is to reduce the total Discriminator loss, and this can be achieved by summing together

its two components. The Discriminator network improves its ability to discern between authentic and fake

data by minimising the Discriminator loss.

69

69

b. K-CGAN Generator Loss

 While the K-CGAN’s Generator (G) loss consists of two components: the binary cross-entropy loss and

the KL Divergence which though creates complexity contributes to its overall effectiveness. During

Generator training parameters of Discriminator are frozen and hence Discriminator only receives fake input

and hence the first term involving (𝑦𝑖) in BCE_Loss in Equation (22) above is zeroed out and we are dealing

with a modified case of BCE_Loss of Generator.

Mathematical representation of our novel Generator (G) loss is minimization of modified BCE_Loss +

KLDivergenceLoss:

𝐺_𝐿𝑜𝑠𝑠 =
1

𝑁
∑[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧𝑖))] + 𝐷𝐾𝐿(𝑆𝑎𝑚𝑝𝑙𝑒 𝐷𝑎𝑡𝑎, 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎) (38)

𝑁

𝑖=1

Which can be equivalently represented as:

𝐺_𝐿𝑜𝑠𝑠 =
1

𝑁
∑ 𝑙𝑜𝑔(1 − 𝑦𝑖̂) +

1

𝑁
∑[𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝑥𝑖)

𝑁

𝑖=1

𝑙𝑜𝑔(
𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝑥𝑖)

𝑞𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑥𝑖)
)]

𝑁

𝑖=1

 (39)

Where, 𝑥𝑖 are training data samples, 𝑦𝑖 stand for the actual class labels of training data (total data samples

=𝑁[𝑖 ∈ 𝑁]), the probability of the actual class 𝑦𝑖 predicted by the model is represented as 𝑝(𝑦𝑖) or 𝑦𝑖̂. The

probability of class one is 𝑝(𝑦𝑖) or 𝑦𝑖̂ and the probability of class zero is 1 − 𝑝(𝑦𝑖) or equivalently 1 − 𝑦𝑖̂.

The modified binary cross entropy loss function for Generator estimates the average cross entropy over fake

data samples, where log 1 − 𝑦𝑖̂ denotes the predicted log-probability of the data for the 𝑖𝑡ℎ sample. The

Generator loss consists of the binary cross-entropy loss for the measurement of fake data and the KL

Divergence Loss.

The first term, "
1

𝑁
∑ 𝑙𝑜𝑔(1 − 𝑦𝑖̂)"

𝑁

𝑖=1

 or equivalently " −
1

𝑁
∑(1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑦𝑖̂)"

𝑁

𝑖=1

 for fake data,

[when 𝑦𝑖 = 0] is modified case of the binary cross entropy loss part for the fake data. Moreover,

the second term, "
1

𝑁
∑[𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝑥𝑖) 𝑙𝑜𝑔(

𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝑥𝑖)

𝑞𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑥𝑖)
)] "

𝑁

𝑖=1

 is the KL Divergence loss measuring how

effectively Generator is able to generate fake samples close to the distribution of original data samples

𝑝𝑠𝑎𝑚𝑝𝑙𝑒(𝑥𝑖) and 𝑞𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑥𝑖) respectively represent the probability distributions for sample fake and

original data. Minimization of this loss term helps Generator in being able to generate fake data closer to the

original data distribution. The degree to which the Generator may deceive the Discriminator is measured by

its effectiveness of generating fake data closer to the original data distributions. This way the Generator can

deceive the Discriminator in making it feel that fake data are also the real data. The Generator network

produces fake data that is more challenging for the Discriminator to identify from actual data in order to

maximise this loss term. Minimization of the second term, KL Divergence loss helps Generator in that

direction by better data sampling. Minimization of the first term, binary cross-entropy loss basically helps

Generator to maximise its score of fooling Discriminator. The objective is to maximise the binary cross-

entropy loss while also minimising the KL divergence, and the Generator loss is a mixture of these two

70

70

components. In this way, the Generator network acquires the ability to generate more realistic fake data

thereby leading to better performance.

3.2.4 Advantages of using Novelty Loss

 When compared to other GANs such as the Wasserstein GAN (WGAN), Non-Saturating GAN (NS GAN),

and Least Squares GAN (LS GAN), employing our Custom loss along with the optimised custom

hyperparameters have the following advantages:

Better control over generated samples: Novelty loss enables us to add additional constraints on generated

samples, such as KL-divergence, which allows for better control over the quality and diversity of generated

samples.

Enhanced Robustness: By incorporating KL-divergence and binary cross-entropy components, the custom

novelty loss enhances the robustness of the K-CGAN against noisy or imperfect data. It helps the generator

focus on capturing the salient features of the data distribution, making it less sensitive to noisy or outlier

samples during training.

Improved Convergence: The custom novelty loss encourages the generator to produce samples that are

both diverse and representative of the underlying data distribution. This balanced training objective aids in

achieving faster and more stable convergence during training, reducing the likelihood of mode collapse or

oscillations commonly observed in other GANs.

Reduced Overfitting: The inclusion of dropout layers in the custom novelty loss architecture aids in

reducing overfitting, allowing the generator to learn more generalizable features from the data and avoid

memorising specific data instances.

More stable training: The use of KL-divergence and binary cross-entropy in novelty loss leads to more

stable training compared to other GANs.

Improved Generalisation: The custom novelty loss encourages the generator to explore a larger region of

the data distribution, resulting in improved generalization to unseen data samples. This can be particularly

beneficial when working with limited training data or in scenarios where data variability is high.

More effective in learning complex distributions: Utilising a custom loss, backed by the optimal K-CGAN

hyperparameters, proves to be highly effective in capturing intricate distributions. This approach empowers

the generation of a vast array of diverse samples, enhancing the learning process significantly.

3.2.5 Disadvantages of using Novelty Loss

 In comparison to other GAN loss methods, adopting Custom loss may have the following drawback and

practical challenges that one may encounter:

High computational cost: Compared to other GAN loss functions, the Custom loss function is more

computationally expensive and time-consuming to implement. This is due to the computation of binary cross-

entropy and KL divergence, which can take a while for big datasets or complicated models.

Sensitivity to hyperparameters: The custom loss function, like other GAN loss functions, could be sensitive

to the selection of hyperparameters, such as the learning rate, batch size, and number of epochs and all other

hyperparameters listed earlier (Table 1 and 2). Finding the best settings for these hyperparameters might be

difficult as a result, and significant hyperparameter tuning may be necessary.

Optimization Difficulties: The presence of multiple loss components in the custom loss can create

challenges in optimizing the generator and discriminator simultaneously. Fine-tuning the weightings of the

loss components to strike the right balance becomes an additional optimization task.

71

71

It’s essential to keep in mind the practical challenges that come with implementing GANs. High

computational cost, sensitivity to hyperparameters, and optimization difficulties are some of the potential

obstacles that may arise. Therefore, it's crucial to carefully consider these challenges and find ways to

mitigate them when using custom loss in GAN experiments.

3.3 The Discriminator and the Generator Architectures of K-CGAN

The proposed algorithm of our method is further described in the Figure 6 K-CGAN discriminator and

generator architectures. The network architecture and layer transformation with input-output dimensionality

is explained in Figure 7 (a), (b) and (c).

Data Info:

- 𝑥 (original input sample space) 𝜀 𝑅𝑚 [m = 29]

- for our case, we are using data with 29 features

- 𝑧 (Noise Input - Latent Space) 𝜀 𝑅𝑑 [d = 100]

- for Noise Input we use random vectors of dimension 100

- 𝑦 (class labels) 𝜀 𝑅1 [# class labels = 2; 0 or 1]

- label 1 for real samples, label 0 for fake samples

- 𝑏

- batch size during model training

 - Training Samples

- to overcome the imbalanced nature of dataset due to less frequency of fraudulent transactions in

the training dataset, we used SMOTE method for oversampling fraudulent transactions to make

training dataset balanced

-we used this method only for sampling during training and we do not use it during inferencing

72

72

 (a) (b)

 (c)

Figure 7: TensorFlow’s representation of K-CGAN: (a) Discriminator; (b) Generator and (c) Network

Layers & Training Architecture

73

73

Each layer in a neural network effectively does a matrix multiplication and addition on matrix inputs and

converts it to suitable matrix outputs e.g.:

• layer 1 of Generator takes a matrix of shape [b, 2d] and then:

o multiplies it with matrix of weights of dimension [2d, 64] to produce an output of [b, 64]

o then a matrix of biases of shape [b, 64] gets added to above output to produce another output

of [b, 64]

o then a batch normalisation operation normalises values of this [b, 64] values for smoother

training

o an additional dropout operation may be done to further reduce overfitting

o and finally an activation function like ReLU or tanh or sigmoid or Leaky ReLU gets applied

to these [b, 64] values before getting passed onto next layer

Similar matrix transformations and operations happen in layer 2, layer 3 … of any neural network.

An equivalent representation of Figure 7 (c) by TensorFlow library’s model architecture print is given in

Figure 7 (a) and (b). TensorFlow library uses None in place of b for Batch_Size as Batch_Size is not an

intrinsic network variable but a training choice, so the architecture remains valid for any Batch_Size (b).

Network Architecture of Discriminator and Generator from TensorFlow are given in Figure 7 (a) and

Figure 7 (b) respectively.

 The K-CGAN Discriminator architecture in Figure 7 (a) encompasses a series of pivotal layers that play

a vital role in data processing and classification and K-CGAN model performance. Within the

Discriminator's architecture, an input layer accepts label data with a single neuron. Subsequently, an

embedding layer encodes this input data, resulting in a dimension of (1, 100). The flatten layer reshapes this

to (100). The primary noise input layer, with 100 dimensions, accepts stochastic noise data. These inputs are

concatenated in a layer, resulting in a combined representation with dimensions (200). A dense layer with

64 neurons is employed, followed by batch normalization and a rectified linear unit (ReLU) activation

function. A dropout layer with 64 neurons is applied to mitigate overfitting. Another dense layer with 32

neurons follows, along with batch normalization and a ReLU activation. A final dense layer with 29 neurons

is used, and an activation layer determines the Discriminator's output, which is represented as (29)

dimensions. This latter layer performs binary classification, distinguishing between generated and real data.

The K-CGAN Discriminator architecture, marked by its intricate layers, ensures accurate classification of

generated data in alignment with predefined criteria.

 Further, the K-CGAN’s Generator architecture in Figure 7 (b), multiple layers collaboratively produce the

desired output and performance of the model. In the Generator's architecture, an input layer with a single

neuron serves as the entry point for label information. This is followed by an embedding layer that transforms

the input data, resulting in an output dimension of (1, 29). Subsequently, a flatten layer reshapes this data to

(29). The primary data input layer accepts data with a dimension of (29). Following this, a concatenation

layer merges the processed label data and primary data input, resulting in a combined representation of (58)

dimensions. A dense layer with 20 neurons is applied, followed by batch normalization and a leaky ReLU

activation function. A dropout layer with 20 neurons follows to prevent overfitting. Another dense layer with

15 neurons is employed, followed by batch normalization and a leaky ReLU activation. Finally, a final dense

layer with a single neuron produces the generator's output, and an activation layer determines the synthetic

data. Each layer in this architecture contributes significantly to generating realistic data closely resembling

the original input.

 As indicated in Algorithm 2 the initial stage of training the K-CGAN involves generating Random Noise

with batch size and latent dimension, where the batch size is the size of the input batch of data and the latent

dimension is the dimension of the noise. Afterwards the Generator generates fake data. The Generator of

novelty K-CGAN transforms the random noise and labels into fake data. On the other hand, the Discriminator

74

74

links both the real data and the generated synthetic data with their labels to shape the combined labels and

combined data. Our proposed framework then prepares target labels to form a binary label that discriminates

real data from fake data.

 The next phase of K-CGAN involves training the Discriminator. In this phase, the Discriminator is used

to classify the combined labels and data to minimise the Discriminator loss, defined by the loss function

between the predictions and true labels. Moreover, the gradients of the loss with respect to the Discriminator's

trainable weights were computed and used to update the parameters of the Discriminator. The

Discriminator’s loss was calculated in the next stage of training. The Discriminator loss is the binary cross-

entropy between misleading labels and prediction. Furthermore, the gradients and update weights were

calculated. This process is known as back-propagation, in which the gradients of the loss with respect to the

weights are calculated. The optimizer was then utilised to update the weights, ultimately leading to the

minimum possible loss.

 The next steps of training novelty K-CGAN involve the preparation of data and the start of the Generator

training. In this training phase, the Generator is trained to transform the noise and real labels into fake data,

and uses the Discriminator to classify these fake data samples. Moreover, the Generator aims to maximise

the loss defined by the loss function between the misleading labels and the Discriminator's predictions of the

fake data. The Generator loss was calculated after the Discriminator loss. The Generator loss consists of two

terms: binary cross-entropy between true labels and predicted labels by the Discriminator, and KL

Divergence between the original data and fake data generated by the Generator. The Kullback-Leibler (KL)

divergence measure of the difference between two probability distributions. This is used to optimise the

parameters of the Discriminator model based on the difference between the original data distribution and the

fake data distribution of the Generator model. The next stage of training the K-CGAN is referred to as

backpropagation (Li and Kang, 2022) where the gradients of the loss with respect to the weights are

calculated. The optimizer was then utilised to update the weights, ultimately leading to the minimum possible

loss. In the last step of training, tracking of the Discriminator and the Generator loss is performed using the

Generator loss tracker and Discriminator loss tracker objects, returning these losses as a dictionary. The

feature selection procedures are summarised in Algorithm 1. Further, the training details of K-CGAN are

summarised in Algorithm 2.

75

75

Algorithm 1 Feature Selection Procedures

1: Epochs: 10000

2: Batch_size = 64

3: #How Many Data in one Batch

4: HP_NOISE = 100

5: #Lengh of Noise Vector

6: HP_DROPOUT = 0.2

7: #Dropout to be used in the Neural Network

8: HP_WEIGHTS_INIT ='glorot_uniform'

9: #weight Initialization Training phase

10: HP_DISCRIMINATOR_LAYERS = ’20, 15, 1’

11: # defined three possibilities of hidden layers

12: HP_GENERATOR_LAYERS = ’64, 32, 29’

13: #Here we have defined three possibilities of hidden

14: layers for the Generator model.

15: SAMPLES_COUNT = 400

16: #How Many fake samples to be generated while

17: calculating F1 Score

17: EARLY_STOPPER_PATIENCE = 50

18: #Stop Training if accuracy doesn't improved for

19: continuous n epochs

76

76

Algorithm 2 Training procedure using K-CGAN

1: Generate Random noise (noiseD)

2: with shape (batch_size, 2:self.latent_dim),

3: (batch_size)=size of the input batch of data

4: (latent_dim) =dimension of the noise.

5: Generate fake data

6: #using the Generator to transform the random

7: noise (noise) and (real_labels) into fake data.

8: Data preparation for the Discriminator

9: Training phase

10: #The real data (real_data) and generated fake

11: data

12: (generated_data) along with their labels

13: (real_labels) to form (combined_data) and

14: (combined_labels)

15: Target labels are prepared

16: Binary labels (labels) are formed

17: Use discriminator to classify combined_data and

18: combined_labels

19: The goal is minimize the loss (d_loss)

20: Prepare Data for Generator Training

21: Generator training during training

22: Random noise (noiseG) is generated with

23: (batch_size, self.latent_dim) to train the generator

24: Uses generator

25: #transform noise (noiseG) and labels

26: (real_labels) into (fake_data)

27: Use discriminator to classify these fake data.

28: #the generator aims to maximize the loss (g_loss)

29: #the Generator Loss is equal to BCE + KL

30: Calculations

31: #Backpropagation process: gradients of the loss

32: with respect to the weights are calculated

33: Goal is minimum loss

34: Tracking step

35: (g_loss) and (gen_loss) tracking using

36: (gen_loss_tracker) and (disc_loss_tracker)

37: #Returns these losses as dictionary

77

77

Chapter 4

Novelty Loss development: Implementation and Experiments

using Multiple Methods

4.1. Introduction

 This section provides a comprehensive overview of the implementation and experiments conducted on

two datasets, Credit Card Fraud (Kaggle, 2021) and Breast Cancer Wisconsin (Diagnostic) (WBCD)

(Wolberg et al., 1992). Experiments conducted utilising several GAN-based architectures such as

Conditional GAN (Mirza & Osindero, 2014), Wasserstein GAN (Arjovsky et al., 2017), Least Squares GAN

(Mao et al., 2017), Non-Saturating GAN (Shannon et al., 2020), and Semantic Divergence GAN (Charitou

et al., 2021). To evaluate the quality of the dataset, we employed various methods, including classification

performance, cosine similarity approaches, bivariate and univariate correlations. Furthermore, in order to

maximise performance, the research utilised hyper-parameter tuning to identify the optimal hyper-

parameters of these architectures. In order to ensure model accuracy and performance, an in-depth quality

assurance validation has been conducted to validate K-CGAN performance on the credit card fraud and

breast cancer datasets. To evaluate the efficacy of K-CGAN generated synthetic data, the existing

oversampling strategies such as ADASYN (He et al., 2008), SMOTE (Chawla et al., 2002), and B-SMOTE

(Han et al., 2005) as well as GAN based techniques such as Conditional GAN (Mirza & Osindero, 2014),

Wasserstein GAN (Arjovsky et al., 2017), Least Squares GAN (Mao et al., 2017), Non-Saturating GAN

(Shannon et al., 2020), and Semantic Divergence GAN (Charitou et al., 2021) have been implemented to

compare their performance.

 Finally our experiments also demonstrate the introduction of a novel loss function that incorporates KL

divergence loss combined with Binary Cross entropy to ensure both distributions are close to each other.

Hyper-parameter tuning to identify the optimal weight for the KL divergence loss also presented. By utilising

this methodology, various GAN architectures and oversampling techniques have been compared in order to

find the most effective approach for creating synthetic data related to credit card fraud transactions and breast

cancer data. Additionally, incorporating a novelty loss function improved the performance of the GAN-

generated synthetic data and demonstrated enhanced performance of popular classification methods such as

XGBoost (Chen & Guestrin, 2016), Random forest (Breiman, 2001), K-Nearest Neighbor (Cover & Hart,

1967), Multilayer Perceptron (Rosenblatt, F., 1957), and Logistic regression (DeMaris, A., 1995).

4.2 Datasets Pre-processing and Architectures

Credit Card Fraud dataset

 To evaluate the performance of our method, we utilised credit card fraud dataset as our first dataset for the

experiments. We accessed a publicly-available dataset from Kaggle, containing credit card transaction data

of European consumers collected in September 2013 (Kaggle, 2021). The credit card fraud dataset is widely

used in the field of machine learning for detecting fraud (Alharbi et al. 2022). The imbalanced dataset consists

78

78

of 284,807 transactions with a number (492) being fraudulent, resulting in an unequal distribution; each has

30 features - such as ‘Time’ and ‘Amount’ – accompanied by 28 anonymized attributes (V1 to V28). This

database is free of outliers and missing values.

In order to enhance a GAN's training process the features were scaled between -1 and +1 using Min-Max

scaling (Smith, 2020), as it reduces computational cost while also making the optimizer more efficient at

locating the solution enabling GAN to converge faster. Subsequently, all columns were then converted to

float32 type, which brings numerous advantages such as improved speed of execution and accuracy in

representing real numbers.

Features columns: The ‘Time’ column was removed because the chances of a credit card fraud happening

at any specified time or day are very slim. Therefore, there is no need to monitor this factor with high

frequency. Consequently, the ‘Time’ column is not very helpful when it comes to uncovering fraudulent

patterns. As a result, the following columns were used as features V1, V2, V3, V4, V5, V6, V7, V8, V9,

V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V24, V25, V26, V27, V28 and

‘Amount’.

Target Column: The objective of this data is to distinguish between fraud and genuine transactions through

the target 'Class' column, which can hold two values: 1 for fraudulent occurrences and 0 when a transaction

is valid. Our GAN model’s generator is trained to produce fake data conditioned on the target class labels.

Wisconsin Diagnostic Breast Cancer (WDBC) dataset

 The Wisconsin Diagnostic Breast Cancer (WDBC) dataset is a well-known and accessible set of

information about breast cancer tumours, available on the UCI machine learning Repository (Wolberg et al.,

1992; Wolberg et al., 1995). This dataset is widely used in the machine learning field for detecting breast

cancer (Kabir and Ludwig, 2018; Sharma et al., 2018). William H. Wolberg gathered this data at the

University of Wisconsin Hospital, Madison back in the early 1990s.There are 569 instances in the dataset

representing tumour samples. Out of these, 357 are classified as benign and 212 as malignant.

Features columns: The dataset includes 30 numerical features that measure the characteristics of the cell

nuclei in each sample. These features include mean radius, mean texture, mean perimeter, mean area, mean

smoothness, mean compactness, mean concavity, mean concave points, mean symmetry, mean fractal

dimension, as well as their standard errors and worst values.

Target Column: The ‘Diagnosis’ is the target variable and it can either be benign (not cancerous) or

malignant (cancerous). These values are represented by 0 and 1 respectively.

4.3 Experimental Settings

 The following libraries were used for implementation:

a) numpy: A library for numerical computing in Python, used for handling arrays and mathematical

operations.

b) pandas: A data manipulation library, used for reading and processing tabular data.

c) tensorflow: An open-source machine learning framework developed by Google, used for building

and training deep learning models.

d) matplotlib: A plotting library, used for creating visualizations of the data and model performance.

e) seaborn: A data visualization library based on matplotlib, used for creating more plots.

f) sklearn: The scikit-learn library, for data preprocessing, model evaluation.

79

79

g) keras: A high-level neural networks API built on top of tensorflow, used for defining and training

neural network models.

h) MinMaxScaler: A class from sklearn.preprocessing, used for scaling the data to a specific range

(e.g., [0, 1]).

i) train_test_split: A function from sklearn.model_selection, used for splitting the data into training

and testing sets.

j) Adam: An optimization algorithm from tensorflow.keras.optimizers, used for training the generator

and discriminator networks.

k) Dense: A class from tensorflow.keras.layers, used for creating fully connected (dense) layers in the

neural networks.

l) LeakyReLU: A class from tensorflow.keras.layers, used as the activation function for the

discriminator network.

m) ReLU: A class from tensorflow.keras.layers, used as the activation function for the generator

network.

n) Dropout: A class from tensorflow.keras.layers, used for applying dropout regularization to the neural

networks.

o) BinaryCrossentropy: A loss function class from tensorflow.keras.losses, used for calculating the

binary cross-entropy loss during training.

p) KLDivergence: A loss function class from tensorflow.keras.losses, used for calculating the

Kullback-Leibler (KL) divergence loss during training.

q) GlorotUniform: An initializer class from tensorflow.keras.initializers, used for initializing the

weights in the generator network.

r) L2: A regularizer class from tensorflow.keras.regularizers, used for applying L2 regularization to

the neural networks.

 In order to assess the efficiency of various oversampling techniques on a skewed dataset of credit card

fraud transactions and breast cancer detection, multiple experiments have been conducted. Several GAN-

based architectures were implemented as oversampling methods, including: NS GAN (Shannon et al., 2020),

Vanilla cGAN (Mirza & Osindero, 2014), SDG GAN (Charitou et al., 2021), LS GAN (Mao et al., 2017),

and WGAN (Arjovsky et al., 2017), Novelty Loss K-CGAN and Novelty Loss RNN.

 Further oversampling techniques were implemented including: ADASYN (He et al., 2008), SMOTE

(Chawla et al., 2002), and B-SMOTE (Han et al., 2005). In order to evaluate the precision, recall and F1

scores of the methods, several classification methods were utilised, including: XGBoost (Chen & Guestrin,

2016), Random forest (Breiman, 2001), K-Nearest Neighbor (Cover and Hart, 1967), Multilayer Perceptron

(Rosenblatt, F., 1957), and Logistic regression (DeMaris, A., 1995).

4.3.1 Hyperparameter Settings of GAN-based Oversampling Methods

 Table 3 shows the initial hyperparameters settings of three popular GAN methods: Vanilla CGAN,

WGAN, and NS GAN. It is imperative to mention that GANs are highly sensitive to the hyperparameter

settings used during training. Activation function is an important hyperparameter that defines the output

range of the neurons and plays a critical role in determining the convergence of the network. The Vanilla

cGAN uses Leaky ReLU activation (Maas et al., 2013) function in both the generator and discriminator

networks. Overall Leaky ReLU is known to provide better gradients compared to other activation functions,

which is essential for efficient training. WGAN employs a different activation function, namely the Rectified

Linear Unit (ReLU) function (Nair and Hinton, 2010), which has become the de-facto choice for activation

functions in deep learning. ReLU is computationally efficient and has shown good performance in GANs,

although there might be issues with dead neurons in certain scenarios. NS GAN, on the other hand, uses the

80

80

LeakyReLU activation function in the discriminator and generator networks. LeakyReLU has the advantage

of providing better gradients and is known to help avoid the “dying ReLU” problem. Another important

hyperparameter is the batch size, which determines the number of samples used in each training iteration. In

Vanilla cGAN, the batch size is set to 32, while NS GAN and WGAN use a batch size of 64 and 16,

respectively. A larger batch size generally leads to better convergence with a more accurate gradient

estimation, but also requires more memory and computation. Dropout (Srivastava et al., 2014) is a

regularisation technique that helps prevent overfitting during training. In Vanilla CGAN, a Dropout

probability of 0.5 is used, while in WGAN and NS GAN, the Dropout probabilities are 0.1 and 0.5,

respectively. Another important hyperparameter is the optimizer, which determines how the model updates

weights in response to the loss gradient. In Vanilla CGAN, RMSProp optimizer (Tieleman and Hinton,

2012) is used, while WGAN uses the AdaGrad optimizer (Duchi et al., 2011), and NS GAN uses the Adam

optimizer (Kingma and Ba, 2014). These optimizers have different strengths and are chosen based on the

specific requirements of the GAN model. The learning rate is used to control the step size in gradient descent

while updating the model (Goodfellow et al., 2016). In all three models, the learning rate is set to 0.001,

0.001, and 0.0001 for WGAN, NS GAN, and Vanilla CGAN, respectively. Finally, the number of layers in

the generator and discriminator networks are also important hyperparameters. In all three models, the

architecture is similar, with three layers in the discriminator network (128, 64, and 32 neurons) and two

layers in the generator network (64 and 32 neurons).

Table 3: Vanilla CGAN, WGAN and NS GAN hyperparameter settings

Hyperparameter Vanilla CGAN WGAN NS GAN

Activation Leaky ReLU Relu LeakyReLU

Batch Size 32 16 64

Dropout 0.5 0.1 0.5

Optimizer RMSProp AdaGRAD Adam

Learning Rate 0.0001 0.001 0.001

Discriminator Layers 128,64,32 128,64,32 128,64,32

Generator Layers 64,32 64,32 64,32

 Further, Table 4 presents the initial hyperparameter settings for LS GAN, SDG GAN and Custom K-

CGAN. The activation function used for the models was LeakyReLU. However, the batch size for LS GAN

and Custom K-CGAN was set to 32, while for SDG GAN, it was set to 64. We applied dropout regularisation

to models to prevent overfitting. Here, we used a dropout rate of 0.5 for LS GAN and Custom K-CGAN and

0.1 for SDG GAN. To optimise the models, we employed the RMSProp optimizer. In terms of learning rate,

we used 0.0001 for LS GAN and Custom K-CGAN and 0.001 for SDG GAN. LS GAN and Custom K-

CGAN had three discriminator layers (128, 64, and 32), while SDG GAN had more layers (256, 128, and

64). On the other hand, all models had similar generator layers - 64 and 32.

81

81

Table 4: LS GAN, SDG GAN and Custom K-CGAN initial experimental hyperparameter settings

Hyperparameter LS GAN SDG GAN Custom K-CGAN

Activation LeakyReLU LeakyReLU LeakyReLU

Batch Size 32 64 32

Dropout 0.5 0.1 0.5

Optimizer RMSProp RMSProp RMSProp

Learning Rate 0.0001 0.001 0.0001

Discriminator Layers 128,64,32 256,128,64 128,64,32

63,32 Generator Layers 64,32 64,32

4.3.2 Hyperparameter Settings of Oversampling Methods
 Apart from GAN-based models, the study employed three popular oversampling techniques, namely

ADASYN (He et al., 2008), SMOTE (Chawla et al., 2002) and B-SMOTE (Han et al., 2005). These methods

are commonly used in the field of machine learning to address the issue of class imbalance in datasets. In all

three methods the default settings were used to ensure reproducibility of the results. These oversampling

techniques were applied to our dataset to address the class imbalance issue and improve the overall

performance of our machine learning models. The settings chosen for each method were based on their

default implementation, which are widely accepted in the research community and have been shown to

achieve reliable results in practice. SMOTE uses a k-nearest neighbor approach to create synthetic minority

points, making use of random oversampling. The default number of nearest neighbors is set to 5 (imbalanced-

learn.org, n.d.). ADASYN works similarly to SMOTE by creating synthetic minority examples based on the

distribution of majority and minority classes in the data set. The default number of nearest neighbors is 5 and

the default ‘synthetic’ points per minority class sample is set to 10 (imbalanced-learn.org, n.d.). B-SMOTE

works differently from SMOTE and ADASYN by creating minority points using a borderlinesmote

approach. The default number of nearest neighbors for B-SMOTE is 5, the default ‘synthetic’ points per

minority class sample is set to 10, and the maximum number of synthetic points that can be generated is 20

(imbalanced-learn.org, n.d.). Table 5 shows the settings of these oversampling methods.

Table 5: SMOTE, ADASYN and B-SMOTE hyperparameter settings

Method Settings

SMOTE default number of nearest neighbors is 5 (imbalanced-learn.org, n.d.)

ADASYN default number of nearest neighbors is 5 and the default ‘synthetic’ points

per minority class sample is set to 10 (imbalanced-learn.org, n.d.)

B-SMOTE default number of nearest neighbors for B-SMOTE is 5, the default

‘synthetic’ points per minority class sample is set to 10, and the maximum

number of synthetic points that can be generated is 20 (imbalanced-

learn.org, n.d.)

82

82

4.3.3. Hyperparameter Settings of Classification Methods
 The study also used various classification methods to determine the best approach for upgrading accuracy

of classification models when working with an imbalanced dataset of credit card fraud transactions.

Implementation consisted of various experiments aimed at determining the optimal oversampling approach

and set of hyperparameters. This approach aims at enhancing the accuracy of classification models in the

presence of an imbalanced dataset of credit card fraud transactions. It is essential to note that credit card

fraud is a major problem globally, and it has adverse impacts on individual victims and the overall economy,

hence determining the most effective classification method is essential. The classification methods settings

implemented in our study are shown in the following Table 6 for all five classifiers Random Forest,

XGBoost, KNearest Neighbor, MLP, and Logistic Regression. The Random Forest and XGBoost methods

were set with a random state of 42, while the MLP method was set with a random state of 1 and a maximum

iteration cap of 300. The KNearest Neighbor method was set with a n_neighbors value of 100, and the

Logistic Regression method was set to default.

Table 6: Classification methods hyperparameter settings

Method Settings

Random Forest To control randomness of the sample random_state was set to 42, by setting the

default value we’re ensuring that the data is getting arranged the same way, as a

result it returns the same training and testing subsets.

(scikit-learn.org, n.d.)

XGBoost To control randomness of the sample random_state was set to 42

(scikit-learn.org, n.d.)

KNearest

Neighbor

The tuning hyper parameter n_neighbors was set to 100

(scikit-learn.org, n.d.)

MLP The max_iter parameter represents the maximum number of epochs for model

training. It is referred to as "maximum" because the learning process may stop

before reaching the maximum number of iterations, depending on other termination

criteria, we have set it to 300.

To control the random factor (random_state) was set to 1. It’s recommended to set

the seed for the random generator to confirm that the outcomes can be consistently

reproduced.

random_state=1, max_iter=300

(scikit-learn.org, n.d.)

Logistic

Regression

The default settings were follows:

solver: 'lbfgs',

max_iter: 100,

multi_class: 'auto',

n_jobs: None, and

random_state: None.

(scikit-learn.org, n.d.)

83

83

4.3.4 Original and Balanced Datasets using Oversampling Techniques

a. Original imbalanced dataset

 The original credit card dataset is depicted in Table 7 exhibits a significant imbalance in the distribution

of fraudulent and valid transactions.

Table 7: Original imbalanced credit card fraud dataset

Description Value

Valid Transactions 284315

Fraudulent Transactions 492

 Specifically, out of a total of 284,807 transactions, 284,315 transactions are valid while only 492

transactions are fraudulent. This disparity highlights the complexity of detecting fraudulent transactions and

the importance of developing robust algorithms that can accurately identify such cases. The presence of such

a highly imbalanced dataset poses a significant challenge to the construction of predictive models that can

accurately classify credit card transactions as valid or fraudulent. One of the significant issues that arise in

imbalanced datasets is that standard classification algorithms tend to focus more on the majority class, which,

in this case, is the valid transaction category. This is a major issue in detecting fraudulent transactions, which

form a small minority of the total transaction volume. Therefore, the development of efficient algorithms

that can adequately identify fraudulent transactions and avoid bias towards the majority class is crucial for

efficient fraud detection in the financial industry.

b. Balanced credit card dataset using data augmentation

 Moreover, Table 8 depicts a balanced credit card fraud dataset upon oversampling using SMOTE, B-

SMOTE, ADASYN as well as GAN-based methods. These three oversampling methods utilised helped in

creating balanced credit card fraud dataset by artificially increasing the number of fraudulent transactions,

thereby improving the accuracy and efficiency of models developed for detecting fraudulent credit card

transactions. The dataset comprises 284,315 valid transactions and an equal number of fraudulent

transactions, which creates a balanced class distribution. Credit card fraud is a significant issue, and detecting

fraudulent transactions accurately is critical for maintaining financial integrity and protecting consumers

from monetary loss. These methods have been used to artificially increase the number of fraudulent

transactions in the dataset to create a more balanced class distribution.

Table 8: Balanced credit card fraud dataset by oversampling the minority class with SMOTE, B-SMOTE

and ADASYN and GAN based methods

Description Value

Valid Transactions 284315

Fraudulent Transactions 284315

 The SMOTE oversampling method was used to generate new fraudulent transactions by creating synthetic

samples that are similar to the existing ones but with small variations. B-SMOTE oversampling technique

improves upon SMOTE by using random samples from the data to initialise a generation of interactions to

avoid overfitting the training model. Similarly, the ADASYN oversampling technique is designed with the

84

84

aim of reducing overfitting by creating additional minority class samples that are more difficult to learn by

increasing the density of the learned distribution around the borderline. It is noteworthy to mention that

oversampling with GAN based data augmentation methods we implemented to overcome the class imbalance

problem in machine learning models. In this approach, a generator network is trained to create synthetic data

that resembles the minority class distribution. Then, a discriminator network evaluates the quality of the

generated samples and provides feedback to the generator. As these networks compete against each other,

the generator becomes better at creating realistic samples, thus increasing the diversity and quantity of the

minority class data, thus producing a more balanced class distribution.

4.3.5 Generator and Discriminator Architectures of GAN based Methods
 This section offers a detailed explanation about the training progress of the methods to oversample the

minority class as shown in previous Tables 7 and 8 for the methods. In our experiments we’ve compared the

performance of various GAN-based methods on the credit card dataset.

Architectures

(a) (b) (c)

 (d) (e) (f)

85

85

 (g) (h) (j)

 (k)

Figure 8: The WGAN Generator (a) and Discriminator (b), SDG GAN Generator (a) and Discriminator (b),

NS GAN Generator (e) and Discriminator (f), LS GAN Generator (g) and Discriminator (h), K-CGAN

Generator (j) and Discriminator (k)

The term "None" in the input shape represents that the network can accept a variable number of samples in

each batch during training. It is advantageous to allow for variable batch sizes in GANs where the generator

and discriminator need to handle both real and generated samples during training. When training a neural

network, the batch size is the number of samples that will be processed together in one forward and backward

pass.

 In the following experimentation we’ve implemented the WGAN method (Arjovsky et al., 2017) to

oversample the minority class transactions. The WGAN Generator architecture (depicted in Figure 8 (a))

encompasses an input layer, an embedding layer, a flatten layer, a noise input layer, a concatenate layer, two

dense layers with dropout layers (Srivastava et al., 2014) in between, and a final activation layer. The input

layer takes a vector of size (1) and produces a vector of the same size. The embedding layer processes this

vector, resulting in a vector of size (1, 50) which is then flattened to (50). A noise input layer maintains the

same dimensions as the flattened embedding vector. The concatenate layer combines the flattened embedding

86

86

vector and the noise input vector, yielding a vector of size (100). This vector is fed into a dense layer,

producing a vector of size (64), followed by a dropout layer. Another dense layer generates a vector of size

(32), succeeded by another dropout layer. The final dense layer outputs a vector of size (30), which is passed

through an activation layer to generate the final synthesised data. The WGAN Discriminator architecture

(shown in Figure 8 (b)) comprises an Input_Label layer taking a single input of size (1) and producing the

same size output. An Embedding Layer processes this output, converting it to size (1, 50), and the Flatten

layer further reduces it to size (50). In parallel, a Noise_Input layer accepts a single input of size (30) and

outputs the same size output. The Concatenate layer combines the outputs of the Noise_Input layer and the

Flatten layer, resulting in an output of size (80). A Dense layer processes this output, yielding size (128),

followed by a Dropout layer. Another dense layer with 64 neurons follows, succeeded by a Dropout layer.

Finally, a Dense layer with 32 neurons is used, followed by another Dropout layer. The Discriminator_out

layer accepts the output of the last Dropout layer and produces a single value of size (1).

 In the following experimentation we’ve implemented the SDG GAN method (Charitou et al., 2021). The

architecture of the SDG GAN Generator (illustrated in Figure 8 (c)) involves sequential layers that

collaborate to generate synthetic data. The process starts with an Input Layer, which accepts a shape of (1)

and outputs the same shape. Subsequently, an Embedding Layer processes this input, resulting in an output

of shape (1, 50). The output is then flattened using a Flatten Layer, transforming it into a shape of (50). Next,

a Noise_Input Layer processes the input of shape (50), maintaining its dimensions. A Concatenate Layer

combines the outputs of the Flatten Layer and the Noise_Input Layer, resulting in an output shape of (100).

This is directed to a Dense Layer, generating an output shape of (64), which is then subjected to a Dropout

Layer. A subsequent Dense Layer processes the output of the previous Dropout Layer, resulting in an output

shape of (32), followed by another Dropout Layer. Finally, a Dense Layer generates an output shape of (30),

which is then passed through an Activation Layer to yield the final synthesised data of shape (30). The

architecture of the SDG GAN Discriminator (depicted in Figure 8 (d)) comprises a series of interconnected

layers aimed at assessing the authenticity of the generated data. Starting with an input layer, the input shape

is transformed from (1) to the same shape of (1) in the output. An Embedding Layer then processes this

input, generating an output shape of (1, 50), followed by a Flatten Layer that further flattens it to a shape of

(50). In parallel, a Noise_Input Layer processes input of shape (30), producing an output of the same shape.

A Concatenate Layer merges the outputs of the Noise_Input Layer and the Flatten Layer, resulting in an

output shape of (80). Two Dense Layers follow, with input shapes of (80) and (128), generating output shapes

of (128). These dense layers are interspersed with four Dropout Layers, each of which maintains the same

dimensions as the input layers. Finally, the Discriminator_out layer processes the output of the last Dropout

Layer, producing an output shape of (1).

 The NS GAN (Shannon et al., 2020) Generator architecture depicted in Figure 8 (e) consists of a sequence

of interconnected layers responsible for generating data based on the provided input. This architecture

initiates with an Input Layer, which accepts the label and produces an output shape of (1). This is immediately

followed by an Embedding Layer that takes the output from the Input Layer and generates a shape of (1, 50).

The resulting output is then flattened into shape (50). Subsequently, a Noise_Input Layer processes the input

of shape (50) and maintains the same shape. The outputs from both the Input Layer and the Noise_Input

Layer are united through a Concatenate Layer, yielding an output shape of (100). This output then undergoes

processing by a Dense Layer, resulting in an output shape of (64), which is then subjected to a Dropout

Layer. Another Dense Layer follows, processing the output of the previous Dropout Layer to yield an output

shape of (32), which in turn encounters another Dropout Layer. Finally, a last Dense layer processes the

output, resulting in a shape of (30). This output is subsequently passed through an Activation Layer,

producing the final Generated_Data of shape (30).The NS GAN Discriminator architecture displayed in

Figure 8 (f) comprises various interconnected layers responsible for evaluating the authenticity of the

generated data. This begins with an Input Layer, which takes an input shape of (1) and produces the same

output shape. An Embedding Layer then processes the input to generate an output shape of (1, 30), followed

87

87

by flattening to result in an output shape of (30). Simultaneously, a Noise_Input Layer takes input of shape

(30) and maintains the same output shape. The output of the Noise_Input Layer is concatenated with the

flattened output from the Embedding Layer through a Concatenate Layer, generating an output shape of (60).

This concatenated output is fed into a Dense Layer, producing an output shape of (128), followed by a

Dropout Layer.Another Dense Layer follows, processing the output of the previous Dropout Layer to yield

an output shape of (64), followed by another Dropout Layer. Lastly, another Dense Layer processes the

output to produce an output shape of (32), which is then subjected to a final Dropout Layer. The

Discriminator_out layer consists of a Dense Layer that takes input of shape (32) and yields an output shape

of (1).

 In the following experimentation we’ve implemented the LS GAN (Mao et al., 2017) method to

oversample the minority class transactions. The architecture of the LSGAN Generator (depicted in Figure 8

(g)) involves a series of interconnected layers responsible for generating data through input manipulation.

This begins with an Input Layer, accepting a single variable of shape (1) and producing an identical output

shape. Subsequently, an Embedding Layer takes the input and generates an output shape of (1, 50), which is

then flattened to (50). An additional input layer is included for noise, which maintains its input shape of (50).

The output from this noise input layer is then concatenated with the flattened output from the previous layer,

resulting in an output shape of (100). Two Dense Layers follow, with input shapes of (100) and (64)

respectively, each accompanied by a Dropout Layer to maintain the output shape. A final Dense Layer

follows, processing input of shape (64) and producing an output shape of (32), followed by a Dropout Layer.

Ultimately, an Activation Layer processes the output, resulting in the generated data of shape (30). The LS

GAN Discriminator architecture displayed in Figure 8 (h) encompasses a sequence of interconnected layers

aimed at distinguishing between generated and real samples. Starting with an input layer, it takes a label of

dimensions (1) and produces an output of the same shape. An Embedding Layer then processes the input to

produce an output shape of (1, 30), followed by a Flatten Layer to yield an output of shape (30). Concurrently,

a Noise_Input Layer processes input of shape (30) and maintains the same output shape. The outputs of both

the Noise_Input Layer and the Flatten Layer are combined through a Concatenate Layer, resulting in an

output shape of (60). A Dense Layer follows, with input shape (60) and output shape (128), along with a

Dropout Layer maintaining the output shape. Another Dense Layer processes the output of the previous

Dropout Layer, resulting in an output shape of (64), followed by another Dropout Layer. Finally, a further

Dense Layer processes the output, generating an output shape of (32), succeeded by a final Dropout Layer.

The Discriminator_out layer consists of a Dense Layer that processes input of shape (32) and yields an output

of shape (1).

 In our conducted experimentation, we implemented the K-CGAN method to oversample minority class

transaction. The architecture of the K-CGAN Discriminator (illustrated in Figure 8 (j)) encompasses various

interconnected layers essential for data processing and classification. The Input_label Input Layer serves as

the initial layer, accepting input of shape (None, 1), signifying an unspecified batch size and a single neuron

representing the condition vector. The subsequent Embedding Layer processes this single neuron, generating

an embedding. This is followed by the Flatten Layer, which converts the input to a vector, succeeded by the

Data_input layer. The Concatenate Layer follows, combining the flattened input with the data input. A Dense

Layer creates feature maps, while the BatchNormalization layer ensures weight distribution normalisation.

The LeakyRelu layer introduces non-linearity, and the Dropout layer randomly drops features to curb

overfitting. Subsequently, more feature maps are generated by another Dense Layer, which is again

normalized by the batch_normalization_1 layer. The LeakyRelu layer is reapplied, and the final feature maps

are created by the Dense_5 layer, which then feeds into the Discriminator_out layer responsible for binary

classification of real and generated data. The architecture of the GAN Discriminator ensures accurate

classification and upholds desired standards for generated data. The K-CGAN Generator architecture

displayed in Figure 8 (k) involves a sequence of interconnected layers collaborating to generate the required

output. Commencing with the Input_label Input Layer, a conditional layer that takes a batch size and a single

88

88

neuron for the condition vector, it's succeeded by the Embedding Layer, which maps the input vector into a

higher-dimensional space, providing an output for the subsequent layers. The Flatten Layer transforms the

matrix into a vector, preparing it for further processing. Noise_input generates random noise data, which is

concatenated with the previous layer's output through the Concatenate function. The following Dense layer

undertakes a linear operation on the data, followed by the BatchNormalization layer. The

tf.nn.reluTFOpLambda layer applies the ReLU activation function for introducing non-linearity in the

generated data. To prevent overfitting, the Dropout layer follows, succeeded by another Dense layer, which

also undergoes batch normalization. The tf.nn.relu_1 TFOpLambda layer applies ReLU once more, and the

Dense_2 layer performs a linear operation on the data, producing the final generated data. This output is then

returned through the Generated_Data layer. All these layers collaborate to generate realistic data closely

resembling the original input.

4.3.6 GAN Training: Generator and Discriminator Losses

 (a) (b)

 (c) (d)

 (e)

Figure 9: (a) The discriminator and generator losses of WGAN, (b) the discriminator and generator losses

of SDG GAN (b), (c) the discriminator and generator losses of LS GAN, (d) the discriminator and generator

losses of NS GAN, (e) the discriminator and generator losses of K-CGAN

89

89

WGAN

 Figure 9 (a) presents the discriminator and generator losses of WGAN. The discriminator loss presented

shows a significant decrease in the discriminator loss which indicates a significant improvement in its ability

to distinguish between genuine and synthetic samples. This progression highlights considerable progress in

the training process. However, contrary to this positive trend, generator losses reveal that the generator is

having difficulty fabricating samples realistic enough to deceive the discriminator (Cao et al. 2019;

Pfenninger et al., 2021). Possible reasons for this may include a deficiency in the design of the generator,

which renders it unable to fabricate genuinely realistic samples (Wang et al., 2017). Alternatively, training

instability (Wolterink et al., 2020) could also be a contributing factor to the underperformance of the

generator. It is worth noting that mode collapse may also be a significant factor impacting the performance

of the generator (Bhagyashree et al., 2020). This is characterised by the frequent generation of similar

samples, which seem easy to create but do not adequately represent the entire distribution of actual data

points (Ding et al., 2022; Zhang et al., 2018).

SDG GAN

 As the analysis progressed, Figure 9 (b) demonstrates that it became apparent that the SDG GAN model

had experienced a mode collapse after undergoing numerous epochs. After several epochs, a sharp upsurge

in losses suggests that mode collapse occurred in the model. This phenomenon occurs when the generator

generates only a limited subset of samples that are uncomplicated to produce but do not accurately represent

the complete range of the true distribution. As a result, the discriminator becomes exceptionally efficient at

distinguishing between real and synthetic samples, leading to a sudden spike in losses. Furthermore, the

model displayed signs of convergence issues, as evidenced by the abrupt increase in losses followed by

erratic fluctuations. These fluctuations indicate that the model was switching between various modes,

suggesting that it was not able to maintain a stable and consistent learning process (Charitou et al., 2021;

Figueira and Vaz, 2022). Overall, the findings suggest that mode collapse and convergence issues

significantly impact the effectiveness and accuracy of this generative model. These issues must be carefully

monitored and addressed to ensure that the model can produce high-quality and natural-looking samples that

accurately reflect the true distribution (Saxena and Cao, 2021). Further research is required to develop robust

solutions for these problems and enhance the overall performance of generative models.

LS GAN

 Figure 9 (c) shows inconsistent losses for both the generator and discriminator of the LS GAN model. This

indicates unsteady training, which in turn signifies that the model is struggling to achieve convergence (Wang

et al., 2019; Zhong et al., 2022). The issue of non-convergence is a significant challenge in GAN training

and can have a detrimental effect on the model's output quality. Multiple factors could contribute to this

phenomenon, including poor hyperparameter selection, an unstable architecture or mode collapse. It is

imperative to mention that hyperparameter selection is critical for GANs, as it directly affects the loss

function's behaviour during training (Alarsan and Younes, 2021; Fiore et al., 2019). An unoptimized loss

function could lead to unsteady training, causing the model to oscillate erratically. Furthermore, an unstable

architecture could be a factor. The design of the generator and discriminator could result in gradients that are

too large or small, leading to poor convergence. Mode collapse, another possible explanation, could occur

when the generator learns to generate data that is similar to a small subset of the training data. In this regard,

the LS GAN was unable to achieve desired results.

NS GAN

 Figure 9 (d) shows the losses of NS GAN. After several training cycles, the observed sudden spikes in

losses strongly indicate the presence of a probable mode collapse (Hong et al., 2019). Specifically, it appears

that the generator is only capable of producing a narrow range of sample types that are relatively simple to

generate and do not accurately reflect the true distribution of data. As a result, the discriminator may become

exceedingly adept at differentiating between real and synthetic samples, leading to a sharp increase in overall

90

90

model losses. This phenomenon is further supported by regular dips in the loss function after a sudden surge,

indicating that the model struggles to maintain a consistent performance level and instead periodically

oscillates between disparate states. These fluctuations can greatly impede the accurate modelling of complex

real-world data distributions and highlight the need for more effective model design and training strategies

(Chen, 2021; Pan et al., 2019).

Novelty Loss K-CGAN

 Figure 9 (e) shows the discriminator and generator losses of Novelty K-CGAN. The discriminator loss

initially decreasing followed by an increase implies that the discriminator is effectively distinguishing

between real and generated samples, however it starts to struggle as the generator produces more realistic

samples. The discriminator loss may have been amplified due to the generator constructing samples that are

more intricate and indistinguishable from an authentic data distribution. It appears that the generator is having

trouble learning a dependable representation of the data distribution, evidenced by its wavering performance.

This could be caused by either a complexity of the data distribution or noisy input dataset (Chiaroni et al.,

2019; Pavan et al., 2021).

4.3.7 Results and Comparisons of Classification Models

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

Figure 10: (a) ROC curve for original imbalanced dataset, (b) ROC curve for balanced dataset utilising

SMOTE, (c) ROC curve for balanced dataset utilising ADASYN, (d) ROC curve for balanced dataset

utilising B-SMOTE, (e) ROC curve for balanced dataset utilising WGAN, (f) ROC curve for balanced dataset

91

91

utilising SDG GAN, (g) ROC curve for balanced dataset utilising NS GAN, (h) ROC curve for balanced

dataset utilising LS GAN, (i) ROC curve for balanced dataset utilising K-CGAN

 Figure 10 presents a series of ROC curves showcasing the performance of different techniques on a

balanced dataset. The curves represent the results obtained using various approaches, namely SMOTE,

ADASYN, B-SMOTE, WGAN, SDG GAN, NS GAN, LS GAN, and K-CGAN. Each curve represents the

performance of the respective technique in achieving balance in the dataset. These ROC curves provide

valuable insights into the effectiveness of different methods in addressing the issue of imbalance in the

dataset. Table 9 presents the evaluation of the classifiers applied to the original imbalanced dataset. The

findings indicate that XGBoost demonstrated impressive performance, while Random Forest, Nearest

Neighbour, MLP and Logistic Regression have displayed satisfactory performance levels. The results

obtained could be used to select the most appropriate classifier in future applications of this nature. The

performance of five popular classifiers on the original imbalanced dataset has been analysed. Amongst the

classifiers, XGBoost has exhibited the highest precision of 0.9916, with a satisfactory recall score of 0.8613.

Hence, achieving the highest F1 score of 0.9219 and accuracy of 0.9984, surpassing all other classifiers

evaluated in this study. The Random Forest classifier has demonstrated a precision score of 0.9512 and a

recall score of 0.8540. Consequently, obtaining an F1 score of 0.9000 and an accuracy score of 0.9979,

representing satisfactory scores, placed it in the third position based on the classifier's performance metrics.

On the other hand, the Nearest Neighbor classifier has shown a high precision score of 0.9259. However, its

recall score of 0.3649 has adversely affected its F1 score of 0.5236. Furthermore, the MLP also placed in the

second position after XGBoost. The MLP classifier has obtained a precision score of 0.9308 and a recall

score of 0.8832, achieving an F1 score of 0.9064, and an accuracy score of 0.9980. While the Logistic

Regression classifier has achieved a precision score of 0.8785 and a recall score of 0.6861, acquiring an F1

score of 0.7705, and an accuracy score of 0.9955.

Table 9: Classifiers performance on original imbalanced dataset

Model Precision Recall F1 Score Accuracy

XGBoost 0.9916 0.8613 0.9219 0.9984

Random Forest 0.9512 0.8540 0.9000 0.9979

Nearest Neighbor 0.9259 0.3649 0.5236 0.9927

MLP 0.9308 0.8832 0.9064 0.9980

Logistic

Regression

0.8785 0.6861 0.7705 0.9955

 Table 10 shows the performance of five classifiers on a balanced dataset that was oversampled using

SMOTE to address the issue of imbalanced data. Precision, recall, F1 score, and accuracy were the key

metrics used to evaluate the performance of the classifiers. Based on our findings shown in Table 10 its

evident that XGBoost and Random Forest classifiers exhibited high performance in all the metrics using

SMOTE, with F1 scores of 0.9994 and 0.9995, respectively. These algorithms are known to be robust and

efficient in handling imbalanced datasets and are widely used in various applications, such as fraud detection

and intrusion detection. On the other hand, the Nearest Neighbor and Logistic Regression classifiers showed

a relatively lower performance in terms of precision, recall, and F1 score and accuracy. The MLP classifier

also performed well with an F1 score of 0.9992. Finally, Logistic Regression exhibited a decent performance,

except for the recall value which was 0.9465 and considerably lower than the other classifiers. This

phenomenon can be attributed to the classifier's assumptions, and it is recommended to use it only for specific

92

92

scenarios where these assumptions are met. The performance of the classifiers on the balanced dataset using

the SMOTE oversampling technique shows that the XGBoost and Random Forest classifiers are the most

reliable options. However, the suitability of the classifiers may vary based on the specific use case, and

further analysis is recommended.

Table 10: Classifiers performance on balanced dataset SMOTE oversampling the minority class

Model Precision Recall F1 Score Accuracy

XGBoost 0.9989 0.9998 0.9994 0.9994

Random Forest 0.9993 0.9998 0.9995 0.9995

Nearest Neighbor 0.9634 0.9865 0.9748 0.9743

MLP 0.9986 0.9998 0.9992 0.9992

Logistic Regression 0.9836 0.9465 0.9647 0.9651

Table 11 shows the performance of five classifiers on a balanced dataset that was oversampled using

ADASYN to address the issue of imbalanced data. Precision, recall, F1 score and accuracy were the key

metrics used to evaluate the performance of the classifiers.

Table 11: Classifiers performance on balanced dataset ADASYN oversampling the minority class

Model Precision Recall F1 Score Accuracy

XGBoost 0.9989 1.0000 0.9995 0.9995

Random Forest 0.9995 1.0000 0.9998 0.9998

Nearest Neighbor 0.9310 0.9986 0.9636 0.9627

MLP 0.9982 0.9999 0.9991 0.9991

Logistic Regression 0.9501 0.9098 0.9295 0.9318

 Table 11 presents classifiers performance on a balanced dataset upon application of ADASYN method

oversampling the minority class. Based on the findings, XGBoost shows high performance results in terms

of precision, recall and accuracy for detecting the minority class, with a near-perfect F1 score of 0.9995. This

indicates that XGBoost is highly effective at identifying both positive and negative instances. Moreover,

Random Forest performed well with the highest scores with almost perfect precision, recall, and F1 score

values, the model achieved a very high level of accuracy. Further, Nearest Neighbor demonstrated a slightly

lower level of precision and F1 score, which suggests that the model struggles with detecting negative

instances. However, the model's recall value of 0.9986 indicates its effectiveness at correctly identifying

positive instances, which presents the usefulness of this classifier in specific contexts. MLP also showed

high results, particularly with its high recall score, which means that it is successful in identifying as many

True Positive (TP) instances as possible. The model's precision, accuracy, and F1 score values were also

noteworthy, highlighting the overall potency of MLP. Lastly, the performance of Logistic Regression was

slightly lower than that of the other classifiers, with a lower precision, recall values and F1 score.

93

93

Table 12: Classifiers performance on balanced dataset B-SMOTE oversampling the minority class

Model Precision Recall F1 Score Accuracy

XGBoost 0.999757 0.999111 0.999434 0.999434

Random Forest 0.999919 0.999111 0.999515 0.999515

Nearest Neighbor 0.976018 0.993052 0.984461 0.984326

MLP 0.999514 0.997172 0.998342 0.998344

Logistic Regression 0.985890 0.976650 0.981248 0.981336

 Table 12 shows the performance of five classifiers on a balanced dataset that was oversampled using B-

SMOTE to address the issue of imbalanced data. The results shown in Table 12 reveal that XGBoost and

Random Forest exhibit superior performance in terms of precision, recall, and F1 score, with the F1 scores

of 0.999434 and 0.999515. The high F1 scores imply that these classifiers have a superior balance between

precision and recall, indicating their robustness in identifying TP cases, while minimising the number of FPs

and False Negatives (FNs). However, the performance of the Nearest Neighbor classifier was slightly lower

than XGBoost and Random Forest, with an F1 score of 0.984461. This suggests that the Nearest Neighbor

classifier struggles to find minority class samples and may have difficulty classifying highly imbalanced

datasets. On the other hand, the MLP and Logistic Regression classifiers also demonstrate slightly lower

performance than XGBoost and Random Forest. However, the scores are still impressive as both the

classifiers managed to achieve F1 scores of 0.998342 and 0.981248. The high F1 score of the MLP classifier

indicates its ability to correctly identify minority class instances while maintaining a low number of false

positives and FNs. Similarly, the Logistic Regression classifier effectively predicted the minority class

instances, but was slightly inferior in terms of F1 score compared to other classifiers. The results suggest

that XGBoost and Random Forest classifiers are the most suitable for data classification using B-SMOTE

oversampling technique while MLP and Logistic Regression are also strong performers. Nonetheless, the

choice of classifier will depend on many factors, such as the nature of the data, the available computation

resources, and the specific requirements of the classification task.

 For SDG GAN, as shown in Table 13, XGBoost and Random Forest perform the best in terms of precision,

recall, F1 score, and accuracy. Nearest Neighbour performs the worst in terms of recall and F1 score, but

still has a high accuracy. Logistic Regression has the lowest precision, recall, and F1 score, but still has a

relatively high accuracy.

94

94

Table 13: Classifiers performance on balanced dataset using SDG GAN by oversampling the minority

class

Model Precision Recall F1 Score Accuracy

XGBoost 0.997840 0.964509 0.980892 0.999287

Random Forest 0.995680 0.962422 0.978769 0.999208

Nearest Neighbor 0.997561 0.853862 0.920135 0.997189

MLP 0.989224 0.958246 0.973489 0.999010

Logistic Regression 0.906863 0.772443 0.834273 0.994179

 The results in Table 13 demonstrate the performance of five classifiers on a balanced dataset using SDG

GAN oversampling the minority class. Based on the values of each metrics, it’s evident that XGBoost and

Random Forest performed the best with precision, recall, F1 score, and accuracy values. XGBoost achieved

precision, recall, F1 score, and accuracy values of 0.997840, 0.964509, 0.980892 and 0.999287. On the other

hand, Random Forest managed to achieve precision, recall, F1 score, and accuracy values of 0.995680,

0.962422, 0.978769 and 0.999208. These high scores indicate that SDG GAN can effectively distinguish

between the majority and minority classes. Nearest Neighbour underperformed XGBoost and Random Forest

in terms of recall and F1 score, but still achieved a high accuracy value of 0.997189. Logistic Regression

had the lowest precision, recall, and F1 score values, but still achieved an accuracy of 0.994179. These results

suggest that XGBoost and Random Forest have the highest variable similarity to balanced data with SDG

GAN oversampling. MLP also demonstrated good performance, indicating that it can effectively

differentiate between classes. Furthermore, these results demonstrate that with SDG GAN, Logistic

Regression can still reach a relatively high accuracy value, even with lower precision, recall, and F1 scores.

 Overall, the results in suggest that SDG GAN is an effective oversampling technique for imbalanced

datasets. It allows for high accuracy values while still maintaining variable similarity amongst the different

classifiers. This makes it a powerful tool for dealing with imbalanced datasets where the minority class has

to be accurately identified.

Table 14: Classifiers performance on imbalanced dataset NS GAN oversampling the minority class

Model Precision Recall F1 Score Accuracy

XGBoost 1.000 0.969 0.984 0.999

Random Forest 0.996 0.971 0.983 0.999

Nearest Neighbor 0.995 0.851 0.918 0.997

MLP 0.979 0.975 0.977 0.999

Logistic Regression 0.948 0.938 0.943 0.998

95

95

 Table 14 shows the findings of oversampling the minority class using NS GAN. The results show that

XGBoost and Random Forest models achieved the highest precision rates of 1.000 and 0.996. At the same

time, the Nearest Neighbor model did not fall far behind with a precision of 0.995. The MLP model, on the

other hand, demonstrated a relatively lower precision rate of 0.979. The Logistic Regression model obtained

the lowest precision result of 0.948. In terms of recall, Random Forest and MLP models displayed near-

perfect rates of 0.971 and 0.975 respectively. The Logistic Regression and Nearest Neighbor models

performed relatively lower with a recall rate of 0.948 and 0.851. The XGBoost model achieved a reasonable

recall rate of 0.969. The F1 score, a measure impacting both precision and recall, showed that the XGBoost

and Random Forest models achieved the highest rates of 0.984 and 0.983. The Logistic Regression and

Nearest Neighbor models performed relatively lower with an F1 score of 0.943 and 0.918, while the MLP

model demonstrated a decent F1 score of 0.977. Finally, when considering accuracy, all models achieved

high rates, with the MLP, XGBoost and Random Forest classifiers obtaining the highest accuracies of 0.999.

The Nearest Neighbor and Logistic Regression models achieved the accuracy rates of 0.997 and 0.998.

Overall, the Table 14 reflecting classifiers' performance on the balanced dataset using NS GAN in order to

oversample the minority class presents a promising range of models that can be utilized to achieve superior

outcomes in data analysis and prediction tasks, particularly in cases where the minority class is

underrepresented.

 Table 15 shows the performance of five classifiers on a balanced dataset that was oversampled using LS

GAN model to address the issue of imbalanced data. Precision, recall, F1 score, and accuracy were the key

metrics used to evaluate the performance of the classifiers.

Table 15: Classifiers performance on imbalanced dataset using LS GAN to oversampling the minority

class

Model Precision Recall F1 Score Accuracy

XGBoost 0.980583 0.220044 0.359431 0.985745

Random Forest 0.990476 0.226580 0.368794 0.985903

Nearest Neighbor 0.979592 0.104575 0.188976 0.983686

MLP 0.952381 0.217865 0.354610 0.985586

Logistic Regression 0.850000 0.185185 0.304114 0.984596

 Table 15 shows classifiers performance using LS GAN to oversampling the minority class, where XGBoost

and Random Forest yielded the highest precision scores of 0.980583 and 0.990476, respectively. This metric

indicates the ratio of correctly predicted positive observations to the total predicted positive observations,

highlighting the classifier's ability to avoid false positives. However, the recall scores obtained for all

classifiers were relatively low, rarely exceeding 0.22. Recall measures the ratio of correctly predicted

positive observations to the total actual positive observations and brings attention to the classifier's ability to

detect positive samples, in this case, the minority class. The low recall scores indicate that all classifiers had

difficulty correctly detecting positive samples. The F1 scores are a harmonic mean of precision and recall,

giving equal weight to both metrics. It can be observed that the F1 scores were relatively low, ranging from

0.188976 to 0.368794. This indicates that the classifiers' performance on accurately classifying the minority

class is suboptimal. Finally, the accuracy score, which measures the proportion of the total number of

predictions that are correct, showed high results for all classifiers, with scores ranging from 0.983686 to

0.985903. However, accuracy can be misleading where the classifier can achieve high accuracy by simply

predicting the majority class frequently. Overall, while the XGBoost and Random Forest classifiers showed

96

96

high precision scores, all classifiers had low recall and F1 scores on the LS GAN oversampling minority

class dataset. These results suggest that the classifiers have difficulty detecting the minority class. The results

pointed out that Random Forest and XGBoost have outperformed all other examined models in terms of

remarkable reliability for the LS GAN approach.

 Furthermore, Table 16 shows the performance of five classifiers on a balanced dataset that was

oversampled using K-CGAN to address the issue of imbalanced data. Precision, recall, F1 score, and

accuracy were the key metrics used to evaluate the performance of the classifiers

Table 16: Classifiers performance on imbalanced dataset using Novelty Loss K-CGAN by oversampling

the minority class

Model Precision Recall F1 Score Accuracy

XGBoost 0.998039 0.958569 0.977906 0.999089

Random Forest 0.988304 0.954802 0.971264 0.998812

Nearest Neighbor 0.991091 0.838041 0.908163 0.996436

MLP 0.980695 0.956685 0.968541 0.998693

Logistic Regression 0.87619 0.86629 0.871212 0.994615

 The performance of Novelty Loss K-CGAN in addressing imbalanced datasets is analyzed using the

results from Table 16. The table presents the performance of five different classifiers, namely XGBoost,

Random Forest, Nearest Neighbor, MLP, and Logistic Regression, on an imbalanced dataset. The dataset

was first oversampled using Novelty Loss K-CGAN before being tested with the classifiers. Based on the

results presented in Table 16, all the classifiers obtained high values of Precision and F1 Score except

Logistic Regression. This indicates that the models were able to accurately classify positive instances, despite

the imbalanced nature of the dataset. XGBoost achieved the highest Precision value of 0.998039, followed

closely by Nearest Neighbor with 0.991091. Random Forest obtained the third-highest value of 0.988304,

indicating its ability to handle imbalanced datasets. In terms of Recall, the results show that the Nearest

Neighbor and Logistic Regression classifiers achieved the lowest value of 0.838041 and 0.86629. This

suggests that the model struggled to identify all the positive instances in the dataset. However, all the other

classifiers achieved Recall values above 0.95, meaning they could accurately identify most of the positive

instances in the dataset. In terms of Accuracy, all the classifiers obtained high scores, ranging from 0.994615

to 0.999089. This further confirms that the models were able to accurately classify most of the instances in

the dataset. Overall, the results suggest that Novelty Loss K-CGAN can be an effective technique for

addressing imbalanced datasets. All the classifiers were able to achieve high values of Precision, F1 Score,

and Accuracy, indicating their ability to accurately classify positive instances. The results further suggest

that MLP, XGBoost, and Random Forest classifiers can be effective with K-CGAN. However, it is

noteworthy to mention that the choice of classifier may depend on specific use cases and the nature of the

datasets being analyzed. The findings pointed out that Precision, recall, F1 score, and accuracy were all best

enhanced by using XGBoost and Random Forest models. Logistic Regression had the least accuracy

compared to the other models. However, K-CGAN approach integration overall improved performance of

classification.

97

97

Discussion and Conclusions

 There could be several reasons why the classifiers’ performance of Novelty Custom K-CGAN is not

achieving the same level of success as other GAN models on the same dataset. One possible explanation is

that while the KL loss is a widely accepted measure for distribution similarity, it may overlook certain

characteristics or patterns in the data, leading to mediocre performance from novelty GAN models. Thus,

this dataset may require further examination to ensure that no important elements go unnoticed and

unexpected outcomes are avoided.

 Another explanation is that these novelty GAN models have not been specifically optimised in experiment

for the dataset, which could lead to less consistent performance across different experiments. Although the

hyperparameters of the Novelty Custom K-CGAN may not have been calibrated to best suit every aspect of

the dataset, its potency is still undeniable. Furthermore, if GAN models are not initialized with consistent,

optimal weights, this can cause deviations in performance from one experiment to the next. Poor initialization

of GAN model weights means that novelty models may suffer and risk producing unreliable results.

Therefore, it is important to carefully consider the initialization process to ensure optimal performance. The

results show that the precision, recall, F1 score, and accuracy metrics can vary significantly between various

classification models and various GAN-based methods. Overall, the performance of the XGBoost and

Random forest classification models outperforms all other models (Faraji, 2022).

The performance of NS GAN and SDG GAN is superior to all previous iterations of the Generative

Adversarial Network (GAN) in terms of accuracy, recall, F1 score, and precision. For every classification

model, the LS GAN performs the worst among all GANs. While the service is not consistent across all

models, K-CGAN show greater performance for some models in comparison to other types of GANs (Fiore

et al., 2019). In the next set of experiments we’re going to further develop and optimise the architecture of

K-CGAN and other GANs.

4.4 Development of K-CGAN Framework: Impact of Custom Loss

 In the following experiments we aimed to evaluate the impact of KL divergence on performance of the

GAN model as well as assess the impact of adding SMOTE oversampling the minority class instances of

fraudulent transactions to ensure sufficient representation for both classes in the dataset used specifically for

GAN training. We have examined the Cosine similarity scores, the cosine similarity measures the similarity

between the synthetic and original datasets based on their feature vectors (Büttcher et al., 2010), as

demonstrated in Figure 11.

Figure 11: Cosine Similarity strategy

 In our original credit card dataset we have V1 to V28 and Amount features so total 29 features we want

to predict using the K-CGAN model. So if y = V1 (taken from Original dataset) and x = V1 (taken from

Generated dataset) then our goal is to have ZERO ANGLE between x and y. And COS(0) = 1, that’s why

we would also state that if cosine similarity is 1 then it’s an optimal value. This ensures that the generated

98

98

features closely resemble the original ones, allowing for accurate predictions in credit card fraud detection.

Cosine similarity is a measure of the similarity between two vectors in space, which in this case, are the

different features of the dataset. A high cosine similarity score indicates that the two features are similar,

while a low score indicates that they are dissimilar. Cosine similarity analysis is useful in machine learning

and data mining to identify patterns and relationships within datasets. By understanding the similarity

between features, it is possible to create models that accurately predict outcomes and detect anomalies.

4.4.1 Experiment 1: K-CGAN with Novelty KL Loss without SMOTE

 Experiment 1 utilised novelty custom K-CGAN method without specific modifications training with 100

epochs. Figure 12 demonstrates the results of the experiment, showing that the K-CGAN method was able

to generate fraudulent transactions with the cosine similarity scores ranging from -71.68% (V10) to 67.17%

(V4). The blue coloured denotes to original feature and the orange to the generated feature data. In general,

the cosine similarity values for V1-V17 were higher than those of V18-V28 and the ‘Amount’. The highest

similarity was observed for V4, followed by V14 and V11. The lowest cosine similarity scores were observed

for the variables V9 and V10, indicating that these two variables were least similar between the original and

synthetic datasets. This result is significant as it suggests that the K-CGAN was able to generate unseen

fraudulent transactions with similar feature values to that of the original data. Furthermore, these results

indicate that our proposed K-CGAN is an effective approach for generating synthetic fraudulent transactions

with high accuracy. However, the cosine scores are still much lower than anticipated. To improve the

similarity between the generated and original dataset, the study conducted more experiments in order to

improve the accuracy of the novelty loss K-CGAN. It is important to note that the results of this experiment

are limited due to the small size of the dataset used and other factors such as feature selection. The synthetic

data generated was also not evaluated using a classifier, thus further experiments will focus on evaluating

these two aspects in order to determine the GAN's true effectiveness. Furthermore, other techniques such as

SMOTE should be considered during training (further presented in experiment 2) in order to assist with GAN

training.

99

99

Figure 12: Distribution charts showing the similarity scores of anonymized features (V1 to V28) and

Amount. The feature columns (and Amount feature): Amount, V1, V2, V3, V4, V5, V6, V7, V8, V9, V10,

V11, V12, V13, V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V14, V15, V16, V17, V18, V19,

V20, V21, V22, V23, V24, V25, V26, V27, and V28 for experiment 1

4.4.2 Experiment 2: K-CGAN with Novelty KL Loss with SMOTE

 In experiment 2, we oversampled the minority class instances of fraudulent transactions using SMOTE to

ensure sufficient representation for both classes in the dataset used for GAN training. This step was crucial

because models trained on imbalanced datasets often exhibit poor generalisation performance when faced

with unseen data (He and Wu, 2019) . During the training phase, we utilised the entire balanced dataset to

ensure comprehensive coverage of the data nuances. No additional preprocessing techniques were necessary

as the dataset had already undergone meticulous cleaning and labelling. While the 80-20% split is typically

used for testing purposes, we omitted this step as our intention was to compare results with a synthetic

dataset. During training, SMOTE was applied to generate additional synthetic fraudulent samples, thereby

balancing the training dataset. This approach ensured that the GAN learned to generate realistic fraudulent

samples and avoided bias towards the majority class. By capturing the underlying distribution of both classes,

the generator achieved improved performance and enhanced generalisation. It's important to highlight that

once the GAN is trained, SMOTE is no longer required for generating synthetic samples. Furthermore in this

experiment we have utilised our custom K-CGAN method where Generator’s loss is KL divergence and

Binary Cross entropy, while Discriminator’s loss Binary Cross entropy.

100

100

 During the generation phase, the trained generator can directly produce synthetic fraudulent transactions.

Similarly, during the evaluation phase, when assessing the K-CGAN's performance on unseen or real-world

data, SMOTE is unnecessary. We can utilise the trained discriminator to classify transactions as legitimate

or fraudulent, and the trained generator to generate synthetic fraudulent samples for comparison or analysis.

In summary, SMOTE was only employed during K-CGAN training to address imbalanced datasets, but it is

not applied during the generation or evaluation phases once the K-CGAN is trained. For the testing phase,

we utilised a sample size of 284,315 fraudulent transactions with the Novelty K-CGAN. The same sample

size was used for the oversampled dataset to facilitate comparison against our model results. In this study,

we used distribution chart analysis to compare the generated dataset with the original dataset. Figure 13

charts show the comparison of all features for the experiment 2.

.

101

101

Figure 13: Distribution charts showing the similarity scores of anonymized features (V1 to V28) and

Amount. The feature columns (and Amount feature): Amount, V1, V2, V3, V4, V5, V6, V7, V8, V9, V10,

V11, V12, V13, V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V24, V25, V26, V27, and V28 for

experiment 2 with implementation of SMOTE to assist with K-CGAN (with KL divergence) training

The distribution charts of Figure 13 suggest that the improved similarity scores of features V1 to V28 and

Amount strongly imply the effectiveness of adopting SMOTE to assist with K-CGAN training. This

improvement becomes even more pronounced when evaluating K-CGAN performance using the Kullback-

Leibler Divergence (KL). Thus, it can be inferred that the use of KL loss K-CGAN with SMOTE

oversampling serves as a valuable pre-training technique for generating synthetic data that closely

approximates the characteristics of the original dataset.

102

102

4.4.3 Experiment 3: K-CGAN without KL Loss with SMOTE

 For the experiment 3 we applied SMOTE to oversample the minority class instances of fraudulent

transactions as in the experiment 2. Moreover, we utilised custom K-CGAN without KL Loss. The

goal was to evaluate the impact of KL loss hence we simulated the same K-CGAN architecture where

instead of KL loss, the study utilised standard Binary Cross Entropy (Goodfellow et al., 2016) loss

function in both Generator and Discriminator networks. For the training phase, the entire dataset was

used instead of the split. Similarly, for the testing phase, we conducted an experiment with 284,315

fraudulent transactions to evaluate the performance of our K-CGAN method. We compared this to

the oversampled dataset which was also constructed with the same number of fraudulent transactions.

In this study, we used distribution chart analysis to compare the generated dataset with the original

dataset, the comparison of all features, representative of individual features, is demonstrated in Figure

14.

103

103

Figure 14: Distribution charts showing the similarity scores of anonymized features (V1 to V28) and

Amount. The feature columns (and Amount feature): Amount, V1, V2, V3, V4, V5, V6, V7, V8, V9,

V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V24, V25, V26, V27,

and V28 experiment 3 without KL Loss GAN with SMOTE

Figure 14 distribution charts show the cosine similarity scores of all features. When compared to the

baseline experiment from experiment 2, it can be seen that there is a noticeable reduction of similarity

scores in this third experiment. As such, the elimination of KL Loss GAN with SMOTE has had an

effect on reducing the cosine similarities between features and Amount. This suggests that adding KL

loss to the GAN effectively increased its ability to improve the quality of the synthetic data generated

by the K-CGAN model.

104

104

 4.4.4 Experiment 4: K-CGAN with Novelty KL Loss without SMOTE

 The purpose of our experimental study was to investigate the effectiveness of our newly developed novelty

loss function where Generator’s loss is KL divergence and Binary cross entropy and Discriminator’s loss is

Binary Cross entropy. In this experiment the study used the entire original dataset for training, as 80-20%

split was not necessary since we planned to conduct a statistical comparison with the synthetic dataset.

Moreover for the testing phase, the novelty K-CGAN was used to generate 492 fraudulent transactions for

comparison with the oversampled dataset. We chose this number as it provided an equal proportion of fraud

and legitimate samples in both datasets. In this study, we used distribution chart analysis to compare the

generated dataset with the original dataset. In experiment 4, we tested the performance of Novelty Loss with

the number of epochs of 200. As in previous experiments we used distribution chart analysis to compare the

generated dataset with the original dataset, the comparison of all features is shown in Figure 15.

105

105

Figure 15: Distribution chart showing the similarity scores of anonymized features (V1 to V28) and Amount.

The feature columns (and Amount feature): Amount, V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12,

V13, V14, V15, V16, V17, V18, V19, V20, V21, V22, V23, V24, V25, V26, V27, and V28 experiment 4

 When analysing the distribution charts of the similarity scores, it is evident that certain variables have

extremely low similarity scores. This could be a result of either the generator model not accurately capturing

the distribution of these variables in the training data, or due to the presence of outliers in the real data. The

similarity scores for variables V1, V3, V5, V13, V15, V20, V23, V25, and V27 range from -84.7% to -

96.86%. This shows that the distribution of these variables in the training data is not correctly captured by

the generator model since the produced data for these variables is considerably different from the actual data.

Variables V2, V4, V8, V11, and V17 have similarity scores that range from -61.82% to -32.09%, which is a

remarkably low number. This shows that the generated data for these variables is not exactly representative

of the distribution of these variables in the training data, and that the generated data for these variables differs

considerably from the real data (Zheng et al., 2021). The similarity scores for variables V6, V7, V9, V10,

V12, V14, V16, V18, V19, V21, V22, V24, V26, and V28 range from 16.093% to 81.806%. This means that

the distribution of these variables in the training data is accurately captured by the generator model since the

produced data for these variables is thought to be quite comparable to the real data. Overall, the similarity

scores indicate that although the generator model properly captures the distribution of certain variables, it

does not do so for other variables.

4.4.5 Comparison and Analysis of 1-4 Experiments

Multiple experiments 1-4 each feature’s cosine similarity scores are presented in Table 17.

106

106

Table 17: Cosine Similarity Scores comparison of each variable in experiments 1, 2, 3 & 4

Variable Cosine Similarity score comparison

Experiment 1
100 epochs
with KL loss
without SMOTE

Experiment 2
 with SMOTE
with KL loss

Experiment 3
with SMOTE
without KL Loss
only Binary cross
entropy

Experiment 4
200 epochs
with KL loss
without SMOTE

V1 48.264% 99.172% -3.057% -88.52%

V2` -60.80% 99.854% 62.386% -61.82%

V3 41.902% 98.563% -5.848% -79.98%

V4 67.168% 96.409% -2.962% -32.09%

V5 39.062% 99.886% 41.904% -84.70%

V6 -43.05% 99.724% 49.660% 17.87%

V7 -59.66% 98.309% 44.448% 58.07%

V8 -7.173% 99.620% 21.155% -2.55%

V9 -68.43% 97.575% -19.27% 40.37%

V10 -71.68% 96.896% -59.05% 65.62%

V11 50.077% 95.702% 0.8158% 6.07%

V12 39.075% 93.693% -5.173% 16.09%

V13 -12.05% 98.326% -22.88% -21.46%

V14 62.956% 94.541% -29.14% 44.13%

V15 -9.342% 97.705% 13.945% -52.13%

V16 -50.84% 93.258% -43.09% 74.09%

V17 27.655% 93.648% 5.2374% -17.18%

107

107

V18 16.018% 93.011% -0.106% 0.87%

V19 -22.26% 98.230% -3.737% 30.49%

V20 -26.25% 99.962% 75.771% -79.83%

V21 -16.23% 99.469% 22.036% 10.32%

V22 -1.074% 99.154% 3.2461% 15.60%

V23 -2.375% 99.955% 56.298% -71.90%

V24 -20.28% 98.494% 17.897% 26.61%

V25 4.9184% 99.774% -30.49% -81.32%

V26 -10.67% 98.704% 24.598% 22.06%

V27 10.528% 99.823% -69.46% -84.58%

V28 12.037% 99.903% 43.530% 81.81%

Amount 28.755% 49.680% 31.816% -96.86%

 Table 17 presents the cosine similarities of the credit card dataset. Cosine similarity metric allows us to

measure how similar two vectors are in a high-dimensional space. In this case, the dataset is analysed using

cosine similarity to measure the similarity between different features. As we observe from the table, most of

the features exhibit high cosine similarity scores. Specifically, features V2, V5, V6, V8, V20, V21, V22,

V23, V25, V26, V27, and V28 exhibit exceptionally high cosine similarity scores approaching 100%. On

the other hand, the feature "Amount" only has a cosine similarity score of 49.68%, which implies that this

feature has a relatively low similarity with the other features in the dataset. Overall, the high cosine similarity

scores of a majority of the features in the dataset indicate that these features are highly correlated and are

likely to exhibit a similar pattern in the dataset.

 Experiment 1 the similarity ratings for each variable ranges from -71.68% to 67.168%. Variables V4, V14,

and V11 have relatively high similarity scores of 67.168%, 62.956%, and 50.077%, respectively. This

suggests that these variables have been accurately captured by the synthetic dataset. Variables V2, V7,

and V9 have negative similarity scores, indicating that they are significantly different in the synthetic

dataset compared to the original dataset. In comparison to the other variables, the Amount variable has a

comparatively low similarity score of 28.755%. This implies that the distribution of this variable in the

original dataset may not be correctly reflected by the synthetic dataset (Panigrahi et al., 2009). Different

levels of similarity among the other variables show that certain variables have been correctly represented by

the synthetic dataset while others have not. Overall, the similarity ratings indicate that, while the synthetic

108

108

dataset is not a perfect reproduction of the actual dataset, it has caught some of the key characteristics and

variables (Ngo et al., 2019).

 The cosine similarity scores between the real and fake datasets for all features have considerably enhanced

in experiment 2 after presenting SMOTE oversampling before training. However, the features V4, V10,

V11, and V14 had the lowest similarity scores in the original experiment but showed the most improvement

after SMOTE oversampling. Features V1, V5, V8, V20, V21, V22, V23, V25, V27, and V28 all had very

high similarity scores in the original experiment and retained them following SMOTE oversampling. The

Amount feature's similarity score did not increase much after SMOTE oversampling. Before training,

SMOTE oversampling can considerably increase K-CGANs' effectiveness in producing synthetic data that

closely mimics the original dataset. A high cosine similarity score between the synthetic and original datasets

might suggest that the synthetic dataset is overly similar to the original dataset and may be insufficiently

diversified. This may imply that the synthetic data is not fully indicative of the underlying data distribution

and, as a result, does not generalise effectively to fresh data. The findings also pointed out that using SMOTE

oversampling before training, the cosine similarity scores between the genuine and fake datasets for all

features improved significantly.

 Table 17, experiment 3, it is evident that the feature with the highest cosine similarity score is V20, with a

score of 75.77%. This means that V20 is very similar to another feature in the dataset. Conversely, V27 has

the lowest cosine similarity score of -69.46%, indicating that it is the most dissimilar feature in the dataset.

Among the features with high cosine similarity scores are V2, V5, V6, V7, V20, and V23. These features

are likely to have correlations with each other. On the other hand, the features with low cosine similarity

scores are V9, V10, V13, V14, and V16. These features may have little to no correlation with other features

in the dataset.

 The cosine similarity analysis of the credit card dataset features, Table 17, experiment 4, provides valuable

information about the degree of similarity between different variables for the 4th experiment. The similarity

scores for the experiment range from -96.86% to 81.81% and indicate the level of correlation between each

pair of variables. Variables V1, V3, V5, V15, V20 and V25 have high negative similarity scores, indicating

that they are dissimilar and have an inverse relationship. On the other hand, variables V7, V10, V16, V14,

and V28 have high positive similarity scores, suggesting a strong correlation between them. Variable V6 has

a positive similarity score of 17.87%, indicating a moderate degree of similarity with other variables.

Similarly, V9 and V21 have positive similarity scores of 40.37% and 10.32%, respectively, indicating a

moderate level of correlation with other variables. Variables V4, V11, V13, V17, V18, V22, and V23 also

have low similarity scores, indicating that they are not significantly related to other variables. Finally, the

Amount variable has the most negative similarity score of -96.86%, indicating that it is dissimilar to all other

variables. This suggests that the amount of the credit card transaction is not significantly related to other

features in the dataset.

 As per the results, experiments with KL loss achieved much greater cosine similarity values across all

variables than without KL loss. This shows that the addition of KL loss improved the quality of the K-CGAN

model's synthetic data. This demonstrates that the synthetic data produced by the K-CGAN model was of

higher quality after the KL loss was included. The lower cosine similarity value might be explained in part

by the absence of KL loss. The KL loss term is a regularizer that makes sure the generator generates samples

that match the distribution of the training data, hence assisting in preventing overfitting (Phan et al., 2020).

The quality of the produced samples may have suffered as a result of the generator being able to overfit to

the training data when KL had been removed (Günder et al., 2022). When the generator creates a limited

number of samples that are inaccurately representative of the distribution of the underlying data, mode

collapse happens (Kossale et al., 2022). Because the KL loss element encourages the generator to produce a

diversity of samples, its removal may have led to mode collapse, which would have decreased the cosine

similarity. The generator may have trouble learning to create samples that fit the distribution of the original

data if the training data is not sufficiently varied (Prokhorov et al., 2019). By encouraging the generator to

provide a variety of samples, the KL loss term might assist to mitigate this problem, thus its removal might

109

109

have made things worse and resulted in a decline in cosine similarity (Prokhorov et al., 2019). It could be

challenging for the generator to learn how to produce samples that closely resemble the distribution of the

training data if there is a lack of variety in the training data. Further, the ideal hyperparameters for the

generator may have changed as a result of the KL loss term removal, which may have had a detrimental

effect on the generated samples' quality (Kim et al., 2021). Furthermore, the elimination of the KL loss

element may have increased the stochasticity of the training process, which would have decreased the quality

of the produced samples because GAN training requires some degree of unpredictability (Nezamzadeh‐Ejieh

and Sadeghkhani, 2020).

4.4.6 PCA Representation Analysis

 Principal Component Analysis (PCA) a dimensionality reduction technique used to identify patterns in

data (Drew et al., 2000). In the context of comparing original and synthetic data, PCA can be used to visualize

the distribution of data in a lower-dimensional space. For the experiments 1-4 we have further implemented

PCA method to evaluate the distribution of data points of the original and synthetic data. Figure 16 presents

the PCA results and allows us to inspect the quality of the generated data for each experiment.

 (a) (b)

 (c) (d)

110

110

 (e) (f)

(g) (h)

Figure 16: PCA comparison original and generated data: (a) and (b) experiment 1, (c) and (d) experiment 2,

(e) and (f) experiment 3, (g) and (h) experiment 4

 Experiment 1 Figure 16 (a) and (b) after analysing the PCA plot of both the original and synthetic data, it

is evident that the former displays a broader distribution, as illustrated in Figure 16. This suggests that there

is a higher level of diversity in the data across various dimensions. The remaining variables exhibit varying

levels of resemblance, indicating that some variables have been faithfully replicated in the synthetic dataset

while others have not.

 Experiment 2 Figure 16 (c) and (d) use oversampling method SMOTE to oversample the minority class

of fraud transactions. By introducing the oversampled data during training, we can observe if it improves the

overall performance and similarity between the synthetic and original datasets. It is observed that the Cosine

similarity between the two datasets is high, the PCA plots differ as shown in Figure 16. This might be due

to a variety of reasons. One probable cause is that the synthetic dataset does not adequately represent the real

data's underlying structure. This might be due to GAN architecture or training data restrictions. In other

words, the synthetic data could not be varied enough to capture all of the variability in the original data.

Another explanation might be that the PCA plot is sensitive to outliers. If the synthetic data contains outliers

that were not present in the original data, the PCA plot may seem different. Similarly, if the GAN creates

synthetic data that is considerably different from the original data in some manner, the PCA plot may diverge.

 Experiment 3 Figure 16 (e) and (f) the PCA plots as shown in Figure 16 are different because the cosine

similarity between the two datasets is high, as can be shown. Numerous reasons might be the cause of this.

The synthetic dataset could not accurately reflect the underlying structure of the actual data, which is one

explanation that is conceivable. This can be the result of restrictions in the training data or the GAN design.

In other words, the synthetic data could not be varied enough to fully convey the real data's variability. The

PCA plot's sensitivity to outliers is another hypothesis that could be appropriate. The PCA plot could seem

differently if the synthetic data contains outliers that are absent from the original data. Similarly, variations

111

111

in the PCA plot may occur if the GAN produces synthetic data that is materially different from the original

data in any manner.

 Experiment 4 Figure 16 (g) and (h) upon analysing the PCA plot of the original data and the synthetic data,

it becomes clear that the former exhibits a wider spread, as shown in Figure 16. This implies that there is a

greater degree of variation in the data across different dimensions. Conversely, the synthetic data appears to

be more closely clustered around the centre of the plot. This suggests that there is less variation across

different dimensions in the synthetic data. The PCA plot of the original data presents a broader spread,

indicating that the values vary significantly across the various dimensions. This can be attributed to the

inherent complexity of the original dataset. On the other hand, the synthetic data appears to be more tightly

clustered, which may indicate that there is less variance in the synthetic data across various dimensions. This

could be due to the nature of the generation process used for the synthetic data, which may have resulted in

a more homogeneous dataset. Overall, these observations suggest that the synthetic data may not fully

capture the complexity and variability of the original data. However, further analysis and exploration are

necessary to determine the extent of these differences and their potential impact on downstream analysis and

modelling efforts.

4.4.7 Impact of KL Loss in Training

 There might be a number of causes for the drop in cosine similarity that resulted from eliminating the KL

loss in the generator loss function. Below we elaborate further on the results:

 Overfitting: The KL loss term is a regularizer that helps prevent overfitting by ensuring that the generator

produces samples that match the distribution of the training data. Removing this term may have allowed the

generator to overfit to the training data, resulting in a decrease in the quality of the generated samples. By

guaranteeing that the generator generates samples that match the distribution of the training data, the KL loss

term, a regularizer, helps to avoid overfitting (Goodfellow et al., 2016). The quality of the produced samples

may have suffered as a result of the generator being able to overfit to the training data if this phrase had been

removed.

 Mode collapse: Mode collapse occurs when the generator generates a small number of samples that do

not accurately reflect the distribution of the underlying data (Arora et al., 2017; Goodfellow et al., 2014).

The removal of the KL loss factor may have caused mode collapse, which would have reduced cosine

similarity because the KL loss term stimulates the generator to generate a variety of samples.

 Lack of diversity in the training data: If the training data is not diverse enough, the generator may have

difficulty learning to produce samples that match the distribution of the original data (Goodfellow et al.,

2016). The KL loss term can help alleviate this issue by encouraging the generator to produce diverse

samples, thus removing it may have worsened the problem and led to a decrease in cosine similarity. Lack

of diversity in the training data might make it difficult for the generator to learn how to create samples that

closely reflect the distribution of the original data. By encouraging the generator to provide a variety of

samples, the KL loss term might assist to mitigate this problem, therefore its removal have negatively

impacted on performance and resulted in a decline in cosine similarity.

 Hyperparameter tuning: The removal of the KL loss term may have altered the optimal hyperparameters

for the generator (Bergstra et al., 2013; Li et al., 2017), which could have negatively impacted the quality of

the generated samples. The ideal hyperparameters for the generator may have changed as a result of the

elimination of the KL loss component, which may have had a detrimental effect on the generated samples'

quality.

 Randomness: GAN training involves a degree of randomness (Lucic et al, 2018; Mescheder et al., 2018),

and the removal of the KL loss term may have increased the stochasticity of the training process, leading to

a decrease in the quality of the generated samples. The elimination of the KL loss element may have increased

the stochasticity of the training process, which would have decreased the quality of the produced samples

because GAN training requires some degree of unpredictability.

112

112

4.4.8 Experiments with Batch Normalisation

 (a) (b) (c)

Figure 17: K-CGAN discriminator loss without batch normalisation (a), K-CGAN discriminator loss with

batch normalisation (b), K-CGAN discriminator loss extremely large networks (c)

 Batch normalisation (Ioffe and Szegedy, 2015) is utilised in our K-CGAN network to improve the training

process. The generator loss in the experiment with 50 epochs and no batch normalisation was quite low right

away, while the discriminator loss fluctuated significantly during the course of training as shown in Figure

17 (a). This most likely resulted from the absence of batch normalisation, which can aid in stabilising the

training process and preventing local minima in the model. Without batch normalisation, the model would

struggle converging and produce erratic losses. The significant fluctuation in the discriminator loss shows

that the discriminator is having trouble differentiating between real and synthetic data, while the low

generator loss may indicate that the generator is able to swiftly create samples that are comparable to the real

data. This may be due to the discriminator overfitting to the synthetic data, which may not be representative

of the full range of real data.

 The initial generator loss was larger than in the prior trial without batch normalisation, ranging from 0.6

to 0.8 as shown in Figure 17 (b). Even while the discriminator loss still ranged widely between 0.4 and 1.0,

the experiment's overall loss stability increased. The training procedure was probably stabilised and the

model was kept out of local minima by the use of batch normalisation. This made generator and discriminator

losses more predictable and stable over time. The variety in the discriminator loss shows that the model is

successfully differentiating between actual and synthetic data, while the greater initial generator loss may

signal that the model generates more varied samples right away.

 In the next experiment, the generator and discriminator were both implemented as extremely large

networks, with the generator's layers set to "512,256,128,64" and the discriminator's layers set to

"512,256,128,64". According to the experiment's findings, Figure 17 (c), the generator loss was rather stable

during training, remaining around 0.69 to 0.70. This shows that the model was able to consistently produce

samples that closely matched the distribution of the actual data. However, the discriminator's loss varied

greatly at first, suggesting that it had difficulty distinguishing between actual data and synthetic data. The

generator loss and discriminator loss gradually converged to the same value as the training continued and

the discriminator loss grew more stable.

113

113

4.5 GAN-based methods Hyperparameter tuning with credit card fraud and

breast cancer data

4.5.1 Hyperparameter tuning with credit card fraud data

4.5.1.1 LS GAN hyperparameter tuning

 The first iteration of a hyperparameter tuning experiment is represented by the hyperparameters provided

in Table 18. The objective of the experiment is to determine these hyperparameters' ideal values for

generating credit card fraud data. Some of the hyperparameters, including the number of hidden layers and

the weights initialization technique, are connected to the neural network's design (Goodfellow et al., 2014).

The learning rate (Goodfellow et al., 2016) and dropout rate (Srivastava et al., 2014) are two more

hyperparameters that are connected to the training process. These hyperparameters' values are selected within

predetermined ranges and step sizes, and some of them have default settings. To determine the optimal setup,

the experiment were run several trials with various combinations of hyperparameter values.

Table 18: LS GAN hyperparameter tuning parameters

Hyper Parameter Possible Values

Activation relu, LeakyReLU

batch_size 8, 16, 32, 64

Dropout Real number in range [0.1, 0.5]

Optimizer adam, RMSprop, Adagrad

learning_rate Real number in range [0.0001, 0.001]

discriminator layers 512,256,128,64,32; 256,128,64,32; 128,64,32; 64,32

generator layers 256,128,64; 128,64; 64,32

Following is an explanation of why these ranges are considered:

 Activation: LeakyReLU (Maas et al., 2013) and Relu (Nair and Hinton, 2010) are two popular options

for deep learning models in the range of activation functions that were taken into consideration. LeakyReLU

is known to function well for GANs as it avoids the "dying ReLU" problem, whereas Relu is a standard

option. As a result, the range given can be regarded as suitable.

 Batch Size: Batch size controls how many samples are processed during each training cycle (Masters and

Luschi, 2018; Smith and Topin, 2020). Larger batch sizes can result in slower training and increased memory

requirements, whereas smaller batch sizes might cause noisy gradients. The values given—8, 16, 32, and

64—are well-known options that fall within a respectable range.

 Dropout: Dropout (Srivastava et al., 2014) is a regularization strategy that, in order to avoid overfitting,

randomly drops out nodes from neural networks during training. Dropout rates in deep learning models often

fall between the range of 0.1 to 0.5, which is the range that is presented.

114

114

 Optimizer: During training, the neural network's weights are updated by optimizers, which are algorithms.

Adam (Kingma and Ba, 2014), RMSprop (Tieleman and Hinton, 2012), and Adagrad (Duchi et al., 2011),

the three optimizers under consideration, are often used in deep learning and have been demonstrated to

perform well for GANs. As a result, the range given can be regarded as suitable.

 Learning Rate: The amount that the neural network's weights are modified during training is based on its

learning rate (Goodfellow et al., 2016). A learning rate that is too high or too low might have negative effects

on training, such as unstable training or delayed convergence. The stated range for learning rates in deep

learning models—from 0.0001 to 0.001—is common.

 Discriminator and Generator Layers: The size and number of layers in the discriminator and generator

can significantly affect how well the GAN model performs (Goodfellow et al., 2014; Radford et al., 2016).

The given ranges—512,256,128,64,32; 256,128,64,32; 128,64,32; 64,32 and 256,128,64; 128,64; 64,32 for

the discriminator and generator, respectively—offer a variety of alternatives for layer sizes that are often

used in GAN models and should be adequate for finding a successful model.

LS GAN Top 5 Experiments sorted by loss in ascending order are presented in Table 19.

Table 19: LS GAN top 5 experiments

Activation Batch Size Dropout Optimizer Learning Rate Loss

LeakyReLU 32 0.1 Adam 0.001 0.4149

LeakyReLU 8 0.1 Adagrad 0.001 0.7722

LeakyReLU 8 0.1 RMSprop 0.0001 0.6898

Relu 8 0.5 Adam 0.0001 0.7918

Relu 8 0.1 Adam 0.0001 0.7782

 Table 19 presents the top 5 best combinations using LS GAN, experiment 1 has ideal hyperparameters'

values for generating credit card fraud data. The experiments showed that for credit card fraud data, the best

combination of hyperparameter values is LeakyReLU as activation function, 32 as batch size, 0.1 as dropout

rate, Adam optimizer and 0.001 learning rate. With these parameters set up, the lowest loss recorded was

0.4149. This result provides empirical evidence for using LeakyReLU as activation function with GANs.

The use of LeakyReLU allows the neural network to learn nonlinear features in the data, thus making it more

suitable for credit card fraud detection. Furthermore, due to its batch size and learning rate, Adam optimizer

can effectively reduce the training time while maintaining a high accuracy score.

Conclusion

 In order of decreasing loss, the top five hyperparameter combinations blend activation functions, batch

sizes, dropout rates, optimizers, and learning rates. Table 19 presents the best-performing hyperparameter

combinations that frequently use LeakyReLU as their activation function (Dubey and Jain, 2019). The larger

32 batch size appears to perform well, presumably as a result of improved training efficiency and stability.

The best-performing combinations all utilise a different optimizer, with Adam appearing in three of the top

five, followed by Adagrad and RMSprop. The main advantage of LS GANs is that they can penalise samples

even while they are correctly categorised, in contrast to traditional GANs where there is almost no loss for

samples that reside on the proper side of the decision boundary. The decision boundary can also yield

115

115

increasing numbers of gradients while updating the G, which decreases the problem of disappearing gradients

(Sohony et al., 2018). By employing the least square error as the loss, this approach demonstrates that the

model trains more steadily and is better equipped to tackle the gradient vanishing problem than the vanilla

technique.

4.5.1.2 NS GAN hyperparameter tuning

 The first iteration of a hyperparameter tuning experiment is represented by the hyperparameters provided

in Table 20. The objective of the experiment is to determine these hyperparameters' ideal values for

generating credit card fraud data. Some of the hyperparameters, such as the number of hidden layers and the

weights initialization technique, are connected to the neural network's design. The learning rate and dropout

rate are two more hyperparameters connected to the training process. These hyperparameters' values are

selected within predetermined ranges and step sizes, and some of them have default settings. To determine

the optimal setup, the experiment were run in several trials with various combinations of hyperparameter

values as shown in Table 20.

Table 20: NS GAN hyperparameter tuning parameters

Hyper Parameter Possible Values

Activation relu, LeakyReLU

batch_size 8, 16, 32, 64

Dropout Real number in range [0.1, 0.5]

optimizer adam, RMSprop, Adagrad

learning_rate Real number in range [0.0001, 0.001]

discriminator layers 512,256,128,64,32; 256,128,64,32; 128,64,32; 64,32

generator layers 256,128,64; 128,64; 64,32

NS GAN Top 5 Experiments sorted by loss in ascending order are presented in Table 21.

Table 21: NS GAN top 5 experiments

Activation Batch Size Dropout Optimizer Learning Rate Loss

LeakyReLU 64 0.5 adam 0.001 0.404276

Relu 16 0.1 RMSprop 0.001 0.443179

Relu 16 0.1 adam 0.0001 0.463192

Relu 32 0.1 RMSprop 0.0001 0.480897

Relu 8 0.1 adam 0.0001 0.485334

116

116

 Table 21 presents the top 5 best combinations using NS GAN. The experiments used to determine the

optimal setup included various combinations of hyperparameter values. Experiment 1 has ideal

hyperparameters' values for generating credit card fraud data. The experiments showed that for credit card

fraud data, the best combination of hyperparameter values including activation functions (LeakyReLU),

batch size (64), dropout rate (0.5), optimizer (Adam) and learning rate (0.001). The results of this experiment

showed that the combination of parameters above yielded the lowest loss value of 0.404276. Such a low loss

value is highly desirable, as it indicates that the NS GAN model has effectively learned to differentiate

between fraud and non-fraud transactions and can be used with confidence for detecting fraudulent activities.

Conclusion

 In our experiment, we compared the performance of different activation functions, batch sizes, dropout

rates, optimizers, and learning rates in training GANs. The LeakyReLU activation function was found to

outperform the commonly used ReLU function. The highest performance was achieved with a batch size of

64, while a batch size of 8 resulted in the poorest performance. The best dropout rate was found to be 0.5,

with a majority of the top performing trials using a rate of 0.1.Three out of the top five trials made use of the

Adam optimizer, which is known for its adaptive learning rate and momentum. The top five experiments

employed learning rates between 0.001 and 0.0001, with 0.001 being the most popular. It was observed that

a lower learning rate generally resulted in a more stable training of the GANs. Furthermore, we evaluated

the performances of GANs, and found that the best LS GAN experiment had a loss of 0.4149, whereas the

best NS GAN experiment had a loss of 0.404276. However, it's important to note that the two models have

distinct loss functions and cannot be directly compared. In conclusion, our experiment highlights the

importance of carefully selecting hyperparameters when training GANs. The use of LeakyReLU activation

function, a batch size of 64, a dropout rate of 0.5, the Adam optimizer, and a learning rate of 0.001 could

lead to improved performance in GAN training. However, further experiments are needed to validate these

findings on different datasets and GAN models. The results conclude that Relu was surpassed by the

LeakyReLU activation function. The batch size of 64 produced the best performance, while the batch size of

8 produced the worst performance. Further, the best dropout rate was 0.5, while among the top achievers,

the most frequent rate was 0.1. The Adam optimizer was used in three of the top five experiments. The

learning rates used in the top five trials ranged from 0.001 to 0.0001, with 0.001 being the most common.

Losses for the best LS GAN experiment were 0.4149, whereas losses for the best NS GAN experiment were

0.404276.

4.5.1.3 SDG GAN hyperparameter tuning

 Our implementation represents the iterative process of an SDG GAN hyperparameter tuning experiment.

The primary objective is to identify the ideal values for these hyperparameters, which play a significant role

in generating accurate credit card fraud data. The design of the neural network is influenced by these

hyperparameters, including the number of hidden layers and the weights initialization technique, each

contributing to the overall performance of the model. Moreover, the training process is further affected by

the learning rate, which determines the speed at which the network adapts to the data, and the dropout rate,

which helps prevent overfitting. To explore the entire hyperparameter space comprehensively, we carefully

select values from predetermined ranges and predefined step sizes, with some hyperparameters having

default settings. By running multiple trials using different combinations of hyperparameter values from the

extensive list provided in Table 22, we aim to identify the optimal configuration that yields the best results.

117

117

Table 22: SDG GAN hyperparameter tuning parameters

Hyper Parameter Possible Values

Activation relu, LeakyReLU

batch_size 8, 16, 32, 64

Dropout
Real number in range [0.1, 0.5]

Optimizer adam, RMSprop, Adagrad

learning_rate Real number in range [0.0001, 0.001]

discriminator layers 512,256,128,64,32; 256,128,64,32; 128,64,32; 64,32

generator layers 256,128,64; 128,64; 64,32

Top 5 experiments for SDG GAN, sorted by loss in ascending order in Table 23.

Table 23: SDG GAN top 5 experiments

Activation Batch Size Dropout Optimizer Learning Rate Loss

Relu 32 0.1 RMSprop 0.0001 0.384942

LeakyReLU 32 0.5 RMSprop 0.0001 0.489869

LeakyReLU 32 0.1 RMSprop 0.0001 0.490784

LeakyReLU 64 0.1 Adam 0.0001 0.495147

LeakyReLU 16 0.1 RMSprop 0.0001 0.496298

 Table 23 presents the top 5 best combinations using SDG GAN. Among these combinations, the one that

achieved the lowest loss was using ReLU activation, a batch size of 32, a dropout rate of 0.1, the RMSprop

optimizer, and a learning rate of 0.0001. This exceptional combination resulted in a remarkable loss value of

0.384942, significantly outperforming other experiments with different hyperparameter settings. The

remaining top 4 combinations achieved losses ranging from 0.489869 to 0.496298, demonstrating the

effectiveness of the selected hyperparameter settings in improving the accuracy of the SDG GAN model.

The success of these settings highlights the importance of carefully selecting and fine-tuning the model's

hyperparameters to maximise its accuracy and performance. Through meticulous experimentation and

iterative adjustments to each parameter, we were able to identify the optimal combination that yielded the

best results for our specific task. This process underscores the significance of thoughtful hyperparameter

selection and tuning in driving improvements in model accuracy and overall performance.

118

118

Conclusion

 In conclusion, our experiments have revealed several important findings regarding the performance of

different types of GANs, activation functions, batch sizes, dropout values, and optimizers. The SDG GAN

showed better overall performance than the LS GAN and NS GAN, as it achieved diminished losses.

Additionally, LeakyReLU was identified as the best activation function for all three GAN types, indicating

its effectiveness in enhancing the models' performance. The best batch size for LS GAN was 32, which was

also found to be the optimal batch size overall. Moreover, the study indicated that the optimal dropout values

for all three GAN types ranged between 0.1 and 0.5. Finally, the most effective optimizer was found to be

RMSprop, which was also the best-performing optimizer for NS GAN. These findings provide valuable

insights into the development and optimization of GAN models for various applications. The results conclude

that the SDG GAN performed somewhat better than the LS GAN and NS GAN because of its overall reduced

losses. The best activation function overall was LeakyReLU (Gangwar and Ravi, 2019), which was also the

best activation function for LS GAN and NS GAN. Further, 32 was the ideal batch size for LS GAN and the

best batch size overall. The ideal dropout value for each of the three GAN variants was between 0.1 and 0.5.

Furthermore, the most efficient optimizer was RMSprop (Chen and Lai, 2021), which was also the best-

performing optimizer for NS GAN.

4.5.1.4 WGAN hyperparameter tuning

 The first iteration of the WGAN hyperparameter tuning experiment is represented by the hyperparameters

provided in Table 24. These hyperparameters are carefully selected within predetermined ranges and step

sizes, taking into consideration the number of hidden layers, weights initialization technique, learning rate,

and dropout rate – all crucial components of the neural network's design. To achieve the objective of

generating realistic credit card fraud data, the experiment aims to determine the ideal values for these

hyperparameters. With the guidance of Sethia et al., (2018), the learning rate and dropout rate are recognized

as significant factors in the training process. In order to find the optimal setup, the experiment were run

multiple trials, systematically exploring different combinations of hyperparameter values. This

comprehensive approach ensures a thorough exploration of the hyperparameter space, ultimately leading to

the identification of the most effective configuration. By leveraging these extensive iterations, the experiment

guarantees an in-depth analysis and a refined understanding of the hyperparameter tuning process.

Table 24: WGAN hyperparameter tuning parameters

Hyper Parameter Possible Values

Activation relu, LeakyReLU

batch_size 8, 16, 32, 64

Dropout Real number in range [0.1, 0.5]

Optimizer adam, RMSprop, Adagrad

learning_rate Real number in range [0.0001, 0.001]

discriminator layers 512,256,128,64,32; 256,128,64,32; 128,64,32; 64,32

generator layers 256,128,64; 128,64; 64,32

Top 5 experiments for WGAN, sorted by loss in ascending order are presented in Table 25.

119

119

Table 25: WGAN top 5 experiments

Activation Batch Size Dropout Optimizer Learning Rate Loss

LeakyReLU 16 0.1 Adagrad 0.001 0.000902

Relu 16 0.5 Adagrad 0.001 0.000917

LeakyReLU 16 0.1 Adagrad 0.001 0.000943

Relu 64 0.1 Adagrad 0.001 0.000982

LeakyReLU 64 0.5 Adagrad 0.0001 0.000984

 Table 25 presents the top 5 combinations using WGAN. Moreover, the best results achieved the lowest

loss and was determined to be the optimal setup for training WGAN on the credit card fraud detection dataset.

To reach this point, numerous experiments were conducted which included combinations of various

hyperparameter values. The use of LeakyReLU activation with Adagrad optimizer, batch size 16, and

dropout of 0.1 yielded the best performance for the WGAN model. The loss value for this combination was

calculated to be 0.000902, which further validates its potential to accurately detect credit card fraud with

minimal false positives or negatives. Moreover, all the other remaining 4 best combinations also achieved

low loss values which ranged from 0.000917 to 0.000984 indicating the effectiveness of the WGAN method.

This further emphasises the effectiveness of the WGAN method with credit card fraud dataset. The

comprehensive experimentation process undertaken to identify these combinations ensures that the proposed

setup for training WGAN can yield reliable and efficient results with the credit card fraud dataset.

Conclusion

 The results of our study suggest that the Adagrad optimizer was highly effective across various

hyperparameter configurations. Moreover, our findings indicate that the LeakyReLU activation function

(Gangwar and Ravi, 2019) outperformed the commonly used ReLU activation function. In particular, we

found that the optimal combination of hyperparameters for our model involved using LeakyReLU activation,

a batch size of 16, a dropout rate of 0.1, Adagrad optimizer with a learning rate of 0.001, and a loss of 0.0009.

These results provide strong evidence that careful selection and tuning of hyperparameters can have a

significant impact on the performance of deep learning models. Future research in this area can build upon

our findings to develop even more effective deep learning models. The outcomes conclude that Adagrad

optimizer performed well with various hyperparameter settings (Sarah et al., 2021).

4.5.1.5 Novelty Loss K-CGAN hyperparameter tuning

 The first iteration of our K-CGAN method’s hyperparameter tuning experiment is represented by the

hyperparameters provided in our experiment. The objective of the experiment is to determine the ideal values

of these hyperparameters for generating credit card fraud data. To achieve this, we consider various aspects

of the neural network's design. For instance, the number of hidden layers and the weights initialization

technique play a crucial role in shaping the network's architecture. Additionally, the learning rate and dropout

rate are key hyperparameters that directly impact the training process. In order to explore the entire search

space effectively, the values of these hyperparameters are selected from predetermined ranges and step sizes.

It is worth noting that some of the hyperparameters have default settings, as outlined in Table 26. To arrive

at the optimal setup, the experiment conducted several trials, testing different combinations of

hyperparameter values. This comprehensive approach ensures that we achieve the most accurate and reliable

results.

120

120

Table 26: Novelty loss K-CGAN hyperparameter tuning parameters

Hyper Parameter Possible Values

Activation relu, LeakyReLU

Batch_size 8, 16, 32, 64

Dropout Real number in range [0.1, 0.5]

Optimizer Adam, RMSprop, Adagrad

Learning_rate Real number in range [0.0001, 0.001]

Discriminator layers 512,256,128,64,32; 256,128,64,32; 128,64,32; 64,32

Generator layers 256,128,64; 128,64; 64,32

Top 5 experiments for Novelty loss K-CGAN sorted by loss in ascending order are presented in Table 27.

Table 27: Novelty loss K-CGAN top 5 experiments

Activation Batch Size Dropout Optimizer Learning Rate Loss

LeakyReLU 16 0.1 RMSprop 0.0001 0.57031

LeakyReLU 32 0.1 RMSprop 0.0001 0.64159

Relu 64 0.1 Adam 0.0001 0.64365

Relu 8 0.1 RMSprop 0.01 0.64959

Relu 32 0.1 Adam 0.0001 0.65507

 Table 27 presents the top 5 combinations using Novelty loss K-CGAN. The experiments used to determine

the optimal setup included various combinations of hyperparameter values. The results of the hyperparameter

tuning experiments showed that the combination of LeakyReLU activation, batch size 16, dropout 0.1,

RMSprop optimizer and learning rate 0.0001 achieved the lowest loss of 0.57031 among the numerous

experiments with the credit card fraud dataset. These values were found to be superior to other combinations

in terms of minimising losses, indicating the overall performance of K-CGAN.

Conclusion

 After carefully analysing the results of the experiments, we can confidently conclude that the LeakyReLU

activation function outperforms the Relu function, as it was consistently employed in the top two studies.

Moreover, it was observed that utilising lower batch sizes, specifically 16 or 32, yielded significantly better

results for our model. The importance of dropout rates of 0.1 in preventing overfitting was also evident, as

they were consistently utilised in the top five studies. In terms of optimizers, the RMSprop optimizer was

used in three of the top five studies, while Adam was employed in the remaining two. This indicates the

effectiveness and versatility of both optimizers in our model. Additionally, four of the top five studies

121

121

implemented a learning rate of 0.0001, while the last one used a rate of 0.01. This variation in learning rates

suggests the need for experimentation and fine-tuning to achieve optimal results. Notably, the highest

performing experiment showcased an impressively low loss of 0.57031, while the highest loss among the

top five experiments was recorded at 0.65507. These results further reinforce the effectiveness of the chosen

combination of the LeakyReLU activation function, lower batch sizes, a dropout rate of 0.1, and an optimizer

such as RMSprop or Adam with a learning rate between 0.0001 and 0.01.

 It is worth mentioning that the top two experiments both utilised the LeakyReLU activation function,

providing strong evidence for its superior performance compared to the Relu function. Furthermore, the best-

performing trials consistently utilised batch sizes of 16 or 32, suggesting that smaller batch sizes are

preferable for this particular model (Yang et al., 2019). However, it is important to note that all of the top

five experiments used dropout rates of 0.1 on a regular basis, emphasising its significance in preventing

overfitting. In terms of optimizers, three of the top five experiments employed the RMSprop optimizer, while

the remaining two used Adam (Zamini and Montazer, 2018). Moreover, four of the top five studies utilised

learning rates of 0.0001, while the fifth study employed a learning rate of 0.01. These findings shed light on

the importance of carefully selecting the optimizer and learning rate for achieving optimal results in this

model. The range of losses observed among the top five experiments further highlights the significance of

the chosen parameters. The best-performing experiment achieved an impressively low loss of 0.57031,

demonstrating the potential for exceptional performance. Conversely, the highest loss among the top five

experiments was recorded at 0.65507, indicating the need for further investigation and improvement. In

conclusion, the combination of the LeakyReLU activation function, lower batch sizes, a dropout rate of 0.1,

and an optimizer like RMSprop or Adam with a learning rate between 0.0001 and 0.01 can lead to optimal

results in this model. The results from the top experiments consistently show the superiority of the

LeakyReLU activation function, the benefits of smaller batch sizes, the importance of dropout rates, and the

effectiveness of different optimizers and learning rates (Yang et al., 2019; Zamini and Montazer, 2018).

These findings provide valuable insights for researchers and practitioners working with the K-CGAN model.

4.5.2 Hyperparameter tuning with breast cancer data

4.5.2.1 Experiments with Large Hyperparameters

 In the initial phase of hyperparameter tuning for the breast cancer dataset, a comprehensive range of

hyperparameters were meticulously developed using the Hyperopt package (Bergstra et al., 2015). These

hyperparameters encompassed various aspects such as the number of noise inputs, dropout rates, weight

initialization methods, number of layers, learning rates, epsilon values, amsgrad boolean values, regularizer

choices, beta and gamma regularizer choices and initialization methods, batch normalisation boolean values,

and regularizer l1 and l2 values for both the generator and discriminator models. Table 28, presented below,

provides a comprehensive overview of the extensive range of hyperparameter settings that were employed

in this meticulous process. The careful selection and fine-tuning of these hyperparameters play a pivotal role

in optimising the performance and effectiveness of the models, ensuring the generation of accurate results

for the breast cancer dataset. The meticulous attention to detail and thorough exploration of the

hyperparameters contribute to the overall robustness and reliability of the models, empowering them to

accurately analyse and interpret the intricate patterns and characteristics of the breast cancer dataset.

Table 28: Novelty loss K-CGAN hyperparameter tuning large set of parameters for breast cancer data

122

122

Hyperparameter Range

Noise 5, 10, 15

g_dropout 0.001 to 0.1 in steps of 0.01

d_dropout 0.001 to 0.1 in steps of 0.01

g_weights_init random_normal, random_uniform, truncated_normal, glorot_normal,

glorot_uniform, he_normal, he_uniform

d_weights_init random_normal, random_uniform, truncated_normal, glorot_normal,

glorot_uniform, he_normal, he_uniform

d_layers 20,15, 64,32, 64,32,16

g_layers 64,32, 128,64,32, 64,32,16

d_lr 0.0001 to 0.1 in steps of 0.01

g_lr 0.0001 to 0.1 in steps of 0.01

d_epsilon 0.0001 to 0.1 in steps of 0.01

g_epsilon 0.0001 to 0.1 in steps of 0.01

d_amsgrad True or False

g_amsgrad True or False

d_k_regularizer l1, l2, l1l2

d_b_regularizer l1, l2, l1l2

d_a_regularizer l1, l2, l1l2

g_k_regularizer l1, l2, l1l2

g_b_regularizer l1, l2, l1l2

g_a_regularizer l1, l2, l1l2

g_beta_regularizer l1, l2, l1l2

g_gamma_regularizer l1, l2, l1l2

g_beta_init random_normal, random_uniform, truncated_normal, glorot_normal,

glorot_uniform, he_normal, he_uniform

g_gamma_init random_normal, random_uniform, truncated_normal, glorot_normal,

glorot_uniform, he_normal, he_uniform

g_batch_norm True or False

d_beta_regularizer l1, l2, l1l2

123

123

Table 29: Novelty loss K-CGAN top 5 experiments large set of parameters for breast cancer data

Exper

iment

g_batch_

norm

d_gam

ma_init

d_acti

vation

g_gam

ma_init

d_dr

opou

t

g_beta_re

gularizer

g_acti

vation

epoch_

d_loss

epoch

_g_los

s

1 FALSE random

_normal

relu he_unif

orm

0.091 l1l2 leakyR

elu

0.6932

96

0.0091

13

2 FALSE he_unif

orm

relu he_unif

orm

0.091 l1 leakyR

elu

0.6931

8

0.0207

42

3 FALSE random

_normal

relu he_unif

orm

0.071 l1l2 leakyR

elu

0.6931

87

0.0240

2

4 FALSE truncate

d_norm

al

relu he_unif

orm

0.091 l1l2 leakyR

elu

0.6931

35

0.0284

6

5 FALSE he_unif

orm

relu he_unif

orm

0.091 l1 leakyR

elu

0.6931

3

0.0320

19

 Table 29 presents top 5 experiments sorted by generator loss in ascending order. The optimal set of

parameters obtained through extensive experimentation, showcases an impressive reduction in Generator

Loss. With a remarkable value of 0.009113 achieved in the most optimal combination (Experiment 1), it

vividly demonstrates the unparalleled ability of K-CGAN to accurately map high-dimensional data and

effectively minimise false positives. These promising results strongly suggest that K-CGAN is well-suited

for breast cancer detection, particularly in tasks that demand low generator loss. By skillfully tuning the

parameters, it excels in reducing Generator Loss, thereby facilitating the generation of more precise synthetic

data for enhanced accuracy in breast cancer diagnostics.

Conclusion

 After analysing the data presented in Table 29, we can draw several conclusions regarding the influence

of different parameters on the generator loss in the experiments. Firstly, we can observe that the value of

g_batch_norm is set to False for all experiments, indicating that the batch normalisation technique was not

utilised. Furthermore, experiment 1 had the lowest generator loss, which can be attributed to the use of Relu

as the greatest value of d_activation and a d_dropout value of 0.091. On the other hand, experiment 5

exhibited the largest generator loss due to the highest d_dropout value and the lowest g_beta_regularizer

value of l1. Experiment 2 had the second-lowest generator loss, which can be explained by the highest value

of d_gamma_init set to he_uniform and the lowest value of g_beta_regularizer set to l1. Similarly,

experiment 3 had the third-lowest generator loss as it had the lowest value of g_gamma_init at 0.071 and the

highest value of d_activation set to Relu. Finally, experiment 4 had the second-highest generator loss due to

the greatest value of d_gamma_init set to truncated_normal and the highest value of g_gamma_init set to

he_uniform. In conclusion, the results suggest that different combinations of parameters can have a

d_gamma_regularizer l1, l2, l1l2

d_beta_init random_normal, random_uniform, truncated_normal, glorot_normal,

glorot_uniform, he_normal, he_uniform

124

124

significant impact on the generator loss, and careful selection of these parameters is crucial in achieving

optimal performance in deep learning models. The findings of this study can assist in guiding researchers

toward better hyperparameter settings in their future work. During the initial stage of hyperparameter tuning

for the breast cancer dataset, a sizable number of hyper parameters were created using the Hyperopt software

(Bergstra et al., 2015). The parameters for the generator and discriminator models included the number of

noise inputs, dropout rates, weight initialization methods, number of layers, learning rates, epsilon values,

amsgrad boolean values, regularizer choices, beta and gamma regularizer choices and initialization methods,

batch normalisation boolean values, and regularizer l1 and l2 values (Fiore et al., 2019). Further, total 689

experiments were run for the breast cancer dataset. The results conclude that for each trial, the value of

g_batch_norm is False. Further, experiment 1 had the lowest generator loss, with Relu as the highest value

of d_activation and 0.091 as the value of d_dropout. The biggest generator loss is seen in experiment 5,

which has the highest value of d_dropout set to 0.091 and the lowest value of g_beta_regularizer set to l1.

Furthermore, experiment 2 had the second-lowest generator loss when the highest value of d_gamma_init

was set to he_uniform and the lowest value of g_beta_regularizer was set to l1. However, experiment 3 had

the third-lowest generator loss with the lowest value of g_gamma_init set to 0.071 and the highest value of

d_activation set to Relu. Moreover, experiment 4 had the second-largest generator loss, with the highest

value of g_gamma_init set to he_uniform and the highest value of d_gamma_init set to truncated_normal.

4.5.2.2 Experiments with Narrow Hyperparameters

 Using the common configurations from the best-performing examinations, we reduced the

hyperparameters in the second round. For the discriminator and generator models, we defined

hyperparameters for the following: noise, dropout rates, weight initialization, optimizer learning rates,

amsgrad, kernel regularizer, batch normalisation, regularizer L1 and L2, activation function, and hidden layer

configurations. For each hyperparameter, we defined specified ranges and alternatives using the Hyperopt

package (Bergstra et al., 2015). In order to further improve the K-CGAN model, fresh experiments were run

using these hyperparameters as shown in Table 30.

125

125

Table 30: Novelty loss K-CGAN hyperparameter tuning narrow set of parameters for breast cancer data

Hyperparameter Range

hp_noise 80-120 (step=20, default=80)

hp_g_dropout 0.2-0.3 (step=0.1, default=0.2)

hp_d_dropout 0.2-0.3 (step=0.1, default=0.2)

hp_g_weights_init glorot_normal, glorot_uniform

hp_d_weights_init glorot_normal, glorot_uniform

hp_d_layers 16,24, 20,28, 16,32

hp_g_layers 32,64, 16,32,64, 64,128

hp_d_optimizer_lr 0.0001, 0.001

hp_g_optimizer_lr 0.0001, 0.001

hp_d_optimizer_amsgrad Boolean

hp_g_optimizer_amsgrad Boolean

hp_d_k_regularizer l1, l2

hp_g_k_regularizer l1, l2

hp_g_batch_norm Boolean

hp_d_batch_norm Boolean

hp_g_regularizer_l1 0.0001, 0.001

hp_g_regularizer_l2 0.0001, 0.001

hp_d_regularizer_l1 0.0001, 0.001

hp_d_regularizer_l2 0.0001, 0.001

hp_g_activation relu, leakyRelu

hp_d_activation relu, leakyRelu

126

126

The top 5 experiments are presented in Table 31.

Table 31: Novelty loss K-CGAN top 5 experiments utilising narrow set of parameters

g_regula

rizer_l1
g_activation

d_k_reg

ularizer
d_lr

d_drop

out

epoch_d_l

oss

epoch_g_

loss

epoch_kl_s

core

0.001 relu l1 0.0001 0.2 0.278 0.731 0.377

0.1 leakyRelu l2 0.0001 0.1 0.618 0.805 0.284

0.1 leakyRelu l1 0.0001 0.1 0.468 0.854 0.239

0.1 leakyRelu l1 0.0001 0.1 0.396 0.891 0.239

0.01 leakyRelu l1 0.0001 0.2 0.365 1.021 0.289

 The results obtained from these experiments revealed that reducing the number of parameters had a

significant effect on both the generator and discriminator models, resulting in an improved performance. The

results of the most optimal combination (experiment 1) showed that the combination of the regularizer l1

and activation Relu in the generator, along with l1 regularizer for K-CGAN and the learning rate of 0.0001

for the discriminator highly improved the overall performance of the K-CGAN model. The experiments also

revealed that a dropout rate of 0.2 was optimal for improving the accuracy of the generator loss. Moreover,

after tuning the parameters, the epochs for discriminator and generator losses were found to be 0.278 and

0.731 respectively, with a KL score of 0.377 for this model configuration. These results suggest that

hyperparameter optimization can lead to improved performance when training GAN models on breast cancer

dataset. Furthermore, the K-CGAN was found to be an effective approach for improving the accuracy of the

GAN model on this type of data.

Conclusion

 Based on the results of our analysis, it is clear that regularisation using L1 with a regularisation rate of

0.001 and ReLU activation in the generator is the most effective approach for reducing both discriminator

and generator loss. However, we found that the discriminator with leakyReLU activation, L2 regularisation,

and a 0.1 dropout rate did not perform well in terms of generator loss. This highlights the importance of

selecting the appropriate activation and regularisation techniques when building GANs. Interestingly, we

found that the generator performed well while the discriminator performed poorly in some cases. When this

occurred, we found that regularisation rates of 0.1 for the generator with leakyReLU activation and L1

regularisation and 0.0001 for the discriminator with a dropout rate of 0.1 generated comparable results.

Finally, we observed that the highest KL score was obtained with a regularisation rate of 0.01 with

leakyReLU activation in the generator and a dropout rate of 0.2, along with a regularisation rate of 0.0001

in the discriminator. This suggests that the generated samples were more similar to the genuine data, but the

generator performed poorly overall. Overall, our findings underscore the importance of carefully selecting

activation and regularisation techniques when building GANs, as well as the need to balance competing

priorities such as reducing discriminator and generator loss while generating high-quality samples.

4.5.2.3 Experiments with Least Hyperparameters

 A small number of hyperparameters was examined in the third and final round to determine the ideal

configuration and presented in Table 32. Hyperparameters including the number of hidden layers, activation

127

127

function, and the quantity of input noise were incorporated in the final setup. This experiment aimed to

improve the model's capability of producing accurate data.

Table 32: Novelty loss K-CGAN hyperparameter tuning least set of parameters for breast cancer data

Hyperparameter Name Range/Choices

noise 80, 85, 90, 95, 100, 105, 110, 115, 120

Discriminator layers '10,15', '15,20', '20,25', '10,20'

Generator layers '32,64', '16,32,64', '16,32', '16,64'

Generator activations 'relu', 'leakyRelu'

Discriminator activations 'relu', 'leakyRelu'

The top 5 experiments are presented in Table 33.

Table 33: Novelty loss K-CGAN top 5 experiments utilising least set of parameters

hp_d_la

yers

hp_d_activ

ation

hp_g_activ

ation

hp_g_la

yers

hp_no

ise

epoch_d_

loss

epoch_g_

loss

epoch_kl_s

core

15,20 leakyRelu relu 16,32,64 85 0.436725 3.666408 2.389937

15,20 leakyRelu relu 16,32,64 90 0.384244 4.283895 2.665731

10,15 leakyRelu relu 32,64 85 0.528885 4.404440 3.276988

15,20 leakyRelu relu 16,32,64 90 0.434454 4.429222 2.742080

10,15 leakyRelu relu 32,64 85 0.357303 4.559282 2.552044

 It was observed that experiments with the least set of hyperparameters achieved the best combination of

results. The experiments with these hyperparameter settings achieved the most optimal results: the 15 and

20 layers in the discriminator, LeakyRelu activation function in the discriminator, Relu activation function

in the generator, 16, 32 and 64 layers in the generator, noise level of 85 along with a 0.436725 epoch_d_loss,

3.666408 epoch_g_loss and 2.389937 epoch_kl_score were found to be the most successful model

parameters in this experiment. This combination of model parameters led to improved accuracy and better

performance as compared to other combinations of hyperparameters that were tested during the course of the

study. It is concluded that experiments with least hyperparameters can achieve the best combination of results

for a given task. It is recommended to use this approach in further experiments as well.

Conclusion

 In this research study, we explored the impact of various hyperparameters on the performance of a K-

CGAN model with breast cancer data. Our findings revealed that the hyperparameter combination of

hp_d_layers = 15, 20, hp_d_activation = leakyRelu, hp_g_activation = relu, hp_g_layers = 16, 32, 64, and

hp_noise = 85 led to the highest performance of the K-CGAN model. The model obtained an epoch_d_loss

of 0.4367, epoch_g_loss of 3.6664, and epoch_kl_score of 2.3899. It is noteworthy that the model's

128

128

performance was not significantly affected by varying the hp_noise value from 80 to 120 (Chen et al., 2018).

Furthermore, the performance of the model was not significantly impacted by the hp_d_layers and

hp_g_layers. However, we observed that the selection of hp_d_activation and hp_g_activation had a

significant impact on the model's performance. Notably, the most effective combination in this round was

leakyRelu activation for hp_d_activation and Relu activation for hp_g_activation (Gangwar and Ravi, 2019).

Overall, our study provides valuable insights into the impact of different hyperparameters on the performance

of GAN models. The findings can guide researchers and practitioners in selecting optimal hyperparameters

to enhance the performance of GAN models in various applications.

Summary of the 3 rounds strategy

 In the initial round, we started by implementing the generator and discriminator models with a wide range

of hyperparameters. This allowed us to explore different settings and configurations. To delve deeper into

the hyperparameter space, we employed the random search technique, investigating various combinations.

Through rigorous training, we evaluated the models' validity and identified the best-performing ones.

Building upon the insights gained from round 1, we selected the top experiments with common setups to

carry forward. This time, we narrowed down the range of hyperparameters to focus on the most essential

ones. Employing the random search technique (Bergstra and Bengio, 2012) we explored the more constrained

hyperparameter space. Multiple models were trained using diverse hyperparameter combinations. Based on

their validity, we identified the best models to advance to the next round. Continuing our iterative approach,

we narrowed down the hyperparameters even further. For both the generator and discriminator models, we

employed a limited range of hyperparameters. Using the random search technique once again, we explored

this more constrained hyperparameter space. Multiple models were trained using various hyperparameter

combinations. Finally, based on the validation accuracy, we selected the model with the best performance.

Overall, this systematic and focused investigation of the hyperparameter space allowed us to discover a

combination that yielded the highest-performing model.

 One of the strengths of this approach is its utilisation of a three-round strategy, which allows for a

systematic examination of hyperparameters. This systematic approach ensures that no stone is left unturned

when it comes to optimising the model's performance. Additionally, the flexibility of the approach allows

for easy modifications to fit specific requirements or datasets. This adaptability ensures that the strategy can

be tailored to different scenarios, maximising its effectiveness in various contexts. While this approach has

many advantages, it is important to consider a few potential drawbacks. One potential disadvantage is the

possibility of long optimization periods, particularly when dealing with a large number of hyperparameters.

This can extend the time required to fine-tune the model and may increase the overall computational burden.

Additionally, due to the complexity of the hyperparameter space, it can be challenging to fully grasp the

optimization's findings. This complexity may require additional analysis and interpretation to gain a

comprehensive understanding of the results. Furthermore, it is important to note that the assumption that

hyperparameters that perform well for one dataset or model architecture will also perform well for others

may not always hold true. Context-specific variations in datasets and model architectures may require further

customization and fine-tuning to achieve optimal performance.

Round 1:

● Started the generator and discriminator models using a wide variety of hyperparameters.

● Investigated the hyperparameter space using the random search technique.

● Trained several models using various hyperparameter combinations.

● Based on the validity of the models, the best models were chosen.

Round 2:

● Used all of the top experiments from round 1's common setups.

129

129

● Reduced the range of the hyperparameters to a smaller number to determine which hyperparameters

are essential.

● Investigated the more constrained hyperparameter space using the random search technique.

● Trained several models using various hyperparameter combinations.

● Based on the validity of the models, the best models were chosen.

Round 3:

● Selected the hyperparameters from the top-performing models in round 2 and further reduced them.

● For both the generator and discriminator models, a limited range of hyperparameters was used.

● Investigated the more constrained hyperparameter space using the random search technique.

● Trained several models using various hyperparameter combinations.

● Based on the validation accuracy, the model with the best performance was chosen.

● Overall, this approach enabled a more focused investigation of the hyperparameter space, which

culminated in the discovery of a hyperparameter combination that produced the model with the

highest performance.

4.6 Optimised K-CGAN Novelty Loss Evaluation comparison with other

methods on credit card fraud data

 To effectively address the data imbalance issue, we employed an oversampling technique to increase the

number of fraudulent samples in the minority class. Specifically, we augmented the original count of 492

fraudulent samples to a balanced count of 284,315. This approach is illustrated in Table 34, which showcases

the distribution of valid and fraudulent transactions. The dataset now consists of an equal number of 284,315

valid and fraudulent transactions, providing a more balanced representation. In the series of carefully

designed experiments that followed, we employed state-of-the-art GAN-based models that were

meticulously optimised and trained. Additionally, we utilised a range of oversampling techniques including

ADASYN, B-SMOTE, and SMOTE to augment the dataset. Our primary objective was to comprehensively

evaluate and compare the performance and effectiveness of each model. Furthermore, we meticulously

examined the classification performance of these models and conducted a thorough analysis of the generated

data quality, comparing it with the original dataset. By conducting these rigorous experiments, we aimed to

gain deeper insights into the capabilities and limitations of these advanced techniques. This extensive

experimentation allowed us to comprehensively examine and compare the classification performance of each

model and the impact of resolving imbalanced class representation in classification tasks.

130

130

Table 34: Balanced credit card fraud dataset using optimised methods

Description Value

Valid Transactions 284315

Fraudulent Transactions 284315

 (a) (b)

Figure 18: K-CGAN generator (a) and discriminator (b) loss credit card fraud data

 Figure 18 (a) and (b) illustrates the training progress of the K-CGAN generator and discriminator. The

generator loss reflects the generator's ability to produce realistic data, while the discriminator loss measures

its capacity to differentiate between real and generated data. We also present the valid generator loss, which

represents the generator's performance on a separate validation dataset. Valid generator loss also almost the

same as training generator loss. This allows us to evaluate its generalization to new, unseen data. Initially,

the generator loss is high but gradually decreases with increasing epochs. The discriminator loss, on the other

hand, refers to the loss calculated during the discriminator's training. It signifies how well the discriminator

can distinguish between real and generated data. This loss is computed using both real and generated data,

as the discriminator learns to correctly classify both types. As the number of epochs increases, the

discriminator loss also tends to increase, signifying its growing power.

131

131

4.6.1 Hyperparameter Settings

Oversampling Methods

Table 35: Oversampling methods hyperparameter settings

Method Settings

SMOTE default number of nearest neighbors is 5 (imbalanced-learn.org, n.d.)

ADASYN default number of nearest neighbors is 5 and the default ‘synthetic’ points per

minority class sample is set to 10 (imbalanced-learn.org, n.d.)

B-SMOTE default number of nearest neighbors for B-SMOTE is 5, the default ‘synthetic’ points

per minority class sample is set to 10, and the maximum number of synthetic points

that can be generated is 20 (imbalanced-learn.org, n.d.)

 As per Table 35, the default number of nearest neighbors for SMOTE is set to 5, as specified by

imbalanced-learn.org. This implies that, for every sample in the minority class, SMOTE chooses 5 closest

neighbors and produces synthetic samples along the line segments that connect the sample to its neighbors.

The objective is to augment the representation of the minority class. ADASYN also utilises the default

number of nearest neighbors, which is 5. Moreover, ADASYN introduces the concept of density distribution.

It produces additional synthetic samples for minority class samples that exist in densely populated regions,

with the objective of effectively tackling the issue of imbalance. The default number of 'synthetic' points per

minority class sample is configured to 10. As a result, ADASYN generates 10 synthetic samples for each

minority class sample, further bolstering the representation of the minority class. Similar to ADASYN, B-

SMOTE generates synthetic samples. The default 'synthetic' points per minority class sample is set to 10,

with a maximum of 20 synthetic points that can be generated, ensuring controlled oversampling.

Table 36: Vanilla CGAN, WGAN and NS GAN optimised hyperparameter settings

Hyperparameter Vanilla cGAN WGAN NS GAN

Activation Leaky ReLU Relu LeakyReLU

Batch Size 32 16 64

Dropout 0.5 0.1 0.5

Optimizer RMSProp AdaGRAD Adam

Learning Rate 0.0001 0.001 0.001

Discriminator Layers 128,64,32 128,64,32 128,64,32

Generator Layers 64,32 64,32 64,32

 The Vanilla CGAN is optimized with specific hyperparameter settings for credit card fraud data listed in

Table 36. The activation function used is Leaky ReLU, which addresses the "dying ReLU" issue by allowing

132

132

a small gradient for inactive units. Training is done with a batch size of 32 samples to ensure stable gradient

computations. A dropout rate of 0.5 is applied, randomly deactivating 50% of connections per iteration to

prevent overfitting. The optimization process utilizes RMSProp, an adaptive algorithm that adjusts learning

rates based on historical gradients. The learning rate is set to 0.0001, guiding the step size for parameter

updates. The discriminator network consists of three layers with 128, 64, and 32 neurons respectively, while

the generator network has two layers with 64 and 32 neurons. These hyperparameters collectively define the

architecture and training dynamics of the Vanilla CGAN, although their effectiveness may vary depending

on the specific dataset and task. These hyperparameters are optimized specifically for the credit card fraud

dataset.

 Further, WGAN optimal hyperparameters are demonstrated in Table 36. The model's architecture consists

of carefully selected components to ensure optimal performance. We chose the ReLU as the activation

function to handle complex non-linear relationships in the data. During training, we employed a batch size

of 16 for computational efficiency and gradient stability. To prevent overfitting and enhance generalisation,

we implemented a dropout rate of 0.1. For fine-tuning the model's weights, we selected the AdaGRAD

optimizer with an adaptive learning rate mechanism, setting it to 0.001 for smooth and steady learning. The

discriminator network has three layers with 128, 64, and 32 nodes respectively, enabling it to discern intricate

patterns in the data. The generator network, responsible for generating synthetic data samples, has two layers

with 64 and 32 nodes respectively, capturing the underlying data distribution effectively.

 The hyperparameters for the NS GAN model have been carefully selected to create an effective framework

for data generation are also presented in Table 36. The LeakyReLU activation function introduces non-

linearity and mitigates the vanishing gradient problem. A batch size of 64 balances computational efficiency

and gradient accuracy for smoother convergence during training. With a dropout rate of 0.5, the model

prevents overfitting and promotes robust generalization. The Adam optimizer, known for adaptive learning

rate and momentum, efficiently optimizes the model's parameters. A learning rate of 0.001 ensures controlled

and steady learning. The discriminator network has three layers (128, 64, and 32 nodes) for discerning

complex data patterns. The generator network has two layers (64 and 32 nodes) for capturing the underlying

data distribution. This well-crafted set of hyperparameters and architecture enables the NS GAN model to

generate data with the characteristics of the original dataset, applicable for the credit card fraud data.

Table 37: LS GAN and SDG GAN optimised hyperparameter settings

Hyperparameter LS GAN SDG GAN

Activation LeakyReLU LeakyReLU

Batch Size 32 64

Dropout 0.5 0.1

Optimizer RMSProp RMSProp

Learning Rate 0.0001 0.001

Discriminator Layers 128,64,32 256,128,64

Generator Layers 64,32 64,32

133

133

 The best performing hyperparameters of the LS GAN model that are trained to improve data generation

are presented in Table 37. LeakyReLU is selected as the activation function due to its non-linearity and

gradient support. A batch size of 32 is chosen to balance computational efficiency and gradient accuracy. A

dropout rate of 0.5 is implemented to prevent overfitting. RMSProp is the preferred optimizer, and a learning

rate of 0.0001 ensures gradual convergence. The model's architecture includes three discriminator layers

(128, 64, 32 nodes) and two generator layers (64, 32 nodes). Collectively, these hyperparameters contribute

to an effective LS GAN framework for credit card fraud data synthesis.

 The SDG GAN model’s optimised hyperparameters for credit card fraud data are also listed in Table 37.

To introduce non-linearity and ensure gradient stability, the activation function chosen is LeakyReLU.

During training, a batch size of 64 is used, striking a balance between computational efficiency and gradient

accuracy. To prevent overfitting, a dropout rate of 0.1 is applied, randomly deactivating a fraction of nodes

in each iteration. The chosen optimizer is RMSProp, which enhances the convergence of the model's

parameters. With a learning rate of 0.001, the model undertakes controlled and gradual learning. The

architecture of the model comprises three discriminator layers with 256, 128, and 64 nodes respectively,

allowing it to discern intricate data patterns. The generator network consists of two layers with 64 and 32

nodes, respectively, enabling effective capture of the underlying data distribution. Through these

meticulously selected hyperparameters, the SDG GAN model is robust and proficient in credit card fraud

data synthesis.

Table 38: Novelty optimised K-CGAN hyperparameter settings for credit card fraud data

Hyperparameter Generator

Neural Network

Discriminator

Neural Network

Activation ReLU LeakyReLU

Loss function Modified Binary Cross Entropy +

KL Divergence

Binary Cross Entropy

Hidden Layers (3 - 2 hidden, 1 output) 64, 32, 29 (3 - 2 hidden, 1 output) 20,

15, 1

Dropout 0.1 0.1

Output Optimizer Adam Adam

Learning Rate 0.0001 0.0001

Random Noise Vector 100 -

Kernel Initializer glorot_uniform -

Kernel Regularizer L2 method L2 method

Total Learning Parameters 36,837 1,519

 K-CGAN Generator neural network is distinguished by carefully selected hyperparameters that enhance

its performance for credit card fraud data presented in Table 38. The ReLU activation function is chosen to

introduce non-linearity and facilitate improved gradient flow. The loss function combines the trained

Discriminator Loss and KL Divergence, effectively guiding the training process. The network consists of

134

134

two hidden layers with -128 and 64 nodes, respectively, enabling effective capture and transformation of

input noise. A dropout rate of 0.1 is implemented to prevent overfitting and promote generalization. The

Adam optimizer is used to optimize the output, with a learning rate of 0.0001 ensuring steady and controlled

learning. The random noise vector, with a dimension of 100, injects variability into the generation process.

The kernel initializer applied is glorot_uniform, promoting convergence and stability. To prevent overfitting,

a kernel regularizer based on the L2 method is utilized. The model has a total of 36,837 learning parameters,

reflecting its complexity and capacity. These finely-tuned hyperparameters collectively contribute to the

optimized K-CGAN's ability to generate high-quality samples while maintaining stability and convergence

during training. Furthermore, the K-CGAN Discriminator neural network is also distinguished by carefully

selected hyperparameters to optimize its performance. The LeakyReLU activation function is used to

introduce non-linearity and address gradient vanishing issues. Binary Cross Entropy is employed as the loss

function, effectively measuring adversarial performance. The network consists of two hidden layers with -

20 and 10 nodes respectively, enabling effective capture and identification of patterns in the input data. A

dropout rate of 0.1 is applied to prevent overfitting and improve generalization. The Adam optimizer is

selected for optimizing the network's output, with a learning rate of 0.0001 to ensure gradual and controlled

learning. The L2 method is applied as a kernel regularizer to avoid overfitting. The model has a total of 1,519

learning parameters, reflecting its relatively compact design. These carefully chosen hyperparameters

collectively contribute to the Discriminator neural network's ability to accurately distinguish between real

and generated data samples while maintaining stability and efficient learning.

Classification Methods

 Classification methods’ hyperparameter settings are presented in Table 39. Within our methodology, we

employed the Random Forest algorithm due to its robustness and versatility in handling complex datasets.

To ensure controlled randomness during the sampling process, we meticulously set the parameter

random_state to 42. By adhering to this default value, we intentionally guarantee consistent organization of

the dataset during random sampling. As a result, the same training and testing subsets are consistently

derived, promoting uniformity in subsequent analyses and evaluations. This strategic choice aligns with

established best practices and enhances the reliability of our findings (scikit-learn.org, n.d.). In our pursuit

of an effective ensemble learning method, we turned to XGBoost for its demonstrated prowess in predictive

modeling. In line with our commitment to reproducibility and controlled randomness, we set the

random_state parameter to 42. By doing so, we ensure that the random aspects of XGBoost, such as sample

selection and splitting, follow a consistent pattern across different runs. This aligns with our overarching

goal of maintaining consistency and comparability in our experimentation and analysis (scikit-learn.org,

n.d.). To leverage the power of neighbor-based predictions for proximity-based classification tasks, we

harnessed the KNearest Neighbor (KNN) algorithm. In our quest for optimal performance, we fine-tuned the

hyperparameter n_neighbors and set it to 100. This choice dictates that each prediction is influenced by the

100 nearest neighbors in the dataset, emphasizing local patterns and relationships. This strategic decision

strengthens the algorithm's ability to capture intricate patterns within the data, contributing to the reliability

of our classification outcomes (scikit-learn.org, n.d.). Our exploration of deep learning methodologies led us

to adopt the Multi-Layer Perceptron (MLP) model, renowned for its capacity to handle intricate data

representations. To ensure efficient and effective model training, we configured the max_iter parameter to

represent the maximum number of training epochs. This designation accounts for the possibility that the

learning process might converge before reaching the specified maximum. In our experiment, we set this

value to 300, striking a balance between comprehensive training and computational efficiency. Additionally,

to exert control over randomness and enable reproducibility, we assigned the random_state a value of 1. This

strategic choice aligns with best practices, facilitating the consistent replication of our results across different

iterations (scikit-learn.org, n.d.).

135

135

Table 39: Classification methods hyperparameter configuration settings

Method Settings

Random Forest To control randomness of the sample random_state was set to

42, by setting the default value we’re ensuring that the data is

getting arranged the same way, as a result it returns the same

training and testing subsets.

(scikit-learn.org, n.d.)

XGBoost To control randomness of the sample random_state was set to

42

(scikit-learn.org, n.d.)

KNearest Neighbor The tuning hyper parameter n_neighbors was set to 100

(scikit-learn.org, n.d.)

MLP The max_iter parameter represents the maximum number of

epochs for model training. It is referred to as "maximum"

because the learning process may stop before reaching the

maximum number of iterations, depending on other

termination criteria, we have set it to 300.

To control the random factor (random_state) was set to 1. It’s

recommended to set the seed for the random generator to

confirm that the outcomes can be consistently reproduced.

random_state=1, max_iter=300

(scikit-learn.org, n.d.)

136

136

4.6.2 Results Analysis

Correlation

Figure 19: Correlation metric comparison of Original dataset, SMOTE, ADASYN, B-SMOTE, Vanilla

CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN credit card fraud data

 Figure 19 presents the correlation between different variables, highlighting the superiority of K-CGAN

over other GAN-based methods. Through its exceptional preservation of the original dataset structure, K-

CGAN outperforms Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN in this study. The remarkable

ability of K-CGAN to generate synthetic data without introducing any bias or noise makes it particularly

suitable for use with the credit card fraud dataset. Additionally, the study reveals that K-CGAN, SMOTE,

ADASYN, and B-SMOTE serve as better predictors of the original dataset compared to other GAN-based

methods tested. The heatmap analysis further unveils correlation patterns among different features, providing

valuable insights into the intricate relationships between multiple variables. Darker colours, indicating values

closer to 1 or -1, represent stronger correlations, whether positive or negative. Conversely, lighter colours,

closer to 0, indicate weaker correlations or no correlation at all. These findings contribute to a deeper

understanding of the dataset dynamics and facilitate more informed decision-making.

137

137

Single Column Distribution

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

138

138

 (i) (j)

 (k) (l)

 (m) (n)

 (o) (p)

139

139

 (q) (r)

 (s) (t)

 (u) (v)

 (w) (x)

140

140

 (y) (z)

 (z2) (z3)

 (z4)

Figure 20: Single column ‘Amount’ distribution comparison of Original dataset, SMOTE, ADASYN, B-

SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN credit card fraud data (a),

‘V1’ (b), ‘V2’ (c), ‘V3’(d), ‘V4’ (e), ‘V5’ (f),‘V6’ (g), ‘‘V7’ (h), ‘V8’ (i), ‘V9’ (j), ‘V10’ (k),‘V11’ (l),

‘V12’ (m), ‘V13’ (n), ‘V14’ (o), ‘V15’ (p), ‘V16’ (q), ‘V17’ (r), ‘V18’ (s), ‘V19’ (t), ‘V20’ (u), ‘V21’ (v),

‘V22’ (w), ‘V23’ (x), ‘V24’ (y), ‘V25’ (z), ‘V26’ (z2), ‘V27’ (z3), ‘V28’ (z4)

 Figure 20 (a) presents a comparison of the single column 'Amount' distributions from the original dataset,

SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN and LS GAN versus the K-

CGAN with credit card fraud data. It can be seen that K-CGAN closely resembles the Original Data and its

distance between the actual and generated samples is much lower than that of other GAN algorithms used in

this study. This suggests K-CGAN may not only be able to accurately replicate the number of fraud events,

but also their severity. In addition, it appears to be more robust to data variation than its counterparts, making

it an attractive choice for protecting against credit card fraud. Figure 20 (b) presents ‘V1’ feature distribution

comparison of original dataset, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS

GAN, LS GAN and K-CGAN with credit card fraud data. Despite some deviations, overall the high

correlation between K-CGAN and the original data suggests that it is able to generate more realistic samples

than all the other methods, making it an ideal choice for credit card dataset that require authentic synthetic

141

141

data generation. In addition, because it has the highest correlation with the original dataset, K-CGAN can be

used to fill in missing data points or to augment small datasets with synthetic yet realistic samples. Therefore,

K-CGAN is a powerful method for utilizing high-quality synthetic data in various applications.

 Figure 20 (c) presents the comparison of the single-column 'V2' distribution between the original dataset,

SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN

with credit card fraud data. It is evident that overall K-CGAN resembles the original data closely, with the

distance between the actual and generated samples being comparatively lesser than that of other GAN-based

algorithms. To ensure a higher correlation to the original dataset, it is important to pay attention to data

preprocessing techniques such as feature engineering, noise reduction, scaling etc., as well as algorithmic

hyperparameter tuning. Based on the results shown in Figure 20 (c), we can say that the K-CGAN has proven

to be a powerful tool in obtaining high-quality, correlated samples for credit card fraud data. Further, Figure

20 (d) demonstrates the correlation between different datasets in regards to a single column 'V3' distribution

comparison. This includes the original dataset, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN,

SDG GAN, NS GAN, LS GAN and K-CGAN with credit card fraud data. Results show that K-CGAN closely

resembles the original data, with the distance between actual and generated samples being least compared to

other GAN-based algorithms. This helps to validate the effectiveness of K-CGAN in maintaining a similar

output structure when compared to the original dataset.

 Figure 20 (e) of the dataset correlation analysis provides a visual representation of the distribution

comparison between the original data, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN,

NS GAN, LS GAN and K-CGAN with credit card fraud data. It is evident that overall K-CGAN closely

resembles the original data, with a great deal of similarity in terms of distribution. The distance between the

actual and generated samples is minimised in K-CGAN compared to other GAN-based algorithms. This can

be attributed to its ability to accurately generate synthetic samples from a given dataset without losing any

of the inherent characteristics or features that make up the original data. As such, K-CGAN stands out as an

effective and reliable algorithm for generating synthetic data while maintaining the integrity of the original

dataset. Furthermore, Figure 20 (f) shows the single-column 'V5' distribution comparison of original dataset,

SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN

with credit card fraud data. The distribution reveals that K-CGAN closely resembles the original data. The

distance between actual and generated samples is considerably less in the case of K-CGAN compared with

other GAN-based algorithms, which indicates that K-CGAN preserves the original dataset's correlation more

effectively. Moreover, it is important to note that the dataset used in this experiment was highly imbalanced,

with only 0.172% of transactions being labelled as fraudulent. This demonstrates that K-CGAN is able to

effectively handle such datasets without compromising on dataset correlation. Additionally, it also exhibits

strong performance even in the presence of a small number of labelled samples.

 Figure 20 (g) presents a single-column ‘V6’ distribution comparison of the original dataset, SMOTE,

ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with credit

card fraud data. The results demonstrate that overall despite some deviations K-CGAN resembles the original

data in terms of its distribution. Additionally, an analysis shows that the distance between actual and

generated samples is significantly lower in K-CGAN compared with other methods. This suggests that the

K-CGAN model has a strong correlation with the original dataset - indicating it would be suitable for use

when attempting to detect anomalies or outliers in financial transactions. Moreover, the correlation of K-

CGAN with the original dataset makes it a reliable method for generating synthetic data that can be used to

train machine learning models. Additionally, the Figure 20 (h) shows a comparison of the single column

distribution of 'V7' for the original dataset, as well as for synthetic datasets generated using SMOTE,

ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with credit

card fraud data. The results demonstrate that K-CGAN has a more closely resembling distribution to the

original dataset, meaning it is a more reliable synthetic data generator. Additionally, K-CGAN shows higher

accuracy in terms of detecting anomalies in financial transactions. This indicates that K-CGAN can be used

142

142

as a powerful tool for training machine learning models and detecting fraudulent activity. Overall, this

comparison reveals that K-CGAN has a strong correlation with the original dataset and is the robust method

for generating synthetic data that can be used to train machine learning models.

 Figure 20 (i) presents a single-column ‘V8’ distribution comparison of the original dataset, SMOTE,

ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with credit

card fraud data. The results demonstrate that K-CGAN closely resembles the correlation of the original

dataset, with a smaller distance between the actual and generated samples compared to other methods. This

suggests that the K-CGAN algorithm is particularly efficient at generating data with similar correlation

patterns as the original dataset. Figure 20 (j) presents a single column 'V9' distribution comparison of the

original dataset, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN

and K-CGAN with credit card fraud data. The results indicate that overall K-CGAN closely resembles the

original data, with the distance between the actual and generated samples being significantly lower than that

of other GAN-based algorithms. This suggests that K-CGAN distribution is more closely correlated with the

underlying dataset than its counterparts, making it a good choice for data generation tasks in credit card fraud

detection.

 Figure 20 (k) presents a single column ‘V10’ distribution comparison of the original dataset, SMOTE,

ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with credit

card fraud data. The results show that although the presence of some degree of deviation out of all the GAN-

based algorithms for generating new datasets, K-CGAN outperforms the others in terms of correlation with

the original dataset. Figure 19 (l) presents a single column 'V11' distribution comparison of the original

dataset, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-

CGAN with credit card fraud data. The comparison demonstrates that though some deviation is present, the

K-CGAN more closely resembles the original data. The distance between actual and generated samples is

significantly smaller in K-CGAN than other GAN-based algorithms.

 Figure 20 (m) demonstrates the comparison of a single column ‘V12’ distribution of original dataset and

SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN

with credit card fraud data. It can be seen that despite some degree of deviation, the K-CGAN distance

between real and generated samples from KCGAN was comparatively lower than those generated by other

GANs. Further, Figure 19 (n) shows a comparison of a single column 'V13' distribution across the original

dataset, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-

CGAN with credit card fraud data. The distribution demonstrates that there is a close correlation between

the original data and K-CGAN. This indicates that K-CGAN is able to generate accurate results. Furthermore,

it suggests that K-CGAN can provide a more accurate representation of the underlying data.

 Figure 20 (o) provides a comparison of a single column 'V14' distributions for the original dataset,

SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN

with credit card fraud data. The results demonstrate that overall despite some level of deviations K-CGAN

demonstrated reliable match to the original dataset. The distance between the actual and generated samples

is much smaller in K-CGAN than in other GAN-based algorithms. Despite some degree of deviation, this

correlation indicates that it is possible to effectively replicate data distributions using GANs.

 Figure 20 (p) demonstrates the single column 'V15' distribution comparison of different datasets, including

the original data, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN

and K-CGAN with credit card fraud data. The results of the distributions clearly reveal that K-CGAN

exhibits a close correlation to the original data, as its distance between the actual and generated samples is

smaller than others. Moreover, this strong correlation might be due to the efficient novelty loss of K-CGAN

which plays an important role in avoiding overfitting in GAN training. Additionally, Figure 19 (q) presents

a comparison of a single-column 'V16' distribution of the original dataset, SMOTE, ADASYN, B-SMOTE,

143

143

Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with credit card fraud data. The

results show that despite some level of deviations overall K-CGAN resembles the original data, with the

distance between actual and generated samples being smaller than other GAN-based algorithms. This

indicates that K-CGAN is capable of learning the underlying patterns in the dataset and generating new data

points that accurately reflect those correlations.

 Figure 20 (r) presents a single-column 'V17' distribution comparison of original dataset, SMOTE,

ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with credit

card fraud data. Figure 20 (s) presents a comparison of the single-column ‘V18’ distribution of the original

dataset, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-

CGAN with credit card fraud data. The results indicate although presence of deviations overall K-CGAN

closely resembles the original data in terms of distribution. Furthermore, this comparison reveals that overall

the K-CGAN algorithm produces a lower distance between actual and generated samples when compared to

other GAN-based algorithms, thus making it more accurate in its results.

 Figure 20 (t) presents a comparison of the single column 'V19' distribution from the original dataset,

SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN

with credit card fraud data. This comparison clearly illustrates that despite some level of deviations, K-

CGAN resembles the original dataset, as the distance between actual and generated samples is substantially

less than with other GAN-based algorithms. Hence, it can be inferred that K-CGAN is reliable in capturing

the data’s underlying correlation structure. Additionally, Figure 19 (u) presents a single column ‘V20’

distribution comparison of the Original dataset, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN,

SDG GAN, NS GAN, LS GAN and K-CGAN with credit card fraud data. The outcome of the analysis shows

that K-CGAN closely resembles the Original Data, with a minimal distance between the actual and generated

samples. This implies that K-CGAN has better performance than other well-known algorithms in accurately

capturing the features of the original data set.

 Figure 20 (v) presents a comparison of the single column 'V21' distribution between the original dataset,

SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN

with credit card fraud data. The comparison demonstrates that K-CGAN's generated samples correlate

closely to the original data, with a smaller distance between the actual and generated samples compared to

other widely used algorithms. Moreover, these results suggest that K-CGAN is able to produce more accurate

synthetic data when modelling credit card fraud detection dataset than previous methods. Furthermore,

Figure 19 (w) shows the Single column 'V22' distribution comparison of Original dataset, SMOTE,

ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with credit

card fraud data. The results demonstrate that there is a higher correlation between the original dataset and

the K-CGAN generated dataset compared with other GAN-based algorithms. This indicates that the K-

CGAN is more effective in generating results that closely resemble the original data, while still preserving

enough variance for meaningful prediction results.

 Figure 20 (x) presents a single column ‘V23’ distribution comparison of original dataset, SMOTE,

ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with credit

card fraud data. It is evident that the K-CGAN resembles the original data closely with a smaller distance

between the actual and generated samples when compared with other popular algorithms. The correlation of

datasets is further strengthened by their close proximity on a quantitative level, showing that K-CGAN

provides a reliable representation of the original data. Additionally, the distribution comparison demonstrates

that K-CGAN has a strong tendency to maintain the characteristics of the original dataset which is

advantageous for ensuring the validity of generated data. This indicates that K-CGAN is an effective

technique to generate synthetic datasets from original ones with high accuracy and fidelity. Consequently, it

can be used as a viable option to create reliable synthetic datasets. In addition, Figure 20 (y) presents a

144

144

comparison of the distribution of a single column ‘V24’ from the original dataset, as well as data generated

through SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-

CGAN with credit card fraud data. The results show that K-CGAN closely resembled the original dataset,

with the distance between actual and generated samples being lower than most other algorithms used in this

study. This correlation highlights the importance of using a properly tuned algorithm to ensure that a realistic

dataset is generated for training models. Additionally, K-CGAN demonstrates its ability to generate data that

replicates the features of the original dataset while still capturing any underlying patterns or trends.

 Figure 20 (z) shows the comparison of a single column 'V25' distribution among the original dataset,

SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN

with credit card fraud data. The results reveal that K-CGAN produces a distribution that closely resembles

the original dataset. Notably, the distance between the actual and generated samples is also lesser in K-

CGAN when compared to other GAN-based algorithms. This implies that K-CGAN has a higher correlation

with the original data than its counterparts. Furthermore, this suggests that K-CGAN yields more accurate

results and can be applied effectively in scenarios where a high level of accuracy and precision is desirable.

Thus, it can be concluded that K-CGAN has a higher correlation with the original dataset than other GAN-

based algorithms. Furthermore, Figure 20 (z2) presents a single column ‘V26’ distribution comparison of

the original dataset, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS

GAN and K-CGAN with credit card fraud data. The results show that K-CGAN is most similar to the original

data, with the smallest distance between actual and generated samples in comparison to the other GAN-based

algorithms. This indicates that K-CGAN has a strong correlation with the original dataset, suggesting it is

the most reliable method for generating novel credit card fraud data. Additionally, this correlation proves

that K-CGAN is an effective algorithm in protecting privacy against credit card fraud activities. Furthermore,

this distribution further reveals that K-CGAN is a powerful tool in analysing and understanding the evolution

of dataset dynamics.

 Figure 20 (z3) presents a single column ‘V27’ distribution comparison of the original dataset, SMOTE,

ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with credit

card fraud data. The difference in distribution between the actual data and the generated datasets of other

algorithms used in this study can be observed, however with K-CGAN this difference is minimal overall,

suggesting a strong similarity to the original dataset. This demonstrates how K-CGAN has been able to

effectively learn the structure of the credit card fraud data, and generate samples that closely resemble the

original. This shows the effectiveness of K-CGAN in generating high quality synthetic datasets. Finally,

Figure 20 (z4) presented a single-column ‘V28’ distribution comparison of the original dataset, SMOTE,

ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with credit

card fraud data. The results showed that K-CGAN was able to closely resemble the original data, with a

much smaller distance between the actual and generated samples in comparison to other GAN-based

algorithms. This suggests that K-CGAN has a greater ability to accurately replicate both the number of fraud

events and their severity. Additionally, this could indicate that it is more robust to variation within the dataset

than its counterparts, making it an appealing choice for protecting against credit card fraud.

Bi-Variate Distribution

 Bivariate visualization is a kind of data analysis used to assess the correlations between two variables. It

is an effective method for determining the relationship between two sets of data. The visualization aids in

immediately detecting patterns and correlations that can be used for additional study or decision making.

Bivariate visualization is useful for comparing two variables and has been applied in our experiments.

145

145

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

 (i) (j)

 (k) (l)

146

146

 (m) (n)

 (o)

Figure 21: Bi-variate distribution ‘Amount vs V6’ comparison of Original dataset, SMOTE, ADASYN, B-

SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with Credit card fraud data

(a), ‘Amount vs V7’ (b), ‘Amount vs V14’ (c), ‘V1 vs V3’ (d), ‘V1 vs V4’ (e), V1 vs V5’ (f), ‘V1 vs V7’

(g), V1 vs V10 (h),‘V1 vs V11’ (i),‘V1 vs V16’ (j), ‘V1 vs V17’(k), ‘V1 vs V5’ (l), ‘V2 vs V11’ (m), ‘V3

vs V5’ (n), ‘V3 vs V7’ (o)

 The bivariate analysis of the Figure 21 (a) presents the correlation between ‘Amount vs V6’ in original

dataset, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-

CGAN. The distribution results show that K-CGAN is able to generate datasets that closely match the

characteristics of the original data. It is evident from the chart that K-CGAN generated data points have a

strong correlation with the original dataset. Furthermore, the normalized distribution suggests that K-CGAN

can also be used for anomaly detection tasks, as it gives an accurate indication of how data points could be

classified as "normal" or "anomalous". Therefore, it can be concluded that K-CGAN is an effective approach

for generating synthetic datasets that closely resemble real world data. Furthermore, Figure 21 (b) presents

the bi-variate distribution comparison of ‘Amount vs V7’ of original dataset, SMOTE, ADASYN, B-

SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with credit card fraud data.

It can be seen that the data points generated by the K-CGAN have a strong correlation with the original data

samples. The bivariate visualization charts of data points generated by K-CGAN demonstrate how close they

are to the actual dataset, thus providing evidence that this algorithm is suitable for creating a balanced dataset.

 Figure 21 (c) depicts a comparison of the Bi-variate distribution 'Amount vs V14' of the original dataset,

SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN

with credit card fraud data. The results of this study show that the data points created by the K-CGAN are

similar to the original data samples, as shown by the visualizations. K-CGAN-generated bivariate

visualization charts of data points exhibited high agreement with the original dataset. Moreover, Figure 21

(d) displays a bi-variate comparison between the original dataset and the outputs generated by SMOTE,

ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with credit

card fraud data. The results of this study show that the data points generated by K-CGAN are the most similar

to those of the original dataset, as evidenced by their visual similarity on the bi-variate comparison chart.

Moreover, the scatter plot between 'V1' and 'V3' shows that all of these algorithms are able to produce data

points that bear close resemblance to the original dataset. This implies that these algorithms could be

effective in generating data points from this particular credit card fraud dataset.

147

147

 The results of Figure 21 (e) demonstrate the effectiveness of K-CGAN in producing data samples that

closely resemble the original dataset. Specifically, the bivariate distribution between ‘V1 vs V4’ visualization

charts show a high correlation between the generated data points and the original samples, indicating K-

CGAN's successful ability to accurately mimic real world observations. Further, the other algorithms tested,

namely SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN and LS GAN all

demonstrated varying degrees of relevancy in their output. Ultimately, this comparison highlights the

impressive effectiveness of K-CGAN as a novelty algorithm for credit card fraud detection. As such, it would

be beneficial for researchers to incorporate K-CGAN into their finance fraud detection models in order to

reduce time and improve accuracy. The findings of this study provide strong evidence for the effectiveness

of K-CGAN in generating synthetic data points which highly resemble those from the original dataset. As

can be seen from Figure 21 (f), the bi-variate comparison between ‘V1 and V5’ for original dataset, SMOTE,

ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with credit

card fraud data show that the data points generated by K-CGAN are most similar to the original dataset.

Moreover, this study suggests that algorithms such as WGAN and LS GAN that leverage more generative

models for generating synthetic data may not be as effective as K-CGAN for producing data points that are

most similar to the original dataset. These results provide strong evidence of the effectiveness of K-CGAN

in generating synthetic data with high degree of similarity to the original dataset.

 The findings of this study offer an invaluable insight into the effectiveness of various algorithms in

replicating original data points. The bi-variate distribution from Figure 21 (g) comparison of 'V1 vs V7'

between the original dataset and those generated by SMOTE, ADASYN, B-SMOTE, Vanilla CGAN,

WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with credit card fraud data revealed that the data

points generated by K-CGAN most closely resemble those in the original dataset, as evidenced by the

visualizations. This indicates that K-CGAN is an effective algorithm for generating synthetic data points

which preserve the properties of the true distribution. Additionally, this result also suggests. The findings of

Figure 21 (h) demonstrate the effectiveness of the K-CGAN algorithm in generating data points that closely

resemble the original dataset. As seen from the bi-variate distribution visualizations, there is a high

agreement between the original dataset and those generated by K-CGAN. This provides strong evidence for

the efficacy of K-CGAN in accurately recreating real world data points.

 In the comparison of the Bi-variate distribution ‘V1 vs V11’ presented in Figure 21 (i), the results from

experiments conducted on the credit card fraud data suggest that K-CGAN shows a high level of agreement

with the original dataset. The visualizations demonstrated that there is a strong similarity between the data

points generated by K-CGAN and the ones from the original dataset. As a result, K-CGAN is effective in

generating synthetic data that closely resembles the original samples, making it a viable solution for credit

card fraud detection data. The findings of this study suggest that using the K-CGAN algorithm is an effective

way to generate high quality data points which closely resemble the original dataset. Visualizations of

bivariate distributions from the original dataset, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN,

SDG GAN, NS GAN, LS GAN and K-CGAN with credit card fraud data revealed a high level of agreement

between the original dataset and the generated data. Figure 21 (j) clearly demonstrates this resemblance ‘V1

vs V16’, making it evident that the K-CGAN algorithm can be effectively used with confidence to generate

quality synthetic datasets.

 Figure 21 (k) presents bi-variate distribution between ‘V1 vs V17’ feature. This study demonstrated the

effectiveness of various data augmentation algorithms, such as SMOTE, ADASYN, B-SMOTE, Vanilla

CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with credit card fraud data. The results reveal

that K-CGAN produced results which closely resembled the original dataset points in terms of bivariate

distribution analysis. The visualizations generated from K-CGAN showed remarkable agreement with the

original dataset. This indicates that K-CGAN is a reliable algorithm compared to other data augmentation

techniques, as it efficiently produces datasets without any significant divergence from the original dataset

148

148

points. The bivariate visualization charts of data points generated by K-CGAN displayed a strong agreement

with the original dataset, as can be seen from Figure 21 (l). Moreover, our results show that K-CGAN

outperformed in terms of its capability to replicate the original dataset. This indicates that K-CGAN is an

effective tool for generating realistic data points which can be used for a variety of purposes. K-CGAN

algorithm has proven to be highly beneficial in terms of its ability to generate accurate and reliable data

points.

 Figure 21 (m) shows a comparison of the original dataset, as well as data generated by using SMOTE,

ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with credit

card fraud data in a bi-variate distribution of 'V2 vs V11'. The results demonstrate the effectiveness of the

algorithm in generating data that is similarly distributed to the original dataset. The K-CGAN algorithm

generated the data points of the high agreement with the original dataset, providing further evidence for its

effectiveness. Furthermore, Figure 21 (n) illustrates a bi-variate distribution comparison of the original

dataset and various algorithms applied to credit card fraud data ‘V3 vs V5. Specifically, these algorithms

include SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-

CGAN. It’s also worth noting that K-CGAN has some unique characteristics which make it particularly

effective in its task - namely, the ability to distinguish between legitimate and fraudulent data points with a

higher degree of accuracy than other methods.

 Finally, Figure 21 (o) presents a bi-variate distribution comparison between ‘V3 vs V7’ of the original

dataset to those generated by SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS

GAN, LS GAN and K-CGAN with credit card fraud data. The results indicate that data points produced by

the K-CGAN algorithm closely resemble those of the original dataset, as can be seen from the visualizations.

The bivariate visualization charts of data points generated by K-CGAN demonstrate a strong similarity to

that of the original dataset. This suggests that K-CGAN is an effective algorithm for creating accurate

representations of existing data.

4.6.3 Classification performance with original dataset

 In the performance analysis of classification conducted using the original imbalanced dataset, a standard

80-20 split was utilised for training and testing purposes. Specifically, 80% of the dataset was used to train

the models, while the remaining 20% was reserved for evaluating their performance. This approach ensured

a comprehensive assessment of the models' ability to generalise and accurately predict unseen data.

Table 40: Classifiers performance on original imbalanced credit card dataset

Model Precision Recall F1 Score Accuracy

XGBoost 0.981818 0.827068 0.873016 0.999551

Random Forest 0.981651 0.812030 0.867470 0.999537

Nearest Neighbor 1.000000 0.721804 0.786885 0.999270

MLP 0.990099 0.842105 0.861538 0.999494

Logistic Regression 0.989583 0.609023 0.723214 0.999129

 Upon analysing the performance metrics of various classifiers on a credit card dataset with imbalanced

data, as depicted in Table 40, distinct patterns arise that necessitate further contemplation. All of the

classifiers under examination exhibited high levels of accuracy, with values approaching 0.99. Although this

may appear praiseworthy at first glance, it is important to note that accuracy can be deceptive when dealing

149

149

with imbalanced datasets. In scenarios where the proportion of the positive class (fraudulent transactions) is

relatively small, it is possible for a model that classifies all transactions as non-fraudulent to reach a high

level of accuracy. Therefore, it is more enlightening to direct attention towards alternative metrics, including

precision, recall, and the F1 score. The precision values exhibited in all cases are noteworthy. The Nearest

Neighbour algorithm had superior performance compared to other algorithms, achieving a perfect score of

1.00. However, this level of perfection is accompanied with a trade-off in terms of recall, as the Nearest

Neighbour algorithm achieves a score of only 0.721804. This trade-off suggests that although all transactions

identified as fraudulent were indeed fraudulent, a notable proportion of real fraudulent transactions remained

unreported. Both XGBoost and Random Forest algorithms demonstrate precision scores in the range of 0.98,

indicating a notable degree of reliability in their predictive capabilities. However, the true measure of

performance for these classifiers on an imbalanced dataset lies in the recall metric. XGBoost and MLP

demonstrate superior performance, achieving scores in the range of 0.83 and 0.84. This suggests that these

models have successfully identified a significant proportion of the fraudulent transactions in the dataset. In

contrast, Logistic Regression exhibited a lower recall rate of 0.609023. The observed low recall rate indicates

that Logistic Regression was unsuccessful in detecting approximately 40% of the fraudulent transactions.

This outcome may be considered a noteworthy omission, depending on the specific circumstances.

 The F1 score, which aims to strike a compromise between precision and recall, especially in the context

of imbalanced datasets, indicates that XGBoost performed exceptionally well with a score of 0.873016.

Following closely behind is the Random Forest algorithm with a performance metric of 0.867470 and MLP

achieving score of 0.861538. The Nearest Neighbour achieved F1 score of 0.786885. The suboptimal

performance of Logistic Regression is once again supported by the lowest F1 score of 0.723214.

4.6.4 Classification performance with balanced dataset using Novelty K-CGAN
 In the evaluation of classification performance using the balanced dataset through the application of the

Novelty K-CGAN model, a similar approach was adopted. An 80-20 split was utilised, allocating 80% of the

balanced dataset for model training and reserving the remaining 20% for testing. This strategy ensured that

the model's performance was assessed in the context of balanced class distributions, addressing the

challenges posed by class imbalance. By training on a balanced dataset and then testing on a separate portion

of balanced data, the K-CGAN's ability to handle balanced scenarios and its generalisation capabilities were

effectively evaluated.

Table 41: Classification performance with balanced credit card fraud dataset using Novelty K-CGAN

oversampling minority class

Model Precision Recall F1 Score Accuracy

XGBoost 0.997998 0.999706 0.997599 0.9976

Random Forest 0.999598 0.999706 0.997394 0.9974

Nearest Neighbor 0.990056 0.999706 0.992820 0.9928

MLP 0.998400 0.999594 0.998400 0.9984

Logistic Regression 0.991221 0.999608 0.992409 0.9924

 The significant differences in the performance of classifiers on imbalanced and balanced datasets are

apparent when comparing Tables 40 and 41. Table 41, showcasing results on the balanced credit card fraud

dataset, was achieved using the Novelty K-CGAN oversampling technique for the minority class. This

approach seems to have greatly improved the performance of the classifiers. The analysis of the metrics

150

150

shown in Table 41 reveals the clear proficiency of XGBoost. The precision value exhibited an exceptional

level of accuracy, measuring at 0.997998. Similarly, the recall value demonstrated a near-perfect

performance, reaching 0.999706. The combination of these two values yielded an F1 score of 0.997599. The

notable equilibrium between precision and recall highlights the efficacy of XGBoost in managing datasets

with balanced distribution. The model demonstrated a high level of accuracy, with a score of 0.9976, which

aligns with its F1 score. This indicates that the model is resilient in accurately categorising transactions as

either fraudulent or non-fraudulent. The Random Forest algorithm, similar to XGBoost, has shown

exceptional performance. The metrics of this system indicate a high level of accuracy, with a precision of

0.999598 and recall of 0.999706. These values suggest that the system is able to effectively identify instances

of fraud while minimising the occurrence of false alarms. The accuracy and F1 score exhibited a value of

approximately 0.9974, which is little lower than that of XGBoost but still notably high. The performance of

the Nearest Neighbour classifier, although sub-optimal on the imbalanced dataset, has demonstrated

improvement on the balanced dataset. While the precision of this classifier is significantly lower at 0.990056

when compared to other classifiers, it is noteworthy that its recall value is high at 0.999706. The obtained F1

score is 0.992820, while the accuracy is 0.9928. Moreover, MLP also exhibits exceptional performance

indicators. The model has a high level of performance, as evidenced by its precision of 0.998400 and recall

of 0.999594. These metrics indicate a nearly optimal balance between correctly identified positive instances

and overall relevant instances. This balance is further reflected in the F1 score and accuracy, both of which

are calculated to be 0.9984. Finally, it is worth noting that Logistic Regression demonstrates significant

enhancement when applied to the K-CGAN balanced dataset. Although it exhibited the lowest recall value

in Table 40, it has a recall score of 0.999608 in this context. The model achieves a precision of 0.991221,

resulting in an F1 score of 0.992409 and an accuracy of 0.9924.

 The effectiveness of the Novelty K-CGAN as an oversampling strategy becomes apparent when compared

to the outcomes obtained from the initial imbalanced dataset. All classifiers have demonstrated enhanced

metrics in several aspects and also exhibited more equitable performances. The high recall values observed

in all classifiers indicate that the balanced dataset, generated through the utilisation of K-CGAN, significantly

enhances their ability to accurately identify nearly all instances of fraud. This is of utmost importance for the

successful implementation of credit card fraud detection systems.

4.6.5 Classification performance with balanced dataset multiple models comparison

 Furthermore, we provide an in-depth analysis of various classification techniques, taking into account their

performance measures. These measures encompass Precision, Recall, F1 Score, and Accuracy, which

collectively paint a detailed picture of the effectiveness of each technique. In addition, to ensure a

comprehensive evaluation of the classification models, we have included a clear and informative tabular

presentation, allowing for a more thorough understanding and comparison of the different approaches.

 (a) (b) (c)

151

151

 (d) (e) (f)

 (g) (h) (i)

 (j)

Figure 22: ROC curves (a) original imbalanced dataset, (b) balanced dataset with SMOTE, (c) balanced

dataset B-SMOTE, (d) balanced dataset with ADASYN, (e) balanced dataset with Vanilla CGAN, (f)

balanced dataset with WGAN, (g) balanced dataset with SDG GAN, (h) balanced dataset with NS GAN, (i)

balanced dataset with LS GAN, (j) balanced dataset with K-CGAN

 Figure 22 displays the ROC curves, illustrating the substantial performance enhancement achieved by

comparing imbalanced and balanced datasets. By implementing different oversampling techniques,

consistent increases in AUC values were observed, demonstrating the effectiveness of these methods.

However, it is worth noting that the impact of oversampling on classifier performance varied, highlighting

the nuanced nature of the results. Despite these variations, all models achieved remarkable outcomes, further

confirming the advantages of utilising oversampling to address class imbalance.

 In the below Table 42, we present the precision of classifiers for imbalance class methods. Upon

examination of the precision values presented in Table 42, it became apparent that the classifiers' behaviour

and performance exhibit significant variations depending on the oversampling strategy applied. Precision is

a crucial statistic in imbalanced settings, such as fraud detection, where the consequences of false positives

can be considerable. It quantifies the proportion of anticipated positives that are actually positive. In the

context of XGBoost, it was seen that the B-SMOTE technique demonstrates the highest precision value of

0.999816. This is closely followed by the SMOTE, ADASYN, and K-CGAN approaches, all of which

achieve precision values beyond 0.997. In comparison to its performance on the original dataset (0.981818),

the utilisation of oversampling approaches significantly improved the precision of XGBoost. The utilisation

of the B-SMOTE approach in conjunction with Random Forest results in a notable improvement in precision,

with a nearly flawless score of 0.999958 being achieved. The SMOTE and ADASYN techniques have

demonstrated exceptional performance, yielding precision values that surpass 0.9997. In contrast to the

152

152

original dataset, the precision of the classifier is 0.981651, suggesting that the utilisation of oversampling

approaches has a beneficial impact on improving the classifier's performance. It is noteworthy that the

Nearest Neighbour algorithm attained a precision of 100% when applied to the original dataset. However,

there is a decrease observed in performance when using alternative approaches, with B-SMOTE exhibiting

the highest similarity to the original performance with a value of 0.997603. This implies that although the

Nearest Neighbour algorithm can accurately classify positive instances in some situations, its performance

may vary when applied to datasets with diverse distributions. The MLP algorithm demonstrated a noteworthy

level of accuracy when combined with K-CGAN, SMOTE, ADASYN, and B-SMOTE, all achieving a score

close to 0.998. The oversampling approaches implemented in this study have resulted in a notable and

statistically significant improvement in performance, as evidenced by the original dataset's precision of

0.990099. Finally, the precision of Logistic Regression reaches its maximum value when combined with K-

CGAN (0.991221) and B-SMOTE (0.994725). Nevertheless, the performance of the model while utilising

ADASYN was significantly worse, with an accuracy score of 0.909084. The aforementioned disparity

underscores the susceptibility of Logistic Regression to the specific oversampling methodology utilised. In

summary, it can be observed that various oversampling strategies elicit distinct responses from different

classifiers. However, it is apparent that techniques such as B-SMOTE, SMOTE, K-CGAN, and ADASYN

consistently improve precision across many classifiers in comparison to the original dataset. The selection

of an oversampling strategy can have a substantial impact on the efficacy of a classifier, particularly in

situations when precision is of utmost significance.

Table 42: Precision values for classification methods multiple methods comparison

Model LS GAN WGAN NS GAN

SDG

GAN

Original

dataset K-CGAN SMOTE ADASYN B-SMOTE

VANILLA

GAN

XGBoost 0.982405 0.988636 0.980831 0.986072 0.981818 0.997998 0.999467 0.999182 0.999816 0.997085

Random

Forest 0.982249 0.980170 0.977564 0.986111 0.981651 0.999598 0.999762 0.999760 0.999958 0.994135

Nearest

Neighbour 0.961194 0.954416 0.954545 0.966197 1.000000 0.990056 0.982366 0.973762 0.997603 0.960606

MLP 0.959885 0.974504 0.962145 0.957219 0.990099 0.998400 0.997690 0.997970 0.998082 0.982456

Logistic

Regression 0.968051 0.958457 0.949495 0.970149 0.989583 0.991221 0.974443 0.909084 0.994725 0.965732

 The Table 43, which presented the recall values of various categorization systems using different

oversampling procedures, presents noteworthy patterns of performance for different classifiers. The K-

CGAN, SMOTE, ADASYN, and B-SMOTE resulted in notable enhancements in the recall performance of

XGBoost. All of these strategies successfully attained or roughly approximated the maximum recall value

of 1. The oversampling approaches implemented in this study demonstrated significant improvements in

comparison to the original dataset, which had an XGBoost recall rate of 0.827068. The performance of

Random Forest shown similarities to that of XGBoost in various aspects. The recall value obtained from the

original dataset was 0.812030. Nevertheless, the utilisation of K-CGAN, SMOTE, and ADASYN resulted

in a significant increase in recall performance, approaching a state of perfection. This outcome underscores

the crucial contribution of these oversampling techniques in enhancing the efficacy of fraud detection by

accurately identifying fraudulent transactions. The recall of the Nearest Neighbour algorithm exhibited a

noticeable decrease when applied to the original dataset, yielding a value of 0.721804. Nevertheless, the

implementation of algorithms such as K-CGAN, SMOTE, and ADASYN significantly enhanced the recall

values, approaching a value of 1. The significant increase depicted in this scenario highlights the model's

varying performance across diverse data distributions and emphasises the importance of employing selective

data augmentation techniques. The MLP model achieved a recall of 0.842105 when evaluated using the

153

153

original dataset. However, the performance of the MLP model was significantly surpassed by the results

obtained from employing K-CGAN, SMOTE, ADASYN, and B-SMOTE techniques. Once more, the

utilisation of oversampling approaches has further emphasised the capability of the MLP in accurately

classifying the majority of fraudulent transactions. The findings of the Logistic Regression analysis revealed

a somewhat distinct narrative. The classifier's recall rate, when evaluated using the original dataset, was

found to be 0.609023, which was the lowest among all the classifiers. Although the memory rate significantly

improved to 0.999608 when K-CGAN was used in combination, the recall rates achieved with SMOTE and

ADASYN were comparatively lower. The B-SMOTE approach demonstrated a significant enhancement in

performance, resulting in a recall score of 0.996383. In conclusion, the recall values shown a general increase

when utilising oversampling approaches such as K-CGAN, SMOTE, ADASYN and B-SMOTE in

conjunction with various classifiers. This improvement was particularly notable when compared to the

performance achieved on the original dataset. This underscores the impact of these methods in enhancing

the ability of classifiers to accurately identify positive cases, which is a critical factor in domains such as

credit card fraud detection where the failure to recognise a positive example can result in serious

consequences.

Table 43: Recall values for classification methods multiple methods comparison

Model LS GAN WGAN NS GAN

SDG

GAN

Original

dataset K-CGAN SMOTE ADASYN B-SMOTE

VANILLA

GAN

XGBoost 0.941011 0.932976 0.962382 0.917098 0.827068 0.999706 1.000000 0.999986 0.999703 0.955307

Random

Forest 0.932584 0.927614 0.956113 0.919689 0.812030 0.999706 1.000000 1.000000 0.999661 0.946927

Nearest

Neighbour 0.904494 0.898123 0.921630 0.888601 0.721804 0.999706 0.999804 1.000000 0.999746 0.885475

MLP 0.941011 0.922252 0.956113 0.927461 0.842105 0.999594 1.000000 0.999929 0.999746 0.938547

Logistic

Regression 0.851124 0.865952 0.884013 0.841969 0.609023 0.999608 0.919681 0.860942 0.996383 0.865922

 By doing an analysis of Table 44, which presents the F1 Score values for various oversampling

approaches, valuable insights can be obtained regarding the performance of the classifiers. The application

of oversampling techniques such as K-CGAN, SMOTE, ADASYN and B-SMOTE resulted in a significant

improvement of XGBoost's F1 score, elevating it to the high 0.99 range. The improvements achieved by

these strategies were clear when comparing their performance on the original dataset, where the F1 score

was 0.873016. The F1 scores of Random Forest also experienced a significant improvement as a result of

employing these oversampling techniques. The classifier demonstrated a satisfactory F1 score of 0.867470

when evaluated with the original dataset. However, when combined with advanced approaches like as K-

CGAN, SMOTE, ADASYN and B-SMOTE, the classifier's performance significantly improved,

approaching near-perfect results. The Nearest Neighbour algorithm demonstrated a relatively lower F1 score

of 0.786885 on the original dataset. However, the utilisation of oversampling methods, specifically K-

CGAN, SMOTE and B-SMOTE, substantially improved its performance, resulting in scores that approached

the 0.99 range. The performance of MLP exhibited a remarkable level of consistency across several

scenarios, demonstrating exceptional scores when combined with methodologies like as K-CGAN, SMOTE,

ADASYN and B-SMOTE. The improved proficiency of the classifier is seen in the striking difference

between the high scores achieved and the F1 score of 0.861538 obtained on the original dataset. Logistic

regression shown considerable variability in its performance. The initial dataset exhibited an F1 score of

0.723214, however the use of the K-CGAN approach resulted in a substantial improvement, elevating the

F1 score to 0.992409. Nevertheless, the utilisation of SMOTE and ADASYN resulted in a very restrained

performance. Conversely, the implementation of B-SMOTE yielded a commendable score of 0.995553.

154

154

 In summary, the findings shown in Table 44 underscore the significant impact of oversampling strategies

on the F1 scores of classifiers, highlighting their transformative nature. Methods such as K-CGAN, SMOTE,

ADASYN, and B-SMOTE have repeatedly facilitated classifiers in achieving a fair trade-off between

precision and recall. This balance is crucial in fraud detection scenarios, where the occurrence of both false

positives and FNs needs to be minimised.

Table 44: F1 Score values for classification methods multiple methods comparison

Model LS GAN WGAN NS GAN

SDG

GAN

Original

dataset K-CGAN SMOTE ADASYN B-SMOTE

VANILLA

GAN

XGBoost 0.961263 0.960000 0.971519 0.950336 0.873016 0.997599 0.999733 0.999584 0.999760 0.975749

Random

Forest 0.956772 0.953168 0.966720 0.951743 0.867470 0.997394 0.999881 0.999880 0.999809 0.969957

Nearest

Neighbour 0.931983 0.925414 0.937799 0.925776 0.786885 0.992820 0.991008 0.986707 0.998673 0.921512

MLP 0.950355 0.947658 0.959119 0.942105 0.861538 0.998400 0.998844 0.998949 0.998913 0.960000

Logistic

Regression 0.905830 0.909859 0.915584 0.901526 0.723214 0.992409 0.946270 0.884358 0.995553 0.913108

 From Table 45 it is evident that the accuracy of XGBoost exhibited a remarkable level of consistency

across all observed scenarios. The accuracy of nearly every approach remained consistently high, typically

in the range of 0.999. The K-CGAN technique had a notable performance, achieving a score of 0.997599,

which remained remarkably high. The performance trajectory of Random Forest exhibited similarities to that

of XGBoost. The accuracy of the majority of approaches remained consistently excellent, hovering in the

range of 0.999. The implementation of the K-CGAN technique resulted in a noteworthy value of 0.997394.

In comparison, the performance of the Nearest Neighbour classifier exhibited greater variability. A

considerable portion of the approaches exhibited a high level of accuracy, consistently achieving scores in

the range of 0.999. However, when combined with the K-CGAN, SMOTE, and ADASYN methods, these

methods had more noticeable decreases in accuracy, resulting in scores ranging from 0.992 to 0.986. MLP

continued to demonstrate strong performance throughout the specified period. With the exception of the K-

CGAN approach, which achieved an accuracy of 0.998400, the majority of the other strategies consistently

maintained MLP's accuracy in the range of 0.999. While the observed discrepancy with K-CGAN was quite

small, it was nonetheless perceptible. Logistic Regression exhibited the highest level of dynamism in terms

of the variability of its accuracy across different approaches. Multiple strategies demonstrated the ability to

maintain a performance level over 0.999. However, certain methods, such as K-CGAN and particularly

ADASYN, exhibited slight declines in performance. K-CGAN achieving 0.992409. The ADASYN,

specifically, reduced the accuracy to 0.887842. Remarkably, in the middle of these fluctuations, the

VANILLA CGAN approach demonstrated a resurgence in its accuracy, reaching a robust value of 0.999174.

In conclusion, the findings from Table 45 highlight the constant performance excellence of XGBoost and

Random Forest algorithms when applied to various oversampling techniques. Although each classifier

exhibited varying degrees of sensitivity towards specific methods, the general pattern seen suggests that these

oversampling techniques have a positive impact on enhancing accuracy. Nevertheless, there were subtle

distinctions, and specific pairings such as Nearest Neighbour with K-CGAN or Logistic Regression with

ADASYN demonstrated that selecting the appropriate oversampling technique in conjunction with the

classifier is crucial for achieving optimal results.

155

155

Table 45: Accuracy values for classification methods multiple methods comparison

Model LS GAN WGAN NS GAN

SDG

GAN

Original

dataset K-CGAN SMOTE ADASYN B-SMOTE

VANILLA

GAN

XGBoost 0.999622 0.999594 0.999748 0.999482 0.999551 0.997599 0.999733 0.999585 0.999761 0.999762

Random

Forest 0.999580 0.999524 0.999706 0.999496 0.999537 0.997394 0.999880 0.999880 0.999810 0.999706

Nearest

Neighbour 0.999342 0.999244 0.999454 0.999230 0.999270 0.992820 0.990905 0.986578 0.998678 0.999244

MLP 0.999510 0.999468 0.999636 0.999384 0.999494 0.998400 0.998839 0.998952 0.998917 0.999608

Logistic

Regression 0.999118 0.999104 0.999272 0.999006 0.999129 0.992409 0.947643 0.887842 0.995568 0.999174

4.6.6 Impact of Oversampling using Novelty K-CGAN

 The utilisation of the novelty K-CGAN to oversample the minority class in credit card fraud detection

dataset has demonstrated several significant impacts. Firstly, the application of the novelty K-CGAN led to

a dataset with equal numbers of fraudulent and valid transactions, achieving a balanced class distribution.

This balance resulted in an overall performance improvement in the model, enhancing the model's capability

to identify fraudulent transactions. Moreover, the performance metrics of the models, including precision,

recall, and F1 scores, remarkably improved following the oversampling process. These metrics indicated that

the novelty of K-CGAN's application in addressing class imbalance resulted in a better credit card fraud

detection performance. By generating synthetic fraud transactions that were representative of the actual

fraudulent transactions, the novelty custom K-CGAN ensured an effective augmentation of the dataset. This

further boosted the classifiers' overall performance.

 Notably, the oversampling approach using the novelty K-CGAN also helped to alleviate the class

imbalance issue, which is a common challenge in credit card fraud detection datasets. By creating synthetic

fraud transactions that closely resembled real fraudulent activities, the models became more adept at

identifying and classifying fraudulent cases accurately. Furthermore, the models generated high precision

and recall values, which are critical metrics for fraud detection. The ability to minimise false positives while

identifying as many fraud cases as possible is crucial in maintaining the effectiveness of fraud detection

systems. The novelty K-CGAN's oversampling approach delivered impressive results in this regard,

improving the precision and recall rates significantly.

 In summary, the utilisation of the novelty K-CGAN in oversampling the minority class in credit card fraud

detection datasets has shown remarkable benefits. By addressing class imbalance, generating representative

synthetic fraud transactions, and improving precision and recall rates, the novelty K-CGAN contributes to

the enhanced credit card fraud detection performance and the overall reliability of the models.

.

156

156

4.7 Optimized Novelty Loss Evaluation comparison breast cancer data

 The entire original dataset was used for training and 80-20% split was not necessary since we planned to

conduct testing with the synthetic dataset. During training using the novelty GAN, we generated 200

synthetic samples of both benign and malignant tumours after a certain number of epochs. We then used this

data to calculate the quality score. Once training is completed, these 200 benign and 200 malignant synthetic

samples are generated using the Novelty loss K-CGAN and this data is used to check the quality of synthetic

dataset.

 (a) (b)

Figure 23: K-CGAN generator (a) and discriminator (b) loss breast cancer data

 Figure 23 (a) shows the generator of K-CGAN on breast cancer data. The generator loss initially increased

up to 300 epochs, but then decreased smoothly and stabilised around 4.0. On the other hand, Figure 23 (b)

presents the discriminator of K-CGAN. The discriminator loss initially increased up to 300 epochs, then

stabilised between 0.4 to 0.5 for the next 700 epochs. These results as shown in Figure 23 indicate that the

K-CGAN architecture was able to generate synthetic samples that are similar enough to the real samples, as

evidenced by the stable generator loss and the discriminator's inability to distinguish between real and

synthetic samples. The stability of the loss values after a certain number of epochs indicates that the GAN

has converged to a stable state, where further training would not significantly improve the performance of

the model. The results concludes that the generator loss first rose up to 300 epochs before gradually declining

and stabilising at around 4.0. After initially rising up to 300 epochs, the discriminator loss stabilised at 0.4

and 0.5 over the following 700 epochs. The steady generator loss and the discriminator's inability to

discriminate between actual and synthetic samples show that the K-CGAN architecture was able to produce

synthetic samples that are sufficiently comparable to the real examples. Further, the continuous generator

loss and the discriminator's inability to distinguish between real and artificial samples demonstrate that the

K-CGAN architecture was successful in creating artificial samples that are sufficiently similar to the real

instances (Ding et al., 2023). After a given number of epochs, the loss values become stable, indicating that

the K-CGAN has reached a stable state where further training will not appreciably enhance the model's

performance (Li et al., 2020).

Balanced Dataset

 In order to address the class imbalance issue in the dataset, we implemented oversampling techniques to

increase the number of samples for the minority class of malignant cases from 212 to 357, as shown in Table

46. In the series of well-designed experiments that followed, we used advanced GAN-based models that

157

157

were carefully optimised and trained. We also employed various oversampling techniques such as ADASYN,

B-SMOTE and SMOTE to augment the dataset. Our main goal was to thoroughly evaluate and compare the

performance and effectiveness of each model. Additionally, we conducted a meticulous analysis of the

classification performance of these models and compared the data quality with the original dataset. Through

these rigorous experiments, we aimed to gain deeper insights into the capabilities and limitations of these

techniques. This allowed us to comprehensively examine and compare the classification performance of each

model and the impact of addressing imbalanced class representation in classification tasks.

Table 46: Balanced breast cancer dataset using optimised methods

Description Value

Benign 357

Malignant 357

4.7.1 Hyperparameter Settings

Oversampling Methods

Table 47: Oversampling methods hyperparameter settings

Method Settings

SMOTE default number of nearest neighbors is 5 (imbalanced-learn.org, n.d.)

ADASYN default number of nearest neighbors is 5 and the default ‘synthetic’ points

per minority class sample is set to 10 (imbalanced-learn.org, n.d.)

B-SMOTE default number of nearest neighbors for B-SMOTE is 5, the default

‘synthetic’ points per minority class sample is set to 10, and the maximum

number of synthetic points that can be generated is 20 (imbalanced-

learn.org, n.d.)

 As indicated by Table 47, the default number of nearest neighbors for SMOTE is 5, as specified on

imbalanced-learn.org. This means that, for each sample in the minority class, SMOTE selects 5 closest

neighbors and generates synthetic samples along the line segments connecting the sample to its neighbors.

The aim is to enhance the representation of the minority class. ADASYN also employs the default number

of nearest neighbors, which is 5. Additionally, ADASYN introduces the concept of density distribution. It

creates extra synthetic samples for minority class samples that exist in densely populated regions, effectively

addressing the issue of imbalance. The default number of 'synthetic' points per minority class sample is set

to 10. Consequently, ADASYN produces 10 synthetic samples for each minority class sample, further

reinforcing the representation of the minority class. Similar to ADASYN, B-SMOTE generates synthetic

samples. The default 'synthetic' points per minority class sample is configured to 10, with a maximum of 20

synthetic points that can be generated, ensuring controlled oversampling.

158

158

Table 48: Vanilla CGAN, WGAN and NS GAN optimised hyperparameter settings

Hyperparameter Vanilla cGAN WGAN NS GAN

Activation Leaky ReLU Relu LeakyReLU

Batch Size 32 16 64

Dropout 0.5 0.1 0.5

Optimizer RMSProp AdaGRAD Adam

Learning Rate 0.0001 0.001 0.001

Discriminator Layers 128,64,32 128,64,32 128,64,32

Generator Layers 64,32 64,32 64,32

 The hyperparameters for the Vanilla CGAN are thoughtfully selected to optimise its performance in

generating breast cancer data samples are listed in Table 48. The Leaky ReLU activation function is used to

introduce non-linearity and address vanishing gradient problems. A batch size of 32 strikes a balance between

computational efficiency and gradient accuracy during training. To prevent overfitting and improve the

model's generalisation capabilities, a dropout rate of 0.5 is implemented. The RMSProp optimizer is chosen

to optimise the model's parameters, with a learning rate of 0.0001 ensuring controlled and steady

convergence. The model's architecture includes three discriminator layers with 128, 64, and 32 nodes,

respectively, enabling it to identify complex data patterns. On the generator side, there are two layers with

64 and 32 nodes, respectively, facilitating the capture of the underlying data distribution.

 The hyperparameters for the WGAN are carefully chosen to optimise its performance in generating breast

cancer data are also shown in Table 48. The Relu activation function is selected for its ability to handle

intricate non-linear relationships within the data. By using a batch size of 16, a balance is achieved between

computational efficiency and gradient stability during training. To prevent overfitting and improve

generalisation, a dropout rate of 0.1 is applied. The AdaGRAD optimizer is utilised to fine-tune the model's

weights, enhancing convergence speed and accuracy. With a learning rate of 0.001, the model ensures a

controlled and steady learning process. The architecture consists of three discriminator layers with 128, 64,

and 32 nodes, allowing it to discern complex patterns in the data. Meanwhile, the generator network

incorporates two layers with 64 and 32 nodes respectively, effectively capturing the underlying data

distribution.

 The NS GAN utilises carefully selected hyperparameters to optimise breast cancer data sample generation

are demonstrated in Table 48. The LeakyReLU activation function is chosen for introducing non-linearity

and addressing the vanishing gradient problem. A batch size of 64 balances computational efficiency and

gradient accuracy. A dropout rate of 0.5 prevents overfitting and improves generalisation. The Adam

optimizer with a learning rate of 0.001 ensures controlled and gradual learning. The model's architecture

consists of three discriminator layers (128, 64, and 32 nodes) and two generator layers (64 and 32 nodes) to

discern intricate patterns and capture data distribution effectively.

159

159

Table 49: LS GAN and SDG GAN optimised hyperparameter settings

Hyperparameter LS GAN SDG GAN

Activation LeakyReLU LeakyReLU

Batch Size 32 64

Dropout 0.5 0.1

Optimizer RMSProp RMSProp

Learning Rate 0.0001 0.001

Discriminator Layers 128,64,32 256,128,64

Generator Layers 64,32 64,32

 Table 49 presents the hyperparameter settings for the LS GAN and SDG GAN models. These models

utilise these optimised hyperparameter configuration parameters to achieve optimal performance for breast

cancer data. The table provides detailed information on the hyperparameters for the activation function, batch

size, dropout rate, optimizer, learning rate, discriminator layers, and generator layers. For the LS GAN

model, the activation function used is LeakyReLU, which introduces a small amount of negative slope to

prevent dead neurons. The batch size is set to 32, ensuring efficient processing of training samples in each

iteration. The dropout rate is set to 0.5, aiding in regularisation and reducing overfitting. The optimizer used

is RMSProp, which adapts the learning rate based on the magnitude of gradient updates. The learning rate is

set to 0.0001, controlling the step size during training. The discriminator in the LS GAN model consists of

three hidden layers with 128, 64 and 32 neurons, respectively. These layers capture complex patterns and

features in the input data. On the other hand, the generator comprises two hidden layers with 64 and 32

neurons, generating synthetic samples that resemble the real data distribution. Moving on to the SDG GAN

model, it also utilises LeakyReLU as the activation function to introduce non-linearity. The batch size is set

to 64, allowing for larger mini-batch training. The dropout rate is set to 0.1, providing regularisation to

prevent overfitting. Similar to LS GAN, RMSProp is used as the optimizer, and the learning rate is set to

0.001. The discriminator in the SDG GAN model is composed of three hidden layers with 256, 128, and 64

neurons, respectively, enabling the model to learn high-level representations. The generator of SDG GAN,

like LS GAN, has two hidden layers with 64 and 32 neurons, generating diverse and realistic synthetic

samples. By fine-tuning these hyperparameters, we’re able to achieve optimised settings for both LS GAN

and SDG GAN models.

160

160

Table 50: Novelty K-CGAN optimised hyperparameter settings for breast cancer data

Hyperparameter Generator

Neural Network

Discriminator

Neural Network

Activation ReLU LeakyReLU

Loss function Modified Binary Cross Entropy +

KL Divergence

Binary Cross Entropy

Hidden Layers (3 - 2 hidden, 1 output) 64, 32, 29 (3 - 2 hidden, 1 output) 20,

15, 1

Dropout 0.2 0.2

Output Optimizer Adam Adam

Learning Rate 0.0001 0.0001

Random Noise Vector 100 -

Kernel Initializer glorot_uniform -

Kernel Regularizer L2 method L2 method

Total Learning Parameters 10,226 1,386

 Table 50 presents the custom hyperparameter settings for the K-CGAN model applied to the breast cancer

dataset. These are specific optimised hyperparameters for both the generator and discriminator neural

networks. The generator neural network comprises two hidden layers, with 64 and 32 neurons respectively,

ensuring a robust representation of the data. The activation function employed in the generator neural

network is ReLU, known for its effectiveness in capturing complex patterns. To optimise the generator's

performance, the loss function combines the trained discriminator loss and Kullback-Leibler (KL)

divergence, promoting both accuracy and diversity in generated samples. The output optimizer utilised is

Adam, a popular choice for its adaptive learning rate capabilities, and the learning rate is set to 0.0001.

Additionally, a dropout layer with a dropout rate of 0.2 is included to prevent overfitting and enhance

generalisation. The generation process is injected with variability by the random noise vector, which has a

dimension of 100. Convergence and stability are promoted by applying the glorot_uniform kernel initializer.

To mitigate overfitting, a kernel regularizer based on the L2 method is employed. The complexity and

capacity of the model are reflected in its total of 10,226 learning parameters.

 Further, the discriminator neural network also consists of two hidden layers, with 20 and 15 neurons

respectively, ensuring discriminative power. The activation function used in the discriminator neural network

is LeakyReLU, which allows the model to capture negative evidence and improve performance. The loss

function employed is binary cross-entropy, enabling effective discrimination between real and generated

samples. Similar to the generator, the output optimizer is Adam with a learning rate of 0.0001. To further

improve robustness, a dropout layer with a dropout rate of 0.2 is integrated into the discriminator neural

network. The L2 method is utilized as a kernel regularizer to prevent overfitting. With a total of 1,386

learning parameters, the model showcases a relatively compact design. These detailed custom

hyperparameter settings provide a solid foundation for the K-CGAN model, ensuring its efficacy and

performance in generating realistic and high-quality samples for breast cancer data.

161

161

Classification Methods

 In our methodology as shown in Table 51, we utilised the Random Forest algorithm due to its robustness

and versatility in handling complex datasets. To ensure controlled randomness during the sampling process,

we specifically set the random_state parameter to 42. By maintaining this default value, we intentionally

guarantee consistent organisation of the dataset during random sampling. As a result, the same training and

testing subsets are consistently derived, promoting uniformity in subsequent analyses and evaluations. This

strategic choice aligns with established best practices and enhances the reliability of our findings (scikit-

learn.org, n.d.). To leverage the effectiveness of ensemble learning, we turned to XGBoost for its

demonstrated prowess in predictive modelling. In line with our commitment to reproducibility and controlled

randomness, we set the random_state parameter to 42. This ensures that the random aspects of XGBoost,

such as sample selection and splitting, follow a consistent pattern across different runs. This alignment with

our overarching goal of maintaining consistency and comparability in our experimentation and analysis

strengthens the reliability of our results (scikit-learn.org, n.d.). To harness the power of neighbor-based

predictions for proximity-based classification tasks, we employed the KNN algorithm. In our pursuit of

optimal performance, we fine-tuned the hyperparameter n_neighbors and set it to 100. This choice dictates

that each prediction is influenced by the 100 nearest neighbors in the dataset, emphasising local patterns and

relationships. This strategic decision enhances the algorithm's ability to capture intricate patterns within the

data, contributing to the reliability of our classification outcomes (scikit-learn.org, n.d.). Our exploration of

deep learning methodologies led us to adopt the MLP classification method, renowned for its capacity to

handle complex data representations. To ensure efficient and effective model training, we configured the

max_iter parameter to represent the maximum number of training epochs. This designation accounts for the

possibility that the learning process might converge before reaching the specified maximum. In our

experiment, we set this value to 300, striking a balance between comprehensive training and computational

efficiency. Additionally, to exert control over randomness and enable reproducibility, we assigned the

random_state a value of 1. This strategic choice aligns with best practices, facilitating the consistent

replication of our results across different iterations (scikit-learn.org, n.d.).

162

162

Table 51: Classification methods hyperparameter configuration settings

Method Settings

Random Forest To control randomness of the sample random_state was set to

42, by setting the default value we’re ensuring that the data is

getting arranged the same way, as a result it returns the same

training and testing subsets.

(scikit-learn.org, n.d.)

XGBoost To control randomness of the sample random_state was set to

42

(scikit-learn.org, n.d.)

KNearest Neighbor The tuning hyper parameter n_neighbors was set to 100

(scikit-learn.org, n.d.)

MLP The max_iter parameter represents the maximum number of

epochs for model training. It is referred to as "maximum"

because the learning process may stop before reaching the

maximum number of iterations, depending on other

termination criteria, we have set it to 300.

To control the random factor (random_state) was set to 1. It’s

recommended to set the seed for the random generator to

confirm that the outcomes can be consistently reproduced.

random_state=1, max_iter=300

(scikit-learn.org, n.d.)

163

163

4.7.2 Results Analysis

Distribution Charts

Correlation

Figure 24: Correlation metric comparison of Original dataset, SMOTE, ADASYN, B-SMOTE, Vanilla

CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN breast cancer data

 Figure 24 displays the correlation metric comparison of the original dataset with multiple methods. The

findings effectively demonstrate that K-CGAN excels in preserving the original structure of the breast cancer

dataset. Notably, K-CGAN outperforms other GAN-based methods by avoiding the introduction of bias or

noise into the data. This indicates the suitability of our method for this specific dataset and further strengthens

its effectiveness in maintaining the original structure. Additionally, the heatmap visually showcases the

correlation patterns among various features, providing valuable insights into the relationship between

multiple variables. The darker colours, closer to 1 or -1, indicate stronger correlations, either positive or

negative, while the lighter colours, closer to 0, indicate weaker correlations or no correlation at all. This

detailed analysis enhances our understanding of the dataset and its underlying characteristics.

Single Column Distribution

 (a) (b)

164

164

 (c) (d)

 (e) (f)

 (g) (h)

 (i) (j)

165

165

 (k) (l)

 (m) (n)

 (o) (p)

 (q) (r)

166

166

 (s) (t)

 (u) (v)

 (w) (x)

 (y) (z)

167

167

 (z1) (z2)

 (z3) (z4)

Figure 25: Single column ‘area_mean’ distribution comparison of Original dataset, SMOTE, ADASYN, B-

SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN breast cancer data (a),

‘area_se’ (b), ‘area_worst’ (c), ‘compactness_mean’ (d), ‘compactness_se’ (e), ‘compactness_worst’ (f),

‘concave points_mean’ (g), ‘concave points_se’ (h), ‘concave points_worst’ (i), ‘concavity_mean’ (j),

‘concavity_se’ (k), ‘concavity_worst’ (l), ‘fractal_dimension_mean’ (m), ‘fractal_dimension_se’ (n),

fractal_dimension_worst’ (o), ‘perimeter_mean’ (p), ‘perimeter_se’ (q), ‘perimeter_worst’

(r),‘radius_mean’ (s),‘radius_se’ (t), ‘radius_worst’ (u), ‘smoothness_mean’ (v), ‘smoothness_se’ (w),

‘smoothness_worst’ (x), ‘symmetry_mean’ (y), ‘symmetry_se’ (z), ‘symmetry_worst’ (z1), ‘texture_mean’

(z2), ‘texture_se’ (z3), ‘texture_worst’ (z4)

 Algorithm effectiveness can be evaluated by comparing the distribution of every feature across the dataset.

Figure 25 (a) and (b) shows the single-columns 'area_mean' and 'area_se' distribution comparison between

original, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-

CGAN with breast cancer dataset reveals that the methodologies employed have had a significant impact on

the dataset. Moreover, it is evident that the K-CGAN achieved commendable quality. It can be seen that

overall K-CGAN closely resembles the original data and its distance between the actual and generated

samples is much lower than that of other GAN algorithms used in this study. This demonstrates a great

potential for reducing data imbalance in breast cancer datasets and achieving an equitable distribution of

values.

 Figure 25 (c) and (d) illustrates the comparison of the single column 'area_worst' and 'compactness_mean'

distribution among the original dataset, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG

GAN, NS GAN , LS GAN and K-CGAN with breast cancer data. It is evident that while some algorithms

were able to capture the true distribution of the data, others produced results with significant deviations.

Overall, the Novelty K-CGAN approach emerged to be effective, accurately reflecting the quality of original

dataset. The findings suggest that generative modelling of K-CGAN is a viable method for synthesising new

data points for breast cancer data. Further comparisons, Figure 25 (e) and (f) illustrates the single columns

'compactness_se' and 'compactness_worst' distribution between the original dataset and algorithms such as

168

168

SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN, and K-CGAN

with breast cancer data. Out of all the GAN-based algorithms, it was found that despite some deviations the

K-CGAN improvement in predictability when using this algorithm over the others.

 Figure 25 (g) and (h) displays the single column ‘concave points_mean’ and 'concave points_se'

distribution comparison of various algorithms applied to breast cancer dataset. The results reveal that overall

novelty K-CGAN achieved reasonable degree of similarity. Figure 25 (i) and (j) presents a single column

‘concave points_worst’ and ‘concavity_mean’ distribution comparison of the original dataset, SMOTE,

ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with breast

cancer data. The results show that the novelty loss K-CGAN algorithm performed the best among all the

GAN-based variants tested. This finding confirms that the K-CGAN approach is a viable solution for dealing

with imbalanced datasets. It is also worth noting that among the other imbalanced learning algorithms,

SMOTE and ADASYN achieved superior results.

 Figure 25 (k) and (l) demonstrates the comparison of the single-column 'concavity_se' and

'concavity_worst' distribution between the original dataset and the synthetic datasets generated by SMOTE,

ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN with breast

cancer data. Of all the GAN-based algorithms, overall K-CGAN showed the highest effectiveness in terms

of data distribution. This performance is reflective of the capabilities of this algorithm and its potential to be

used for other datasets. The results suggest that K-CGAN has strong capacity to generate synthetic datasets

with closely resembling distributions as compared to the original dataset. Figure 25 (m) and (n) presents a

comparison of the single column 'fractal_dimension_mean' and ‘fractal_dimension_se’ distribution in the

original dataset alongside various synthetically generated by SMOTE, ADASYN, B-SMOTE, Vanilla

CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN. The overall output from the novel K-CGAN

algorithm demonstrating superior performance in comparison to all other GAN-based algorithms. This result

is indicative of the effectiveness of K-CGAN in producing accurate synthetic datasets from existing data

sources. As such, K-CGAN can be considered a viable solution for generating synthetic datasets as part of

predictive analytics projects.

 Figure 25 (z) and (p) clearly shows the single column 'fractal_dimension_worst' and 'perimeter_mean'

distribution comparison of original dataset, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG

GAN, NS GAN, LS GAN and K-CGAN. Of all the algorithms used for balancing the breast cancer data set,

K-CGAN demonstrated good standing results. Figure 25 (q) and (r) presents a comparison of the single

column 'perimeter_se' and 'perimeter_worst' distribution between the original dataset and various data

augmentation techniques SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN,

LS GAN and K-CGAN. It is evident that despite some deviations the K-CGAN model is stable in good

standing. This result suggests that GANs, when used in conjunction with a novelty loss, can be an effective

tool for data augmentation and improving classifier accuracy.

 Figure 25 (s) and (t) illustrates a comparison of the single column ‘radius_mean’ and ‘radius_se’

distributions from the original dataset, as well as SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN,

SDG GAN, NS GAN, LS GAN and K-CGAN. It is clear from the results that overall despite some deviations

the K-CGAN algorithm produced the quality representation of the underlying data, outperforming all other

GAN-based algorithms.

 Figure 25 (u) and (v) demonstrates the single column comparison of ‘radius_se’ and ‘radius_worst’

distribution with the original dataset, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN,

NS GAN, LS GAN and K-CGAN on breast cancer data. The results of the comparison indicate that K-CGAN

outclasses all other GAN-based algorithms in terms of producing an quality representation of the underlying

dataset. The univariate distribution in Figure 25 (v) shows that of all algorithms, K-CGAN has the closest

resemblance to the original data ‘smoothness_mean’. The distance between the actual and generated samples

169

169

is significantly less when using K-CGAN compared with other GAN-based algorithms. This suggests that

K-CGAN is more effective at producing synthetic data that resembles the original dataset than the other

GAN-based algorithms. This indicates that K-CGAN is a viable solution for generating high quality, realistic

datasets for use in machine learning applications.

 Figure 25 (w) and (x) show that K-CGAN is effective algorithm for generating samples closely resembling

those in the original dataset. The univariate comparison of ‘smoothness_se’ and 'smoothness_worst'

distributions demonstrates this clearly; the distance between the actual and generated samples is far less in

the case of K-CGAN compared to other GAN-based algorithms. This indicates that K-CGAN is efficient

algorithm for generating samples that closely represent those in the original dataset. Figure 25 (y) and (z)

illustrates the effectiveness of K-CGAN compared to other GAN-based algorithms. The single column

comparison of 'symmetry_mean' and ‘symmetry_se’ distribution for the original dataset along with SMOTE,

ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN reveals that K-CGAN

overall resembles the original data. Furthermore, the distance between actual and generated samples overall

is far lesser for K-CGAN than other methods. This emphasizes its effectiveness in generating synthetic data

that mimics real-world characteristics. As a result, it can be safely assumed that K-CGAN is a promising

algorithm for creating synthetic datasets which approximate real-world data.

 The univariate distribution of 'symmetry_worst' and 'texture_mean' in Figure 25 (z1) and (z2) provides a

clear picture of the effectiveness of various algorithms on breast cancer data. The original data has the closest

resemblance to K-CGAN, with a smaller distance between actual and generated samples than other GAN-

based approaches. This indicates that K-CGAN is efficient at learning the characteristics of the original

dataset and accurately reproducing them in generated data. Furthermore, K-CGAN also provides improved

stability and controllability during training, resulting in better-quality synthetic data. Consequently, K-

CGAN is a reliable method for generating high-fidelity synthetic datasets that closely represent real-world

data distributions. Figure 25 (z3) and (z4) demonstrates the effectiveness of various algorithms in generating

dataset samples that closely resemble the original data. The single column comparison presents the

distribution of 'texture_se' and ‘texture_worst’ for original dataset, SMOTE, ADASYN, B-SMOTE, Vanilla

CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN on breast cancer data. The univariate

distribution indicates that the K-CGAN algorithm overall has the close resemblance to the original data.

Furthermore, this is evidenced by the fact that distance between actual and generated samples is lesser in

case of K-CGAN as compared with other GAN-based algorithms.

Bi-Variate Distribution

 (a) (b)

170

170

 (c) (d)

 (e) (f)

 (g) (h)

 (i) (j)

 (k) (l)

171

171

 (m) (n)

 (o)

Figure 26: Bi-variate distribution ‘area_mean vs symmetry_worst’ comparison of original dataset, SMOTE,

ADASYN, B-SMOTE, Vanilla GAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN on breast

cancer data (a), ‘compactness_worst vs symmetry_worst’ (b), ‘concavity_se vs symmetry_se’ (c),

‘fractal_dimension_worst vs area_se’ (d), ‘fractal_dimension_worst vs radius_se’ (e),

‘fractal_dimension_worst vs symmetry_worst’ (f), ‘perimeter_se’ vs concavity_mean’ (g),

‘perimeter_worst vs radius_mean’ (h), ‘radius_mean vs smoothness_se’ (i), ‘radius_se vs area_worst’ (j),

‘smoothness_se vs concavity_se’ (k), ‘smoothness_se vs perimeter_se’ (l), ‘symmetry_se vs

compactness_worst’ (m), ‘symmetry_worst vs compactness_se’ (n), ‘texture_mean vs

fractal_dimension_se’(o)

 Figure 26 (a) presents the Bi-variate distribution ‘area_mean vs symmetry_worst’ comparison between

the original dataset and SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS

GAN and K-CGAN with breast cancer data. The bivariate visualization charts of data points generated by

K-CGAN demonstrate strong agreement with the original dataset, indicating that this algorithm is effective

in creating realistic synthetic datasets. This suggests that K-CGAN has great potential for being implemented

in future research projects dealing with data augmentation. It is also worth noting that the other algorithms

tested performed well, as can be seen from the visualizations. However, K-CGAN stands out among them

due to its more stable accuracy in producing samples that closely resemble the original dataset. The

effectiveness of the K-CGAN algorithm can be seen from its bivariate visualization charts, which show a

high resemblance to the original dataset. Figure 26 (b) compares ‘compactness_worst’ and

‘symmetry_worst’ features and shows that the data points generated by K-CGAN closely match that of the

original dataset. This indicates that K-CGAN is effective in generating synthetic datasets, the accuracy of

the data points generated by K-CGAN can be attributed to its use of custom hyperparameter architecture and

custom loss for generating datasets which accurately reflects the characteristics of the original dataset.

 Figure 26 (c) shows the Bi-variate distribution ‘concavity_se vs symmetry_se’ comparison of the original

dataset, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN, WGAN, SDG GAN, NS GAN, LS GAN and K-

CGAN with the breast cancer data. The bivariate visualization charts clearly show K-CGAN's capability in

generating synthetic datasets that accurately represent the features of the original dataset. The data points

generated by the K-CGAN are similar to that of the original dataset, as can be seen from the bivariate

visualizations. Figure 26 (d) demonstrates that this approach is effective in generating synthetic

‘fractal_dimension_worst vs area_se’ samples with high similarity to real world data. These findings give

credence to the theory that K-CGAN can successfully generate meaningful and useful biases, allowing its

172

172

applications to be extended beyond the domain of breast cancer data. The high degree of similarity between

these synthetic samples and real world data suggests that K-CGAN can be a powerful tool in augmenting

existing datasets for further research.

 The bivariate visualizations of the data points generated by K-CGAN illustrate a strong correlation to the

original dataset. Figure 26 (e) shows that despite some level of deviation K-CGAN was able to replicate the

distribution and variance of the ‘fractal_dimension_worst vs radius_se’ original data samples, even when

faced with imbalanced data. This demonstrates that K-CGAN is an effective algorithm for generating

synthetic data. The effectiveness of the K-CGAN algorithm is evident from Figure 26 (f), as it successfully

generated data points that are highly comparable to those in the original dataset. This can be seen in particular

when comparing the bivariate visualization distribution chart comparison of ‘fractal_dimension_worst vs

symmetry_worst’ data points generated by K-CGAN with those of the original dataset, and other methods.

The set of data points generated by K-CGAN show a high degree of similarity to the original dataset, strongly

indicating that K-CGAN is an effective algorithm for generating new data. Moreover, due to its highly

accurate reproduction of original data samples, K-CGAN could prove invaluable in numerous research and

development projects where large amounts of data must be swiftly generated.

 K-CGAN is an effective algorithm for generating synthetic data points that closely resemble the real data

samples. This is evident from Figure 26 (g) that shows the bi-variate distribution chart comparing

'perimeter_se' vs concavity_mean’ of original dataset, SMOTE, ADASYN, B-SMOTE, Vanilla CGAN,

WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN algorithm offers a reliable way of generating

additional samples. In Figure 25 (h), the bivariate visualisation chart comparing ‘perimeter_worst vs

radius_mean’ data points generated by the K-CGAN algorithm showed some deviation. As shown in Figure

25 (i), the bivariate visualization charts generated by the K-CGAN algorithm provide a clear indication of

its effectiveness in accurately representing the original dataset. This is a testament to the robustness of the

algorithm, showing that it can handle datasets with various complexities without compromising accuracy or

precision.

 As shown in Figure 26 (j), the bivariate visualization charts of data points generated by K-CGAN have

demonstrated agreement with the original dataset for ‘radius_se vs area_worst’ in presence of some

deviations. The visualizations highlight the potential of K-CGAN as a reliable and viable tool for medical

data augmentation. The effectiveness of the algorithms was determined by assessing the bi-variate

distribution comparison of the original dataset, SMOTE, ADASYN, B-SMOTE, Vanilla GAN, WGAN,

SDG GAN, NS GAN, LS GAN and K-CGAN with breast cancer data. As seen from Figure 26 (k), the data

points ‘smoothness_se vs concavity_se’ generated by the K-CGAN prove its quality performance compared

to other algorithms.

 The effectiveness of the K-CGAN algorithm is evident in the bivariate visualization charts, which

demonstrate high agreement with the original dataset. The data points ‘smoothness_se vs perimeter_se’

generated by K-CGAN show a close resemblance to those present in the original dataset, as can be seen from

Figure 26 (l). Furthermore, overall the smoothness and perimeter of the data points generated by K-CGAN

were shown to be similar to those from the original dataset, further illustrating its effectiveness in accurately

replicating breast cancer data points. Figure 26 (m) shows the bivariate visualization chart comparing

‘symmetry_se vs compactness_worst’ data points generated by K-CGAN and other methods. The findings

suggest that K-CGAN is highly effective in creating synthetic data points which closely resemble the

distribution and characteristics of the original dataset. This indicates that K-CGAN is a reliable algorithm

for generating new samples which can be used for various applications such as anomaly detection,

classification, and regression tasks.

 Figure 26 (n) shows that K-CGAN had a high degree of success in preserving the characteristics and

properties of the original dataset. These results indicate that K-CGAN has a clear advantage over existing

173

173

data augmentation algorithms in terms of accuracy and effectiveness, making it an ideal choice for tackling

challenging data augmentation tasks. Figure 26 (o) illustrates visualizations of the bivariate distribution

between texture_mean and fractal_dimension_se illustrate a comparison of the original dataset with SMOTE,

ADASYN, B-SMOTE, Vanilla GAN, WGAN, SDG GAN, NS GAN, LS GAN and K-CGAN on breast

cancer data. It can be seen from the visualizations that overall the data points generated by K-CGAN highly

resemble those of the original dataset. This indicates that K-CGAN is an effective algorithm for generating

synthetic data with properties similar to those of real data.

4.7.3 Classification performance with original breast cancer data

 In the analysis of classification performance using the original imbalanced dataset, a typical 80-20 split

was employed for training and testing. 80% of the dataset was used for model training, and the remaining

20% was dedicated to evaluating their performance. This approach ensured a thorough evaluation of the

models' ability to generalise and make accurate predictions on unseen data. Table 52 displays the

classification performance on the original imbalanced dataset.

Table 52: Classification methods on original imbalanced breast cancer data

Model Precision Recall F1 Score Accuracy

XGBoost 0.946429 0.981481 0.963636 0.972028

Random Forest 0.96 0.888889 0.923077 0.944056

Nearest Neighbor 0.977273 0.796296 0.877551 0.916084

MLP 0.962963 0.962963 0.962963 0.972028

Logistic Regression 1 0.962963 0.981132 0.986014

 An analysis of the performance indicators of various classifiers on the initial imbalanced breast cancer

dataset, as depicted in Table 52, provides a valuable narrative. The performance of the XGBoost classifier

demonstrated a satisfactory balance. The model attained a precision value of 0.946429 and a recall value of

0.981481, resulting in an F1 score of 0.963636. The XGBoost model achieved a notable accuracy of

0.972028. Fundamentally, XGBoost exhibited a notable attribute in this context, as it demonstrated a high

level of precision and particularly excelled in recall. This suggests that XGBoost was proficient in accurately

detecting positive instances within the given dataset. In contrast, the Random Forest algorithm demonstrated

a high precision rate of 0.96. Nevertheless, the recall of the model was 0.888889, which was comparatively

lower in comparison to XGBoost. As a result, the F1 score of the model reached 0.923077, accompanied

with an overall accuracy of 0.944056. This implies that although Random Forest shown competence in

accurately predicting positive instances, it may have overlooked certain positive examples, resulting in a

slightly lower recall rate. The performance of the Nearest Neighbour classifier was characterised by a

precision of 0.977273, indicating a high level of accuracy in correctly identifying positive instances.

However, the recall value of 0.796296 was observed to be comparatively lower, suggesting that the classifier

had a relatively higher rate of FNs, failing to identify some positive instances. As a result, the F1 score

obtained was 0.877551, and the accuracy achieved was 0.916084. The observed disparity between the

precision and recall metrics suggests that the Nearest Neighbour algorithm exhibited a high level of precision,

but had difficulties in accurately identifying all positive instances. In comparison, MLP exhibited a

harmonious equilibrium between precision and recall, with both metrics achieving a value of 0.962963. The

174

174

equilibrium state yielded an F1 score of 0.962963 and an accuracy of 0.972028. This finding suggests that

MLP successfully maintained high levels of precision and recall, resulting in a consistent performance across

several evaluation parameters. Finally, Logistic Regression emerged as an exceptional performer. The model

achieved an impressive F1 score of 0.981132, with a precision of 1 and a recall of 0.962963. The classifier

had the highest level of accuracy, measuring at 0.986014. This finding suggests that Logistic Regression

demonstrated high precision in correctly identifying positive occurrences, while also successfully capturing

a large proportion of the positive cases. In summary, the initial dataset pertaining to imbalanced breast cancer

exhibited diverse performance patterns among different classifiers. While many algorithms, such as

XGBoost and MLP, demonstrated a commendable balance between precision and recall, others, such as

Random Forest and Nearest Neighbour, exhibited a modest discrepancy between the two metrics. However,

Logistic Regression demonstrated an optimal balance between precision and recall, making it the most

effective classifier for this specific dataset.

4.7.4 Classification performance with balanced dataset

 In the evaluation of classification performance using the balanced dataset through the application of the

K-CGAN model, a similar approach was adopted. An 80-20 split was utilised, allocating 80% of the balanced

dataset for model training and reserving the remaining 20% for testing. This strategy ensured that the model's

performance was assessed in the context of balanced class distributions, addressing the challenges posed by

class imbalance.

Table 53: Classification performance with balanced breast cancer dataset using Novelty K-CGAN

oversampling minority class

Model Precision Recall F1 Score Accuracy

XGBoost 0.982801 0.991326 0.991326 0.99125

Random Forest 0.977995 0.988875 0.988875 0.98875

Nearest Neighbor 0.982801 0.991326 0.991326 0.99125

MLP 0.985222 0.992556 0.992556 0.99250

Logistic Regression 0.977995 0.988875 0.988875 0.98875

 After conducting a comparative analysis of the performance metrics of various classifiers on the balanced

breast cancer dataset, following the application of the K-CGAN method to oversample the minority class,

the findings presented in Table 53 reveal noteworthy observations and trends when juxtaposed with the

performances of the same classifiers on the original imbalanced dataset, as documented in Table 52. The

XGBoost model shown a significant improvement in all performance indicators when applied to the balanced

dataset. The precision of the system increased dramatically from 0.946429 to 0.982801, while the recall also

improved, rising from 0.981481 to an almost flawless 0.991326. The aforementioned enhancement resulted

175

175

in a notable increase in the F1 score, rising from 0.963636 to 0.991326. This signifies a more optimal

equilibrium between precision and recall. Furthermore, there was a noticeable and statistically significant

enhancement in the precision of the XGBoost model, with the accuracy score increasing from 0.972028 to

0.99125. When considering the Random Forest classifier, it becomes apparent that the act of balancing the

dataset has also yielded a favourable outcome. The precision of the Random Forest algorithm shown a slight

improvement, increasing from 0.96 to 0.977995. Additionally, the recall rate had a significant rise, rising

from 0.888889 to 0.988875. The notable increase in recall made a significant contribution to the

improvement of the F1 score, which rose from 0.923077 to 0.988875. The model's accuracy exhibited an

increase from 0.944056 to 0.98875. Upon examination of the Nearest Neighbour classifier, it is evident that

the data exhibits a significant improvement in its performance. The precision increased somewhat from

0.977273 to 0.982801, while the recall demonstrated a significant improvement, rising from 0.796296 to

0.991326. The improvement in memory dramatically reduced the previously reported disparity between

precision and recall, leading to a more equitable and elevated F1 score of 0.991326, which represents a

substantial increase from 0.877551. The model's accuracy demonstrated significant improvement, rising

from 0.916084 to 0.99125. Significant enhancements were observed in both precision and recall metrics for

the MLP classifier following the application of dataset balancing techniques. The precision metric exhibited

an improvement from 0.962963 to 0.985222, and the recall metric also demonstrated an increase from

0.962963 to 0.992556. The consistent growth observed in both parameters resulted in a higher F1 score of

0.992556, which represents a significant improvement compared to the previous score of 0.962963. In a

similar vein, the accuracy of this model was also improved, achieving a value of 0.99250 compared to the

previous value of 0.972028. Furthermore, the Logistic Regression model exhibited improved performance

when applied to the balanced dataset, despite its already good performance in the imbalanced dataset. The

precision shown a marginal decline from an ideal value of 1 to 0.977995, but the recall demonstrated an

improvement from 0.962963 to 0.988875. Consequently, the F1 score exhibited an increase from 0.981132

to 0.988875, suggesting a heightened level of equilibrium in performance. The model's accuracy

demonstrated a slight yet favourable increase, progressing from 0.986014 to 0.98875. In conclusion, it is

evident that the utilisation of the K-CGAN approach resulted in the generation of a balanced breast cancer

dataset, which subsequently contributed to enhanced and consistent performances across all classifiers. This

highlights the significance of mitigating class disparities in datasets, particularly as exemplified by instances

such as the Nearest Neighbour classifier, which exhibited a notable improvement in the balance between

precision and recall when applied to a dataset that was appropriately balanced.

 Furthermore, the ROC curves exhibited enhanced performance, with the AUC values consistently

increasing after the oversampling technique was applied. It is worth noting that the impact of oversampling

on the performance of different classifiers varied, yet all models achieved remarkable results. Particularly,

XGBoost, Nearest Neighbor, and MLP demonstrated exceptional precision, recall, F1 score, and accuracy.

Additionally, Random Forest and Logistic Regression also exhibited robust performance across these

evaluation metrics.

 The utilisation of oversampling, specifically with the novelty K-CGAN, facilitated the creation of more

diverse synthetic samples, which better represented the underlying distribution of the minority class. This,

in turn, aided in reducing overfitting and improving the generalisation capability of the models to unseen

data. Moreover, the analysis of the generator and discriminator losses revealed the effectiveness of the

novelty K-CGAN in converging to a stable solution. As the training progressed, the generator gradually

learned to generate realistic synthetic samples, while the discriminator became increasingly proficient at

distinguishing between real and fake data. Overall, the combination of oversampling with the novelty K-

176

176

CGAN technique proved to be successful in addressing the class imbalance challenge, enhancing the

performance of the classifiers, and improving the overall robustness and generalisation ability of the models.

4.7.5 Classification performance with balanced dataset multiple models comparison

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

 (j)

Figure 27: ROC curves (a) original imbalanced dataset, (b) balanced dataset with SMOTE, (c) balanced

dataset ADASYN, (d) balanced dataset with B-SMOTE, (e) balanced dataset with Vanilla CGAN, (f)

balanced dataset with SDG GAN, (g) balanced dataset with NS GAN, (h) balanced dataset with WGAN, (i)

balanced dataset with LS GAN, (j) balanced dataset with K-CGAN

177

177

 The ROC curves demonstrated a significant improvement in performance when comparing imbalanced

and balanced datasets are shown in Figure 27. After applying various oversampling techniques, the AUC

values consistently increased, indicating the effectiveness of these methods. However, it is important to

highlight that the impact of oversampling on the performance of different classifiers varied, showcasing the

nuanced nature of the results. Despite these variations, all models achieved remarkable outcomes, further

validating the benefits of employing oversampling in addressing class imbalance.

Comparison of all classification methods and models

Table 54: F1 Score values for classification methods multiple methods comparison

Model LS GAN WGAN NS GAN

SDG

GAN

Original

dataset K-CGAN SMOTE ADASYN B-SMOTE

VANILLA

GAN

XGBoost 0.857741 0.896074 0.79558 0.768362 0.963636 0.991326 0.972973 0.956522 0.978723 0.971751

Random

Forest 0.902326 0.925301 0.927273 0.728843 0.923077 0.988875 0.962162 0.956989 0.968421 0.965909

Nearest

Neighbour 0.901961 0.917073 0.933025 0.868841 0.877551 0.991326 0.920455 0.91579 0.897959 0.934132

MLP 0.917706 0.952153 0.918033 0.645367 0.962963 0.992556 0.962162 0.951351 0.968085 0.965909

Logistic

Regression 0.907731 0.924939 0.922727 0.863158 0.981132 0.988875 0.967742 0.951872 0.93617 0.99422

 Upon examination of the F1 scores obtained from the application of different oversampling methods to

the breast cancer dataset, the Table 54 summarizes the findings. The F1 score is a mathematical measure that

combines precision and recall, providing a comprehensive evaluation statistic. A higher score approaching

1 indicates superior performance in terms of combined precision and recall. In the context of the original

imbalanced breast cancer dataset, the Logistic Regression model demonstrated the best F1 score, roughly

0.981, with XGBoost and MLP closely trailing behind. It is noteworthy that the use of K-CGAN

oversampling resulted in a significant increase in F1 scores for all classifiers. The MLP classifier had the

highest F1 score, approximately 0.993, while XGBoost and Nearest Neigbour closely followed with a score

of 0.991326. Upon examining the GAN-based methodologies, it is evident that the performance outcomes

are varied. The utilisation of LS GAN and WGAN techniques typically resulted in classifiers attaining F1

scores ranging from 0.85 to 0.95. However, the implementation of SDG GAN unexpectedly lowered the

efficacy of the classifiers, as evidenced by the significant decline of MLP's F1 score to 0.645. The outcomes

of NS GAN, specifically in relation to Nearest Neighbour (about 0.933) and Random Forest (around 0.927),

demonstrate noteworthy performance. These findings indicate that the oversampling technique employed by

NS GAN could potentially enhance the effectiveness of these classifiers. The performance of the VANILLA

CGAN was marginally inferior to that of K-CGAN, however it yielded comparable F1 scores. Notably, in

the context of Logistic Regression, the VANILLA CGAN achieved an excellent score of around 0.994. Based

on the conducted investigation, it is apparent that the utilisation of the K-CGAN oversampling technique

yields a substantial and favourable influence on the performance of classifiers, particularly in the case of

MLP, XGBoost and Nearest Neighbour. When selecting an oversampling strategy for the breast cancer data,

it is reasonable to use K-CGAN due to its constant improvement across many evaluation metrics. However,

it is important to consider the selection of a classifier while making this decision, as the effectiveness of the

178

178

oversampling approach can vary depending on the compatibility between the classifier and the chosen

method.

Table 55: Accuracy Score values for classification methods multiple methods comparison

Model

 LS

GAN WGAN

 NS

GAN

 SDG

GAN

Original

dataset K-CGAN

SMOTE ADASYN B-SMOTE

 VANILLA

GAN

 XGBoost

0.8804

91

0.92091

4 0.869947 0.855888 0.972028 0.99125 0.972067 0.955556 0.977654 0.972067

 Random

Forest

0.9261

86

0.94551

8 0.943761 0.724077 0.944056 0.98875 0.960894 0.955556 0.968421 0.96648

 Nearest

Neighbour

0.9297

01

0.94024

8 0.949033 0.910369 0.916084 0.99125 0.921788 0.911111 0.897959 0.938547

 MLP

0.9420

03

0.96485

1 0.988489 0.804921 0.972028 0.9925 0.960894 0.95 0.968085 0.96648

 Logistic

Regression

0.9349

74

0.94551

8 0.940246 0.908612 0.986014 0.98875 0.96648 0.956989 0.93617 0.994413

 By examining the accuracy ratings of different classifiers over a range of oversampling techniques,

insights into the efficacy of each combination of methods in accurately classifying the breast cancer dataset

is presented in Table 55. After doing an evaluation of the original imbalanced breast cancer dataset, it was

evident that Logistic Regression has notable performance with an accuracy of roughly 0.986. This is a

comparatively high score to the performance of XGBoost, which achieved an accuracy of around 0.972. The

incorporation of K-CGAN oversampling into the data results in a notable increase in accuracy for all

classifiers. Among them, the MLP classifier demonstrates the highest accuracy at approximately 0.9925,

while XGBoost and Nearest Neighbour classifiers closely trail behind, achieving approximately 0.99125

accuracy. Upon examining the GAN-based methodologies, it becomes evident that WGAN demonstrates the

highest level of consistent improvement across classifiers. Specifically, the MLP classifier achieves an

accuracy of around 0.96485, while the Random Forest classifier achieves an accuracy of approximately

0.94551. In sharp contrast, the utilisation of SDG GAN leads to a notable loss in performance, particularly

seen in the case of Random Forest, where the accuracy drops significantly to 0.724077. The performance of

the NS GAN model exhibits remarkable potential, particularly when combined with MLP architecture,

yielding an accuracy level of roughly 0.98849. The accuracy values obtained with VANILLA CGAN are

comparable to those of K-CGAN, particularly when considering Logistic Regression. Notably, Logistic

Regression achieves an impressive accuracy rate of around 0.99441. This comprehensive analysis

emphasises the effectiveness of the K-CGAN oversampling technique, which regularly enhances classifier

performance by significantly improving accuracy scores. However, it is important to examine the alignment

between the classifier and the oversampling technique when selecting a strategy for the breast cancer dataset,

as the benefits can differ.

179

179

Table 56: Recall Score values for classification methods multiple methods comparison

Model

 LS

GAN WGAN NS GAN SDG GAN

Original

dataset K-CGAN

SMOTE

ADASYN B-SMOTE

 VANILLA

GAN

 XGBoost

 0.966981 0.915094 0.679245 0.641509 0.981481 0.991326

0.97826

1 0.946237 1 0.988506

 Random

Forest

 0.915094 0.90566 0.962264 0.995283 0.888889 0.988875

0.96739

1 0.956989 1 0.977012

 Nearest

Neighbour 0.867925 0.886792 0.95283 0.783019 0.796296 0.991326

0.88043

5 0.935484 0.956522 0.896552

 MLP

 0.867925 0.938679 0.924528 0.476415 0.962963 0.992556

0.96739

1 0.946237 0.98913 0.977012

 Logistic

Regression 0.858491 0.900943 0.957547 0.773585 0.962963 0.988875

0.97826

1 0.956989 0.956522 0.988506

 Table 56 shows that in the original imbalanced breast cancer dataset, XGBoost demonstrated a notable

recall value of 0.981481. This performance was marginally surpassed when the K-CGAN oversampling

technique was employed in conjunction with XGBoost, resulting in a recall score of 0.991326. This suggests

that the model demonstrated a high level of accuracy in accurately recognising the positive cases within the

dataset. The WGAN demonstrated a varied tendency to enhance the recall performance of some classifiers,

while at the same time lowered for some classifiers such as for XGBoost, MLP and Logistic Regression. In

the case of XGBoost, the recall value was reduced to be 0.915094 from 0.981481, however with the Nearest

Neighbour, the recall value increased to 0.886792 from 0.796296. In contrast, the utilisation of the SDG

GAN approach appeared to have a negative impact on the recall scores, particularly in the case of XGBoost

and MLP, where the respective values were seen to be 0.641509 and 0.476415. The performance of NS GAN

was varied, with notable improvements in recall observed when combined with Random Forest, achieving a

score of 0.962264. However, when applied with XGBoost, it resulted in a decrease in recall to 0.679245. B-

SMOTE, one of the conventional oversampling techniques, consistently improved the recall values. It

achieved a flawless score of 1 when applied to both XGBoost and Random Forest algorithms. ADASYN, B-

SMOTE and SMOTE shown an increase in recall scores for most classifiers. Specifically, SMOTE showed

a strong synergy with Random Forest, Nearest Neighbour, MLP and Logistic Regression resulting in recall

scores of 0.967391, 0.880435, 0.967391, and 0.978261 respectively. While B-SMOTE achieving 1 for

XGBoost and Random Forest, and 0.98913 with MLP. The effectiveness of VANILLA CGAN, similar to

K-CGAN, was demonstrated across many classifiers, notably enhancing the recall scores for XGBoost and

Logistic Regression. In both cases, the recall scores reached a value of 0.988506. In conclusion, the K-CGAN

oversampling technique has been identified as a highly effective approach for enhancing recall performance

in classifiers. However, it is important to carefully analyse the compatibility between the classifier and

oversampling method while choosing a strategy for the breast cancer dataset, as the effectiveness displayed

exhibited subtle differences.

180

180

Table 57: Precision Score values for classification methods multiple methods comparison

Model

 LS GAN WGAN

 NS

GAN

 SDG

GAN

Original

dataset

 K-

CGAN

SMOTE

ADASYN B-SMOTE

VANILLA

GAN

 XGBoost

 0.770677 0.877828 0.96 0.957747 0.946429 0.982801 0.966981 0.946237 0.978723 0.955556

 Random

Forest

 0.889908 0.945813 0.894737 0.574932 0.96 0.977995 0.915094 0.956989 0.968421 0.955056

 Nearest

Neighbour 0.938776 0.949495 0.914027 0.97078 0.977273 0.982801 0.867925 0.935484 0.897959 0.975

 MLP

 0.973545 0.966019 0.911628 1 0.962963 0.985222 0.867925 0.946237 0.98913 0.955056

 Logistic

Regression 0.962963 0.950219 0.890351 0.97619 1 0.977995 0.858491 0.956989 0.956522 1

 Through an investigation into the performance of oversampling strategies, it was shown that the K-CGAN

method had a notable efficacy in significantly improving precision across all domains as per Table 57. The

MLP model achieved the highest precision value of 0.985222, while the XGBoost model closely followed

with a precision value of 0.982801. It is worth mentioning that the Nearest Neighbour classifier demonstrated

a commendable precision score of 0.982801 when used in conjunction with K-CGAN. The integration of

classifiers with WGAN resulted in a significant enhancement in precision across the majority of models. As

an example, the precision of XGBoost experienced a substantial decline, reaching a value of 0.877828 from

0.946429, whereas Random Forest exhibited a notable decline, achieving a precision of 0.945813. The

approach of SDG GAN demonstrated varied results. Although it led to a precise measurement of 1 for MLP,

it significantly reduced the precision for Random Forest, yielding a score of 0.574932. Various traditional

oversampling approaches, such as SMOTE, ADASYN, and B-SMOTE, have demonstrated diverse impacts

on precision. The B-SMOTE technique exhibited strong compatibility with the XGBoost algorithm, resulting

in a notable increase in precision to 0.978723. K-CGAN resulted in the second highest MLP 0.98913 rising

from original 0.962963. In a similar vein, it was shown that ADASYN had a favourable compatibility with

both Random Forest and MLP, resulting in precision scores surpassing 0.946. The logistic regression original

value of 1 was reduced by all models except Vanilla CGAN. The Vanilla CGAN approach consistently

enabled the achievement of high precision levels across several classifiers. The Logistic Regression model

achieved a precision of 1, indicating a high level of accuracy. On the other hand, the Nearest Neighbour

model achieved a score of 0.975, suggesting a strong performance. In conclusion, the utilisation of the K-

CGAN oversampling method consistently enhanced precision across various classifiers. However, the

findings also underscored the importance of the interplay between individual classifiers and oversampling

strategies. The outcomes of each pairing exhibited distinct nuances, underscoring the importance of

meticulous deliberation while striving to optimise precision for the breast cancer dataset.

181

181

Chapter 5

Discussion

 This chapter further discusses the key experimental results. The results of the research will serve as a

valuable insight for future explorations into the capabilities of GANs. The experimental results of applying

the K-CGAN method to credit card fraud data have proven that it is capable of generating high quality

datasets with stable training and improved classification performance. The optimized hyperparameter

architecture was able to deliver an effective credit card fraud detection method using data augmentation. Our

experiments also demonstrated the introduction of a custom loss function that incorporates KL divergence

loss to ensure both distributions are close to each other and custom optimised hyperparameter architecture.

This approach was able to successfully improve the quality of the synthetic data generated by K-CGAN and

achieve better performance compared to other GAN-based architectures. Additionally, this model was further

tested and trained on the breast cancer dataset, with optimised hyperparameters achieving superior

performance. The results demonstrate that K-CGAN can generalise to other datasets and be used effectively

for data augmentation. This method has shown promising results in its ability to improve classification

performance while maintaining a stable training process and sample distribution. As future work, further

research could be conducted into the application of K-CGAN to other domains and datasets. Additionally,

exploring further optimization techniques could be conducted in order to improve the performance of this

model. Through these experiments, a better understanding can be gained into when and how such methods

should best be applied for various applications.

Discussion on Novelty Loss GAN Experiments

 The experimental results with KL loss indicate that the addition of KL loss greatly improved the cosine

similarity values across all variables in comparison to without KL loss. This improvement demonstrates the

enhanced quality of the synthetic data generated by the K-CGAN model. The absence of KL loss could

explain the lower cosine similarity value observed. The inclusion of KL loss serves as a regularizer, ensuring

that the generator produces samples that align with the distribution of the training data, thereby preventing

overfitting. Removing this term may have allowed the generator to overfit to the training data, potentially

compromising the quality of the generated samples. Mode collapse, where the generator produces a limited

number of samples that fail to accurately represent the underlying data distribution, can occur when the

generator lacks the encouragement to provide sample diversity, as offered by the KL loss term. Insufficient

variation in the training data can also hinder the generator's ability to learn to produce samples that align

with the data distribution. The removal of the KL loss term may exacerbate this issue, leading to a decline in

cosine similarity. Moreover, the removal of the KL loss component may have affected the optimal custom

hyperparameters for the generator, further impacting the quality of the generated samples. Additionally, the

182

182

absence of the KL loss term may increase the stochasticity of the training process, resulting in lower sample

quality, as GAN training relies on a certain level of unpredictability.

 The study used the SMOTE method to oversample the minority class (fraudulent transactions) to balance

the dataset, we oversampled the minority class instances of fraudulent transactions to ensure sufficient

representation for both classes in the dataset used for GAN training. This step was crucial because models

trained on imbalanced datasets often exhibit poor generalisation performance when faced with unseen data.

During the training phase, we utilised the entire balanced dataset to ensure comprehensive coverage of the

data nuances. No additional preprocessing techniques were necessary as the dataset had already undergone

meticulous cleaning and labelling. However, once the GAN is trained, SMOTE is no longer required for

generating synthetic samples. Furthermore in this experiment we have utilized our custom K-CGAN method.

The cosine similarity analysis of experiments confirmed that the cosine similarity scores between the real

and fake datasets for all features have considerably enhanced after presenting SMOTE oversampling method

along with K-CGAN before training.

Experiments with batch normalisation

 In this set of experiments we evaluated the impact of batch normalisation on GANs training. The use of

batch normalisation appears to be an effective way to promote stability and generate more varied samples.

Additionally, the range in discriminator loss demonstrates the model's ability to accurately identify original

samples from generated ones. The generator loss was extremely unstable at initial phase ranging from 0.6 to

0.8. On the other hand, discriminator loss ranged between 0.4 and 1.0. However, the training procedure was

stabilised and the model was kept out of local minima by using batch normalisation. The introduction of

batch normalisation has made generator and discriminator losses more stable and predictable. The variety in

the discriminator loss indicates the ability in differentiating between actual and synthetic data, while the

greater initial generator loss shows that the model accurately generates more varied samples right away.

 The performance of a GAN-based novelty detection system can be examined by looking at the loss values

of both the generator and discriminator networks. Generally, we would expect to see an increase in the

discriminator loss over time, as it is becoming better at distinguishing real from synthetic data. On the other

hand, the generator's loss should decrease since it is getting better at producing realistic samples. The variety

in the discriminator loss shows that the model is successfully differentiating between actual and synthetic

data, while the greater initial generator loss may signal that the model generates more varied samples right

away.

 It is also important to note that training a GAN-based method can be computationally expensive, due to

its two neural network architecture. Therefore, careful tuning of the model parameters and architecture is

essential in order to get the best performance out of the system. Additionally, since GANs are generative

models, they can be used to generate synthetic data that can be used for further training or testing of other

machine learning systems. This makes GAN-based data augmentation a powerful tool in a variety of

applications.

Discussion on GAN Hyperparameter tuning with credit card fraud and breast cancer data

 This section offers a detailed discussion of GAN hyperparameter tuning with credit card fraud data. A

total of 1152 experiments using the grid search method (Bergstra and Bengio, 2012). The experiments intend

to identify the optimal values for hyperparameters in order to generate realistic credit card fraud data. In

order to achieve this, several variables must be taken into account, including the number of hidden layers

and weights initialization technique used in the neural network (Rumelhart et al., 1986; Glorot and Bengio,

2010). Additionally, two more hyperparameters are essential for training accuracy: the learning rate and

183

183

dropout rate. In order to assess how different combinations of hyperparameter values affect the model, the

experiment must be conducted several times with various configurations. This process can be laborious and

time-consuming; however, it is a necessary step in order to obtain an accurate model with a good predictive

power. Different techniques such as grid search, random search, or evolutionary search can be used to

identify the optimal combination of hyperparameters. Once the best values for each hyperparameter have

been determined, a final evaluation of the model must be conducted in order to determine its accuracy and

reliability. It is imperative to mention that the potential combinations of hyperparameters can be

overwhelming, and the optimal values for each will vary depending on the desired output. To determine

which hyperparameter settings are most effective for a particular task, accurate experimentation is necessary.

This may include testing multiple configurations including variations in batch size, learning rate, activation

functions, layers of both discriminator and generator networks as well as the various optimization techniques

such as Adam, RMSprop and Adagrad.

 Our experiments concluded the selection of hyperparameters significantly affects the performance of a

deep learning model. As such, it is important to understand which combinations are most effective in order

to maximise training and prediction accuracy. In this section, we discussed the top five combinations of

hyperparameters based on their loss values, as well as notable trends that can be observed. The best-

performing hyperparameter combinations frequently use LeakyReLU as their activation functions due to its

ability to avoid saturation and allow for a more consistent learning. Furthermore, the larger 32 batch size

appears to perform well in all combinations, presumably as a result of improved training efficiency and

stability. Additionally, the best-performing combinations all utilise a different optimizer, with Adam

appearing in three of the top five, followed by Adagrad and RMSprop.

 The optimised K-CGAN method for credit card fraud data, Generator neural network is composed of

ReLU activation and trained using a combination of modified binary cross entropy and KL divergence. The

Generator network has three layers (2 hidden layers, 1 output layer) with 64, 32, 29 neurons. The network

incorporates a dropout rate of 0.1 and employs Adam optimizer with a learning rate of 0.0001. Additionally,

it utilizes a 100-dimensional noise vector and applies glorot_uniform kernel initialization with L2

regularization. With a total of 36,837 parameters, the generator network is capable of generating high-quality

samples. On the other hand, the K-CGAN Discriminator neural network utilizes Leaky ReLU activation and

binary cross entropy loss for binary classification. The Discriminator network has three layers (2 hidden, 1

output layer) with 20, 15 and 1 neurons respectively. Similar to the generator network, Discriminator also

incorporates a dropout rate of 0.1 and uses Adam optimizer with a learning rate of 0.0001. L2 regularization

is applied to prevent overfitting. With a total of 1,519 parameters, the Discriminator network effectively

distinguishes between real and generated data, thereby contributing to the K-CGAN model's ability to

generate realistic samples.

 The K-CGAN model is specifically designed for the breast cancer dataset, aiming to generate synthetic

data that closely resembles real breast cancer data. The generator neural network, a crucial component of the

K-CGAN model, consists of three layers (2 hidden layers, 1 output layer) with 64, 32, 29 neurons. The

activation function used in the generator neural network is ReLU, known for its ability to handle non-

linearities effectively. To optimize the generator's performance, the loss function combines the modified

binary cross entropy with KL divergence. The output optimizer employed is Adam, a popular algorithm that

adapts learning rates for each parameter. In this case, the learning rate is set to 0.0001, ensuring smooth

convergence. To introduce some regularization, a dropout layer is included in the generator neural network

with a dropout rate of 0.2. Total of 10,226 learning parameters. On the other hand, the discriminator neural

network plays a crucial role in distinguishing between real and synthetic breast cancer data generated by the

generator. Similar to the generator, the discriminator consists of three layers (2 hidden, 1 output layer) with

20, 15 and 1 neurons respectively. The activation function used in the discriminator neural network is

LeakyReLU, which helps to alleviate the vanishing gradient problem by allowing small negative values. The

184

184

loss function employed in the discriminator neural network is binary cross-entropy, which measures the

dissimilarity between predicted and target labels. Similar to the generator, the discriminator utilizes Adam

optimizer with a learning rate of 0.0001. Additionally, a dropout layer is added to the discriminator neural

network with a dropout rate of 0.2, enhancing its generalization capability. With a total of 1,386 learning

parameters, by carefully tuning these hyperparameters and leveraging the power of the K-CGAN model, we

can effectively generate synthetic breast cancer data that holds great potential for various research and

analysis applications.

Discussion on Classification Performance: Imbalanced Original Datasets vs. Balanced Minority Class

Oversampled datasets in credit card fraud and breast cancer data

Table 58: Summary of Classifiers performance on original imbalanced credit card fraud data

Model Precision Recall F1 Score Accuracy

XGBoost 0.981818 0.827068 0.873016 0.999551

Random Forest 0.981651 0.812030 0.867470 0.999537

Nearest Neighbor 1.000000 0.721804 0.786885 0.999270

MLP 0.990099 0.842105 0.861538 0.999494

Logistic Regression 0.989583 0.609023 0.723214 0.999129

Table 59: Classification performance with balanced credit card fraud data by leveraging K-CGAN for

oversampling the minority class

Model Precision Recall F1 Score Accuracy

XGBoost 0.997998 0.999706 0.997599 0.9976

Random Forest 0.999598 0.999706 0.997394 0.9974

Nearest Neighbor 0.990056 0.999706 0.992820 0.9928

MLP 0.998400 0.999594 0.998400 0.9984

Logistic Regression 0.991221 0.999608 0.992409 0.9924

185

185

Table 60: F1 Score values for classification methods multiple methods comparison credit card fraud data

Model LS GAN WGAN NS GAN

SDG

GAN

Original

dataset K-CGAN SMOTE ADASYN B-SMOTE

VANILLA

GAN

XGBoost 0.961263 0.960000 0.971519 0.950336 0.873016 0.997599 0.999733 0.999584 0.999760 0.975749

Random

Forest 0.956772 0.953168 0.966720 0.951743 0.867470 0.997394 0.999881 0.999880 0.999809 0.969957

Nearest

Neighbour 0.931983 0.925414 0.937799 0.925776 0.786885 0.992820 0.991008 0.986707 0.998673 0.921512

MLP 0.950355 0.947658 0.959119 0.942105 0.861538 0.998400 0.998844 0.998949 0.998913 0.960000

Logistic

Regression 0.905830 0.909859 0.915584 0.901526 0.723214 0.992409 0.946270 0.884358 0.995553 0.913108

 The study involved an analysis of the performance of classifiers on a dataset for credit card fraud detection.

The findings of this analysis are subsequently provided in Tables 58, 59, and 60. The efficacy of employing

the K-CGAN technique was effectively proved in improving the performance of classifiers for this particular

challenge. The K-CGAN successfully achieved dataset balancing by producing synthetic fraud transactions

that closely matched the genuine ones. The aforementioned findings were apparent in the outcomes displayed

in Tables 59 and 60, whereby a notable enhancement was noticed in the metrics of precision, recall, and F1

scores for all the models. The achievement of remarkable results by the MLP classifier is worth noting. The

results indicated an F1 score, precision, and recall of 0.9984, suggesting a strong capacity to detect fraudulent

transactions. In a similar vein, the logistic regression classifier, which previously had comparatively lower

scores, saw significant enhancement with F1, accuracy, and recall scores all converging around the 0.99

threshold. The significance and efficacy of the K-CGAN-based oversampling technique are highlighted by

the observed improvements in performance measures. This is particularly relevant when addressing the

imbalances that are frequently seen in fraud detection datasets. The metrics of high precision and recall play

a crucial role in the field of fraud detection, as they contribute to the reduction of FPs and the precise

identification of legitimate instances of fraud. The impressive performance exhibited by these classifiers,

subsequent to the implementation of the K-CGAN method, garners considerable interest in the potential of

this methodology. The scope of this issue extends beyond the detection of credit card fraud. Considering the

proven effectiveness of K-CGANs, it is plausible to imagine the potential application of this technique in

other fields that face challenges related to class imbalances, such as insurance fraud and tax fraud. This work

not only confirms the effectiveness of K-CGAN as a method for augmenting data, but also suggests its

potential as a solution for improving the performance of models in various fraud detection scenarios. In a

comprehensive analysis of Table 60, which presents the F1 score values for various approaches across

diverse classifiers, several distinct trends and significant implications can be observed.

 The K-CGAN method demonstrated superior performance compared to numerous other strategies over a

wide range of classifiers. In the case of the XGBoost, the F1 score achieved with K-CGAN was 0.997599,

demonstrating a significant improvement compared to the F1 score of 0.873016 obtained from the original

dataset. Similarly, the Random Forest classifier presents a compelling case for K-CGAN. The F1 score, when

paired with K-CGAN, registers at 0.997394, a figure substantially higher than the 0.867470 obtained from

the original dataset. The difference approximates to a remarkable increase of nearly 12.99%. The MLP

classifier also echoes this trend of enhancement with K-CGAN. The model, when trained with K-CGAN

augmented data, secures an F1 score of 0.998400, a considerable rise from the 0.861538 score linked with

the original dataset. This translates to a significant boost of about 13.69% in performance. Moreover, the F1

score achieved by K-CGAN outperforms other generative adversarial networks such as LS GAN, WGAN,

186

186

and SDG GAN. This pattern remains constant across different classifiers as well. In the case of Random

Forest, the K-CGAN model demonstrated a significantly higher F1 score of 0.997394 compared to the

original dataset's score of 0.867470. It is important to mention that the performance of K-CGAN was

comparable to other oversampling approaches such as SMOTE, ADASYN, and B-SMOTE, which have

typically been used to address class imbalances. The initial F1 score of the Nearest Neighbour classifier on

the original dataset was quite low, measuring 0.786885. However, after applying K-CGAN, there was a

substantial improvement in performance, resulting in an F1 score of 0.992820. In a similar vein, the F1 score

of the MLP classifier experienced a substantial increase from 0.861538 on the initial dataset to 0.998400

when employing the K-CGAN technique. This outcome further reinforces the significant and profound

influence of the K-CGAN strategy.

 Moreover, when comparing K-CGAN with other generative models like Vanilla CGAN, it becomes

evident that although Vanilla CGAN obtained commendable outcomes, it was generally surpassed by K-

CGAN in the majority of classifier comparisons. For example, when employing the XGBoost model, the

Vanilla CGAN algorithm attained an F1 score of 0.975749. Although this achievement is noteworthy, it is

still inferior to the F1 score obtained by the K-CGAN algorithm. Based on the findings, it can be concluded

that K-CGAN successfully tackles the inherent class imbalance in the credit card fraud dataset. Additionally,

it enhances the performance of classifiers by providing them with synthetically created data that is both

diverse and of high quality. The efficacy and versatility of this approach, in comparison to established

methodologies including both conventional and GAN-based techniques, demonstrates its resilience and

flexibility. Moreover, the consistent enhancements observed in various classifier types, ranging from

ensemble models like XGBoost to neural networks such as MLP, demonstrate the generalizability of K-

CGAN and emphasise its potential as a benchmark method for augmenting data in credit card fraud detection

and other scenarios involving imbalanced datasets.

Table 61: Summary of Classifiers performance on original imbalanced breast cancer data

Model Precision Recall F1 Score Accuracy

XGBoost 0.946429 0.981481 0.963636 0.972028

Random Forest 0.96 0.888889 0.923077 0.944056

Nearest Neighbor 0.977273 0.796296 0.877551 0.916084

MLP 0.962963 0.962963 0.962963 0.972028

Logistic Regression 1 0.962963 0.981132 0.986014

187

187

Table 62: Classification performance with balanced breast cancer data using K-CGAN to oversample

minority class

Model Precision Recall F1 Score Accuracy

XGBoost 0.982801 0.991326 0.991326 0.99125

Random Forest 0.977995 0.988875 0.988875 0.98875

Nearest Neighbor 0.982801 0.991326 0.991326 0.99125

MLP 0.985222 0.992556 0.992556 0.99250

Logistic Regression 0.977995 0.988875 0.988875 0.98875

Table 63: F1 Score values for classification methods multiple methods comparison breast cancer data

Model LS GAN WGAN NS GAN

SDG

GAN

Original

dataset K-CGAN SMOTE ADASYN B-SMOTE

VANILLA

GAN

XGBoost 0.857741 0.896074 0.79558 0.768362 0.963636 0.991326 0.972973 0.956522 0.978723 0.971751

Random

Forest 0.902326 0.925301 0.927273 0.728843 0.923077 0.988875 0.962162 0.956989 0.968421 0.965909

Nearest

Neighbour 0.901961 0.917073 0.933025 0.868841 0.877551 0.991326 0.920455 0.91579 0.897959 0.934132

MLP 0.917706 0.952153 0.918033 0.645367 0.962963 0.992556 0.962162 0.951351 0.968085 0.965909

Logistic

Regression 0.907731 0.924939 0.922727 0.863158 0.981132 0.988875 0.967742 0.951872 0.93617 0.99422

 The performance of all classifiers has been enhanced by oversampling the minority class using the novelty

K-CGAN as depicted in Tables 62 and 63. When trained on the oversampled dataset, all classifiers have

demonstrated significant improvement in F1 score, precision, recall, and accuracy compared to the original

dataset. The use of the novelty K-CGAN to generate synthetic data has effectively balanced the class

distribution and led to a substantial improvement in classifier performance. The experimental results of

applying the K-CGAN method to breast cancer data have shown its capability to generate high-quality data

with stable training and improved classification performance. By optimising hyperparameter settings, we

have established an effective breast cancer detection method using data augmentation.

 While examining Table 61, which presents the outcomes of the initial imbalanced breast cancer dataset, it

becomes apparent that the classifiers had a relatively satisfactory performance despite the presence of

imbalances. The XGBoost algorithm exhibited strong performance, achieving an F1 score of 0.963636.

Logistic Regression demonstrated remarkable performance with a precision of 1 and an F1 score of

0.981132, underscoring its efficacy in accurately detecting malignant tumours, even in the presence of

188

188

imbalanced data. Nevertheless, after applying the novelty K-CGAN approach to balance the dataset by

oversampling the minority class, as demonstrated in Table 62, a significant improvement in classifier

performance was observed. Significantly, precision, recall, and F1 scores shown a notable increase to values

exceeding 0.98 for models such as XGBoost, MLP, and Nearest Neighbour. The XGBoost algorithm, for

instance, achieved a robust F1 score of 0.991326 improving from 0.963636. Notably, the Logistic Regression

stood out with a flawless precision of 1, culminating in an F1 score of 0.981132, a figure that accentuates its

prowess in accurately discerning malignant tumors even when faced with imbalanced data. However, the

narrative shifts intriguingly upon the application of the K-CGAN approach, a method aimed at

counterbalancing the dataset by oversampling the minority class. The Random Forest algorithm, for example,

which previously showcased an F1 score of 0.923077 on the original data, exhibited a significant leap to

0.988875 when trained on the K-CGAN enhanced dataset. Similarly, the Nearest Neighbour classifier, which

initially returned an F1 score of 0.877551, surged impressively to reach 0.991326 under the influence of K-

CGAN. MLP was also improved. Starting with an already impressive F1 score of 0.962963 on the original

dataset, the introduction of K-CGAN data took its performance up a notch to a striking F1 score of 0.992556.

This demonstrates the capability of K-CGAN to not only achieve dataset balance, but also enhance it in a

way that enables classifiers to effectively distinguish between benign and malignant tumours by capturing

subtle distinctions.

 The exceptional performance, particularly following the use of K-CGAN oversampling, is further

emphasised when considering the data presented in Table 63. The study presents the F1 score values for

different approaches applied to various classifiers. The K-CGAN approach demonstrated superior

performance in terms of F1 scores compared to both the original dataset and alternative approaches such as

LS GAN, WGAN, and VANILLA CGAN, over a wide range of classifiers. For example, when utilising the

XGBoost model, the F1 score obtained using K-CGAN was 0.991326. This result demonstrates a significant

enhancement compared to the original dataset score of 0.963636, as well as surpassing the performance of

alternative techniques such as SMOTE and ADASYN. Moreover, the Nearest Neighbour classifier, which

achieved an F1 score of 0.877551 on the initial imbalanced dataset, exhibited a substantial improvement to

0.991326 when utilising K-CGAN. In a similar vein, the F1 score of the MLP model exhibited a notable

increase from 0.962963 on the original dataset to an impressive 0.992556 when utilising the K-CGAN

technique. The efficacy of the K-CGAN strategy is demonstrated by the persistent improvements observed

in the classifiers. These improvements are evident not just when compared to the original imbalanced dataset

but also in comparison to alternative oversampling methods. The results demonstrate that K-CGAN not only

augments the dataset size, but also guarantees that these instances accurately represent the underlying

distribution and intricacies, hence enabling classifiers to effectively differentiate malignant tumours with

improved precision. The K-CGAN approach was found to be crucial in enhancing classifier performance for

breast cancer data, similar to its effectiveness in analysing credit card fraud data. The significant impact of

K-CGAN underscores its potential as an essential tool for data scientists dealing with imbalanced datasets in

the field of medical diagnostics. In this domain, precision and recall are not only measures, but rather

influential elements that can greatly affect patient outcomes.

189

189

Chapter 6

Conclusion and Future Work

 This chapter summarises the contributions and the achievements, and further recommends future research

directions.

 Adding the KL divergence to the loss function of K-CGAN and its custom architecture including

additional hyperparameters Kernel Initializer ‘gloriot_uniform’ method (Glorot, 2010) for the Generator and

Kernel Regularizer ‘L2 method’ (Bishop, 2006) for both Generator and Discriminator has been found to

enhance the quality and diversity of the generated samples, provide better command over the data

distribution, and make GAN training more stable and dependable. Our experiments showed that this

approach could enhance the quality of the synthetic data generated by K-CGAN and outperform other GAN-

based architectures. The K-CGAN method was trained on credit card fraud data and the results showed that

it can generate high quality datasets with stable training and improved classification performance. By

optimising the hyperparameter settings, an effective credit card fraud detection method was developed using

data augmentation, resolving data imbalance issues and improving classification accuracy.

 Moreover, we trained and tested K-CGAN on the breast cancer dataset and achieved superior performance

by optimising it’s hyperparameters to suit that type of data. The findings show that K-CGAN has the ability

to operate with other datasets and can be utilised effectively for data augmentation purposes in healthcare

domain. This method has displayed potential in enhancing classification performance and maintaining a

consistent training process. To expand on this work, more research could be conducted to see how the K-

CGAN method applies to other type datasets and domains. Additionally, exploring further optimization

techniques could improve the model's performance. The current approach is based on backpropagation and

gradient descent, which may not always be the most efficient approach for particular datasets. Through these

experiments, researchers may gain a better understanding of how and when to apply this method in various

applications.

 To address the limitations, there is an ongoing effort to investigate various ways in which K-CGAN can

be further improved. For instance, researchers are exploring different methods of data augmentation and

normalisation to better represent complex datasets. This would include utilising techniques such as transfer

learning and active learning for better utilisation of raw data sets. Research could develop new architectures

that can handle large scale and complex data sets more efficiently than existing models used in K-CGAN.

This could prove extremely beneficial for businesses or individuals with large-scale data sets that need to be

analysed and synthesised. In conclusion, K-CGAN has great potential in providing high quality synthetic

dataset from complex data sets. However, there is still a lot of room for further research and improvement to

make the model even more efficient and effective. With the continued research, K-CGAN can be used to a

great advantage in the coming years.

190

190

 This research project provides a roadmap for further development and improvement of the K-CGAN

model, which would help more businesses and individuals benefit from its use. The results obtained through

this research will provide valuable insight into how best to utilise K-CGAN for data synthesis, helping to

foster the growth of this important technology. Furthermore, it will also promote the use of K-CGAN as a

reliable and efficient tool for businesses, allowing them to better analyse their complex datasets and pursue

new opportunities.

6.1 Contributions

 The research has successfully contributed to improving both data augmentation techniques and resolving

class imbalance issues thus improving classification performance. Extensive experiments were conducted to

validate the achieved research goals, and the study's contributions are highlighted below:

● Custom Optimised K-CGAN Architecture

 The utilisation of CGAN is a unique aspect of the K-CGAN model. By conditioning the generator to

produce fake data based on the target class labels, the K-CGAN aims to generate synthetic data that not only

resembles the original data distribution but also aligns with specific class attributes. The K-CGAN employs

different activation functions for the generator and discriminator networks. While the generator uses the

widely-used ReLU activation function, the discriminator leverages the LeakyReLU activation function. This

combination of activation functions allows the model to effectively handle credit card and breast cancer

datasets and enhance convergence. The use of a combined loss function for the generator network, consisting

of the trained discriminator loss and the KL divergence ensures that the generated samples closely match the

original data distribution, improving the quality of synthetic data generation. The hyperparameters used in

the K-CGAN, such as learning rate, dropout rate, neuron sizes, kernel initializer, and kernel regularizer, have

been carefully optimized to enhance the model's performance, prevent overfitting, and ensure stable

convergence. The deliberate setting of the activation function in the nodes to decrease noise's influence so

that it’s capable of handling noise effectively, making it robust to noisy data. By utilising the glorot_uniform

kernel initializer, the K-CGAN addresses the exploding gradient problem, which can hinder the training

process of deep neural networks.

● Data Augmentation Method

 In K-CGAN the generator is programmed to create samples that resemble the real data by reducing the

KL Divergence between the distribution of the generated data and the distribution of the real data. This leads

to improved quality of the synthetic data and enhances the performance of classification and other related

tasks.

● Optimised hyperparameter settings were obtained for other GAN-based methods

 Through our research, we conducted hyperparameter tuning to discover the optimal hyperparameters for

various GAN-based methods including Vanilla CGAN, NS GAN, LS GAN, SDG GAN and WGAN. The

outcomes of this study can be immensely helpful in making informed decisions while selecting the

appropriate data augmentation technique. By utilising these findings, researchers and practitioners can

enhance their comprehension and effectively choose the most suitable approach tailored to their specific

requirements.

● Multiple classification methods implementation and feature engineering

 We implemented and tested various popular classification methods under different conditions using both

imbalanced and balanced datasets. The results are valuable for selecting classification methods in minority

class detection, particularly in credit card fraud and breast cancer detection. Additionally, we demonstrated

the positive impact of applying SMOTE to aid in GAN training. This contribution not only improves GAN

performance but also benefits other methods in the field.

191

191

● Deployable solution

 Demonstrated deployment of the model on the cloud using Flask REST API and AWS services. The

instructions are included in the Appendix sections. The synthetic data can be used to improve the

performance of machine learning models or any other purposes where synthetic data may be required. The

deployment of the model demonstrates its effectiveness to generate any number of samples and integrate into

existing systems for data generation tasks. K-CGAN is capable of producing large quantities of data quickly

and efficiently, making it an excellent choice for a wide range of data generation tasks.

● Effectively resolving imbalanced dataset issue

 K-CGAN addresses the issue of imbalanced data, which leads to better performance of classifiers and

effective detection of minority classes. Imbalanced data is a common occurrence in production environments,

especially with a scarcity of the minority class. K-CGAN can generate synthetic data to augment the existing

dataset, enabling classifiers to train on more balanced datasets and increase performance. This is especially

beneficial in fraud detection as it enables better accuracy and more robust classification models.

● Credit card fraud detection

 Our research utilised a genuine dataset on credit card fraud that is commonly used. The dataset shows

284,807 transactions that took place in two days, in which there were 492 fraud cases. The dataset is

imbalanced since only 0.172% of all transactions are fraudulent. The K-CGAN method was used to develop

a balanced credit card dataset through the generation of a synthetic dataset. This resulted in a significant

enhancement of the classifiers' performance, leading to an effective approach to detect credit card fraud

detection.

● Breast cancer detection

 By subjecting our model to a different dataset, we’ve evaluated its ability to generalize and learn from

new data. This study aims to shed light on the performance of our K-CGAN model with KL as a custom loss

and its potential applications in other domains. To assess the effectiveness of our custom K-CGAN method,

we conducted several experiments including model optimization using the additional breast cancer dataset.

The results indicate that the proposed model performs well, as evidenced by the high F1 scores achieved on

the breast cancer dataset.

● Adaptability and scalability of the model

 The K-CGAN was developed for credit card fraud data and further tested and optimized for the Wisconsin

Breast Cancer (Diagnostic) data. As a result, it produces a synthetic dataset of high quality and enhances the

performance of classifiers. As such, the K-CGAN model can be easily adapted to various datasets and

generate high quality synthetic data that is suitable for a wide range of tasks. This demonstrates the

adaptability of the K-CGAN method as it can be optimised for different tasks and datasets. Furthermore, by

using an efficient optimization algorithm, the K-CGAN can produce synthetic data quickly and efficiently

while providing high accuracy results.

● Training stability

 Using KL divergence in the loss function improves the stability of GAN training by preventing the

generator from producing low-quality samples and diverging. KL divergence is a more reliable metric than

other distance measurements like the Wasserstein distance or the Euclidean distance. KL divergence

encourages the generator to produce samples that are more similar to the real data. This makes it easier for

the discriminator to accurately identify fake samples. In addition, it helps ensure that the generated samples

remain consistent over training iterations, making it easier for a model to converge and learn from its

mistakes. Finally, using KL divergence in the loss function helps to increase the diversity of generated

samples, making them more realistic.

192

192

● Solution to mode collapse

 In GANs, mode collapse occurs when the generator produces a limited number of highly similar samples,

which leads to a lack of diversity in the generated samples. To address this issue, a solution is to incorporate

KL divergence in the loss function and the set of optimised hyperparameters, which incentivizes the

generator to produce a wider range of samples that accurately represent the entire true data distribution. The

algorithm is also highly adaptive and can be used to generate data with varying levels of complexity.

Additionally, it has been shown to produce high-quality results when compared to other generative methods.

● Extensive application of visualisation of synthetic and original data

 We extensively applied various visualisation techniques to both synthetic and original data during our

experimentation. These techniques allowed us to gain a deeper understanding of the patterns and

relationships within the dataset. To assess data quality, we used various methods including cosine similarity,

bivariate and univariate correlations. These approaches provided quantitative metrics and valuable insights

into the data's characteristics and distribution. Our comprehensive analysis also highlighted the superior

performance of our K-CGAN method compared to existing approaches in terms of data quality and accuracy.

Through this in-depth exploration, we unlocked the true potential and value of our approach, paving the way

for future advancements in the field.

6.2 Further work

 The K-CGAN model has undergone testing in the domains of credit card fraud and breast cancer data. It

could be a promising area of research to investigate additional fields in order to further expand the model.

For example, it could be beneficial to explore the effectiveness of K-CGAN in handling large datasets with

high-dimensional features and complex data distributions. Additionally, exploring different methods for

finding the optimal parameters for the model can help ensure that it works optimally on a wide range of

datasets. Finally, researching how to improve the generative capabilities of K-CGAN to generate synthetic

data that better matches the target data distribution could potentially lead to more accurate models and

improved generalisation performance.

 K-CGAN is a promising method for unsupervised learning in highly imbalanced datasets, and further

research can help build upon its already impressive capabilities. By exploring additional fields of application

and further improving the model, we can continue to unlock the potential of K-CGAN and advance

unsupervised learning on imbalanced datasets. With continued research, K-CGAN could be a powerful tool

for tackling challenging data problems in many areas.

 Utilising K-CGAN in other data types (such as images or audio) as well as investigating different

techniques for training the model, such as transfer learning and meta-learning, could also prove beneficial in

improving its performance. Additionally, exploring how to use K-CGAN in combination with other models,

such as deep neural networks or reinforcement learning agents, could open up exciting new possibilities for

data analysis.

 Finally, developing methods for validating the performance of K-CGAN could help ensure that it is being

used correctly and help to improve data analysis tasks. Further exploring the potential applications, features,

and limitations of K-CGAN continue to advance its development as a tool for unsupervised learning on

highly imbalanced datasets.

193

193

List of References

Asha, R.B. and KR, S.K., 2021. Credit card fraud detection using artificial neural network, Global

Transitions Proceedings, Elsevier, Vol. 2 No. 1, pp. 35–41.

Alejo, R., García, V., Marqués, A.I., Sánchez, J.S. and Antonio-Velázquez, J.A., 2013. Making accurate

credit risk predictions with cost-sensitive mlp neural networks, Management Intelligent Systems, Springer,

pp. 1–8.

Ahmad, H., Kasasbeh, B., Aldabaybah, B. and Rawashdeh, E., 2023. Class balancing framework for credit

card fraud detection based on clustering and similarity-based selection (SBS), International Journal of

Information Technology, Springer, Vol. 15 No. 1, pp. 325–333.

Abbasimehr, H. and Paki, R., 2022. Improving time series forecasting using LSTM and attention

pARKmodels, Journal of Ambient Intelligence and Humanized Computing, Springer, pp. 1–19.

Abbasimehr, H., Shabani, M. and Yousefi, M., 2020. An optimized model using LSTM network for

demand forecasting, Computers & Industrial Engineering, Elsevier, Vol. 143, p. 106435.

Abdulhayan, S., Firdouse, L., Haleema, N. and Anfeeda, Z., 2023. Credit Card Fraud Detection Using

Machine Learning, Recent Trends in Information Technology and Its Application, Vol. 6 No. 2, pp. 1–4.

Alharbi, A., Alshammari, M., Okon, O.D., Alabrah, A., Rauf, H.T., Alyami, H. and Meraj, T., 2022. A

novel text2IMG mechanism of credit card fraud detection: a deep learning approach, Electronics, MDPI,

Vol. 11 No. 5, p. 756.

Ashwin, V., Menon, V., Devagopal, A.M., Nived, P.A. and Udayan Divya, J., 2023. Detection of

Fraudulent Credit Card Transactions in Real Time Using SparkML and Kafka, Proceedings of 3rd

International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications:

ICMISC 2022, Springer, pp. 285–295.

Arjovsky, M., Chintala, S. and Bottou, L., 2017. Wasserstein GAN, In Proceedings of the 34th

International Conference on Machine Learning-Volume 70, 70, pp. 214–223.

Alejo, R., García, V., Marqués, A.I., Sánchez, J.S. and Antonio-Velázquez, J.A., 2013. Making accurate

credit risk predictions with cost-sensitive mlp neural networks, Management Intelligent Systems, Springer,

pp. 1–8.

Abdi, L. and Hashemi, S., 2015. To combat multi-class imbalanced problems by means of over-sampling

techniques, IEEE Transactions on Knowledge and Data Engineering, IEEE, Vol. 28 No. 1, pp. 238–251.

Abdallah, A., Maarof, M.A. and Zainal, A., 2016. Fraud detection system: A survey, Journal of Network

and Computer Applications, Elsevier, Vol. 68, pp. 90–113.

Awoyemi, J. O., Adetunmbi, A. O. and Oluwadare, S. A., 2017. Credit card fraud detection using machine

learning techniques: A comparative analysis. 2017 International Conference on Computing Networking

and Informatics (ICCNI), 1–9.

A. Amin, S. Anwar, A. Adnan, M. Nawaz, N. Howard, J. Qadir, A. Hawalah and A. Hussain, Comparing

Oversampling Techniques to handle the class imbalance problem: a customer churn prediction case study,

in IEEEAccess, pages 7940-7954, 2016.

194

194

Ahmad, A. and Brown, G., 2013. Random projection random discretization ensembles—Ensembles of

linear multivariate decision trees, IEEE Transactions on Knowledge and data Engineering, 26(5), pp.

1225–1239.

Arjovsky, M. and Bottou, L., 2017. Towards Principled Methods for Training Generative Adversarial

Networks, 1–17. Available at: https://doi.org/10.48550/arXiv.1701.04862.

Anh, N. T. N., Khanh, T. Q., Dat, N. Q., Amouroux, E., and Solanki, V. K., 2020. Fraud detection via deep

neural variational autoencoder oblique random forest. 2020 IEEE-HYDCON, 1–6.

Alarsan, F. I. and Younes, M., 2021. Best Selection of Generative Adversarial Networks Hyper-Parameters

Using Genetic Algorithm. SN Computer Science [online], 2 (4). Available from:

http://dx.doi.org/10.1007/s42979-021-00689-3.

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y., 2017. Stronger generalization bounds for deep nets via a

compression approach. In the International Conference on Learning Representations (ICLR).

A. D. Trister, D. S. M. Buist, and C. I. Lee, “Will Machine Learning Tip the Balance in Breast Cancer

Screening?,” JAMA Oncol, vol. 3, no. 11, p. 1463, Nov. 2017, doi: 10.1001/jamaoncol.2017.0473.

Bishop, C. M., 2006. Pattern Recognition and Machine Learning. Springer. Microsoft Research

Cambridge, Cambridge, United Kingdom.

Breskuvienė, D. and Dzemyda, G., 2023. Categorical Feature Encoding Techniques for Improved

Classifier Performance when Dealing with Imbalanced Data of Fraudulent Transactions, International

Journal of Computers Communications and Control, Vol. 18 No. 3.

Bockel-Rickermann, C., Verdonck, T. and Verbeke, W., 2022. Fraud Analytics: A Decade of Research--

Organizing Challenges and Solutions in the Field, ArXiv Preprint ArXiv:2212.04329.

Brownlee, J., 2019. How to Calculate the KL Divergence for Machine Learning -

MachineLearningMastery.com

Büttcher, S., Clarke, L.A. C., and Cormack, G. V., 2010. Information Retrieval: Implementing and

Evaluating Search Engines. The MIT Press.

Bhagyashree, Kushwaha, V. and Nandi, G. C., 2020. Study of Prevention of Mode Collapse in Generative

Adversarial Network (GAN). 2020 IEEE 4th Conference on Information & Communication Technology

(CICT) [online]. Available from: http://dx.doi.org/10.1109/cict51604.2020.9312049.

Bergstra, J., Yamins, D., & Cox, D. D. (2013). Making a science of model search: Hyperparameter

optimization in hundreds of dimensions for vision architectures. In Proceedings of the 30th International

Conference on Machine Learning (ICML) (Vol. 28, No. 3).

Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., and Cox, D. D., 2015. Hyperopt: A Python library for

optimizing the hyperparameters of machine learning algorithms. Proceedings of the 12th Python in Science

Conference, 13-20.

Bergstra, J., and Bengio, Y., 2012. Random search for hyper-parameter optimization. Journal of Machine

Learning Research, 13, 281-305.

Ba, H., 2019. Improving detection of credit card fraudulent transactions using generative adversarial

networks. ArXiv Preprint ArXiv:1907.03355.

Breiman, L., 1996. Bagging predictors, Machine Learning, 24(2), pp. 123–140. Available at:

https://doi.org/10.1007/bf00058655.

195

195

Batista, G.E., Prati, R.C. and Monard, M.C., 2004. A study of the behavior of several methods for

balancing machine learning training data, ACM SIGKDD Explorations Newsletter, ACM New York, NY,

USA, Vol. 6 No. 1, pp. 20–29.

Breiman, L., 2001. Random Forests, Machine Learning, 45(1), pp. 5–32. doi:10.1023/a:1010933404324.

Bansal, M.A., Sharma, D.R. and Kathuria, D.M., 2021. A Systematic Review on Data Scarcity Problem in

Deep Learning: Solution and Applications. ACM Computing Surveys (CSUR).

Bahnsen, A.C., Aouada, D., Stojanovic, A. and Ottersten, B., 2016. Feature engineering strategies for

credit card fraud detection, Expert Systems with Applications, Elsevier, Vol. 51, pp. 134–142.

C. -T. Peng, Y. -K. Chan and S. S. Yu, "Data Imbalance in Immunity Bone Age Assessment System Using

Independent Autoencoders," 2022 IEEE 4th Eurasia Conference on Biomedical Engineering, Healthcare

and Sustainability (ECBIOS), Tainan, Taiwan, 2022, pp. 156-158, doi:

10.1109/ECBIOS54627.2022.9944988.

Chiaroni, F., Rahal, M.-C., Hueber, N. and Dufaux, F., 2019. Hallucinating A Cleanly Labeled Augmented

Dataset from A Noisy Labeled Dataset Using GAN. 2019 IEEE International Conference on Image

Processing (ICIP) [online]. Available from: http://dx.doi.org/10.1109/icip.2019.8803632.

Chandrakanth, P., 2023. A cost sensitive Random Forest Algorithm for Detecting a credit card Fraud

techniques. Available at: https://ejmcm.com/article_22386_3d1179ae7834eb4033b91cc3805465d9.pdf

(Accessed on: 09 June 2023)

Chorowski, J.K., Bahdanau, D., Serdyuk, D., Cho, K. and Bengio, Y., 2015. Attention-based models for

speech recognition, Advances in Neural Information Processing Systems, Vol. 28.

Charitou, C., Dragicevic, S. and Garcez, A. d’Avila, 2021. Synthetic Data Generation for Fraud Detection

using GANs, arXiv, pp. 1–8.

Chawla, N. V, Bowyer, K.W., Hall, L.O. and Kegelmeyer, W.P., 2002, SMOTE: synthetic minority over-

sampling technique, Journal of Artificial Intelligence Research, Vol. 16, pp. 321–357.

Chen, T. and Guestrin, C., 2016. XGBoost, Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 785–794. doi:10.1145/2939672.2939785.

Cover, T. and Hart, P., 1967. Nearest neighbor Pattern Classification, IEEE Transactions on Information

Theory, 13(1), pp. 21–27. doi:10.1109/tit.1967.1053964.

Chen, J.; Shen, Y.; Ali, R. Credit card fraud detection using sparse autoencoder and generative adversarial

network. In Proceedings of the 2018 IEEE 9th Annual Information Technology, Electronics and Mobile

Communication Conference (IEMCON), Vancouver, BC, Canada, 1–3 November 2018; pp. 1054–1059.

Chen, X.W.; Wasikowski, M. Fast: A roc-based feature selection metric for small samples and imbalanced

data classification problems. In Proceedings of the 14th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008; pp. 124–132.

Charitou, C., Garcez, A. d’Avila and Dragicevic, S. 2020, Semi-supervised gans for fraud detection, 2020

International Joint Conference on Neural Networks (IJCNN), IEEE, pp. 1–8.

Cordón, I.; García, S., Fernández, A. and Herrera, F., 2018. Imbalance: Oversampling algorithms for

imbalanced classification in R. Knowledge-Based Syst. 2018, 161, 329–341.

196

196

Cao, P., Liu, X., Zhang, J., Zhao, D., Huang, M. and Zaiane, O., 2017, ℓ2, 1 norm regularized multi-kernel

based joint nonlinear feature selection and over-sampling for imbalanced data classification,

Neurocomputing, Elsevier, Vol. 234, pp. 38–57.

Caruana, R., Niculescu-Mizil A., Crew G. and Ksikes A., 2004. Ensemble selection from libraries of

models, in Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004, pp.

137–144. Available at: https://doi.org/10.1145/1015330.1015432.

Cao, Y.-J., Jia, L.-L., Chen, Y.-X., Lin, N., Yang, C., Zhang, B., Liu, Z., Li, X.-X., and Dai, H.-H., 2018.

Recent advances of generative adversarial networks in computer vision. IEEE Access 7, 14985–15006.

Chou, H.-P., Chang, S.-C., Pan, J.-Y., Wei, W., and Juan, D.-C., 2020. Remix: rebalanced mixup. In:

Computer Vision–ECCV 2020 Workshops: Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16.

Springer, pp. 95–110.

Chole, V., Mukherjee, A., Gaikwad, K., Gawai, P., Bagde, P., Mahule, R. and Pawar, P., 2022. Revelation

of Credit Card Fraud using Machine Learning Algorithm.

Chen, H., 2021. Challenges and Corresponding Solutions of Generative Adversarial Networks (GANs): A

Survey Study. Journal of Physics: Conference Series [online], 1827 (1), 012066. Available from:

http://dx.doi.org/10.1088/1742-6596/1827/1/012066.

Chen, J. I.-Z., and Lai, K.-L., 2021. Deep convolution neural network model for credit-card fraud detection

and alert. Journal of Artificial Intelligence, 3(02), 101–112.

Dev, K., Khowaja, S.A., Bist, A.S., Saini, V. and Bhatia, S., 2021 “Triage of potential COVID-19 patients

from chest X-ray images using hierarchical convolutional networks”, Neural Computing and Applications,

Springer, pp. 1–16.

Ding, H., Sun, Y., Wang, Z., Huang, N., Shen, Z. and Cui, X., 2023. RGAN-EL: A GAN and ensemble

learning-based hybrid approach for imbalanced data classification, Information Processing and

Management, Elsevier, Vol. 60 No. 2, p. 103235.

Das, B., Krishnan, N.C. and Cook, D.J., 2014. RACOG and wRACOG: Two probabilistic oversampling

techniques, IEEE Transactions on Knowledge and Data Engineering, IEEE, Vol. 27 No. 1, pp. 222–234.

Derrac, J., Garcia, S., Sanchez, L. and Herrera, F., 2015. Keel data-mining software tool: Data set

repository, integration of algorithms and experimental analysis framework. J. Mult. Valued Logic Soft

Comput, 17.

Douzas, G. and Bacao, F., 2018. Effective data generation for imbalanced learning using conditional

generative adversarial networks, Expert Systems with Applications, Elsevier, Vol. 91, pp. 464–471.

Dietterich, T.G., 2000. Ensemble methods in machine learning, in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

Springer, pp. 1–15. Available at: https://doi.org/10.1007/3-540-45014-9_1.

Doria, M., Luciano, E. and Semeraro, P., 2022. Machine learning techniques in joint default assessment,

ArXiv Preprint ArXiv:2205.01524.

Ding, Z., Jiang, S. and Zhao, J., 2022. Take a close look at mode collapse and vanishing gradient in GAN.

2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information

(ICETCI) [online]. Available from: http://dx.doi.org/10.1109/icetci55101.2022.9832406.

197

197

Drew, J. H., Glen, A. G. and Leemis, L. M., 2000. Computing the cumulative distribution function of the

Kolmogorov–Smirnov statistic. Computational Statistics & Data Analysis [online], 34 (1), 1–15. Available

from: http://dx.doi.org/10.1016/s0167-9473(99)00069-9.

Dubey, A. K., and Jain, V., 2019. Comparative study of convolution neural network’s relu and leaky-relu

activation functions. Applications of Computing, Automation and Wireless Systems in Electrical

Engineering: Proceedings of MARC 2018, 873–880.

Duchi, J., Hazan, E., and Singer, Y., 2011. Adaptive Subgradient Methods for Online Learning and

Stochastic Optimization. Journal of Machine Learning Research, 12, 2121-2159.

Doria, M., Luciano, E., and Semeraro, P., 2022. Machine learning techniques in joint default assessment.

arXiv Prepr. arXiv2205.01524.

DeMaris, A., 1995. A tutorial in logistic regression. Journal of Marriage and the Family, pp.956-968.

Esmail, F.S., Alsheref, F.K. and Aboutabl, A.E., 2023. Review of Loan Fraud Detection Process in the

Banking Sector Using Data Mining Techniques, International Journal of Electrical and Computer

Engineering Systems, Elektrotehnički fakultet Sveučilišta JJ Strossmayera u Osijeku, Vol. 14 No. 2, pp.

229–239.

Elyan, E., Moreno-Garcia, C.F. and Jayne, C., 2021. CDSMOTE: class decomposition and synthetic

minority class oversampling technique for imbalanced-data classification, Neural Computing and

Applications, Springer, Vol. 33 No. 7, pp. 2839–2851.

Efimov, D., Xu, D., Kong, L., Nefedov, A. and Anandakrishnan, A., 2020. Using generative adversarial

networks to synthesize artificial financial datasets.

Eckerli, F. and Osterrieder, J., 2021. Generative Adversarial Networks in finance: an overview, 1–22.

Fanai, H. and Abbasimehr, H., 2023. A novel combined approach based on deep Autoencoder and deep

classifiers for credit card fraud detection, Expert Systems with Applications, Elsevier, p. 119562.

Fu, S., Yu, X., Tian, Y., 2022. Cost sensitive ν-support vector machine with LINEX loss. Inf. Process.

Manag. 59, 102809.

Fan, X., Guo, X., Chen, Q., Chen, Y., Wang, T. and Zhang, Y., 2022, Data augmentation of credit default

swap transactions based on a sequence GAN, Information Processing & Management, Elsevier, Vol. 59

No. 3, p. 102889.

Fan, Q., Wang, Z. and Gao, D., 2016. One-sided dynamic undersampling no-propagation neural networks

for imbalance problem. Engineering Applications of Artificial Intelligence, 53, 62–73.

Fiore, U., De Santis, A., Perla, F., Zanetti, P. and Palmieri, F., 2019. Using generative adversarial networks

for improving classification effectiveness in credit card fraud detection, Information Sciences, Elsevier,

Vol. 479, pp. 448–455.

Fernández-Delgado, M., Cernadas E. and Barro S., 2014. Do we need hundreds of classifiers to solve real

world classification problems?, Journal of Machine Learning Research, 15(1), pp. 3133–3181.

Figueira, A. and Vaz, B., 2022. Survey on Synthetic Data Generation, Evaluation Methods and GANs.

Mathematics [online], 10 (15), 2733. Available from: http://dx.doi.org/10.3390/math10152733.

Faraji, Z. (2022). A Review of Machine Learning Applications for Credit Card Fraud Detection with A

Case study. SEISENSE Journal of Management, 5(1), 49–59.

198

198

Goodfellow, I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y.,

2014. Generative Adversarial Networks, Communications of the ACM, 63(11), pp. 139–144.

doi:10.1145/3422622.

Goodfellow, I., Bengio, Y., and Courville, A., 2016. Deep Learning. MIT Press. Chapter 6: Deep

Feedforward Networks, pp. 162-166.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., and Bengio, Y., 2014.

Generative adversarial nets. Advances in Neural Information Processing Systems (NIPS), 2672-2680.

Gatys, L.A., Ecker, A.S. and Bethge, M., 2016. Image style transfer using convolutional neural networks.

In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2414-2423).

Galar, M., Fernandez, A., Barrenechea, E., Bustince, H. and Herrera, F., 2011. A review on ensembles for

the class imbalance problem: bagging-, boosting-, and hybrid-based approaches, IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and Reviews), IEEE, Vol. 42 No. 4, pp. 463–484.

Ger, S. and Klabjan, D., 2019. Autoencoders and generative adversarial networks for anomaly detection for

sequences, ArXiv Preprint ArXiv:1901.02514, Sep.

Gupta, G.K. and Sharma, D.K., 2022. A review of overfitting solutions in smart depression detection

models, 2022 9th International Conference on Computing for Sustainable Global Development

(INDIACom), IEEE, pp. 145–151.

Grandini, M., Bagli, E. and Visani, G., 2020. Metrics for multi-class classification: An overview. arXiv

2020, arXiv:2008.05756.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and Courville, A.C., 2017. Improved training of

wasserstein gans, Advances in Neural Information Processing Systems, Vol. 30.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and

Bengio, Y., 2020. Generative adversarial networks. Communications of the ACM, 63(11), 139–144.

Günder, M., Piatkowski, N., Bauckhage, C., 2022. Full Kullback-Leibler-Divergence Loss for

Hyperparameter-free Label Distribution Learning. ArXiv Preprint ArXiv:2209.02055.

Galdran, A., Carneiro, G., Ballester, M.A.G., 2023. On the Optimal Combination of Cross-Entropy and

Soft Dice Losses for Lesion Segmentation with Out-of-Distribution Robustness. In: Diabetic Foot Ulcers

Grand Challenge: Third Challenge, DFUC 2022, Held in Conjunction with MICCAI 2022, Singapore,

September 22, 2022, Proceedings. Springer, pp. 40–51.

Gangwar, A. K., and Ravi, V., 2019. Wip: Generative adversarial network for oversampling data in credit

card fraud detection. International Conference on Information Systems Security, 123–134.

Glorot, X., and Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural

networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics

(AISTATS) (pp. 249-256).

H. He, E.A. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. Data Eng. 21 (9) (2009) 1263-

1284, 2009.

He, H., Bai Y., Garcia A. E., Li S., 2008. Adasyn: Adaptive Synthetic Sampling Approach for imbalanced

learning, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on

Computational Intelligence), pp. 1322–1328. doi:10.1109/ijcnn.2008.4633969.

199

199

Han, H., Wang, W.-Y. and Mao, B.-H., 2005. Borderline-smote: A new over-sampling method in

imbalanced data sets learning, Advances in Intelligent Computing: International Conference on Intelligent

Computing, ICIC 2005, Hefei, China, pp. 878–887. doi:10.1007/11538059_91.

Hwang, J. and Kim, K., 2020. An Efficient Domain-Adaptation Method using GAN for Fraud Detection.

International Journal of Advanced Computer Science and Applications, 11 (11), 1–11.

Hilal W., Gadsden S.A., and Yawney J., 2022. Financial Fraud: A Review of Anomaly Detection

Techniques and Recent Advance. Expert Systems with Applications, 193.

Hajek, P., Abedin, M.Z., and Sivarajah, U., 2022. Fraud Detection in Mobile Payment Systems using an

XGBoost-based Framework. Inf. Syst. Front. 1–19.

Hong, Y., Hwang, U., Yoo, J. and Yoon, S., 2019. How Generative Adversarial Networks and Their

Variants Work. ACM Computing Surveys [online], 52 (1), 1–43. Available from:

http://dx.doi.org/10.1145/3301282.

He, H., and Wu, D., 2019. Imbalanced Learning: Foundations, Algorithms, and Applications. IEEE

Transactions on Neural Networks and Learning Systems, 30(9), 3123-3140.

H. Chou, S. Chang, J. Pan, W. Wei, D. Juan, Remix: Rebalanced Mixup, in arXiv, pages 1-18, 2020.

Hordri, N.F., Yuhaniz, S.S., Azmi, N.F.M. and Shamsuddin, S.M., 2018. Handling class imbalance in

credit card fraud using resampling methods, Int. J. Adv. Comput. Sci. Appl, Vol. 9 No. 11, pp. 390–396.

Ioffe, S., and Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. International Conference on Machine Learning (ICML), 37, 448-456.

Imbalanced-learn.org. (n.d.). SMOTE — Version 0.9.0. [online] Available at: https://imbalanced-

learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html (Accessed 23 June 2023)

Imbalanced-learn.org. (n.d.). ADASYN — Version 0.9.1. [online] Available at: https://imbalanced-

learn.org/stable/references/generated/imblearn.over_sampling.ADASYN.html (Accessed 23 June 2023)

Imbalanced-learn.org. (n.d.). BorderlineSMOTE — Version 0.10.1. [online] Available at:

https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.BorderlineSMOTE.html

(Accessed 24 June 2023) (Accessed 23 June 2023).

I. Ullah and Q. H. Mahmoud, A Framework for Anomaly Detection in IoT Networks Using Conditional

Generative Adversarial Networks, in IEEE Access, vol. 9, pp. 165907-165931, 2021, doi:

Jain, R., Gour, B., and Dubey, S., 2016. A hybrid approach for credit card fraud detection using rough set

and decision tree technique. International Journal of Computer Applications, 139(10), 1–6.

Jiang, C., Song, J., Liu, G., Zheng, L., and Luan, W., 2018. Credit card fraud detection: A novel approach

using aggregation strategy and feedback mechanism. IEEE Internet of Things Journal, 5(5), 3637–3647.

Karthika, J. and Senthilselvi, A., 2023. An integration of deep learning model with Navo Minority Over-

Sampling Technique to detect the frauds in credit cards, Multimedia Tools and Applications, Springer, pp.

1–18.

Kumar, Y. and Gupta, S. (2023), “Effectiveness of Machine and Deep Learning for Blockchain

Technology in Fraud Detection and Prevention”, Applications of Artificial Intelligence, Big Data and

Internet of Things in Sustainable Development, CRC Press, pp. 287–307.

200

200

Kumar, P.; Iqbal, F. Credit card fraud identification using machine learning approaches. In Proceedings of

the 2019 1st International conference on innovations in information and communication technology

(ICIICT), Chennai, India, 25–26 April 2019; pp. 1–4.

Karthik, V.S.S., Mishra, A. and Reddy, U.S. (2022), “Credit card fraud detection by modelling behaviour

pattern using hybrid ensemble model”, Arabian Journal for Science and Engineering, Springer, pp. 1–11.

Kaur, P. and Gosain, A., 2018. Comparing the behavior of oversampling and undersampling approach of

class imbalance learning by combining class imbalance problem with noise, ICT Based Innovations:

Proceedings of CSI 2015, Springer, pp. 23–30.

Kar, N., Saha, A., and Deb, S., 2020. Trends in Computational Intelligence, Security and Internet of

Things: Third International Conference, ICCISIoT 2020, Tripura, India, December 29-30, 2020,

Proceedings, Vol. 1358, Springer Nature.

Kullback, S. and Leibler, R.A., 1951. On information and sufficiency, The Annals of Mathematical

Statistics, JSTOR, Vol. 22 No. 1, pp. 79–86.

Kaggle (2021). Kaggle credit card fraud detection. Available at: https://www.kaggle.com/datasets/mlg-

ulb/creditcardfraud. (Accessed on: 16 June 2023).

Kingma, D. P., and Ba, J., 2014. Adam: A Method for Stochastic Optimization. arXiv preprint

arXiv:1412.6980.

Kossale, Y., Airaj, M., and Darouichi, A., 2022. Mode Collapse in Generative Adversarial Networks: An

Overview. 2022 8th International Conference on Optimization and Applications (ICOA), 1–6.

Kim, T., Oh, J., Kim, N., Cho, S., and Yun, S.-Y., 2021. Comparing kullback-leibler divergence and mean

squared error loss in knowledge distillation. ArXiv Preprint ArXiv:2105.08919.

Luong, M.-T., Pham, H. and Manning, C.D., 2015.Effective approaches to attention-based neural machine

translation, ArXiv Preprint ArXiv:1508.04025.

Langevin, A., Cody, T., Adams, S. and Beling, P., 2021. Synthetic data augmentation of imbalanced

datasets with generative adversarial networks under varying distributional assumptions: A case study in

credit card fraud detection. Journal of the Operational Research Society, pp.1-28.

Langevin, A., Cody, T., Adams, S. and Beling, P., 2022. Generative adversarial networks for data

augmentation and transfer in credit card fraud detection, Journal of the Operational Research Society,

Taylor & Francis, Vol. 73 No. 1, pp. 153–180.

Lamba, H. Credit Card Fraud Detection in Real-Time. Ph.D. Thesis, California State University San

Marcos, San Marcos, CA, USA, 2020.

López, V., Fernández, A., García, S., Palade, V. and Herrera, F., 2013. An insight into classification with

imbalanced data: Empirical results and current trends on using data intrinsic characteristics, Information

Sciences, Elsevier, Vol. 250, pp. 113–141.

Lim, P., Goh, C.K. and Tan, K.C., 2016. Evolutionary cluster-based synthetic oversampling ensemble

(eco-ensemble) for imbalance learning, IEEE Transactions on Cybernetics, IEEE, Vol. 47 No. 9, pp. 2850–

2861.

LeCun, Y., Bengio, Y., and Hinton, G., 2015. Deep learning. Nature, 521(7553), 436–444.

Lei, J. Z., and Ghorbani, A. A., 2012. Improved competitive learning neural networks for network intrusion

and fraud detection. Neurocomputing, 75(1), 135–145.

201

201

Luo, H., Men, Y., and Zheng, Q., 2022. Sparse Autoencoders with KL Divergence.

Li, K. and Kang, D.-K., 2022. Enhanced Generative Adversarial Networks with Restart Learning Rate in

Discriminator, Applied Sciences, 12(3), p. 1191. doi:10.3390/app12031191.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A., 2017. Hyperband: A novel bandit-

based approach to hyperparameter optimization. The Journal of Machine Learning Research, 18(1), 6765-

6816.

Lucic, M., Kurach, K., Michalski, M., Gelly, S., and Bousquet, O., 2018. Are GANs Created Equal? A

Large-Scale Study. arXiv preprint arXiv:1711.10337.

Li J., Zhu Q., Wu Q. and Fan Z., 2021. A novel oversampling technique for class-imbalanced learning

based on SMOTE and natural neighbours. Inf. Sci. 2021, 565, 438–455.

M. M. Saripuddin, A. Suliman and S. S. Sameon, "Impact of Resampling and Deep Learning to Detect

Anomaly in Imbalance Time-Series Data," 2022 14th International Conference on Computer Research and

Development (ICCRD), Shenzhen, China, 2022, pp. 37-41, doi: 10.1109/ICCRD54409.2022.9730424.

M. Kowal, P. Filipczuk, A. Obuchowicz, J. Korbicz, and R. Monczak, “Computer-aided diagnosis of breast

cancer based on fine needle biopsy microscopic images,” Comput Biol Med, vol. 43, no. 10, pp. 1563–

1572, Oct. 2013, doi: 10.1016/j.compbiomed.2013.08.003.

Mirza, M. and Osindero, S. (2014) ‘Conditional Generative Adversarial Nets’, arXiv , pp. 1–7.

Mao, X., Li Q., Xie H., Lau Y.K. R., Wang Z., Smolley S. P., 2017. Least squares generative adversarial

networks, 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2813–2821.

doi:10.1109/iccv.2017.304.

Makki, S., Assaghir, Z., Taher, Y., Haque, R., Hacid, M.-S., Zeineddine, H., 2019. An experimental study

with imbalanced classification approaches for credit card fraud detection. IEEE Access 7, 93010–93022.

Maldonado, S., Vairetti, C., Fernandez, A. and Herrera, F., 2022. FW-SMOTE: A feature-weighted

oversampling approach for imbalanced classification, Pattern Recognition, Elsevier, Vol. 124, p. 108511.

Mohindru, G., Mondal, K., and Banka, H., 2021. Different hybrid machine intelligence techniques for

handling IoT‐based imbalanced data. CAAI Transactions on Intelligence Technology, 6(4), 405–416.

Mqadi, N., Naicker, N. and Adeliyi, T., 2021. A SMOTE based oversampling data-point approach to

solving the credit card data imbalance problem in financial fraud detection, International Journal of

Computing and Digital Systems, University of Bahrain, Vol. 10 No. 1, pp. 277–286.

Manjurul Ahsan, M., Shahin Ali, M. and Siddique, Z., 2022. Imbalanced Class Data Performance

Evaluation and Improvement using Novel Generative Adversarial Network-based Approach: SSG and

GBO, ArXiv E-Prints, p. arXiv-2210.

Moniz, N., Branco, P. and Torgo, L., 2017. Evaluation of ensemble methods in imbalanced regression

tasks’, in First International Workshop on Learning with Imbalanced Domains: Theory and Applications.

PMLR, pp. 129–140.

Mescheder, L., Geiger, A. and Nowozin, S., 2018. Which Training Methods for GANs do actually

Converge?, 1–10.

McIver, S., 2021. Can Generative Adversarial Networks Help Us Fight Financial Fraud? , Technological

University Dublin.

202

202

Mullick, S.S., Datta, S., and Das, S., 2019. Generative adversarial minority oversampling. In: Proceedings

of the IEEE/CVF International Conference on Computer Vision. pp. 1695–1704.

Maas, A. L., Hannun, A. Y., and Ng, A. Y., 2013. Rectifier Nonlinearities Improve Neural Network

Acoustic Models. In Proceedings of the 30th International Conference on Machine Learning (ICML-13)

(Vol. 28, No. 3).

Mescheder, L., Nowozin, S., and Geiger, A., 2018. Which training methods for GANs do actually

converge? In International Conference on Machine Learning (ICML) (Vol. 80, pp. 3478-3487).

Masters, D., and Luschi, C., 2018. Revisiting Small Batch Training for Deep Neural Networks. arXiv

preprint arXiv:1804.07612.

Ni, L., Li, J., Xu, H., Wang, X. and Zhang, J., 2023. Fraud Feature Boosting Mechanism and Spiral

Oversampling Balancing Technique for Credit Card Fraud Detection, IEEE Transactions on Computational

Social Systems, IEEE.

Ngwenduna, K.S.; Mbuvha, R. Alleviating class imbalance in actuarial applications using generative

adversarial networks. Risks 2021, 9, 49.

Nabulsi, Z., Sellergren, A., Jamshy, S., Lau, C., Santos, E., Kiraly, A.P., Ye, W., 2021. Deep learning for

distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases

tuberculosis and COVID-19, Scientific Reports, Nature Publishing Group, Vol. 11 No. 1, pp. 1–15.

Ng, W.W.Y., Xu, S., Zhang, J., Tian, X., Rong, T. and Kwong, S., 2020. Hashing-based undersampling

ensemble for imbalanced pattern classification problems, IEEE Transactions on Cybernetics, IEEE, Vol. 52

No. 2, pp. 1269–1279.

Nair, V., and Hinton, G. E., 2010. Rectified Linear Units Improve Restricted Boltzmann Machines. In

Proceedings of the 27th International Conference on International Conference on Machine Learning

(ICML-10) (pp. 807-814).

Ngo, P. C., Winarto, A. A., Kou, C. K. L., Park, S., Akram, F., and Lee, H. K., 2019. Fence GAN:

Towards better anomaly detection. 2019 IEEE 31St International Conference on Tools with Artificial

Intelligence (ICTAI), 141–148.

Nezamzadeh‐Ejieh, S., and Sadeghkhani, I., 2020. HIF detection in distribution networks based on

Kullback–Leibler divergence. IET Generation, Transmission & Distribution, 14(1), 29–36.

Olszewski, D., 2012b. Employing Kullback-Leibler divergence and Latent Dirichlet Allocation for fraud

detection in telecommunications, Intelligent Data Analysis, IOS Press, Vol. 16 No. 3, pp. 467–485.

Olszewski, D. 2012a. A probabilistic approach to fraud detection in telecommunications, Knowledge-

Based Systems, Elsevier, Vol. 26, pp. 246–258.

Prusti, D., Rout, J.K. and Rath, S.K., 2023. Detection of credit card fraud by applying genetic algorithm

and particle swarm optimization, Machine Learning, Image Processing, Network Security and Data

Sciences: Select Proceedings of 3rd International Conference on MIND 2021, Springer, pp. 357–369.

Paasch, C.A. Credit Card Fraud Detection Using Artificial Neural Networks Tuned by Genetic Algorithms;

Hong Kong University of Science and Technology: Hong Kong, China, 2008.

Prusti, D.; Rath, S.K. Web service based credit card fraud detection by applying machine learning

techniques. In Proceedings of the TENCON 2019-2019 IEEE Region 10 Conference (TENCON), Kochi,

India, 17–20 October 2019; pp. 492–497.

203

203

Phua, C., Lee, V., Smith, K. and Gayler, R., 2010. A comprehensive survey of data mining-based fraud

detection research, ArXiv Preprint ArXiv:1009.6119.

Phua, C., Alahakoon, D., and Lee, V., 2004. Minority report in fraud detection: classification of skewed

data. Acm Sigkdd Explorations Newsletter, 6(1), 50–59.

Prati, R.C., Batista, G.E. and Monard, M.C., 2004. Learning with class skews and small disjuncts,

Advances in Artificial Intelligence–SBIA 2004: 17th Brazilian Symposium on Artificial Intelligence, Sao

Luis, Maranhao, Brazil, September 29-October 1, 2004. Proceedings 17, Springer, pp. 296–306.

Perera, P., Nallapati, R. and Xiang, B., 2019. OCGAN: One-class Novelty Detection Using GANs with

Constrained Latent Representations.

Padmanabhuni, S. S., and Gera, P., 2022. Synthetic data augmentation of tomato plant leaf using meta

intelligent generative adversarial network: milgan. International Journal of Advanced Computer Science

and Applications, 13(6).

Pitsane, M.Y., Mogale, H., van Rensburg, J.T.J., 2022. Improving Accuracy of Credit Card Fraud

Detection Using Supervised Machine Learning Models and Dimension Reduction. In: International

Conference on Intelligent and Innovative Computing Applications. pp. 290–301.

Park, N., Gu, Y. H., and Yoo, S. J., 2021. Synthesising Individual Consumers′ Credit Historical Data Using

Generative Adversarial Networks. Applied Sciences, 11(3), 1126.

Pfenninger, M., Rikli, S. and Bigler, D. N., 2021. Wasserstein GAN: Deep Generation Applied on

Financial Time Series. SSRN Electronic Journal [online]. Available from:

http://dx.doi.org/10.2139/ssrn.3877960.

Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F. and Zheng, Y., 2019. Recent Progress on Generative

Adversarial Networks (GANs): A Survey. IEEE Access [online], 7, 36322–36333. Available from:

http://dx.doi.org/10.1109/access.2019.2905015.

Pavan K., M. R. and Jayagopal, P., 2021. Multi-class imbalanced image classification using conditioned

GANs. International Journal of Multimedia Information Retrieval [online], 10 (3), 143–153. Available

from: http://dx.doi.org/10.1007/s13735-021-00213-6.

Panigrahi, S., Kundu, A., Sural, S., and Majumdar, A. K., 2009. Credit card fraud detection: A fusion

approach using Dempster–Shafer theory and Bayesian learning. Information Fusion, 10(4), 354–363.

Prokhorov, V., Shareghi, E., Li, Y., Pilehvar, M. T., and Collier, N., 2019. On the importance of the

Kullback-Leibler divergence term in variational autoencoders for text generation. ArXiv Preprint

ArXiv:1909.13668.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986. Learning representations by back-propagating

errors. Nature, 323(6088), 533-536.

Radford, A., Metz, L., and Chintala, S., 2016. Unsupervised representation learning with deep

convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

Rtayli, N. 2022, An Efficient Deep Learning Classification Model for Predicting Credit Card Fraud on

Skewed Data, Journal of Information Security and Cybercrimes Research, Vol. 5 No. 1, pp. 61–75.

Rosenblatt, F., 1957. The perceptron, a perceiving and recognizing automaton Project Para. Cornell

Aeronautical Laboratory.

204

204

Ratner, A.J., Ehrenberg, H., Hussain, Z., Dunnmon, J. and Ré, C., 2017. Learning to compose domain-

specific transformations for data augmentation. Advances in neural information processing systems, 30.

Ramik Rawal, BREAST CANCER PREDICTION USING MACHINE LEARNING, JETIR, vol. 7, no. 5,

pp. 13–24, May 2020.

Smith, L. N., and Topin, N., 2020. Super-convergence: Very fast training of residual networks using large

learning rates. In Advances in Neural Information Processing Systems (NeurIPS).

Sauber-Cole, R. and Khoshgoftaar, T. M., 2022. The use of generative adversarial networks to alleviate

class imbalance in tabular data: a survey. Journal of Big Data, 9 (1), 98.

Sarah, S., Singh, V., Gourisaria, M. K., and Singh, P. K., 2021. Retinal Disease Detection using CNN

through Optical Coherence Tomography Images. 2021 5th International Conference on Information

Systems and Computer Networks (ISCON), 1–7.

Saxena, D. , Cao, J., 2021. Generative Adversarial Networks (GANs): Challenges, Solutions, and Future

Directions. ACM Computing Surveys [online], 54 (3), 1–42. Available from:

http://dx.doi.org/10.1145/3446374.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R., 2014. Dropout: A Simple

Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15(1), 1929-

1958.

Smith, J. A., 2020. A Comprehensive Guide to Data Preprocessing in Machine Learning: Methods and

Techniques.

Srivastava, A., Kundu, A., Sural, S., and Majumdar, A., 2008. Credit card fraud detection using hidden

Markov model. IEEE Transactions on Dependable and Secure Computing, 5(1), 37–48.

Shlens, J., 2014. Notes on kullback-leibler divergence and likelihood. arXiv Prepr. arXiv1404.2000.

Shen, J., 2021. Credit card fraud detection using autoencoder-based deep neural networks, 2021 IEEE 2nd

International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE),

IEEE, pp. 673–677.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X., 2016. Improved

techniques for training gans. Advances in Neural Information Processing Systems, 29.

Sabuhi, M., Zhou, M., Bezemer, C.-P. and Musilek, P., 2021. Applications of Generative Adversarial

Networks in Anomaly Detection: A Systematic Literature Review.

Singh, A., Ranjan, R.K. and Tiwari, A., 2021. Credit card fraud detection under extreme imbalanced data:

a comparative study of data-level algorithms, Journal of Experimental & Theoretical Artificial Intelligence,

Taylor & Francis, pp. 1–28.

S. Shams, R. Platania, J. Zhang, J. Kim, K. Lee, and S.-J. Park, “Deep Generative Breast Cancer Screening

and Diagnosis,” 2018, pp. 859–867. doi: 10.1007/978-3-030-00934-2_95.

Sun, J., Li, H., Fujita, H., Fu, B. and Ai, W., 2020., Class-imbalanced dynamic financial distress prediction

based on Adaboost-SVM ensemble combined with SMOTE and time weighting, Information Fusion,

Elsevier, Vol. 54, pp. 128–144.

Singh, A., Ranjan, R.K., Tiwari, A., 2022. Credit card fraud detection under extreme imbalanced data: a

comparative study of data-level algorithms. J. Exp. Theor. Artif. Intell. 34, 571–598.

205

205

Sethia, A., Patel, R. and Raut, P. (2018). Data augmentation using generative models for credit card fraud

detection. 2018 4th International Conference on Computing Communication and Automation (ICCCA), 1–

6.

Shorten C. and Khoshgoftaar, T.M., 2019. A survey on image data augmentation for deep learning. Journal

of big data, 6(1), pp.1-48.

Shannon, M., Poole, B., Mariooryad, S., Bagby, T., Battenberg, E., Kao, D., Stanton, D. and Skerry-Ryan,

R.J., 2020. Non-saturating GAN training as divergence minimization. arXiv preprint arXiv:2010.08029.

Sultana, J., Usha Rani, M. and Farquad, M.A.H., 2020. An extensive survey on some deep-learning

applications, Emerging Research in Data Engineering Systems and Computer Communications:

Proceedings of CCODE 2019, Springer, pp. 511–519.

Salekshahrezaee, Z., Leevy, J.L. and Khoshgoftaar, T.M., 2023. The effect of feature extraction and data

sampling on credit card fraud detection, Journal of Big Data, SpringerOpen, Vol. 10 No. 1, pp. 1–17.

Sanober, S., Alam, I., Pande, S., Arslan, F., Rane, K.P., Singh, B.K., Khamparia, A., 2021. An enhanced

secure deep learning algorithm for fraud detection in wireless communication, Wireless Communications

and Mobile Computing, Hindawi Limited, Vol. 2021, pp. 1–14.

Saia, R. and Carta, S., 2019. Evaluating the benefits of using proactive transformed-domain-based

techniques in fraud detection tasks., Future Generation Computer Systems, Elsevier, Vol. 93, pp. 18–32.

Soh, W.W., Yusuf, R.M., 2019. Predicting credit card fraud on an imbalanced data. Int. J. Data Sci. Adv.

Anal. (ISSN 2563-4429) 1, 12–17.

Sohony, I., Pratap, R. and Nambiar, U., 2018. Ensemble learning for credit card fraud detection,

Proceedings of the ACM India Joint International Conference on Data Science and Management of Data,

pp. 289–294.

Scikit-learn.org. (n.d.). sklearn.linear_model.LogisticRegression — scikit-learn 0.21.2 documentation.

[online] Available at: https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html (Accessed 23 June 2023)

Scikit-learn.org. (n.d.). sklearn.neural_network.MLPClassifier — scikit-learn 0.24.1 documentation.

[online] Available at: https://scikit-

learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.M

LPClassifier (Accessed 23 June 2023).

Scikit-learn.org. (n.d.). sklearn.neighbors.KNeighborsClassifier — scikit-learn 0.23.1 documentation.

[online] Available at: https://scikit-

learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeig

hborsClassifier (Accessed 23 June 2023).

Scikit-learn.org. (n.d.). 3.2.4.3.1. sklearn.ensemble.RandomForestClassifier — scikit-learn 0.21.3

documentation. [online] Available at: https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.Rand

omForestClassifier (Accessed 23 June 2023).

Taboga, M., 2021. Kullback-Leibler divergence Lectures on probability theory and mathematical statistics.

Kindle Direct Publishing. Online appendix. Available at: https://www.statlect.com/fundamentals-of-

probability/Kullback-Leibler-divergence. (Accessed 10 June 2023).

206

206

Tieleman, T., and Hinton, G., 2012. Lecture 6.5-rmsprop: Divide the gradient by a running average of its

recent magnitude. COURSERA: Neural Networks for Machine Learning.

Taha, A.A. and Malebary, S.J., 2020. An intelligent approach to credit card fraud detection using an

optimized light gradient boosting machine, IEEE Access, IEEE, Vol. 8, pp. 25579–25587.

Takahashi, S., Chen, Y. and Tanaka-Ishii, K., 2019. Modeling financial time-series with generative

adversarial networks. Physica A: Statistical Mechanics and its Applications, 527, 121261.

Tiwari, P., Mehta, S., Sakhuja, N., Kumar, J., and Singh, A. K., 2021. Credit card fraud detection using

machine learning: a study. ArXiv Preprint ArXiv:2108.10005.

Vega-Márquez, B., Rubio-Escudero, C., Riquelme, J. C. and Nepomuceno-Chamorro, I., 2020. Creation of

Synthetic Data with Conditional Generative Adversarial Networks. In: . 231–240.

Van Belle, R., Baesens, B. and De Weerdt, J., 2023. CATCHM: A novel network-based credit card fraud

detection method using node representation learning, Decision Support Systems, Elsevier, Vol. 164, p.

113866.

Vuttipittayamongkol, P. and Elyan, E., 2020. Neighbourhood-based undersampling approach for handling

imbalanced and overlapped data, Information Sciences, Elsevier, Vol. 509, pp. 47–70.

Vijayaraghavan, S. and Guan, T., 2022. GAN based Data Augmentation to Resolve Class Imbalance,

ArXiv Preprint ArXiv:2206.05840.

Weijs, S. V, Van Nooijen, R., and Van De Giesen, N., 2010. Kullback–Leibler divergence as a forecast

skill score with classic reliability–resolution–uncertainty decomposition. Mon. Weather Rev. 138, 3387–

3399.

William H Wolberg, W Nick Street, and Olvi L Mangasarian, Breast cancer Wisconsin (diagnostic) data

set, UCI Machine Learning Repository [http://archive. ics. uci. edu/ml/], 1992.

William, H., Wolberg, W., Street, N., and Olvi, L. Mangasarian. In UCI Machine Learning Repository;

School of Information and Computer Science, University of California: Irvine, CA, USA, 1995; Available

online: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic) (Accessed 06 June

2023).

Wolpert, D.H., 1992. Stacked generalization, Neural Networks, 5(2), pp. 241–259. Available at:

https://doi.org/10.1016/S0893-6080(05)80023-1.

Wang, K., Gou, C., Duan, Y., Lin, Y., Zheng, X. and Wang, F.-Y., 2017. Generative adversarial networks:

introduction and outlook. IEEE/CAA Journal of Automatica Sinica [online], 4 (4), 588–598. Available

from: http://dx.doi.org/10.1109/jas.2017.7510583.

Wang, Z., Wang, Y. and Srinivasan, R.S., 2018. A novel ensemble learning approach to support building

energy use prediction, Energy and Buildings, 159, pp. 109–122.

Wolterink, J. M., Kamnitsas, K., Ledig, C. and Išgum, I., 2020. Deep learning: Generative adversarial

networks and adversarial methods. Handbook of Medical Image Computing and Computer Assisted

Intervention [online], 547–574. Available from: http://dx.doi.org/10.1016/b978-0-12-816176-0.00028-4.

Wang, K., Zhang, X., Hao, Q., Wang, Y. and Shen, Y., 2019. Application of improved least-square

generative adversarial networks for rail crack detection by AE technique. Neurocomputing [online], 332,

236–248. Available from: http://dx.doi.org/10.1016/j.neucom.2018.12.057.

207

207

Wickramaratne, S. D., and Mahmud, M. S., 2021. Conditional-GAN based data augmentation for deep

learning task classifier improvement using fNIRS data. Frontiers in Big Data, 4, 659146.

Wei, J., Huang, H., Yao, L., Hu, Y., Fan, Q. and Huang, D., 2020. NI-MWMOTE: An improving noise-

immunity majority weighted minority oversampling technique for imbalanced classification problems,

Expert Systems with Applications, Elsevier, Vol. 158, p. 113504.

Werner de Vargas, V., Schneider Aranda, J.A., dos Santos Costa, R., da Silva Pereira, P.R. and Victória

Barbosa, J.L., 2023.Imbalanced data preprocessing techniques for machine learning: a systematic mapping

study, Knowledge and Information Systems, Springer, Vol. 65 No. 1, pp. 31–57.

Wan, Z., Zhang, Y. and He, H., 2017. Variational autoencoder based synthetic data generation for

imbalanced learning. 2017 IEEE Symposium Series on Computational Intelligence (SSCI), 1–7.

Wang, B.X. and Japkowicz, N., 2004. Imbalanced data set learning with synthetic samples, Proc. IRIS

Machine Learning Workshop, Vol. 19, p. 435.

Wang, S., Dai, Y., Shen, J. and Xuan, J., 2021. Research on expansion and classification of imbalanced

data based on SMOTE algorithm, Scientific Reports, Springer, Vol. 11 No. 1, pp. 1–11.

Xie, Y., Liu, G., Cao, R., Li, Z., Yan, C. and Jiang, C. 2019. A feature extraction method for credit card

fraud detection, 2019 2nd International Conference on Intelligent Autonomous Systems (ICoIAS), IEEE,

pp. 70–75.

Xue, W. and Zhang, J., 2016. Dealing with imbalanced dataset: A re-sampling method based on the

improved SMOTE algorithm, Communications in Statistics-Simulation and Computation, Taylor &

Francis, Vol. 45 No. 4, pp. 1160–1172.

Xue, Y. and Qin, J., 2022. Partial connection based on channel attention for differentiable neural

architecture search, IEEE Transactions on Industrial Informatics, IEEE.

Xie, X., Liu, H., Zeng, S., Lin, L. and Li, W., 2021. A novel progressively undersampling method based on

the density peaks sequence for imbalanced data, Knowledge-Based Systems, Elsevier, Vol. 213, p. 106689.

Xie, L., Lin, K., Wang, S., Wang, F. and Zhou, J., 2018. Differentially Private Generative Adversarial

Network, 1, 1–9.

Xu, L. and Veeramachaneni, K., 2018. Synthesizing tabular data using generative adversarial networks.

ArXiv Preprint ArXiv:1811.11264.

Yang, W., Zhang, Y., Ye, K., Li, L., and Xu, C.-Z. 2019, Ffd: A federated learning based method for credit

card fraud detection. International Conference on Big Data, 18–32.

Y. Cao, L. Jia, Y. Chen, N. Lin, C. Yang, B. Zhang, Z. Liu, X. Li and H. Dai, 2018. Recent Advances of

Generative Adversarial Network in Computer Vision, in IEEE, pages 1-22, 2018.

Yu, Z., Lan, K., Liu, Z. and Han, G., 2021. Progressive ensemble kernel-based broad learning system for

noisy data classification, IEEE Transactions on Cybernetics, IEEE.

Yang, K., Yu, Z., Chen, C.L.P., Cao, W., Wong, H.-S., You, J. and Han, G., 2021. Progressive hybrid

classifier ensemble for imbalanced data, IEEE Transactions on Systems, Man, and Cybernetics: Systems,

IEEE, Vol. 52 No. 4, pp. 2464–2478.

Zamini, M., and Montazer, G., 2018. Credit card fraud detection using autoencoder based clustering. 2018

9th International Symposium on Telecommunications (IST), 486–491.

208

208

Zheng, W., Yan, L., Gou, C., and Wang, F.-Y., 2021. Federated meta-learning for fraudulent credit card

detection. Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on

Artificial Intelligence, 4654–4660.

Zheng, L., Liu, G., Yan, C. and Jiang, C., 2018. Transaction fraud detection based on total order relation

and behavior diversity, IEEE Transactions on Computational Social Systems, IEEE, Vol. 5 No. 3, pp. 796–

806.

Zhong, J., Li, Y., Xie, W., Lei, J. and Jia, X., 2022. Multi-Prior Twin Least-Square Network for Anomaly

Detection of Hyperspectral Imagery. Remote Sensing [online], 14 (12), 2859. Available from:

http://dx.doi.org/10.3390/rs14122859.

Zhang, Z., Li, M. and Yu, J., 2018. On the convergence and mode collapse of GAN. SIGGRAPH Asia

2018 Technical Briefs [online]. Available from: http://dx.doi.org/10.1145/3283254.3283282.

Zioviris, G., Kolomvatsos, K. and Stamoulis, G., 2022. Credit card fraud detection using a deep learning

multistage model, The Journal of Supercomputing, Springer, pp. 1–26.

Zhang H., Tang W., Na W., Lee P., Kim J., 2020. Implementation of generative adversarial network-CLS

combined with bidirectional long short-term memory for lithium-ion battery state prediction . Journal of

Energy Storage 31

Zhang, Z., Yang, L., Chen, L., Liu, Q., Meng, Y., Wang, P. and Li, M., 2020. A generative adversarial

network–based method for generating negative financial samples. International Journal of Distributed

Sensor Networks, 16 (2), 155014772090705.

Zhang, H. and Li, M., 2014. RWO-Sampling: A random walk over-sampling approach to imbalanced data

classification, Information Fusion, Elsevier, Vol. 20, pp. 99–116.

Zhang, R., Zhang, Z. and Wang, D., 2021. RFCL: A new under-sampling method of reducing the degree of

imbalance and overlap, Pattern Analysis and Applications, Springer, Vol. 24 No. 2, pp. 641–654.

Zhang, S., 2020. Cost-sensitive KNN classification. Neurocomputing 391, 234–242.

Zhou, Y., Dong, F., Liu, Y., Li, Z., Du, J. and Zhang, L., 2020. Forecasting emerging technologies using

data augmentation and deep learning, Scientometrics, Springer, Vol. 123, pp. 1–29.

209

209

Appendix

Deploying a Synthetic K-CGAN Model for Credit Card

Transactions on AWS Using Flask REST API

In this project, a synthetic K-CGAN model has been trained using credit card transaction data. The model

has been developed to generate synthetic credit card transactions that can be used to augment the original

dataset for better model training. A Flask REST API has been developed to serve the model and the synthetic

transactions generated by it. The API can be accessed through HTTP requests, and the model can be deployed

on AWS using services such as Elastic Beanstalk or EC2. The synthetic data can be used to improve the

performance of machine learning models while also demonstrating deployment of the model on the cloud

using Flask REST API and AWS services.

Below are 3 major sections of this deployment process.

Flask API development

Develop a REST API using the Flask web framework to serve the K-CGAN model and the generated

transactions.

Code:

● This is a Flask app that generates synthetic data using a GAN model.

● The app has two endpoints: a default endpoint '/' that returns a message 'Flask is running!', and

another endpoint '/generate_synthetic_data' that generates synthetic data and returns it as a JSON

response.

● The '/generate_synthetic_data' endpoint expects a POST request with two parameters: 'samples'

and 'transaction_type'.

● The 'samples' parameter specifies the number of synthetic data samples to generate.

● The 'transaction_type' parameter specifies the type of transaction to generate, either 'fraud' or

'valid'.

● The GAN model used to generate synthetic data is loaded from a saved model file using the

NoveltyGAN class defined in the 'novelty_gan.py' file.

● The 'port' variable is set to the value of the 'PORT' environment variable, or 5000 if the 'PORT'

variable is not set.

● The Flask app is started on the host '0.0.0.0' and the specified port, with debug mode set to False.

● Saved model is generator_90, saved in models folder.

Define Novelty K-CGAN class

This class is used to generate the synthetic data.

Load Packages

210

210

from flask import Flask, request, jsonify

import pandas as pd

import tensorflow as tf

import warnings

from sklearn.preprocessing import MinMaxScaler

warnings.filterwarnings('ignore')

class NoveltyGAN:

 """

 A class for generating synthetic tabular data using a Generative Adversarial Network (GAN).

 Parameters:

 path : str

 The path to the saved generator model.

 dataset : str

 The path to the dataset used for training the GAN.

 Attributes:

 features : list of str

 The column names of the input dataset used as features.

 standard_scaler : MinMaxScaler

 The scaler object fit to the input dataset for normalizing the data.

 Methods:

 scaling_data():

 Reads in the dataset, removes the "Time" column, and scales the input data between -1 and 1 using

MinMaxScaler.

 generator_synthetic_data(samples = 10, transaction_type = 'fraud'):

211

211

 Generates synthetic data using the saved generator model and the specified number of samples and

transaction type

 """

 def __init__(self, path, dataset):

 self.dataset = dataset

 self.path = path

 self.features = ['V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10',

 'V11', 'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20',

 'V21', 'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28', 'Amount']

 self.scaling_data()

 def scaling_data(self):

 """

 Reads in the dataset, removes the "Time" column, and scales the input data between -1 and 1 using

MinMaxScaler.

 """

 cc_df = pd.read_csv(self.dataset)

 cc_df = cc_df.drop("Time", axis=1)

 cc_df = cc_df.astype('float32')

 standard = MinMaxScaler(feature_range=(-1, 1))

 self.standard_scaler = standard.fit(cc_df[self.features])

 def generator_synthetic_data(self, samples=10, transaction_type='fraud'):

 """

 Generates synthetic data using the saved generator model and the specified number of samples and

transaction type.

 Parameters:

 samples : int, optional

 The number of synthetic samples to generate (default=10).

 transaction_type : str, optional

 The type of synthetic transaction to generate, either 'fraud' or 'normal' (default='fraud').

212

212

 Returns:

 synthetic_data : pandas DataFrame

 The generated synthetic data, with a "Class" column added to indicate whether the transaction is

fraudulent (1) or not (0).

 """

 generator = tf.keras.models.load_model(self.path)

 noiseG = tf.random.normal(shape=(samples, 100))

 if transaction_type == 'fraud':

 synthetic_data = generator.predict([noiseG, tf.ones((samples, 1))])

 else:

 synthetic_data = generator.predict(

 [noiseG, tf.zeros((samples, 1))])

 synthetic_data = pd.DataFrame(synthetic_data, columns=self.features)

 synthetic_data = pd.DataFrame(self.standard_scaler.inverse_transform(

 synthetic_data), columns=self.features)

 if transaction_type == 'fraud':

 synthetic_data["Class"] = 1

 else:

 synthetic_data["Class"] = 0

 return synthetic_data

Flask API

This code is use to build a rest api to communicate with above K-CGAN class and generate synthetic data

#Importing necessary modules

from flask import Flask, request, jsonify

import pandas as pd

from novelty_gan import NoveltyGAN # importing NoveltyGAN class

import os

#Creating Flask app instance

app = Flask(name)

213

213

#Loading GAN Model

gan_model = NoveltyGAN('models/generator_90', 'creditcard.csv') # Provide model path and data file

path

#Defining root route of the app

@app.route('/')

def hello():

 return 'Flask is running!' # Return a simple message to check if the app is running or not

Defining '/generate_synthetic_data' route of the app to generate synthetic data

@app.route('/generate_synthetic_data', methods=['GET'])

def generate_synthetic_data():

 # Get data from the request

 data = request.args

 # Extract the required data from the JSON data

 samples = data['samples']

 transaction_type = data['transaction_type']

 # Use the GAN model to generate synthetic data

 synthetic_data = gan_model.generator_synthetic_data(samples, transaction_type)

 # Convert the generated data to JSON format

 response = synthetic_data.to_json(orient='records')

 return response # Return the JSON formatted data as response to the request

#Start the Flask app if this file is run directly

if name == 'main':

 # Get the port from the environment variable, or set it to 5000 by default

 port = int(os.environ.get('PORT', 5000))

 # Run the app on 0.0.0.0 IP address (to make it accessible from outside the container) and the specified

port

 app.run(host='0.0.0.0', port=port, debug=False) # Turn debug off in production

AWS development

Deploy the Flask API and the GAN model on the AWS cloud using EC2. The steps are divided in two sub

sections.

Signup on AWS and Get Instance

214

214

1. Navigate to the AWS website and click on the "Create an AWS Account" button.

2. Follow the steps to create your account. You will need to provide your email address, create a

password, and enter your billing information.

3. Once the account is created, sign in to the AWS Management Console.

4. Click on the "EC2" service to launch the EC2 dashboard.

5. Click on the "Launch Instance" button to start the process of creating a new EC2 instance.

6. Select the "Amazon Linux 2 AMI (HVM), SSD Volume Type" as the AMI (Amazon Machine

Image) for the instance.

https://aws.amazon.com/
https://console.aws.amazon.com/console/home?nc2=h_ct&src=header-signin

215

215

7. Select the "t2.micro" instance type from the list of available instance types.

8. Configure instance details, including the number of instances, network settings, and storage.

9. Select or create a security group for the instance. A security group controls the traffic to and from

your instance.

10. Review instance settings and launch the instance.

216

216

11. Download the private key file (.pem) for the instance.

12. Connect to the instance using SSH by running the following command in the terminal:

ssh -i /path/to/private/key.pem ec2-user@<your-instance-public-ip>

13. Then click on Connect in the next screen.

217

217

14. Once connected to the instance, install and configure any necessary software, including Flask, to

run the application.

218

218

Bellow commands could be utilized to upload and run FLASK APP.

Steps to Upload FLASK APP

1. Access terminal or command prompt and navigate to the directory where the Flask app is located.

2. Create a new SSH key pair by running the following command in the terminal:

ssh-keygen -t rsa -b 4096

This will create a new SSH key pair in the ~/.ssh directory on the local machine.

3. Log in to the AWS Management Console, navigate to the EC2 dashboard, and launch a new EC2

instance. Select the t2.micro instance type and choose the appropriate security group and key pair

settings.

4. Once the EC2 instance is up and running, SSH into it by running the following command in the

terminal:

ssh -i /path/to/your/key.pem ec2-user@34.210.202.193

Replace /path/to/your/key.pem with the path to your SSH key file, and ec2-user with the

appropriate username for the EC2 instance.

5. Install the necessary packages and dependencies on the EC2 instance by running the following

commands:

sudo yum update

sudo yum install python3

sudo yum install python3-pip

sudo pip3 install flask pandas scikit-learn tensorflow

6. Use filezilla to transfer the files or copy Flask app files to the EC2 instance by running the

following command:

scp -i /path/to/your/key.pem /path/to/your/flask/app ec2-user@13.40.105.22:/home/ec2-user

Replace /path/to/your/flask/app with the path to your Flask app directory.

7. SSH into the EC2 instance again and navigate to the Flask app directory:

ssh -i /path/to/your/key.pem ec2-user@13.40.105.22

cd /home/ec2-user/path/to/your/flask/app

8. Start the Flask app by running the following command:

nohup python main.py &

9. This will start the Flask app on the public IP address of the EC2 instance.

10. Test the Flask app by navigating to http://13.40.105.22:5000 in the web browser.

Upon performing the above steps the Flask app should now be up and running on the AWS EC2 instance.

http://13.40.105.22:5000/

219

219

API Testing

Test the API to ensure that it is functioning correctly and that the synthetic transactions generated by the K-

CGAN model are of high quality.

The steps below demonstrate how to test the REST API using Postman:

1. Install Postman on the system

2. Launch Postman and create a new request by clicking on the "New" button.

3. Select the HTTP method as "GET" from the dropdown list.

4. Enter the URL of the Flask app with the endpoint "/generate_synthetic_data". For example, if you

are running the app locally on port 5000, the URL would be

"http://13.40.105.22:5000/generate_synthetic_data".

5. In the "Params" tab, enter the following two key-value pairs in the "KEY" and "VALUE" columns

respectively: "samples" and the number of samples you want to generate, and "transaction_type"

and the type of transaction for which you want to generate synthetic data.

6. Click on the "Send" button to send the request to the Flask app.

7. You will receive a response in the JSON format with the generated synthetic data.

Link - http://13.40.105.22:5000/generate_synthetic_data?samples=100&transaction_type=fraud

https://www.postman.com/downloads/
http://13.40.105.22:5000/generate_synthetic_data?samples=100&transaction_type=fraud

220

220

8. Its also possible to test the root endpoint by selecting the HTTP method as "GET" and entering the URL

of the Flask app without any endpoint. For example, if the up is running locally on port 5000, the URL

would be "http://13.40.105.22:5000/".

URL - http://13.40.105.22:5000/

http://13.40.105.22:5000/
http://13.40.105.22:5000/

221

221

Awards

222

222

223

223

224

224

225

225

226

226

227

227

228

228

