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Abstract

Augmented Reality (AR) technology fuses virtual information with the real-world en-
vironment to enhance the way people interact with digital information in their physical
world. This thesis is concerned with topology-aware AR systems designed to be aware of
the topology changes in the surroundings and explore the topological features of scenes.
Topological structures, such as graphs, can provide information on the relationship between
point clouds to improve the quality of point cloud-based real-world 3D map reconstruc-
tions for topology-aware AR systems. The reconstructed 3D maps provide information to
improve the registration accuracy between virtual objects and the physical environment.
Furthermore, 3D maps also help to reduce registration failures caused by complex and
dynamic scenes, such as object occlusions, object motion, and object deformation.

This thesis explores algorithms, computational methods, and frameworks for dense
3D surface reconstructions based on monocular videos and images for augmented reality
applications. The main contributions of this PhD work are: 1) Proposed a graph deep
learning-based framework for monocular depth estimation, which learns non-Euclidean
features and improves the accuracy of depth estimations. Mathematical background on
group equivariance, including translation equivariance and permutation equivariance, is
also introduced to provide theoretical support for the proposed network; 2) Conducted two
use cases to demonstrate the capabilities of the proposed methods in improving fine details
of depth estimation for complex and unstructured environments with free camera motions;
3) A further improved the framework to address low-illumination endoscopy videos; 4)
Proposed a statistical method to handle the non-rigid point cloud registration with special
topology changes. Within which, a clustering and refinement scheme is proposed to deal
with distribution irregularities of point sets; 5) Developed a framework to demonstrate the
functionality of the proposed method in AR.

Under challenging scenes such as endoscopy and unmanned aerial vehicle videos, the
proposed methods outperform the state-of-the-art algorithms with robustness and accuracy.
For example, the proposed depth estimation method improves the 3D data acquisition,
the Break and Splice framework improves the 3D dynamic reconstruction, and the proposed
AR framework provides a solution in dynamic scenes for medical applications.
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Chapter 1

Introduction

1.1 Background

Augmented reality (AR) technology utilises computer-generated virtual information to
enhance the real world, thereby improving people’s ability to perceive and interact with
their physical environment. AR technology is an interdisciplinary field encompassing
computer vision, computer graphics, machine learning and deep learning, and human-
computer interactions. AR has been used in a variety of industries and domains, such as
education [12], entertainment [13], medicine [14], and military [15].

Milgram and Kishino [16] first provided the concept of AR in 1994. They proposed
a virtuality continuum diagram to represent AR, Virtual Reality (VR) and Mixed Reality
(MR). Compared with VR, which is represented by a fully virtual environment at the
rightmost end, AR remains closer to the experiences comprising a real environment
and provides information that goes beyond what humans can perceive with their senses
alone. Figure 1.1 shows milestones in the history of AR. AR technology includes 3D
registration that fuses virtual information, including 3D information or models, with
real-world elements such as images and videos [17]. The solutions for 3D registration
can be classified into two main categories: image-based methods using features detected
from images and 3D map-based methods using point features. The former category
achieves the virtual object registration in the real world based on Perspective-n-Point
(PnP) [18]. PnP utilises templates, such as makers [19] or reference images [20], to match
videos, which is then used to calculate the camera pose for virtual object registration. The
registration stability of these methods can cause distracting visual artifacts (i.e. flashing
visual effects due to virtual objects being unstable) [21]. 3D map-based methods utilise 3D
map information to register virtual objects. The reconstructed 3D map not only provides
positional information but also helps overcome the challenge of virtual object registration
failure caused by complex and dynamic scenes, such as object occlusions, object motion,
and object deformation. [22], [23]. There are two types of 3D maps: sparse and dense
maps. Sparse 3D maps are representations of a space with a low point density and are
generally used to compute only feature points for depth estimation. Dense 3D maps, on
the other hand, have a high point density and usually have the same number of 3D points
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Fig. 1.1 Milestones in the history of AR.

with image pixels. Dense 3D maps can provide detailed and accurate representations of
3D point clouds and improve the registration between virtual objects and the environment
for AR applications.

This research primarily focuses on data acquisition and non-rigid registration. Data
acquisition is to capture a point cloud of multiple observations or frames of the object or
a scene using various sensing technologies such as RGB cameras (monocular and stereo
cameras), RGB-D sensors, Light Detection and Ranging (LiDAR), or other 3D scanning
techniques. The choice of sensors depends on the specific environment of an application.
For example, in Minimally Invasive Surgery (MIS), the visual sensor, called an endoscope,
is usually a monocular camera due to its small size and lightweight, making it easy to
integrate into the surgical setup [24]. RGB-D sensors, such as the Kinect, are commonly
employed in indoor environments [25]. LiDAR sensors have been used in autonomous
vehicles [26] or cultural heritage preservation [27] to capture high-precision point clouds.
RGB cameras have certain advantages, such as being cost-effective, lightweight and richer
information about the environment compared to other sensors. This project investigates
data acquisition using monocular RGB cameras for 3D surface reconstruction of generating
3D point clouds or meshes for dynamic scenes or environments that are changing over time.
This research work focuses on monocular depth estimation for dense depth maps. On the
other hand, non-rigid registration is to find a warp field W to be applied to a source point
cloud S such that the warped source point cloud best explains the target point cloud T :
W (S) = T . This research primarily focuses on non-rigid registration with special topology
changes, e.g. connections and separations (see Fig. 7.1 in Chapter 7).

More specifically, traditional monocular depth estimation involves Structure from
Motion (SfM)-based methods and handcrafted feature-based methods. SfM-based meth-
ods [28], [29], [30] aim to find a set of corresponding pixels on a series of images of
a scene to compute depth values. Obtained depth maps by these methods are usually
sparse. On the other hand, handcrafted feature-based methods [31], [32] utilise the features
extracted from images to estimate dense depth by optimising a probabilistic model such as
a Markov Random Field (MRF) [33] or a Conditional Random Field (CRF) [34]. More
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recently, deep-learning-based methods [35], [36], [37] have made significant progress in
recovering the depth of information from a single image. However, many learning-based
methods fail to learn fine details. This is because point clouds as depth maps are out-of-
order and include many non-Euclidean features, such as curvature, geodesic distance, and
hyperbolic angle [38]. Furthermore, monocular depth estimation for endoscopy scenes
remains a significant challenge because of the complex surgical environment coupled with
textureless surface features and low-illumination conditions. Another challenging case is
that images captured by Unmanned Aerial Vehicles (UAVs) in unstructured environments
lack well-defined or predictable structures, which may have some degrees of complexity,
randomness, or variability.

Depending on applications, point clouds can be aligned by rigid methods [39] or non-
rigid methods [40]. Rigid methods are suitable for the registration of static scenes or objects,
which can be aligned with a single translation and rotation. Non-rigid methods often
involve a series of transformation matrices and different parts of the object that undergo
various deformations. The computation of deformations is a fundamental problem in the
acquisition and analysis of non-rigidly deformable objects [41]. Non-rigid registration
methods based on point correspondence are to estimate affine transformations between
the source and the target point sets [42], [43]. Statistical methods, such as the motion
coherence theory, have been proposed to estimate maximum-likelihood solutions for
non-rigid registration [44], [44]. However, non-rigid registration methods have failed to
effectively address the topology changes of objects, such as connection and separation
issues between objects. Topology changes in a scene can lead to misregistration and
inaccurate reconstructions. In addition, large inter-frame motions can also cause significant
deformations and changes in topology, which poses a challenge for non-rigid registration.

1.2 Motivation

This project aims to address two challenges in 3D surface dynamic reconstruction in order
to improve the registration accuracy between virtual objects and their physical environ-
ments and to improve the perception of depth in challenge applications with a monocular
camera with free motions, such as Minimally Invasive Surgery(MIS) and Unmanned
Aerial Vehicles(UAVs). More specifically, this work will firstly address challenges in
depth estimation to learn complex topology information contained in scenes captured
by monocular devices. Secondly, this research will investigate non-rigid registration by
dealing with special topology changes, which is an essential part of traditional 3D dynamic
reconstruction.

1.3 Hypothesis and Research Questions

This thesis hypothesizes that an accurate surface 3D reconstruction method, algorithm,
or framework can improve AR applications. The second hypothesis is that exploring
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topological structures can improve surface 3D reconstruction. Research questions for this
thesis are:

I. What factors influence the self-supervised monocular depth estimation accuracy in
state-of-the-art algorithms, and how to achieve more accurate depth estimations for
3D surfaces?

II. What factors affect the performance of depth estimation in low-illumination environ-
ments?

III. How to solve non-rigid registration with special topology changes, like connections
and separation?

IV. How to apply depth estimation and dynamic 3D surface reconstruction algorithms to
AR systems?

1.4 Research Contributions

This PhD research develops a self-supervised graph deep learning-based framework for
monocular depth estimation. Two use cases are presented: one is for minimally invasive
surgery using endoscopy videos; another is the depth estimation from videos captured
by Unmanned Aerial Vehicles (UAVs). A statistical method for non-rigid point cloud
registration is proposed to solve topological changes. AR applications are finally developed
based on the proposed monocular depth estimation framework to achieve accurate surgery
instrument tracking and deal with missing depth caused by organs underneath the surgery
instruments.

The main contributions of this work are:

• The development of a new self-supervised graph deep learning-based frame-
work for monocular depth estimation.(Chapter 3, 4)

A novel coarse-fine encoder framework is proposed that utilises a graph attention
network (GAT) [45] to learn non-Euclidean features and refine the depth geometry
feature. The graph structure that explores four-connectivity (two elements are
considered connected if they share a common edge, specifically the top, bottom, left,
or right edge) can keep the original neighbour point information so that avoiding
the loss of local feature information of the point cloud. In this thesis, mathematical
foundations are provided to support the validity of the coarse-to-fine encoder model.

• Two use case studies of unstructured scenes are conducted to evaluate the
performance and efficacy of the proposed method.(Chapter 5, 6)

The use of case studies demonstrates the depth estimation effectiveness of the pro-
posed method for unstructured scenes. In the endoscopy case study, three endoscopy
datasets are used for quantitative evaluations with five state-of-the-art methods. In
addition, the qualitative results show that the proposed monocular depth estimation
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framework can correctly recover the depth of surgical instruments and have well-
distributed point clouds along the edges. In the UAVs case study, three different
weather datasets are used to compare with state-of-the-art methods for metrics evalu-
ations, and results of two real-world datasets, urban settings and natural wilderness,
show that the proposed framework can achieve fine details of depth compared with
other methods.

• Improving the depth of low-illumination endoscopy video.(Chapter 5)

To address the issue of low-illumination environments in specific endoscopy scenar-
ios, the Contrast Limited Adaptive Histogram Equalization (CLAHE) method [46]
is employed to ensure brightness consistency and enhance the details of endoscopic
images. This application of CLAHE improves depth estimation in challenging
low-illumination conditions.

• A novel statistical non-rigid point registration.(Chapter 7)

A statistical algorithm is proposed for non-rigid point cloud registration, addressing
the challenge of handling topology changes without the need to estimate the cor-
respondence points of two point clouds. A novel Break and Splice framework is
developed to cluster a pair of point sets and assign labels to the source point cloud
and target point cloud. The point clouds are registered with the same labels using
the Bayesian Coherent Point Drift (BCPD) method [47]. The proposed approach is
evaluated on three public datasets and two of our datasets using various qualitative
and quantitative metrics. The results show that the Break and Splice framework
outperforms the state-of-the-art methods and achieves error reduction ∼ 60% and a
registration time reduction ∼ 57.8%.

• Two AR applications based on the proposed methods.(Chapter 8)

The accurate localisation of instruments is useful in minimally invasive surgery. AR
applications based on the proposed depth estimation framework are developed to
provide valuable augmented information for feedback, such as the relative distance
of instruments, for robotic surgery. In addition, AR applications using dynamic
3D organ reconstruction can overcome missing depth if organs are beneath the
instruments.

1.5 Thesis Outline

• Chapter 1: Introduction of research background, aim and main contributions.

• Chapter 2: Literature review on depth recovery from video, and introductions of
traditional algorithms, supervised and unsupervised learning-based methods. Fur-
thermore, the review encompasses many non-rigid point cloud registration methods,
including general transformation and Gaussian Mixture Models. 3D dynamic surface
reconstruction methods are also mentioned.
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• Chapter 3: Theoretical foundation is provided upon which this thesis is built. In
particular, the mathematical background is used to support the proposed depth
estimation framework, including the group equivariance deep learning and projective
geometry. The RGB-D imaging process is also introduced, which will be used to
conduct non-rigid registration experiments.

• Chapter 4: A novel group equivariance deep learning framework is proposed for
monocular depth estimation based on the mathematical foundations described in
Chapter 3 to support the validity of the coarse-to-fine encoder model.

• Chapter 5: A use case on endoscopy videos is used to evaluate the proposed
framework described in Chapter 4, and a new loss function is designed to improve
the endoscopy video in low-illumination conditions.

• Chapter 6: Another use case on videos captured by UAVs in unstructured environ-
ments, which are similar to endoscopy environments with free-motion cameras and
textureless regions, is used to evaluate the proposed framework in Chapter 4.

• Chapter 7: A statistical method for non-rigid point cloud Registration. This chapter
utilises Break and Splice framework to handle point clouds undergoing topology
changes and large inter-frame motions.

• Chapter 8: AR applications of organ 3D dynamic reconstruction and instruments
tracking based on the depth map.

• Chapter 9: Conclusion and future work.
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Chapter 2

Literature Review

This chapter reviews the state-of-the-art approaches, methodologies, and computational
models for 3D surface reconstructions and non-rigid point cloud registrations. Since this
PhD work mainly focuses on monocular depth estimation for generating dense depth maps
for 3D surface reconstructions, a literature review on Structure from Motion (SfM) based
and feature-based methods is first introduced. Secondly, supervised and unsupervised
deep learning-based methods are reviewed for monocular depth estimation. For non-rigid
point cloud registration, general transformation models and Gaussian mixture models are
described, and the registration problem is analysed in terms of its applications on 3D
dynamic surface reconstruction.

2.1 Depth Estimation from Videos

Depth estimation refers to the set of techniques and algorithms used to obtain a representa-
tion of the spatial structure of a scene, aiming to measure the distance of each point in the
observed scene. Many depth estimation methods [48], [49], [50] rely on stereo matching to
estimate depth maps. Stereo depth estimation methods are known for their accuracy since
the disparity between corresponding points in the left and the right images is obtained to
calculate the depth. However, stereo-vision-based methods come with intrinsic limitations.
Collecting stereo images requires precise alignment and calibration procedures, which can
be complex and time-consuming. Additionally, the baseline distance between the two cam-
eras used in stereo setups can limit the effective range for accurate depth estimation. The
farther the objects are from the camera pair, the more inaccuracy in the depth estimation
might occur. Stereo cameras are still too large to be widely used in practice, such as in
endoscopy surgery or micro drones, compared with monocular cameras.

2.1.1 Traditional Methods

Monocular depth estimation is considered an ill-posed problem because a single monocular
image can be captured from different 3D scenes. Therefore, traditional algorithms exploit
monocular cues, such as texture, occlusion, known object size, and lighting and shading,
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to recover depth. These methods can often be classified into two categories: SfM-based
and handcrafted feature-based methods [51].

SfM is a process of predicting and reconstructing 3D structures from a series of
images taken from different viewpoints [52]. This process commonly starts with a feature
extraction step from a sequence of input images. SfM, then, finds the correspondence
between different images based on texture features and removes the incorrectly matched
points. Finally, once matched between images, features are tracked from one image to
another to estimate the camera motion between the images. By triangulating the matched
feature points from multiple camera viewpoints, a 3D point cloud representation of the
scene is constructed.

Wedel et al. [28] utilized SfM to determine the scaling factor of supervised image
regions and estimated the scene depth. Let I(t) = (X(t),Y (t),Z(t))⊤ be a point the value
of 3D position at time t and its corresponding image point as I(t). The point at time
t + τ can be defined by I(t + τ) = I(t)+T(t + τ), where T(t + τ) is camera translation
between time t and t + τ . Scene depth can be directly calculated through given vehicle
translationTZ(t,τ) and displacement of image points:

d =
s(t,τ)

1− s(t,τ)
TZ(t,τ) (2.1)

where the s(t,τ) is directly obtained by region tracking [53].
Prakash et al. [29] utilized a multiscale fast feature point detector to detect key points

in the image, and these corresponding 2D points were used to calculate 3D points through
two-view geometry and triangulation. In this method, the scene depth values of feature
points are computed through a metric transformation. Hyowon et al. [54] proposed a
depth acquisition pipeline from a small camera motion, which utilized the Harris corner
detector [55] in a reference image to extract features and found the corresponding points
through the Kanade-Lukas-Tomashi (KLT) algorithm [56]. The dense depth map was
reconstructed through a so-called plane sweeping [29]. Javidnia et al. [30] used ORB
features [57] to improve computing efficiency.

The accuracy of depth maps generated by SfM-based methods depends on the effec-
tiveness of feature detection algorithms and the feature matching accuracy between the
image pair. Feature detection can be challenging, especially in texture-less or low-contrast
scenes that can result in a small number of key feature points. As a result, many existing
SfM-based methods tend to produce sparse depth maps. For many applications, sparse
depth maps are not sufficient in terms of measuring the detailed information required for
high-precision operations. For example, for endoscopy surgery or UAV navigations in
complex environments, dense 3D depth maps are required to obtain accurate positional
information for the surgical instruments or the control of UAVs.

Methods using handcrafted features often utilized superpixels as inputs to compute
features. For each superpixel, these features and depth cues are used to estimate the depth.
An MRF (Markov Random Field) model was applied to combine the superpixel-based
depth estimation with the relationship and context between different superpixels to ensure
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the coherence and smoothness of the depth map. A well-known classic method is called
Shape from Shading (SfS) [58], which relies on the gradual changes in shading as a cue to
estimate shape and depth. SfS assumes certain lighting conditions and the surface to be
Lambertian (with diffuse reflection). It is not suitable for real-world scenarios. Torralba et
al. [31] proposed a method to learn the relationship between the structures of the image
and the mean depth of the scene. Using a set of features obtained from Fourier and wavelet
transforms, and the mean depth of the scene, the absolute scene depth of monocular
images can be inferred. Jung et al. [32] proposed a monocular depth estimation method
by considering object types in a single-view image. This method defined four different
object types and six attributes to describe object units. Each object was classified using
the Bayesian classifier based on the training data, and depth values were then allocated
differently based on the respective object types. Saxena et al. [59] and Liu et al. [33]
used MRF incorporated with multiscale image features to learn monocular cues and
estimated depth in a supervised manner. Pre-designed features were used to extract specific
chosen characteristics. However, the need for pre-processing or post-processing imposes a
computational burden, rendering these methods unsuitable for real-time applications such
as endoscopy surgery and UAVs.

2.1.2 Deep Learning-based Methods

Deep learning-based methods have emerged as a promising approach for predicting depth
maps from monocular videos. The methods can be broadly classified into supervised and
unsupervised depending on the need for ground truth. Supervised deep learning methods
often incorporate an individual image and its corresponding depth map ground truth to
train a model and learn scene structural features for estimating a depth map. Unsupervised
or Self-supervised models can be considered as an alternative when ground truth data
is absent, as they can be trained by using a comparison between a target image and its
reconstructed image as a supervisory signal.

Supervised Deep Learning Methods

Eigen et al. [35] proposed a multiscale convolutional neural network and a scale-invariant
loss function to estimate depth from a single image. The real scale of depth is recovered
without any post-processing. Compared with the commonly used method of uniform
discretization, Fu et al. [60] proposed a spacing-increasing discretization strategy to
discretize depth maps. This method can overcome over-strengthened loss for the large
depth values, particularly in the KITTI dataset [61]. Guo et al. [62] used a stereo network
to train with synthetic data as a pre-trained model. The real data is used to refine the depth
model under supervised or unsupervised settings, which reduces the domain gaps between
synthetic and real data. Recently, Chen et al. [63] proposed an attention-based context
aggregation network for capturing the continuous context information and improving the
depth estimation. These methods performed well on KITTI [61] and Make3D [64] datasets.
The KITTI dataset was captured by driving around the mid-size city of Karlsruhe, in
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rural areas and on highways in a structured environment. The Make3D dataset includes
monocular images and corresponding depth maps, but monocular or stereo sequences are
unavailable. However, depth estimation in endoscopic scenes remains challenging due
to the difficulty of obtaining ground truth depth data, making it challenging to develop
supervised learning methods for this task. To address this problem, most methods [65], [66]
utilized synthetic endoscopy images to train depth maps. However, they tend to perform
poorly since synthetic depth data may not represent the full range of diversity in real-world
scenarios, including different lighting conditions, camera positions, and object orientations.

Unsupervised Deep Learning Methods

Garg et al. [67] proposed a self-supervised network to learn depth by a stereo photometric
reprojection warping loss. Godard et al. [68] used a left-right consistency loss to im-
prove predicted depths from the stereo images. Godard et al. [4] proposed a monocular
self-supervised depth estimation network based on a per-pixel minimum reprojection
loss. Johnston et al. [5] used self-attention and discrete disparity volume to increase the
accuracy of depth estimation. Similarly, for endoscopy data, Turan et al. [69] proposed an
unsupervised framework for real-time odometry and depth estimation by using monocular
endoscopic video. Liu et al. [70] used sparse self-supervisory signals derived from SfM
to establish supervision. Ozyoruk et al. [71] combined residual networks with a spatial
attention module and a brightness-aware photometric loss to improve the robustness of
depth estimation. Recently, Shao et al. [72] took advantage of the appearance flow to
address the brightness inconsistency problem in depth estimation. These methods often fail
to obtain fine details of depth, such as boundary objects, since they cannot learn intrinsic
features based on Euclidean space. Therefore, Graph Neural Networks (GNNs) have been
proposed to handle non-Euclidean data as a solution to the constraint of Convolutional
Neural Networks (CNNs). Works for monocular depth estimation based on GNNs include
Fu et al., which used two steps to reconstruct depth maps. Masoumian et al. [6] embedded
the graph convolution network into a decoder to improve the accuracy of depth maps.
However, they utilized a random graph structure to learn features, which not only increased
the training time but also lost the local feature information of point clouds.

2.2 Non-rigid Point Cloud Registration

Point cloud registration has many applications in computer vision, including 3D re-
construction, pose estimation, augmented reality, object matching and recognition [73],
[14], [74], [75]. Accurate registration of multiple point clouds obtained from different
views or time instants is necessary for building a complete and consistent 3D model of
the scene. In addition, point cloud registration enables the estimation of the relative pose
and motion of objects, the recognition and matching of objects in different scenes, and the
creation of virtual and augmented reality experiences [76], [77].
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While many registration methods work well on rigid objects [78], [79], they often
perform poorly on dynamic scenes or deformed objects. This is because objects with
non-rigid deformations and motions cannot be modelled by rigid transformations. In
addition, non-rigid objects may undergo topology changes, such as separation, which is
the act of creating a visible gap or distance between objects or individuals, and connection,
which is regarded as a reverse process of separation. The topology changes pose additional
challenges for registration methods that rely on correspondences between the source point
sets and the target point sets [80], [81]. Therefore, developing registration methods that
can handle non-rigid objects and dynamic scenes is an active research area in computer
vision. In this chapter, non-rigid point cloud registration methods are reviewed, which
involve general transformation models and Gaussian mixture models. 3D dynamic surface
reconstruction methods based on non-rigid point cloud registration are also introduced.

Chui et al. [42] used a thin plate spline (TPS) to define a general transformation model
that consisted of an affine transformation and a TPS smoothness kernel. Yang et al. [43]
used a global and local mixture distance to estimate the correspondence between the
source point set and the target point set and update the rigid and non-rigid transforma-
tions and minimized the mixture distance using a TPS. Huang et al. [80] utilized a rigid
local transformation for each point to obtain a global non-rigid registration. Meanwhile,
the local affine transformation [82], [83] is frequently applied in non-rigid registration
because the surface representation allows surface details to be captured precisely due to
its more freedom. However, general transformation methods depend on correspondence
estimation based on the features of the source point and target point sets, and the result of
correspondence estimation directly affects registration accuracy and efficiency.

Myronenko et al. [84], [85] proposed a Coherent Point Drift (CPD) algorithm for
Gaussian mixture models. They formulated the registration as a maximum likelihood
estimation problem, where one point set moves coherently to align with the other set under
motion coherence constraint over the velocity field.

Based on the motion coherence theory [86], two adjacent points tend to move coher-
ently, and this motion coherence is an important feature that influences the smoothness of
the transformation. Golyaniet et al. [87] extended the CPD registration algorithm using
correspondence priors and a coarse-to-fine optimization strategy to achieve robust non-rigid
point registration with an improved speed of the registration process. Bai et al. [88] pro-
posed a statistical framework by aligning two point sets represented by Gaussian mixture
models. Hirose [89] proposed the Bayesian Coherent Point Drift (BCPD) method, which
formulates CPD in a Bayesian setting to improve registration accuracy and efficiency.
These methods achieved good results for the connection but failed to register the separation
of two objects. The main reason is that the CPD-based framework requires all points to be
transformed coherently as a whole (e.g. a single point set) whose displacement must meet
the coherent point drift condition. When there are separations and connections during the
object topology change, the point set will separate into two sets. Thus, CPD-based methods
would fail to address the non-rigid registration challenges. Recently, Zampogiannis et
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al. [90] proposed a framework to address the issues of separation and connection, but this
method did not work well on large inter-frame motions.

Non-rigid registration methods have been applied to dynamic reconstructions. New-
combe et al. [40] proposed a DynamicFusion system that fused live frame depth maps
into the canonical space via the estimated warp field to achieve high-quality 3D models.
The experiment in DynamicFusion does not deal with large inter-frame motions with
object topology change issues of separations and connections. The Fusion4D [91] and
Kaiwen [92] used RGBD camera inputs to reconstruct dynamic scenes simultaneously.
Although the method of Kaiwen tackled the object connection issue, object separation
remains unsolved. [93] and [94] proposed new methods to tackle this issue by incorporating
volumetric data. However, the detailed 3D information of volume-based methods is lower
than that of other point-based registration methods.

2.3 Summary

In summary, the depth estimation from video and non-rigid point cloud registration methods
have both been well-developed in recent years. Depth estimation with a dense 3D map
or surface is a crucial technology for AR applications in endoscopy surgery and UAVs
obstacle avoidance and control, as it plays a significant role in enhancing precision and
stability. However, existing self-supervised depth estimation algorithms and methodologies
struggle to capture the intricate topological details inherent in scenes captured by monocular
devices. In addition, depth estimation networks based on GNNs often showcase their
works primarily through experimental results, lacking a robust mathematical background.
This research proposed a self-supervised GNNs-based coarse-to-fine encoder to achieve
non-Euclidean features and improve depth maps of endoscopy and UAV scenes. The next
chapter also provides mathematical details about the translation equivariance in CNNs and
permutation equivariance in GNNs. These details serve to elucidate how these networks
possess the capability to learn diverse and meaningful features for various objectives.
Non-rigid point cloud registration is essential to the 3D dynamic surface acquisition, and
3D dynamic scene reconstruction is vital to the SLAM-based AR system. Most existing
point cloud non-rigid registration methods have limitations in handling topology changes
and large inter-frame motions. This research proposes a Break and Splice no-rigid point
cloud registration framework, which integrates the Dirichlet Process Gaussian Mixture
Model (DPGMM) and BCPD to achieve non-rigid registration with topology changes, to
overcome the aforementioned challenges. In addition, a non-rigid point cloud registration
example is conducted with endoscopy datasets provided by proposed monocular depth
estimation methods.



Chapter 3

Mathematical Fundamentals

This chapter gives an overview of the mathematical fundamentals and background used in
the development of depth estimation and AR applications. We first introduce Euclidean and
non-Euclidean features. Then, group equivariance deep learning is introduced to support
the proposed novel self-supervised framework developed in this PhD research for depth
estimation. In particular, translation equivariance and permutation equivariance are used in
this research. The Graph Convolution Network(GCN) and GAT network (Graph Attention
network) will be introduced for the permutation equivariance. Finally, projective geometry
is used to explain the relation between RGB images and 3D point clouds, which is also
applied to AR applications.

3.1 Euclidean and Non-Euclidean Features

The deep learning on depth estimation for images should not only learn Euclidean features,
but also learn non-Euclidean features. The Euclidean features are usually based on
Euclidean geometry, which assumes that space is flat and parallel lines never intersect [3].
Particularly, the images can be regarded as a 2D grid of points which follows the rules
of Euclidean geometry. The CNN-based methods [95], [96], [97] are designed to process
data on regular grids for object recognition, segmentation, and classification. These tasks
are usually effective for obtaining 2D results, e.g. pixels. The principal limitation of these
approaches often stems from their treatment of geometric data as Euclidean structures.
Firstly, for intricate 3D objects, Euclidean structures like depth images or voxels may
result in the loss of significant parts of the object, including fine details and topological
structure. Secondly, Euclidean structure lacks intrinsic properties and occurs variation
with changes in pose or object deformation. Attaining invariance to shape deformations
demands complex models due to the considerable degrees of freedom involved in describing
non-rigid deformations, as shown in 3.1.

The depth estimation of images is to recover 3D point clouds. Scenes such as endo-
scopic scenes are usually complex since the surface of the objects in the scene is often
textureless and occluded. In addition, they include not only the motions of instruments, but
also the deformation of the objects. Therefore, learning only the grid geometry features is
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(a) Filter of Euclidean (b) Filter of Non-Euclidean

Fig. 3.1 An illustration of the difference between filter(colored window) of Euclidean and
Non-Euclidean on a 3D shape [1]. (a) A classical CNN applied to a mesh considered as a
Euclidean object. (b) a geometry network filter applied intrinsically on the surface, and the
convolutional filter is deformation invariant by construction.

insufficient. In addition to Euclidean features, the 3D surface of the deformable objects also
often exhibits non-Euclidean features, such as curvature, geodesic distance and hyperbolic
angles. To learn non-Euclidean features of 3D surfaces, a graph structure similar to point
clouds, including irregular and out-of-order properties, is proposed. The graph edges
can capture relationships between neighbouring pixels in the image, while the nodes can
explore the depth information in terms of 3D coordinates of point clouds.

3.2 Group Equivariance Deep Learning

Neural networks are designed for specific data types, and their operations are based on
built-in assumptions about the data, which lead to the emergence of symmetries [1]. For
example, CNNs are designed for grid data such as images in the translation symmetry
group [98], geodesic CNN [99] is designed for manifold data such as meshes in the gauge
symmetry group, and GNNs is used in sociology [100] or the prediction of chemical
reactivity [101], which usually utilized graphs as models of analysis and a graph system is
invariant for permutation symmetry group.

The symmetries can provide insights into the underlying structure of a system or an
object. In this research, the properties of the symmetry group and its equivariance are used
to design the proposed network framework for depth estimation. A symmetry group is
a group of transformations that leave an object or a system invariant in its structure. In
other words, if a system has a symmetry group G, applying any transformation in G to
the system will not change its structure. For example, a rigid object has two symmetry
groups: the translation group and the rotation group [102]. Equivariance is the property
of a transformation that preserves the symmetry of an object or system. If a function is
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equivariant with respect to a symmetry group G, applying any G transformation to the input
will result in the same transformation being applied to the output. For example, GNNs
are permutation equivariant networks that operate on graph-structured data [103], [104].
Therefore, a GNNs-based structure is used to learn non-Euclidean features and achieve
more accurate depth images or point clouds than others. In addition, a mathematical
framework is used to demonstrate this hypothesis based on the geometry properties of
symmetry.

3.2.1 Symmetry Group

A symmetry of an object is a transformation that leaves a certain property of an object
invariant, and a set of transformations with certain properties (Associativity, Identity,
Inverse, Closure) is called a symmetry group [102]. For example, a set of 2D inte-
gers I(u,v) =

{
(u,v) | (u,v) ∈ Z2} is a symmetry group of translations. For associativ-

ity, ((u,v)+ (m,n))+ (p,q) = (u+m+ p,v+ n+ q) = (u,v)+ ((m,n)+ (p,q)), where
(u,v),(m,n),(p,q) ∈ Z2; Existence of identity, the I(u,v) of translation operators by
vector 0 is the identity operator; Every element of I(u,v) has an inverse: I(−u,−v) ={
(−u,−v) | (u,v) ∈ Z2}, and (−u,−v)+ (u,v) = (0,0) = 0; At last, for closure (u,v)+

(m,n) = (u+m,v+ n), it means that the sum of two translations is again a translation.
Therefore, a set of 2D integers can be verified to satisfy translation group properties. The
symmetry group is meaningful since different convolutions can be explained by exploring
the invariant for different transformation groups [1], such as CNNs for the translation
group and GNNs for the permutation group. In addition, the properties of the group are
used to explain the proposed monocular depth estimation framework.

The basic concepts that are helpful in understanding the proposed model need to be
introduced. In the context of data (such as a grid or graph), a symmetry group G represents
a set of geometric transformations. This research is mostly interested in how symmetry
groups act on data, called group action. Let X be a set and a group G, a left action
of G on X is a map ρ : G×X → X that is compatible with the group properties, such
as g1 ◦ (g2 ◦ x) = (g1 ◦ g2) ◦ x for all g1,g2 ∈ G and x ∈ X , where ◦ is the operation of
juxtaposition. Group action plays an important role in defining the invariance of data.
Formally, given x ∈ X , g ∈ G and a group representation ρX(g)x of G on X , the definition
of G−equivariant is given by group actions, as follows:

Definition 1 The encoding function f : X→Y is G−equivariant if f (ρX(g)x)= ρX(g) f (x)
∀x ∈ X ,∀g ∈ G. f : X → Y is an autoencoder framework with encoding function, mapping
between the data domain X, and latent domain Y .

Definition 1 means that there is the same effect for group action on input and output. This
is an important property to analyse the proposed method. In the following sections, the
mathematical derivations of the translation-equivariant on CNNs for the grid geometry
structure and the permutation-equivariant on GNNs for the graph geometry structure will
be introduced.
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Fig. 3.2 Translation-equivariant of CNNs [2], f is a segmentation network of cat and GT is
translation operator.

3.2.2 Translation-equivariant of CNNs

In order to show that CNNs are translation-equivariant, both visualization explanation and
explicit derivation are introduced. Fig. 3.2 shows an example of cat segmentation in CNNs.
In this case, the output results of two processes are the same, i.e. cat being shifted first
and then segmented has the same results as the cat being segmented and then shifted. This
process can be written: GT f (x) = f (GT x), which means that the cat segmentation network
is translation-equivariant. Although it is certainly easy to see through visualization, an
explicit derivation can be useful to understand that CNNs are equivariant to the translation
group. Therefore, we first recall the definition of convolution used in CNNs.

For each CNNs layer l, feature maps can be stacked I : Z2 −→ RMl
and convolved

with a shared weight Kl : Z2 −→ RMl
:

(I ∗Kl) [i, j] = ∑
a∈Z

∑
b∈Z

Ml

∑
c=1

Ic [a,b]Kl
c [i−a, j−b] (3.1)

where i ∈ Z and j ∈ Z are the value of coordinate after convolution, a ∈ Z and b ∈ Z
are value of coordinate in a pixel, Ml is the number of input channels, and let Ml = 1
for brevity, c is the channel number. Then, if CNNs are translation-equivariant, for any
translation gt = (t1, t2) ∈ GT , where GT is the group of all translations of Z2 , they should
satisfy the equation as follow:

((gtI)∗K) [i, j] = (gt(I ∗K))[i, j] (3.2)
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Fig. 3.3 An image data can be regarded as a combination of a feature map and a pixel map.
(a) is part of a feature map under a 3x3 convolution kernel, (b) is part of a pixel, and (c) is
the initial position relationship between the feature map and the pixel map.

where the left side indicates applying a translation transformation action on the feature
map, followed by convolution. The right side signifies performing convolution first and
then applying a translation transformation action on its outcome. The same notation is also
mentioned in [102], in which a translation transformation action on the feature map (the
values of RGB or grayscale): gtI and action on the point (the value of a pixel position):
g−1

t [a,b] are the same operations. In other words, gtI is to move the feature map and fix
the pixel map, but g−1

t [a,b] is to move the pixel map and fix the feature map, where g−1
t

is the inverse of gt . Visualization is used to illustrate the gtI = g−1
t [a,b], from Fig. 3.3 to

Fig. 3.5. Fig. 3.3 shows the initial position relationship between the feature and pixel maps.
Fig. 3.4 shows the process of moving the feature map and fixing the pixel map. Fig. 3.5
shows the process of moving the feature map and fixing the pixel map. It can seen that gtI
and g−1

t [a,b] have the same results.
In addition, g−1

t [a,b] means that a pixel [a,b] is shifted by g−1
t = (−t1,−t2) and can

be written g−1
t [a,b] = [a− t1,b− t2]. (gtI) can be expressed as the Eq.3.3:

(gtI)[a,b] = I(g−1
t [a,b]) = I[a− t1,b− t2] (3.3)

For Eq.3.2, we use the substitution a−→ a+ t1 and b−→ b+ t2, and it can be expressed
as Eq.3.4:

((gtI)∗K) [i, j] = (I [a− t1,b− t2]∗K) [i, j]

= ∑
a

∑
b

I [a− t1,b− t2]K [i−a, j−b]

= ∑
a

∑
b

I [a,b]K [i− t1−a, j− t2−b]

= ∑
a

∑
b

I [a,b]K [(i− t1)−a,( j− t2)−b]

= (I ∗K) [i− t1, j− t2]

= (gt(I ∗K))[i, j]

(3.4)
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(a) Moving feature map
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(b) Result

Fig. 3.4 This process is about moving the feature map and fixing the pixel map:(a) shows
the colour squares move to the position of (4,4) centre. (b) shows the result of movement
gtI.
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(b) Result

Fig. 3.5 This process is about moving the pixel map and fixing the feature map: (a) shows
the white square of (4,4) pixel position move to the position of pink. (b) shows the result
of movement g−1

t [a,b].
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Therefore, CNNs are equivariant to the translation group so that they can learn the
same feature from different images. However, CNNs are not equivariant to the permutation
group since CNNs will fail to get the same feature when the order of the grid nodes, which
a 2D image can be as a grid, is changed. For depth estimation or point cloud, they are out
of order. So, we apply an additional graph neural network to learn the intrinsic features of
a point cloud.

3.2.3 Permutation-equivariant of GCN

In this section, the definition of the layer propagation rule on GCN [105] is recalled. We
use the graph convolution with the following layer propagation rule:

F(X ,A) = σ(D̃−
1
2 ÃD̃

1
2 XW ) (3.5)

where X is the node features of input, Ã = A+ IN is the adjacency matrix with added
self-connections (IN is the identity matrix), D̃ = diag(∑i̸= j ãi j) is the degree matrix, W is
a trainable weight matrix, and σ(·) denotes an activation function. Therefore, applying a
permutation matrix Π (Π⊤Π = Π Π⊤ = I) to the node features X automatically implies
applying it to rows and columns of the adjacency matrix A, which can be written as ΠAΠ⊤.
The F(X ,A) is permutation-equivariant for any permutation matrix Π if:

F(ΠX ,ΠAΠ
⊤) = ΠF(X ,A) (3.6)

According to Eq.3.5, and the left of Eq.3.6 can be written as :

F(ΠX ,ΠAΠ
⊤) = σ(ΠD̃−

1
2 Π
⊤

ΠÃΠ
⊤

ΠD̃
1
2 Π
⊤

ΠAW )

= σ(ΠD̃−
1
2 ÃD̃

1
2 AW )

(3.7)

Because the nonlinear activation function of a graph network is an element-wise operation,
which is permutation equivariant [106], the Eq.3.7 can be written as :

σ(ΠD̃−
1
2 ÃD̃

1
2 AW ) = Πσ(D̃−

1
2 ÃD̃

1
2 AW )

= ΠF(X ,A)
(3.8)

where the left of Eq.3.7 is equal to the right of Eq.3.7. Therefore, GCN is equivariant to
the permutation group.

3.2.4 Permutation-equivariant of GAT

Similar to GCN, the definition of the layer propagation rule on GAT [107], [45] is also
recalled. Let Ga = (N,E,A) be an undirected weighted graph with the nodes N and the
edges E, represented by the adjacency matrix A= (ai j), where ai j = a ji,ai j = 0 if (i, j) /∈ E
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and ai j > 0 if (i, j) /∈ E. At the layer l, the graph convolution operation is defined as :

h(l)v = σ( ∑
u∈N(u)∪v

α
(k)
vu W (l)h(l−1)

u ) (3.9)

where σ(·) denotes an activation function, N(u)∪ v denotes that add a self-loop for all
nodes, the attention weight α

(k)
vu measures the importance between the node v and its

neighbour u, and the definition of α in [45] is used. For a node feature xv and the set of its
neighbourhood SAv , we use f (xv,SAv) to define a node operation function, where f is same
to Eq.3.9 and hv only includes the feature of a node. Then, all nodes can be defined as:

F(X ,A) = [ f (x1,SA1), f (x2,SA2), . . . , f (xn,SAn)] (3.10)

where F(X ,A) means that the function f applies independently to neighbourhood of every
node. Therefore, similar to Eq. 3.6 if :

F(ΠX ,ΠAΠ
⊤) = ΠF(X ,A) (3.11)

where ΠX = [xπ(1),xπ(2), . . . ,xπ(n)], and we use the substitution ΠAΠ⊤ −→ B, where B
is adjacency matrix of Gb = (N,E,B) (where Ga and Gb are isomorphic). The left of
Eq.3.11:

F(ΠX ,ΠAΠ
⊤) = F(ΠX ,B)

=
[

f (xπ(1),SB1), . . . , f (xπ(n),SBn)
] (3.12)

For the right of Eq.3.11:

ΠF(X ,A) =
[

fπ(1), fπ(2), . . . , fπ(n)
]

(3.13)

where fπ(n) = f (xπ(n),SAπ(n)). SAπ(n) and SBπ(n) have same elements for nodes feature xπ(n).
Since summation does not depend on the order of the set, fπ(n) = f (xπ(n),SBn) and the left
of Eq.3.11 is equal to the right of Eq.3.11. Therefore, GAT is equivariant to the permutation
group. Because the translation group is the subgroup of the permutation group and the
geometry properties of the point cloud are similar to the permutation group, graph-based
networks can learn more information than translation equivariant and fine details for depth
images. Although GCN and GAT have the same symmetry group, GAT is suitable for
different rankings of neighbours and can assign different importance to nodes of the same
neighbourhood [45]. Then, the details of the implementation based on G-equivariance will
be introduced in Chapter 4.

3.3 Projective Geometry

The development of methods relies on the utilization of projective geometry, such as a
pinhole camera model. In particular, it can explain the reprojection error mentioned in
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Fig. 3.6 Pinhole camera model [3].

monocular depth estimation, the transformation between RGB-D images and point cloud
that are used to experiment in Chapter 7 and the registration of AR applications between
virtual objects and the real world.

The camera model can describe the projection of a real-world 3D scene onto an image
plane. The pinhole camera model is used in this research. This model is a simplified
representation of a camera that assumes it to be a basic optical device without lenses,
where light enters through a pinhole and projects an image onto the camera’s image plane.
Figure 3.6 illustrates the process of projection. This model is an idealized approximation
that overlooks distortions, leading to higher accuracy near the optical image centre and
reduced precision towards the edges. However, these limitations can be addressed through
suitable calibration methods [108], [109]. Therefore, this model is often used in computer
graphics and computer vision to simplify the mathematical description of camera projection
and scene rendering.

As shown in Figure 3.6, the distance between the camera centre and the image centre
is the focal length f of the camera. The symbols fx and fy represent the scaling factors for
the focal lengths in the x and y directions, respectively. The image centre or principal point
(cx,cy) is the intersection of the optical axis and the image plane. The intrinsic camera
matrix can be written as follows:

K =

 fx 0 cx

0 fy cy

0 0 1

 (3.14)
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The projection operator is that projects a 3D point P = (X ,Y,Z)⊤ onto a pixel (u,v) in the
image plane as follow:

u
v
1

= K(I3×3 03×1)


X
Y
Z
1

 (3.15)

where I3×3 is identity matrix and assumes the camera is static.
For the monocular depth estimation introduced in Chapter 4, the Eq. 3.15 need to add a

rotation R and a translation t due to the camera moved, as follow:

u
v
1

= K(R t)


X
Y
Z
1

 (3.16)

where R and t can be obtained by an unsupervised network, and according to the depth map,
the pixel coordinates can be calculated. The reprojection means that different viewpoints
for the same static object have the same 3D point values. Therefore, the depth created by
a network can get the pixel coordinates, which can be used to compare with the original
input images.

For the RGB-D images used in Chapter 7, this type of data is usually captured by RGB-
D camera, such as Kinect [25] or RealSense [110]. They can acquire a 2D depth image,
which stores the distance to the surfaces observed from the camera centre. Therefore, the
point cloud can be computed by Eq. 3.15 as follows:

X = (u−cx)·Z
fx

Y =
(u−cy)·Z

fy

Z = D

(3.17)

where D is the depth value from a depth image.
For the registration between virtual objects and the real world, Eq. 3.16 can be di-

rectly used, where (u,v) is the video screen coordinates, and P = (X ,Y,Z)⊤ is the virtual
object 3D information. In addition, the R and t can be obtained based on Perspective-n-
Point [111].

3.4 Summary

In this chapter, the concepts of Euclidean and Non-Euclidean Features are proposed for
learning image geometry features according to different networks. Specifically, CNNs
are shown to excel in learning 2D grid Euclidean features, while GNNs are adept at
learning graph non-Euclidean features The concept of group equivariance deep learning
is used to provide visualization and mathematical proofs about translation-equivariant
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in CNNs and permutation-equivariant in GCN. will present a novel network grounded
in the principles of group equivariance. In addition, we leverage projective geometry
to explain the relationship between images and 3D points, setting the groundwork for
subsequent chapters. This framework will be applied in Chapter 4 for self-supervised
training, Chapter 7 for generating point clouds from depth images and RGB images, and
Chapter 8 for coordinate transformations.



Chapter 4

Group Equivariance Deep Learning
Framework

4.1 Introduction

In this chapter, a group equivariance deep learning framework is proposed for monocular
depth estimation. Previous unsupervised monocular depth estimation methods mentioned
in Chapter 2 rely on convolutional neural networks (CNNs) as the main learning framework.
CNNs can learn hierarchical features from raw image data for depth estimation. CNNs
are designed to process data on regular grids and capture spatial correlations and patterns
in Euclidean space, as shown in Fig. 4.1a. However, most data is usually not ordered or
regular, such as point clouds, which need to extend deep neural networks to non-Euclidean
domains [67], where the geometry structure of the graph is similar to that of the data, such
as the point clouds, with out-of-order and irregular shapes. There are some works based
on graph neural networks (GNNs), as shown in Fig. 4.1b, which handle points cloud tasks,
such as segmentation and classification [112], [113]. For self-supervised monocular depth
estimation, there are relatively few works based on GNNs. Fu et al. [114] use two steps to
reconstruct depth maps, which will lead to an increase in the complexity of the proposed
model. Masoumian et al. [6] embedded the graph convolution network into a decoder to
improve the accuracy of depth maps. However, they did not explain the reasons why their
models are effective in terms of mathematical principles. [6] method utilized a random
graph structure to learn features, which increased the training time and the loss of the
local/neighbouring feature information of the image.

The main contribution of this novel deep-learning architecture is that a new coarse-to-
fine encoder framework is proposed for depth estimation, which utilizes a GAT [45] to
learn non-Euclidean features and refine the depth geometry features. Moreover, the graph
structure based on four-connectivity can keep the original neighbour point information and
the mathematical foundations described in Chapter 3 are used to support the validity of the
coarse-to-fine encoder model.
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(a) CNN on a grid data (b) GNN on a graph data

Fig. 4.1 Comparison of CNN and GNN on Euclidean and non-Euclidean domains, respec-
tively. (a) CNN: The region of dashed is ordered and has a fixed size. (b) GNN: The region
of dashed is out-of-order and irregular.

4.2 Group Equivariance Deep Learning

This section describes a novel self-supervised depth estimation framework based on
the permutation-equivariant and translation-equivariant as described in Chapter 3. The
proposed framework consists of three main components: a coarse-to-fine encoder, a discrete
volume decoder, and a pose estimation network. To estimate the depth from monocular
images, the CNN network based on U-Net [115] is used to learn coarse depth features,
while the graph attention network is used to learn fine depth features. The decision-making
process for depth estimation is further refined using a discrete volume decoder [5]. An
essential part of the proposed framework is the pose estimation network, which calculates
the relative transformation matrix by comparing the differences of neighbouring images.
The entire framework of the proposed model is illustrated in Fig. 4.2, and the endoscopy
use case is used as an example.

4.2.1 Coarse-to-Fine Encoder

For the coarse part of the encoder, the input is an image, which can be regarded as the
grid and regular geometry data. CNNs can explore the global structure of image data by
convolution weight sharing, which is owed to data distribution with approximately invariant
to translations. Therefore, in our model, CNNs are suitable for extracting global coarse
depth information from an input image. The coarse encoder includes five layers. The
first layer is a fast convolutional layer, which includes three Conv3×3s (3×3 convolution,
batch normalization, and ReLU activate function) and a max-pooling operation. The last
four layers are ResNet-101 [97]. The network details are shown in Table 4.1.

For the fine part of the encoder, as mentioned in group equivariance in Chapter 3,
the graph attention network can explore feature details based on permutation equivariant.
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Table 4.1 The network architecture of the Coarse encoder: K is the number of block
repetitions, S is the stride, Chn is the number of output channels, input corresponds to the
input channel of each layer, and "-" is without activation function

.

Layer K S Ch Input Activation
Conv1 3×3 L0 1 1 64 image(320×192×3) ReLU
Conv2 3×3 L0 1 1 64 Conv1(320×192×64) ReLU
Conv3 3×3 L0 1 1 128 Conv2(160×96×64) ReLU
Maxpooling L0 1 2 128 Conv3(160×96×128) ReLU
ResNet-101 L1 3 1 256 Maxpooling(160×96×128) —
ResNet-101 L2 4 2 512 L1(80×48×256) ReLU
ResNet-101 L3 23 1 1024 L2(40×24×512) ReLU
ResNet-101 L4 3 1 2048 L3(40×24×1024) ReLU

Therefore, the fine encoder usually includes two main parts: generating graphs and
generating graph neural networks. In the former, pixel connectivity is used to generate the
adjacency matrix and the features generated by the coarse part as node features. Compared
with the random adjacency matrix [6], the adjacency matrix based on pixel connectivity
can retain image position information. This is because there is a high correlation and
continuity between the depth of a pixel and its neighbours. Algorithm 1 shows details
about how to generate the adjacency matrix, and a four connectivity is used for our graph
network. For the latter, the proposed model is based on the graph attention network [45]
that is suitable for different rankings of neighbours and can assign different importance
to nodes of the same neighbourhood. Therefore, the graph attention at the l layer can be
defined as follows:

Algorithm 1: four_connectivity(rows, cols)
Data: rows, cols
Result: AdjacencyMatrix

num_nodes← rows× cols;
Ad jacencyMatrix← zeros(num_nodes,num_nodes);
for i← 0 to rows−1 do

for j← 0 to cols−1 do
nodeIdx← i× cols+ j;
if j+1 < cols then

rightIdx← nodeIdx+1;
Ad jacencyMatrix[nodeIdx][rightIdx]← 1;
Ad jacencyMatrix[rightIdx][nodeIdx]← 1;

if i+1 < rows then
bottomIdx← nodeIdx+ cols;
Ad jacencyMatrix[nodeIdx][bottomIdx]← 1;
Ad jacencyMatrix[bottomIdx][nodeIdx]← 1;

Ad jacencyMatrix← add_sel f loop(Ad jacencyMatrix);
return AdjacencyMatrix;
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Table 4.2 The network architecture of fine encoder part. K is the number of block repe-
titions, S is the stride, H is the number of heads, Chn is the number of output channels,
input corresponds to the input channel of each layer, and "-" is without activation function

.

Layer K S H Ch Input Activation
Conv1 1×1 1 1 - 128 L4(40×24×1024) –
GAT1 - - 3 64 Conv1(40×24×128) ReLU
GAT2 - - 3 32 GAT1(40×24×64) ReLU
GAT3 - - 1 32 GAT2(40×24×32) ReLU
Conv2 1×1 1 1 - 128 GAT3(40×24×32) –

h(l)v = σ(
1
K

K

∑
K=1

∑
u∈N(u)∪v

α
(k)
vu W (l)h(l−1)

u ) (4.1)

where hu,∈ RFin and hv,∈ RFout are the input and output node features(F is the number of
nodes features). W ∈ RKFout is the weight matrix. K is the number of heads (K = 3 for all
layers). The equation in Eq. 4.1 remains permutation-equivariant because the additional
operation is a summation. σ(·) denotes the non-linear activation function, which in this
case is the ReLU. At last, αvu is an attention score defined as:

αvu = so f tmax j(e(hv,hu)) =
exp(e(hv,hu))

∑u′∈N(u′)∪v exp(e(hv,hu′))
(4.2)

where e(hv,hu) is an edge scoring function. These scores are normalized across all
neighbours by the softmax function, and the edge scoring function is defined as:

e(hv,hu) = a⊤LeakyReLU(W · [hv ∥ hu]) (4.3)

where a and W are the weight matrix, and ∥ is vector concatenation.
Note that Fin is latent features extracted from the coarse part in the first layer. The

parameters of each layer used in our fine encoder part are described in Table 4.2. It includes
two 1×1 convolution layers, two graph hidden layers and an output graph projection layer.

4.2.2 Depth Decoder and Pose Estimation

In the depth decoder, a discrete disparity volume is used to help extract depth information,
which can improve depth estimation robustness and sharpness [60]. Specifically, the
discrete disparity volume at r resolution can be written as follows:

δ (Dr) =
Chn−1

∑
c=1

so f tmax(Dr)× tensor(α +
(β −α)× c

Chn−1
) (4.4)

where Dr is disparity values at different resolutions, Chn is the number of channels, and
the function tensor(·) generates a tensor with the same value at all positions. α is 0.01,
and β is 1 in our experiment. At the start of the process, the r is 40× 24, and the Chn
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Table 4.3 The network architecture of fine encoder part. K is the number of block repeti-
tions, S is the stride, Chn is the number of output channels, and input corresponds to the
input channel of each layer, Upconv consists of a 3×3 convolution and a nearest-neighbour
upsampling that factor is 2, Outconv consists of Batch normalization and a 3×3 convolu-
tion, Disp is the disparity of output that is obtained by Eq. 4.4, and "-" is without activation
function

.

Layer K S Ch Input Activation
Disp4 1 1 1 GAT3(40×24×128) Softmax

Upconv1 3×3 1 1 64 GAT3(40×24×128) ELU
Conv1 3×3 1 1 64 Upconv1(80×48×64),ResNet-101 L1 ELU

Outconv1 3×3 1 1 128 Conv1(80×48×64) –
Disp3 1 - 1 Outconv1(80×48×128) Softmax

Upconv2 3×3 1 1 64 Conv1(80×48×64) ELU
Conv2 3×3 1 1 64 Upconv2(160×96×64),Conv3 L0 ELU

Outconv2 3×3 1 1 128 Conv2(160×96×64) –
Disp2 1 1 1 Outconv2(160×96×128) Softmax

Upconv3 3×3 1 1 32 Conv2(160×96×64) ELU
Conv3 3×3 1 1 32 Upconv3(320×192×32) ELU

Outconv3 3×3 1 1 128 Conv3(320×192×32) –
Disp1 1 1 1 Outconv3(320×192×128) Softmax

is 128. Similar to [5], [4], the 40×24 resolution is up-sampled to multi-resolutions by
the nearest neighbour method, and the decoder network details are shown in Table 4.3.
The computational process, based on group equivariance, is achieved by generating a
topological depth graph at multiple scales, allowing the network to capture both local and
global features of the scene.

The pose estimation network is an essential component of our model, as it provides
accurate estimates of the relative transformation between two images recorded at different
time steps as follows:

Tt→s = Φp(It , Is) (4.5)

where Φp is pose network that receives a pair of images, It and Is, the output of Φp is a
rigid transformation matrix Tt→s, which include a rotation matrix and translation vector.
In our model, the standard ResNet-18 blocks [97] are used to pose encoder, and the pose
decoder is the same to [4].

4.3 Self-supervised Monocular Depth Training

The adoption of a self-supervised depth estimation approach in Minimally Invasive
Surgery(MIS) and Unmanned Aerial Vehicle(UAV) videos is driven by its ability to
capitalize on large amounts of unlabeled data, enabling the model to autonomously learn
depth information without the need for explicit depth annotations. This approach proves
particularly advantageous in the medical domain, where obtaining precisely labelled depth
data for training can be challenging due to the intricate nature of surgical procedures and
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the associated ethical considerations. In addition, obtaining accurate depth ground truth
data for UAVs can be challenging due to limited sensors and payload constraints. How-
ever, practical applications need other sensor data to fine-tune their predictions accurately,
particularly for MIS.

Self-supervised monocular depth estimation that uses a single colour input It and
relative transformation matrix Tt→s to reconstruct a depth map Dt . This transformation
can be described in Eq. 3.16 in Chapter 3. A per-pixel correspondence can be established
between any point pt in the target image It and a corresponding point ps in the source
image Is by

ps ∼ KTt→sδ (Dt(pt))K−1 pt (4.6)

where K denotes the camera intrinsic matrix. Then, the Ît can be reconstructed from Is

through the differentiable bi-linear sampling operation Ît = s(Is, ps) [116]. Similarly to [4],
L1-norm and SSIM [117] are applied as photo-metric error defined:

pe(It , Ît) =
α

2
(1−SSIM(It , Ît))+(1−α)

∥∥It− Ît
∥∥

1 (4.7)

where α is set to 0.85 in all experiments. The SSIM term is not particularly sensitive
to uniform biases [118], which can lead to changes in brightness or shifts of colours.
The L1-norm term can preserve colours and luminance. This error is weighted equally
regardless of the local structure and does not produce quite the same contrast as SSIM. In
this research, we combine both error functions to capture the best characteristics.

To address the depth of ambiguity, an edge-aware smoothness term [68] is used to
enforce smoothness in depths,

Ls = |∂xDt |e−|∂xIt |+
∣∣∂yDt

∣∣e−|∂yIt| (4.8)

where ∂x and ∂y are image gradients along horizontal and vertical axes. In self-supervised
monocular depth estimation, assumptions of a moving camera and a static scene are unmet,
where the camera motion may be small, and the scene may be dynamically changing
in real-time. This can result in the prediction of inaccurate depth maps. Therefore, the
auto-masking of stationary points [4] is utilized, which masks out areas of the image where
the camera motion is small, and the scene is relatively static. As a result, this method can
prevent the model from being influenced by these static areas without camera motions and
improve the accuracy of the predicted depth maps. This mask can be defined as:

µ =
[
min

s
(pe(It , Ît))< min

s
(pe(It , Is))

]
(4.9)

where [·] is the Iverson bracket. The photo-metric error combined with auto-masking can
be rewritten as

Lpe =
1

NR
∑
r∈R

min
s
(µr ∗ pe(Ir

t , Îr
t )) (4.10)
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where NR is the number of multi-resolutions, and its value is 4 in our experiment, such
as R = [(320,192),(160,96),(80,48),(40,24)]. In summary, the final loss L is combined
with photo-metric error in Eq. 4.10 and an edge-aware smoothness loss in Eq. 4.8:

L = Lpe +λLs (4.11)

where λ is the weight parameter, and its value is 0.0015 similar to [4], we empirically
found that this weighting parameter offers a desired balance between sharpness and overall
structure correctness of the depth prediction.

4.4 Discussion

The proposed novel deep-learning architecture based on group equivariance proposed in
this chapter is that the graph structure based on the four-connectivity of pixels in images
can keep the original neighbour point information. Compared with the random adjacency
matrix [6], the adjacency matrix based on pixel connectivity can retain image position
information. Since every graph has the same structure and one-step network, the proposed
can reduce the training time compared with other GNN-based methods [6] [114]. In
addition, the mathematical background of group equivariance deep learning in Chapter 3
is introduced to support the proposed novel self-supervised depth estimation framework,
which can learn intrinsic features of point clouds. Thus, the proposed group equivariance
graph network can improve the depth details recovered from monocular images and
videos [4] [5], such as endoscopy videos [72] and videos captured by UAVs [8].

4.5 Summary

This chapter presents a novel self-supervised monocular depth estimation framework based
on group equivariance deep learning described in Chapter 3. The coarse-to-fine encoder
architecture can learn non-Euclidean information and refine the depth geometry feature. In
addition, the graph structure based on four-connectivity can keep the original neighbour
point information. In the following chapters, two use cases will be used to demonstrate the
proposed depth estimation framework.



Chapter 5

Topology-aware Depth Estimation from
Endoscopy Videos

5.1 Motivation

This chapter presents a case study of topology-aware depth estimation from endoscopy
videos. Based on the proposed novel self-supervised depth estimation framework, this
case study aims to demonstrate the effectiveness of the proposed method and the group
equivariance designed to learn non-Euclidean information and intrinsic features of point
clouds. DaVinci dataset, which includes many instruments and complex depth, is used
for qualitative evaluation on point clouds. Furthermore, several public endoscopy datasets
are used to compare with other state-of-art methods, including SCARED, SERV-CT and
Hamlyn heart datasets.

Depth estimation from monocular endoscopy plays a crucial role in the context of
Minimally Invasive Surgery (MIS), enabling 3D reconstruction, surgical navigation, and
AR patient-specific data visualization. However, there remain some challenges. The
complex nature of the MIS surgical environment, coupled with the featureless surface
representations, makes it challenging to estimate depth accurately, particularly for the task
of localization of instruments, which is crucial for surgical navigation. Furthermore, the
ground truth is difficult to obtain for supervised deep learning methods.

5.2 Introduction

Depth estimation is a common task of robotic vision and visual computing, involving the
prediction of the depth or distance of objects in a scene from a 2D image or a video. This
can be done either using a single image (monocular depth estimation) or multiple images
(stereo or multi-view depth estimation). The output of depth estimation can be used for a
variety of applications, including 3D reconstruction, object detection, scene understanding,
and AR [119]. Depth estimation also finds its use in medical imaging and surgery, such as
robotic surgery. In surgical settings, depth estimation can assist navigation and improve
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the understanding of surface anatomy, particularly in MIS, where 2D endoscope images
may compromise depth perception [120].

Various methods have been proposed for reconstructing 3D structures or estimating
depth from endoscopic images [121], [122], [123]. Shape from Shading (SfS) [124] is one
such method that estimates 3D surface geometries from observed image shading patterns
caused by surface normals. Feature-point matching techniques, such as structure from
motion (SfM) and visual odometry (VO), have also been applied to endoscopic images
for depth estimation [125], [126]. However, these approaches may not perform well in
estimating depths from real endoscopic images. The reason is that endoscopic images can
capture a wide range of organ surface textures, and organs depicted in these images often
exhibit non-rigid deformations. As a result, the accuracy of feature point matching in the
images may decrease, failing in estimating depths.

In recent years, deep learning methods have emerged as a promising approach for
predicting depth maps from monocular videos. These methods can be broadly classi-
fied into two categories: supervised learning [35], [36], [127], and unsupervised learn-
ing [72], [4], [71]. The former requires ground-truth depth maps to be available during the
model training process. It is often difficult to collect a large-scale and accurate ground-truth
depth of endoscopic scenes due to several challenges, such as sensor noise, limited field
of view, and varying lighting conditions [72]. This chapter proposes an unsupervised
framework without relying on real-depth maps as the ground truth for model training and
learning. The proposed self-supervised deep-learning architecture based on GNN in Chap-
ter 4, for the first time, is applied to estimate the depth of endoscopy videos. In this chapter,
three public datasets are evaluated to demonstrate the ability of the proposed framework to
obtain fine details in endoscopy depth estimation, including surgical instruments, which are
also measured with greater accuracy compared to five state-of-the-art methods. In addition,
to improve the performance of the proposed framework in low-illumination endoscopy
videos, a new loss function based on the CLAHE algorithm is introduced.

5.3 Evaluation on Endoscopy Video

Several experiments are conducted to evaluate the different aspects of the proposed ap-
proach. In particular, the proposed method is evaluated on DaVinci datasets [128] and
three public datasets, SCARED [129], SERV-CT [130] and Hamlyn1. The ground truth
from SCARED datasets is used for quantitative and qualitative analysis. Ablation studies
based on SCARED datasets are discussed to give a more detailed analysis of the proposed
method.

5.3.1 Experiment Setup

The proposed depth estimation network is based on the public deep-learning platform
PyTorch framework [131]. All methods are trained on a single NVIDIA GeForce RTX

1http://hamlyn.doc.ic.ac.uk/vision/

http://hamlyn.doc.ic.ac.uk/vision/
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2080 GPU for a batch size of 5 and 20 epochs. The Adam [132] is used to optimize both
the pose and depth net, and the learning rate is 1e−4 at the beginning. This rate will be
dropped to 1e−5 after 15 epochs. The pre-trained ResNet-18 is used for the PoseNet, but
the coarse encoder (CNN) part is trained without a pre-trained model, which can achieve
more accurate results for endoscopy images. Since the raw resolution of DaVinci datasets
is 384×192, the resolution of images is set to 320×192 for all datasets.

5.3.2 DaVinci Datasets Results

The DaVinci datasets contain recordings of minimally invasive surgeries, which include
detailed information on surgical tools. The DaVinci datasets were released by the Imperial
College of London into the public domain and are freely available for research communities.
There are no ethical concerns for this PhD work to use these datasets. These datasets are
well-suited for evaluating the proposed method, as they provide a realistic and challenging
environment for testing the performance of the proposed approach. Additionally, the
accurate localization of surgical instruments is useful for various applications, such as
augmented reality (AR) in surgical navigation systems. In this experiment, the left images
were used as the training data, 70%−15%−15%, consisting of 34240 images for training,
7191 images for validation, and 7191 for testing. The depth estimation performance of
the proposed framework is evaluated against five state-of-the-art self-supervised methods,
including AF-SfM [72], GCNDepth [6], Monodepth2 [4], Johnston et al.(2020) [5] and
Endo-SfM [71]. Since an endoscope (the camera) is usually close to an organ and neigh-
bouring objects have a similar depth or small depth difference, the point cloud is used
to show results. Moreover, the point cloud results are highly versatile and can be easily
applied in various applications.

As an illustration, Fig. 5.1 demonstrates the aforementioned results, indicating that
our model performs better on surgery instruments and exhibits a more regular distribution.
The results obtained by AF-SfM, GCNDepth, Monodepth2, and Endo-SfM suggest that
surgical instruments tend to have a planar shape with similar depth values as the background.
Meanwhile, when applying the method proposed by Johnston et al. [5]to the DaVinci
dataset, the resulting depth values on the surgical instruments are non-planar, and the
orientation of the depth values is incorrect. However, our method can correctly recognise
the depth of surgical instruments, and the distribution of the top-point cloud closely
resembles the actual depth. Fig. 5.3 shows more examples of various methods, and our
method can handle the details of the surgical instruments.

5.3.3 Quantitative Evaluation

Since the DaVinci dataset is a real surgery video without ground truth, the SCARED,
SERV-CT and heart of Hamlyn datasets are used to evaluate the proposed framework.
The SCARED dataset contains nine stereo videos, and the ground truth was captured
using a structured light camera. The 22,922 left images are collected from the first
seven videos with ground truth data. These images are divided into 16,046 for training,
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(a) Image (b) Our (c) Johnston et al.(2020)

(d) GCNDepth (e) Monodepth2 (f) AF-SfM (g) Endo-SfM

Fig. 5.1 Comparison of point cloud results on DaVinci dataset. The proposed framework
perform better on surgical instruments, and the resulting distribution is more regular.

6,062 for validation, and 814 for testing purposes, where 70%, 25% and 5% are used for
training, validation and testing, respectively. The model trained on the SCARED dataset
is utilized for the Hamlyn and SERV-CT datasets due to their analogous data distribution
and characteristics. This means that the common feature representations learned by the
network, like organ surface. Another reason is the similar environmental context under
human organs.

Regarding the quantitative evaluation, standard depth evaluation metrics are used, such
as Absolute and Relative Error (Abs Rel), Squared Relative Error (Sq Rel), Root Mean
Squared Error (RMSE), and Root Mean Squared Log Error (RMSE log). Additionally,
δ < 1.25 is used to determine the accuracy of the estimated depth using a threshold
proposed in [133] and the details shown in Eq. 5.1. The predicted depth is multiplied
with median scaling (ŝ = median(Dgt)/median(Dpred)) before the evaluation, which is
introduced in [37].
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ImageAF-SfMGCNDepthMonodepth2
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Abs Rel =
1
D ∑

d∗∈D
|d∗−d|/d∗,

Sq Rel =
1
D ∑

d∗∈D
∥d∗−d∥2 /d∗,

RMSE =

√
1
D ∑

d∗∈D
∥d∗−d∥2,

RMSE log =

√
1
D ∑

d∗∈D
∥log(d∗) log(d)∥2,

δ =
1
D

∣∣∣∣{d∗ ∈ D|max(
d∗

d
,

d
d∗

)< 1.25
}∣∣∣∣ .

(5.1)

where d∗ and d denote ground truth and the predicted depth maps, D indicates a set of
valid ground truth depth values in one image, and |.| returns the number of elements in the
input set.

All methods are evaluated on SCARED [129], Hamlyn and SERV-CT [130] datasets.
The results are shown in Table 5.1, and the Abs Rel metric is used for subsequent analysis.
In general, the proposed method significantly outperforms other state-of-the-art methods
and results show remarkable improvements in each evaluation metric. For SCARED and
Hamlyn datasets, the proposed method achieves the highest performance. The Abs Rel
metric is improved by∼ 30.1% and∼ 7.14% compared with the other five methods. While
the GCNDepth model achieved better results than our model on the SERV-CT dataset, the
proposed framework outperformed GCNDepth on other datasets, and the metrics show
similar results between the proposed framework and GCNDepth.

The qualitative results of the SCARED dataset are shown in Fig. 5.4 and Fig. 5.5.
The proposed method is compared with five approaches, AF-SfM [72], GCNDepth [6],
Monodepth2 [4], Johnston et al.(2020) [5] and Endo-SfM [71]. In general, The proposed
method can produce fine detailed depth maps. In the first example (Fig. 5.4(a) is the image,
and Fig. 5.4(b) is the point cloud ground truth). The result of AF-SfM, shown in Fig. 5.4(d),
has an irregular point distribution on the edge. Although Fig. 5.4(e) shows details on the
red circle region, it fails to reconstruct the top areas accurately. The results of Monodepth2
(shown in Fig. 5.4(f)) and Johnston et al.(2020) (shown in Fig. 5.4(g)) tend to flatten the
compared ground truth. The Endo-SfM method cannot achieve the correct point cloud
distribution. However, our method can accurately detect different depths in the red region,
as shown in Fig. 5.4(c). In the second example, illustrated from Fig. 5.5(a) to Fig. 5.5(h),
most of the methods can get the correct depth, but the GCNDepth fails to recover the depth
in the red region, and the AF-SfM cannot capture the top areas depth. Overall, Fig. 5.4 and
Fig. 5.5 demonstrate the effectiveness of the proposed framework in accurately detecting
detailed point clouds.
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Table 5.1 Quantitative results. Comparison of our method to existing methods on the
SCARED dataset, Hamlyn datasets and SERV-CT. The best results in each category are in
bold.

Lower Better Higher Better
Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25

SCARED dataset
AF-SfM 0.093 0.995 6.315 0.116 0.913

GCNDepth 0.151 2.225 9.738 0.183 0.781
Monodepth2 0.060 0.412 4.202 0.081 0.967

Johnston et al.(2020) 0.062 0.471 4.432 0.085 0.965
Endo-SfM 0.145 1.989 9.917 0.193 0.774

Our 0.058 0.364 4.063 0.077 0.971
Hamlyn heart datasets

AF-SfM 0.286 8.219 6.612 0.286 0.864
GCNDepth 0.271 7.505 6.237 0.276 0.888

Monodepth2 0.286 8.577 6.276 0.281 0.886
Johnston et al.(2020) 0.289 8.534 6.461 0.287 0.867

Endo-SfM 0.302 9.206 7.136 0.293 0.859
Our 0.266 7.550 5.929 0.271 0.909

SERV-CT dataset
AF-SfM 0.091 0.901 7.129 0.112 0.931

GCNDepth 0.068 0.510 5.351 0.083 0.974
Monodepth2 0.096 0.947 7.116 0.116 0.910

Johnston et al.(2020) 0.082 0.723 6.361 0.103 0.946
Endo-SfM 0.172 2.943 13.232 0.230 0.680

Our 0.068 0.521 5.538 0.085 0.976
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(a) Image (b) GT

(c) Our (d) AF-SfM

(e) GCNDepth (f) Monodepth2

(g) Johnston et al.(2020) (h) Endo-SfM

Fig. 5.4 Comparison of a point cloud result on the SCARED dataset. The proposed
framework performs better on point cloud details, and the resulting distribution is more
regular than others, especially for the red dash areas.
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(a) Image (b) GT

(c) Our (d) AF-SfM

(e) GCNDepth (f) Monodepth2

(g) Johnston et al.(2020) (h) Endo-SfM

Fig. 5.5 Comparison of another point cloud result on the SCARED dataset. The proposed
framework performs better on point cloud details, and the resulting distribution is more
regular than others, especially for the red dash areas.
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Table 5.2 Ablation results for different components. w/o GAT represents without GAT
network. The best results in each category are in bold.

Methods Abs Rel Sq Rel RMSE RMSE log δ < 1.25
Baseline(Resnet-18 w/o GAT) 0.102 1.083 6.737 0.130 0.894

Ours-Resnet-18 w/ GAT 0.061 0.414 4.276 0.081 0.965
Ours-Resnet-50 w/o GAT 0.061 0.393 4.236 0.081 0.971
Ours-Resnet-50 w/ GAT 0.060 0.386 4.183 0.080 0.968

Ours-Resnet-101 w/o GAT 0.073 0.862 6.844 0.103 0.942
Ours-Resnet-101 w/ GAT 0.058 0.364 4.063 0.077 0.971

(a) Four-connectivity (b) Eight-connectivity

Fig. 5.6 (a) is a four-connectivity structure for one pixel, and (b) is an eight-connectivity
structure for one pixel.

5.3.4 Ablation Study

To better understand the contribution of each component in the proposed framework to the
overall performance during training, an ablation study is conducted by modifying different
parts of the proposed framework, as shown in Table 5.2. The Resnet-18 only includes a
discrete disparity volume encoder without a GAT network. Using ResNet-101 instead of
ResNet-18 and ResNet-50 has improved the results and accuracy slightly. The baseline
model, without any of the proposed contributions, performs the worst. However, when all
components are combined, the proposed method observes a significant improvement in
performance.

In addition, Table 5.3 shows different network framework results. The higher resolution
320×256 obtains higher errors than 320×192 under the same connectivity, and the four-
connectivity method is more suitable for the proposed depth estimation network than
eight-connectivity. The 4&8 means that there are two types of graphs, including four-
connectivity and eight-connectivity, as shown in Fig. 5.6, whose leaned features are
concatenated in the last layer of Table 4.2. The idea of random connectivity stems from
GCNDepth, and the adjacent matrix of the graph is randomly generated. This method
gets the highest Absolute and Relative Error than others. Since GAT does not incorporate
edge features into the model, a graph attention layer that handles edge features from the
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Rossmann-Toolbox [134]. The difference part compared with the GAT is in how the
attention scores e(hv,hu) are obtained:

e(hv,hu) = F( f ′vu) (5.2)

f ′vu = LeakyReLU(A[hv ∥ fvu ∥ hu]) (5.3)

where f ′vu and fvu are edge features, F is weight vector and A is weight matrix. Then, the
node features hv are updated, the same as the GAT. The initial value of fvu is determined
by computing the absolute value of the difference colour vector. The use of the absolute
operation indicates that the graph is non-directional or bidirectional. In general, the results
of the GAT with learned edge features tend to have higher errors compared with the
proposed method without learned edge features. The results of 4-pixel connections are
better than 8-pixel connections. One reason is that 4-pixel connections focus on a more
localized context compared to 8-pixel connections. This can be advantageous in scenarios
where capturing fine-grained details or features within a limited spatial range is crucial for
accurate predictions. Another is that 4-pixel connections tend to exhibit lower sensitivity
to noise or irrelevant information in the surrounding pixels. In summary, these results
demonstrate that more pixel connectivity, more complex networks or more information
may not work on the proposed monocular depth estimation network framework.

Table 5.3 Compared with other network frameworks. Ours-256-4 represents the results of
320×256 resolution with four-connectivity, Ours-192-8 represents the results of 320×192
resolution with eight-connectivity, random represents that the connectivity of edges is
randomly generated, and EGAT represents that the GAT includes the feature of edges. The
best results in each category are in bold.

Methods Abs Rel Sq Rel RMSE RMSE log δ < 1.25
Ours-256-4 0.076 0.628 5.341 0.101 0.939
Ours-192-8 0.130 1.731 8.953 0.173 0.810
Ours-192-4&8 0.203 3.798 12.516 0.237 0.659
Ours-192-random 0.279 7.525 17.057 0.417 0.570
Ours-192-EGAT-4 0.114 1.322 7.675 0.148 0.853
Ours-192-EGAT-8 0.112 1.241 7.494 0.146 0.859
Ours-192-4 0.058 0.364 4.063 0.077 0.971

5.3.5 Discussion

A novel self-supervised framework is proposed for endoscopy monocular depth estimation.
The coarse-to-fine encoder architecture can learn non-Euclidean information and refine the
depth geometry feature. Moreover, the graph structure based on four-connectivity can keep
the original neighbour point information. Qualitative and quantitative analysis of different
datasets can demonstrate that the proposed framework can obtain fine details and improve
accuracy. However, this method may fail to estimate the depth of images with low lighting.
Low lighting conditions typically result in darker images with reduced visibility of details.
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This can lead to the loss of important information and fine-grained textures in the image.
This self-supervised framework is trained to learn patterns and features from input data. If
an image has textureless areas due to low lighting, the network might find it hard to extract
meaningful features and patterns from those regions. This can lead to poor performance
on monocular depth estimation. Therefore, next, a self-supervised framework based on
image enhancement is proposed for low-illumination endoscopy video.

5.4 Low-illumination Endoscopy Video

5.4.1 Challenges

The depth estimation on low-illumination Endoscopy video remains a challenging prob-
lem. Most existing works usually utilized thermal images to recover depth [135], [136].
Spencer et al. [137] proposed a DeFeat-Net to simultaneously learn a cross-domain dense
feature representation and depth estimation to acquire more robust results. However, this
method fails to tackle the low visibility. Vankadari et al. [138] considers this problem
as a domain adaptation problem, where they trained a network on daytime data to work
for nighttime images, called ADFA. Different from ADFA, Wang [139] utilized depth
distribution from daytime data as regularization and directly learned depth information
from nighttime scenes. However, both methods need corresponding daytime data or good-
visible images, which are usually unavailable under MIS. Image enhancement aims to
improve details in low-visibility regions. Retinex model-based methods allow images to
be decomposed into illumination and reflectance [140], [141]. Recently, deep learning
Retinex-based methods combined CNNs and Retinex to pursue better accuracy and ro-
bustness [142], [143]. Although these methods are effective, it is not suitable for depth
estimation, which usually assumes training data with the same brightness among frames [4].
Therefore, like [139], the Contrast Limited Histogram Equalization (CLHE) algorithm [46]
is used to enhance the visibility of endoscopy images and keep brightness consistency
simultaneously. In this section, an novel loss function is proposed to improve depth
estimation on low-illumination Endoscopy video based on the framework in Chapter 4.

5.4.2 Method

The framework is the same with Fig.4.2 in Chapter 4, and it is different on the SSIM and
L1-norm loss for self-supervised training. It is noticed that the CLHE is only used to
compute the photo-metric loss in Equ.4.7, and the SSIM loss can be rewritten as follows:
Ît = s(Is, ps)

pe(I′t , Ît
′
) =

α

2
(1−SSIM(I′t , Î′t ))+(1−α)

∥∥∥I′t − Î′t
∥∥∥

1
(5.4)

where α is also set to 0.85 in all experiments, I′t = m(It), Ît
′
= m(Ît) = s(m(Is), ps), m

is brightness mapping function. The main parts of computing m are as follows [139]:
Assuming we have the frequency distribution fa = h(a) for the input image, where fa
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represents the frequency of brightness level b. Then, the frequencies exceeding the
parameter σ = 0.003 are clipped to prevent noise signal amplification, and the clipped
frequencies are evenly distributed across each brightness level. Finally, m can be obtained
by:

m(a) =
cd f (a)− cd fmin

cd fmax− cd fmin
(L−1) (5.5)

where cd f is the cumulative distribution, cd fmin and cd fmax are the minimum and maxi-
mum of cd f . L is the number of brightness levels, and its values usually are 256 for colour
images.

5.4.3 Evaluation

Apart from the SSIM loss, other modules are the same as mentioned before. Since the
CLHE is only used to enhance the image when computing the SSIM loss and does not
alter the input of the networks, the image can be input into the trained model without
the enhancement. Since there are no available low-illumination endoscopy datasets with
ground truth, only qualitative analysis is conducted. In addition, there are no frameworks,
which focus on depth estimation with a low-illumination condition, or consider all images
with a low-illumination condition [72]. Therefore, the five state-of-the-art self-supervised
methods are used to evaluate low-illumination endoscopy videos, including AF-SfM [72],
GCNDepth [6], Monodepth2 [4], Johnston et al.(2020) [5] and Endo-SfM [71]. This
experiment uses several videos with low-illumination conditions in the Hamlyn dataset.
There are 15294 images for training with the proportion70%−25%−5%, 6350 images
for validation, and 400 images for testing.

The qualitative results of the low-light endoscopy dataset are shown in Fig. 5.8, Fig. 5.9
and Fig. 5.10. In Fig. 5.8, a big instrument is used under a low-illumination scene. The re-
sults of Johnston et al.(2020)(Fig. 5.8(d)), Our-woIE(Fig. 5.8(c)) and AF-SfM(Fig. 5.8(g))
show that the instrument tends to be blended together with organs. The results of GCN-
Depth(Fig. 5.8(e)) and Endo-SfM (Fig. 5.8(h))show a big deformation at the edges. In
addition, Fig. 5.8(f) also show the failure to recover depth on the instrument. However,
Fig. 5.8(b) with the new SSIM loss function achieve better results than others, and there
is a convex surface in the position of the instrument. In Fig. 5.9, there are without any
instrument. The region of the red circle should have different heights, from high to low.
The results of GCNDepth(Fig. 5.9(e)) and Endo-SfM (Fig. 5.9(h))show there is a big
deformation at the edges. Fig. 5.9(c) and Fig. 5.9(f) show the wrong depth on the right side
of the image. Fig. 5.9(g) tends to show the same depth on both sides. Lastly, Although
Fig. 5.9(b) and Fig. 5.9(d) have correct depth, the former has a good distribution. In the
third experiment, shown in Fig. 5.10, there is a small instrument in the middle. Similar to
before, GCNDepth and Endo-SfM have bed results. AF-SfM and Johnston et al.(2020)
show that the instrument tends to be together with the organ and have the same depth
values. The result of Our-wIE is better on the instrument compared with Fig. 5.10(c) and
Fig. 5.10(f). In general, The proposed method with the new SSIM loss can produce fine
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Fig. 5.7 Comparison of different σ results on low-illumination endoscopy video.
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detail depth maps. However, there are some disadvantages. For example, the edges of too
dark remain fail to estimate the depth. In addition, the value of σ will have a significant
influence on the Low-illumination image depth estimation. Therefore, Fig. 5.7 shows
different values of σ , and it can obtain better results in σ = 0.003. A lower value of σ

(less than 0.003) tends to introduce more noise, as illustrated in the second row of Fig. 5.7.
A higher value of σ shows irregular edges and increases the scale of instruments.

5.5 Conclusion

This chapter uses the endoscopy video to evaluate the proposed depth estimation frame-
work. In the quantitative experiment, the proposed framework achieves better results in
the SCARED and Hamlyn heart datasets than the five state-of-the-art methods and has
comparable results in SERV-CT compared with GCNDepth. In the qualitative experi-
ment, the proposed framework can sense the depth of surgical instruments accurately and
achieve well-distribution around the edge of point clouds. Finally, the new loss function
for handling low-illumination endoscopy images can improve the performance of depth
estimation under poor illumination conditions.
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Chapter 6

Topology-aware Depth Estimation from
Unmanned Aerial Vehicle Videos

6.1 Motivation

This chapter presents another case study of topology-aware depth estimation from videos
captured by Unmanned Aerial Vehicles (UVAs). Based on the proposed novel self-
supervised depth estimation framework, this case study aims to demonstrate the effective-
ness of the proposed method in unstructured environments with free camera motions.

Most of the works mentioned in Chapter. 2 usually recovered the depth of images
captured on road or highway scenes for Autonomous Driving Vehicles. These scenes
often have fixed features of or structured environments, as shown in Fig. 6.1(a). For
example, the mid-regions of the image are the sky, and both sides are buildings. These
environments with fixed features can be considered structured environments, and the fixed
features could be learned by CNNs under grid geometry structures. However, similar
to endoscopy environments with free camera motions, environments captured by UAVs
are often unstructured, as shown in Fig. 6.1(b). Therefore, an implementation of group
equivariance deep learning, which utilizes the depth estimation framework proposed in
Chapter 4.2, is used for the videos captured by UAVs. In addition, three UAV datasets and
six state-of-the-art methods are used for quantitative and qualitative evaluations.

6.2 Introduction

UAVs, often called drones, have emerged as widely adopted platforms for photogram-
metric measurements and reconstructions. Their popularity can be attributed to their
accessibility, affordability, and exceptional versatility in capturing images. In particular,
quadcopters [144] have positioned them as excellent choices for various tasks, including
aerial photography, surveying, and delivery services [144]. However, effectively control-
ling these vehicles remotely demands specialized skills that are difficult and expensive
to acquire. This situation has led to a growing demand for automated or assisted flight
solutions that can alleviate the need for highly skilled operators [145].



6.2 Introduction 52

(a) Structured environment (b) Unstructured environment

Fig. 6.1 structured environment and unstructured environment. (a) is a car driving on the
road, (b) is a UAV flying in an unstructured environment, and the black circles can be
regarded as trees.

In order to avoid undesired collisions in an uncontrolled and unstructured environment,
it is necessary to design a motion path or trajectories for UAVs. However, the specialized
sensors commonly employed in robotics for distance estimation pose practical challenges
when considering their adaptation to small UAVs due to their large size, weight, or
power constraints. In practice, UAVs for military applications are usually equipped with
powerful cameras, wireless communication devices, highly accurate Global Positioning
Systems (GPS), and specialized collision avoidance sensors [146], which can obtain exact
positions, but with significant complexities and costs. Therefore, depth estimation based
on images, which involves calculating the distance between a camera and an object within
the surroundings, has become an attractive solution. In contrast to 2D remote sensing
monitoring, which has limitations for the detection of self-occluded vegetation areas,
and the assessment of the canopy structure, 3D information can extract the height and
volume of plants and develop a more accurate analysis of the plant’s condition considering
geometric, spatial, and multi-temporal features [147]. 3D information in environmental,
agriculture and forestry applications improves the recognition of trees, the study of spatial
colonization by dominant species in natural environments, forest inventory, and harvest
forecasting [148].

As described in Chapter 1, this research will also focus on monocular depth estimation
methods but with UAV videos. Similarly, previous methods can be classified into three
categories: SfM-based, supervised and self-supervised depth estimation. SfM-based
methods often include image feature extraction and matching, sparse reconstruction and
bundle adjustment to reduce accumulated error. Vallet et al. [149] improved the quality of a
digital terrain model by analysing the internal geometry of the camera. Westoby et al. [150]
designed a framework to generate a fully rendered 3D model by using photographic data.
Nesbit et al. [151] improved spatial accuracy and precision in point clouds by fixing
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oblique camera angles. These methods often suffer from some challenges, such as the
requirement of multiple images, time-consuming bundle adjustment, and low-quality depth
in regions with a narrow view between images.

Supervised depth estimation can provide powerful feature extractions that local re-
lations and global cues can be learnt. Miclea et al. [152] proposed a new loss function
for aerial images, which combines an ordinal regression and a regular classification. The
former can improve the results of smooth areas, and the latter can improve the quality of
depth in isolated objects. Similarly, due to the limitation in acquiring ground truth for
training, Hermann et al. [153] utilized three frames to train their model, including stereo
frames and a reference frame, for pose estimation and estimate the depth of the reference
frame. Madhuanand et al. [8] improved the results of depth on complex scenes for UAV
images. However, these methods tend to lose fine details based on CNNs. In this chapter,
our proposed GNNs-based methods can improve the fine details of depth and achieve better
results than the aforementioned works.

6.2.1 Evaluation on UVAs Videos

The proposed framework is compared with prior approaches both quantitatively and
qualitatively on the Mid-Air dataset [154], UAVid [155] and Wilduav [156]. The Mid-Air
dataset with ground truth is used to conduct both quantitative and qualitative analysis. An
ablation study on the Mid-Air dataset is also used to study the impact of GNNs and various
Resnets based on the availability of the ground truth.

Since the UAVid and Wilduav datasets have no ground truth, created by SfM-based
methods, these datasets with real-world data are used to conduct qualitative analysis only.
Similarly, the details of experiments are the same as in Chapter. 5.3, and the resolution of
images is set to 320×192 for all datasets.

6.2.2 Quantitative Evaluation

The Mid-Air dataset is a synthetic dataset for unstructured environments, which includes
a flying quadcopter equipped with navigation and vision sensors. This dataset includes
the ground truth of depth and different climates. In this experiment, three types of data
are quantitatively evaluated: sunny weather, and spring and winter seasons, which have
significantly different features. Sunny weather is the clear sky at midday. The features of
the spring season are trees with green leaves and luxuriant ground vegetation. In addition,
it contains different times of the day and foggy weather. On the contrary, features of
the winter season include trees without leaves and an environment covered with snow.
The left images are used for all experiments, and the details are as shown in Table 6.1.
The depth estimation performance of the proposed framework is evaluated against six
state-of-the-art self-supervised methods: GCNDepth [6], Monodepth2 [4], Johnston et
al.(2020) [5], Lite-mono [7], MonoFormer [9], Madhuanand et al.(2021) [8]. Apart from
GCNDepth, Monodepth2 and Johnston et al.(2020), the latest works on monocular depth
estimation, called Lite-mono and MonoFormer, are used to compare with the proposed
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Table 6.1 The training details in different datasets.

Datasets Training images Validation images Testing images
Sunny Weather 46360 17869 2000
Spring Season 37044 14376 1500
Winter Season 37044 14376 1500

method. Madhuanand et al.(2021)focused on the depth estimation of UAV images, which is
also introduced in this chapter. Since GCNDepth has no convergence on all UAV datasets,
the model provided by GCNDepth is used for evaluations. In addition, the experiments are
conducted for Madhuanand et al.(2021) according to the part code provided and the article.
All models are trained with the same conditions.

Similar to Chapter 5, several standard depth evaluation metrics are used, such as
Absolute and Relative Error (Abs Rel), Squared Relative Error (Sq Rel), Root Mean
Squared Error (RMSE) and Root Mean Squared Log Error (RMSE log). The details are
shown in Eq. 5.1, the results are shown in Table 6.2, and the Abs Rel metric is used for
subsequent analysis. In general, the proposed method for UAV images outperforms other
state-of-the-art methods, and the results of our method are better in all evaluation metrics
compared with those of others. The proposed method achieves similar results on Sunny
Weather and Spring Season datasets since there are many similar scenes in the two datasets.
The Sq Rel metric improves by ∼ 66.67% on the Sunny Weather dataset and ∼ 55.16% on
the Spring Season dataset compared with others. There is a significant improvement in the
Winter Season dataset. This is because there are different situations in the Sunny Weather
dataset, including illumination or fog, and the Winter Season dataset is almost white. The
results are better than the former. The following section details qualitative analysis.

6.2.3 Qualitative Evaluation

The results of three datasets will be compared for qualitative evaluation: Mid-Air, UAVid
and Wilduav. In contrast to endoscopy datasets, these datasets usually have a big range of
distances different from endoscopy. Thus, disparity images rather than point clouds will be
used for analysis. The results of the Mid-Air dataset are shown in Fig. 6.2 and Fig. 6.3.
The former shows the results of the Sunny dataset. The results of the proposed method
are a closer approximation to ground truth (GT). In particular, the proposed framework
can reconstruct trees, as shown in the green circles of the second column. As can be seen,
the results of Johnston et al.(2020), Monodepth2, Lite-mono and MonoFormer cannot
estimate the depth of trees, and models of Madhuanand et al. and GCNDepth produce bad
results in the Sunny dataset. The latter shows the results in the Spring and Winter datasets.
The first and third columns have the same scenes with different climates. The models of
Lite-mono, MonoFormer and the proposed method achieve similar results in the green
regions. However, the results of Johnston et al.(2020) and Monodepth2 in the green region
tend to be together between leaves. In addition, the proposed method and Monodepth2
achieve better results in the fourth column, which has a clear depth in the tree trunk.
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Table 6.2 Quantitative results. Comparison of our method to existing methods on the Sunny
Weather, Spring Season and Winter Season. The best results in each category are in bold.

Lower Better Higher Better
Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25

Sunny Weather
MonoFormer 0.057 0.957 5.078 0.111 0.945
GCNDepth 0.082 0.898 7.610 0.116 0.903
Madhuanand et al.(2021) 0.066 0.771 6.329 0.107 0.900
Monodepth2 0.060 1.461 5.575 0.132 0.894
Johnston et al.(2020) 0.076 1.840 6.710 0.159 0.856
Lite-mono 0.079 1.919 7.111 0.166 0.865
Our 0.042 0.473 3.628 0.071 0.953

Spring Season
MonoFormer 0.050 0.438 4.277 0.081 0.943
GCNDepth 0.082 0.870 7.334 0.112 0.920
Madhuanand et al.(2021) 0.069 0.839 6.824 0.116 0.900
Monodepth2 0.092 1.602 8.166 0.169 0.813
Johnston et al.(2020) 0.042 0.302 3.606 0.066 0.964
Lite-mono 0.053 0.426 4.350 0.081 0.964
Our 0.042 0.277 3.449 0.063 0.976

Winter Season
MonoFormer 0.124 4.457 10.214 0.296 0.841
GCNDepth 0.080 0.801 7.139 0.107 0.934
Madhuanand et al.(2021) 0.061 0.668 5.812 0.098 0.922
Monodepth2 0.058 0.870 4.909 0.101 0.889
Johnston et al.(2020) 0.194 8.796 17.473 0.707 0.758
Lite-mono 0.118 3.750 9.715 0.257 0.842
Our 0.025 0.095 1.982 0.035 0.984
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Fig. 6.2 Comparison of monocular depth estimation results on Sunny dataset of Mid-Air.
The first row is test images, and the next is ground-truth depth. From top to bottom,
models are GCNDepth [6], Lite-mono [7], Monodepth2 [4], Madhuanand et al.(2021) [8],
Johnston et al.(2020) [5], MonoFormer [9], the proposed method(Our).
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Fig. 6.3 Comparison of monocular depth estimation results on Spring and Winter dataset
of Mid-Air. The first row is test images, and the next is ground-truth depth. From top
to bottom, models are GCNDepth [6], Lite-mono [7], Monodepth2 [4], Madhuanand et
al.(2021) [8], Johnston et al.(2020) [5], MonoFormer [9], the proposed method(Our).
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Fig. 6.4 Comparison of monocular depth estimation results on China of UAVid and Wilduav.
The first row is test images. From top to bottom, models are GCNDepth [6], Lite-mono [7],
Monodepth2 [4], Madhuanand et al.(2021) [8], Johnston et al.(2020) [5], MonoFormer [9],
the proposed method(Our).
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Images Lite-mono Ours

Fig. 6.5 Comparison of the detailed results on Wilduav. The first column is images, the sec-
ond column is the results of Lite-mono, and the last one is the proposed framework(Ours)
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Table 6.3 Ablation results for different components. w/o GAT represents without GAT
network. The best results in each category are in bold.

Methods Abs Rel Sq Rel RMSE RMSE log δ < 1.25
Baseline(Resnet-18 w/o GAT) 0.064 0.711 7.811 0.092 0.949
Ours-Resnet-18 w/ GAT 0.056 0.494 6.366 0.078 0.978
Ours-Resnet-50 w/o GAT 0.066 1.677 6.203 0.150 0.894
Ours-Resnet-50 w/ GAT 0.051 0.780 4.473 0.093 0.913
Ours-Resnet-101 w/o GAT 0.049 0.871 4.292 0.091 0.930
Ours-Resnet-101 w/ GAT 0.042 0.473 3.628 0.071 0.953

The UAVid and Wilduav datasets are the real world but with different scenes. The
UAVid dataset is captured in different country cities: China and Germany. The Wilduav
dataset is captured at low altitudes in unstructured forest and shrubgrass vegetation areas
with varying terrain profiles. The experiment on real-world datasets can demonstrate that
the proposed method can estimate the depth of images captured by UAVs in the real world.
The UAVid and Wilduav datasets differ from the Mid-Air dataset, where the UAV is located
in a low attitude. Therefore, the models need to be trained. The China dataset of the
UAVid is only trained, and the trained models will be directly used for the Wilduav dataset
without any finetuning. Similar to Madhuanand et al.(2021), the frame rate needs to be
changed since the small parallax error may lead to various noises, and it is set to 20 for all
experiments. There are 24800 images used for training and 2752 images for validation.
The results are shown in Fig. 6.4. The results of GCNDepth and MonoFormer cannot
estimate the right values of depth, and Madhuanand et al.(2021) and Monodepth2 fail to
recover the depth on the Wilduav dataset. For the China dataset, the proposed method
can accurately capture the depth of the billboard on the roof of the building, as shown
in the green area in the first column of Fig. 6.4. Although there are similar results in the
Wilduav dataset, our method can achieve fine details for the depth, as shown in Fig. 6.5.
The proposed method can estimate the depth of the road and small bushes.

6.2.4 Ablation Study

Similar to the evaluation of endoscopy datasets, an ablation study is conducted to un-
derstand the contribution of each component in the proposed framework to the overall
performance during training. The results are shown in Table 6.3. The Resnet-18 only
include a discrete disparity volume encoder without a GAT network. Using ResNet-101
instead of ResNet-18 and ResNet-50 improved the results and accuracy slightly. The base-
line model, without any of the proposed contributions, performs the worst. However, when
all components are combined, the proposed method observes a significant improvement
in performance. In addition, Table 6.4 shows different network framework results based
on GAT. There are lower Abs Rel on the resolution of 192×320 with four-connectivity
and eight-connectivity than 256×320 with four-connectivity. The networks with mixed
connectivity (four and eight) and the networks with random edges yield similar results.
Finally, the network with learned edge features tends to achieve the highest Abs Rel.



6.2 Introduction 61

Im
ag

e

(a) (b) (c)

O
ur

re
su

lts

(e) (f) (g)

Fig. 6.6 Some failed examples in different datasets: (a) is an image in the Germany dataset
of UAVid, and (e) is its result; (b) and (c) are images in the Spring dataset with fog, and
their results of depth estimation are (f) and (g).

Different results emerge with endoscopy data, where Ours-192-4&8 and random exhibit
the lowest performance.

Table 6.4 Compared with other network frameworks. Ours-256-4 represents the results of
320×256 resolution with four-connectivity, Ours-192-8 represents the results of 320×192
resolution with eight-connectivity, random represents that the connectivity of edges is
randomly generated, and EGAT represents that the GAT includes the feature of edges. The
best results in each category are in bold.

Methods Abs Rel Sq Rel RMSE RMSE log δ < 1.25
Ours-256-4 0.051 0.753 4.389 0.090 0.931
Ours-192-8 0.045 0.535 3.898 0.078 0.938
Ours-192-4&8 0.050 1.186 4.564 0.107 0.933
Ours-192-random 0.051 1.118 4.528 0.106 0.942
Ours-192-EGAT-4 0.056 0.971 4.846 0.104 0.920
Ours-192-EGAT-8 0.060 0.634 5.680 0.095 0.926
Ours-192-4 0.042 0.473 3.628 0.071 0.953

6.2.5 Discussion

The novel self-supervised monocular depth estimation framework is evaluated in unstruc-
tured environments. The coarse-to-fine encoder architecture can achieve fine-detailed
results. In addition, qualitative and quantitative analysis has demonstrated that the pro-
posed framework is effective in improving the depth details of the UAV dataset. However,
some challenges need to be addressed, as shown in Fig. 6.6. The proposed method obtains
unsatisfactory results when applied to the Germany dataset, particularly demonstrating
limitations in accurately estimating the depth of trees under foggy weather conditions.
Another challenge is the dataset in UAVs, which should include the ground truth in the
real world rather than the depth generated by SfM-based methods.
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6.3 Conclusion

This chapter describes another use case that is using videos captured by UAVs to evaluate
the proposed depth estimation framework in Chapter 4. Mid-Air dataset with different
climates is used for quantitative evaluation, and the proposed framework achieves lower
errors compared with six state-of-the-art methods. Our method can recover fine details
of depth information in the Mid-Air dataset for qualitative evaluation. On the UAVid and
Wilduav datasets captured in the real world, the edge region and small bushes of depth
can be recovered by the proposed depth estimation framework. Finally, the results of the
ablation study show the effectiveness of the proposed method. However, depth estimation
in foggy weather has shown poor performance, and the depth, including numerous distant
regular shapes, also requires further investigation.



Chapter 7

Non-rigid Point Cloud Registration with
Topology Changes1

7.1 Motivation

This chapter proposed a novel non-rigid point cloud registration framework, which can
handle topology changes. 3D object matching and registration on point clouds are widely
used in computer vision. However, most existing point cloud registration methods have
limitations in handling non-rigid point sets or topology changes (e.g., connections and
separations). As a result, critical characteristics such as large inter-frame motions of the
point clouds may not be accurately captured. This chapter proposes a statistical algorithm
for non-rigid point set registration, addressing the challenge of handling topology changes
without the need to estimate correspondence. The algorithm uses a novel Break and Splice
framework to treat the non-rigid registration challenges as a reproduction process and
a Dirichlet Process Gaussian Mixture Model (DPGMM) to cluster a pair of point sets.
Labels are assigned to the source point set with an iterative classification procedure, and
the source is registered to the target with the same labels using the Bayesian Coherent
Point Drift (BCPD) method. The results demonstrate that the proposed approach achieves
lower registration errors and efficiently registers point sets undergoing topology changes
and large inter-frame motions. The proposed approach is evaluated on several data sets
using various qualitative and quantitative metrics. In addition, an application of endoscopy
image, which can reconstruct point clouds by the method in Chapter 4, is conducted by the
proposed non-rigid registration framework.

7.2 Introduction

Point cloud registration is a crucial step in 3D acquisition and has many applications in
computer vision, including 3D reconstruction, pose estimation, augmented reality, object
matching, and recognition [73], [14], [74], [75]. Accurate registration of multiple point

1Published: QingHong Gao, Yan Zhao, Wen Tang, TaoRuan Wan, Long Xi. Break and Splice: A
Statistical Method for Non-rigid Point Cloud Registration. Computer Graphics Forum (2023).
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clouds obtained from different views or time instants is necessary for building a complete
and consistent 3D model of the scene or object of interest. In addition, point cloud
registration enables us to estimate the relative pose and motion of objects, recognize and
match objects in different scenes, and create virtual and AR experiences [76], [77].

While many registration methods work well on rigid objects [78], [79], they often
perform poorly on dynamic scenes or deformed objects. This is because these objects
have non-rigid deformations and motions that cannot be modelled by rigid transforma-
tions. In addition, non-rigid objects may undergo topology changes such as connections
and separations, which pose additional challenges for registration methods that rely on
correspondences between the source point sets and the target point sets point [80], [81].
Therefore, developing registration methods that can handle non-rigid objects and dynamic
scenes is an active research area in computer vision.

Topological changes are common in dynamic scenes. Many previous works on non-
rigid registration have failed to effectively address the connection and separation issues, and
large inter-frame motions, which can lead to misregistration and inaccurate reconstructions.
In addition, large inter-frame motions can cause significant deformations and changes in
topology. Chui et al. [42] and Yang et al. [43] proposed non-rigid registration methods
based on point correspondence to estimate affine transformations between the source
and the target point sets. However, these methods may not be robust to changes in the
topology of the point sets, such as connections and separations. The accuracy of these
methods is highly dependent on the accuracy of the correspondence estimation, which can
be challenging in the presence of large deformations or changes in topology.

To address these issues, recent approaches have focused on developing statistical
methods that do not rely on explicit point correspondence or feature extraction, but instead
model the probabilistic relationship between the point sets. Myronenko et al. [84] and
Hirose [89] have utilized statistical methods, such as the motion coherence theory, to
estimate maximum-likelihood solutions for non-rigid registration. However, some of these
methods, such as Coherent Point Drift (CPD), can suffer from local minima and slow
convergence. More recently, Zampogiannis et al. [90] have explored a bidirectional
estimation method, where pairs of point clouds are aligned from the source to the target
and from the target to the source. However, this method still struggles to handle large
inter-frame motions, where the source and target point clouds may undergo significant
deformation between frames.

The challenge of handling objects’ separation and connection can be best illustrated
through an example shown in Fig. 7.1. In this example, from frame 69 to frame 89, where
the hat is separated from the hand, large inter-frame motions are manifested. The difficulty
of non-rigid registration stems from the effectiveness of the method in dealing with a
single point set when it is rapidly separated into two point sets (the hat and the hand). The
connection between the two point sets is regarded as a reverse process of separation.

In summary, this chapter proposes a novel statistical approach that can handle changes
in topology and large inter-frame motions. The proposed framework utilizes a statistical
approach based on the DPGMM to handle non-rigid point sets without the need for explicit
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(a) frame 69 (b) frame 72 (c) frame 86 (d) frame 89

Fig. 7.1 Non-rigid registration challenges. The (a), (b), (c), and (d) show that the hat is
separated from the hand from frame 69 to 89 in the public data set, including two object
separations [10].

correspondence estimation, leading to improved registration performance compared to
previous methods. The proposed method regards non-rigid registration as a reproduction
process with a four-step registration scheme, as shown in Fig. 7.2, which generates a
model as close as possible to the target model. Another contribution of this chapter is
that a Cluster and Refine scheme is designed to handle the distribution irregularities of
point sets, making the topology of source points the same as that of target points, which
results in a great improvement of the accuracy and efficiency of the proposed statistic-
based methods. The proposed method is evaluated on five datasets using a variety of
qualitative and quantitative metrics. It is important to note that the experimental datasets
only contain single object separations and connections against a simple background. In the
following parts, a detailed Break and Splice registration framework and methodology will
be introduced.

7.3 Method

Given two 3D point sets X and Y, the proposed framework aims to handle registrations
between two point sets X and Y that exhibit Connection and Separation topology changes.
The framework Break and Splice is designed to reproduce the states of Connection and Sep-
aration between point sets. For brevity, a Separation example is used to introduce this
framework, where X is the target point set, and Y is the source point set, as shown in
Fig. 7.2.

The Break and Splice framework can be divided into three modules: a) Assigning
labels to aim to determine the partition template (point sets with more boundaries, such as
X) to be allocated different labels; b) Break and Splice assigns labels to Y based on the
labels of X; c) Registration utilizes the Bayesian Coherent Point Drift (BCPD) algorithm
to achieve registration between point sets with same labels.

The proposed non-rigid registration method between the point sets X and Y can be
divided into four steps. Step 1, the partition template is determined by using Delaunay
triangulation to extract boundaries of the target and source point sets and assign labels for
each point of partition template X based on the boundaries in the Assigning labels module
(Section 7.3.1). Step 2, the source and target point sets are mixed into one to reduce the
cluster difference that will occur in the Break and Splice module (Section 7.3.2). Step 3, in
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the Break and Splice module, the DPGMM is used to cluster point sets and assign labels
to Y according to the labels of X in each cluster. Then, the partitions of points with the
same labels are spliced together to generate point subsets that need to be registered. Step
4, in the Registration module (Section 7.3.3), the Bayesian Coherent Point Drift (BCPD)
method is used to register the source point set groups and the target groups which have the
same labels.

7.3.1 Assigning Labels

The boundary extracting approach [157] is used to identify the boundaries of point sets X
and Y. The point sets with more boundaries are selected as the partition template, which
will be allocated to different labels. The target point set X is used as the example for
boundary identification and assigning labels, for brevity’s sake, as shown in Fig. 7.3.

Fig. 7.3 Assigning labels for X: The top shows the process of extracting boundaries using
triangulation, and the bottom illustrates the allocating labels l1, l2 and l3 based on extracted
boundaries. The red is the extracted boundaries. Black circles are the inner points Xl0 . Our
objective is to allocate labels to those inner points.

Boundary Identification

The point set X is projected to a 2D plane, and the Delaunay triangulation is formed on
plane points (shown in Fig. 7.3). One of the triangle sides along the periphery of X is
associated with only one triangle. All such edges on that side form the initial boundary.
Let dmax indicate the maximum distance between the nearest neighbouring points in X.
Any initial boundary edges whose length exceeds 2dmax will be removed (dmax is achieved
by K-Nearest-Neighbor). The removal of long boundary edges continues iteratively until
every edge along the boundary is at most dmax in length.

Assigning Labels for the Target Point Set

Once the boundary of X is identified, different connected components are assigned different
labels. An adjacency matrix can be obtained after using Delaunay triangulation to extract
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the boundaries of X. The elements in the adjacency matrix represent the number of
triangles that share the same edges connected by nodes. Then, the breadth-first search
(BFS) method is used to search for connected components. Assuming there are three
different connected components by boundary identification from X, the nodes/points in
the same connection component will be assigned the same label. The points in X will be
allocated the labels Lx = {l1, l2, l3}.

7.3.2 Break and Splice

Fig. 7.4 The structure of the Break and Splice module for assigning labels to source points
set Y: The blue box shows Break, which involves the partitions and labels allocation of
point sets. Splice indicates the stitching of the partitions based on the labels. The Break
is a binary tree with merged point sets as a root node, and the leaf node R jset keeps the
points that will not be re-partitioned at the j+1 level, and the branch node D jset contains
the points to be divided. R j

x and R j
y represent the target points, and source points in the

R jset, ∅ demonstrates that there is no point left to be partitioned, which marks the end of
the partition. Splice reassembles the points (R j

x and R j
y) in different R jset to recover the

labeled source point set Y and target point set X.

The Break and Splice framework is similar to that of the bisection method. The Break
process will not end until the category of the labels of target points in each cluster is
unique. Just like the bisection method, the process of splitting the interval will not end
until the solution of a continuous function is found. This framework aims to assign the
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labels of target points to the source points. The reason to set the process of assigning labels
to source points as a binary tree structure is that there is more than one way to assign
labels to source points in one cluster after only one partition. To make the label of source
points in one cluster unique, the cluster with different labels of the target points needs to
be re-partitioned. This process will be repeated until the category of the labels of target
points is unique in one cluster. However, the method of the cluster may cause irregularity
of the initial partitions, confusing label allocation and increasing the error of registration.
In Section 7.3.2, a refinement algorithm is proposed to handle this gap.

After attaining the labels Lx for the points set X, the goal then is to allocate labels
Lx to the points set Y. Assigning Lx to Y can be regarded as the process of Break
and Splice. Break involves the partition of the merged point sets P = [X;Y] and the label
allocation in each partition, which is the key, to handling the topology changes between
point sets for registration. Splice is to splice the partitions of Y together based on the
allocated labels. Fig. 7.4 shows how the Break and Splice process is carried out . Break
can be regarded as a binary tree generation process. The root node of the binary tree is the
merged points set P = [X;Y], and the leaf nodes R jset include the target point sub-sets R j

x

and the source point sub-sets R j
y. The branch node D jset keeps the merged points sub-set

that will be divided at the j+1 level. The binary tree grows until one of the leaf nodes is
empty ∅. It is worth noting that the points in each leaf node R jset have the same labels,
and the points in branch node D jset have different labels. Namely, the number of category
labels in nodes determines whether the node is a leaf node or a branch node. Splice recovers
the labelled target points set X and labelled source points set Y by reassembling the R j

x and
R j

y, respectively.
The process of Break can be divided into Cluster and Refine. Cluster is to utilize

DPGMM [158] to attain the initial partitions Ck, k ∈ {1, · · · ,K}, where K is the number
of partitions. The advantage of DPGMM is that it automatically discovers the number
of clusters and is likely to converge to the data’s actual clusters [159]. To guarantee the
consistency of the partitions for target points set X and source points set Y , the Refine is
used to overcome the significant irregularity of the initial partitions. Based on the pruned
partitions, the labels of target points Ck

x are allocated to the source points Ck
y . Fig.7.5

illustrates the structure of Break at Level 1 of the binary tree. Especially, it is different
from Step 1. In Step 1, the KNN is used to search the K points close to the initial point, and
then the K points will be assigned the label of the initial point. DPGMM, as a clustering
method, clusters the merged points according to the coordinates of points without defining
the number of clusters (such as the K in the K-means clustering method).

Cluster

Suppose P is a mixture of K Gaussian distributions (K is unknown). For simplicity, we note
pi as the ith point in P. c = {c1, · · ·cM+N}(ci ∈ {1, · · · ,K}) is the indicator variables, and
ci = k indicates that point pi is generated from the kth Gaussian distribution. πk is defined



7.3 Method 70

Fig. 7.5 The structure of Break at Level 1 of Fig. 7.4 (The black arrow indicates the process
of the Break at Level 1. Cluster involves the initial partitions (C1 and C2) of merged points
using the DPGMM clustering method. The target points sub-set C1

x in C1 have different
labels and C2 contains the target points sub-set C2

x with the same labels. Besides, the cluster
C1 and cluster C2 also include the source points sub-set C1

y and C2
y . The clusters with single

labels form the R
′
set. D

′
set includes those clusters with different labels. Refine aims to

overcome the significant irregularity of R
′
set. The irregular point sets are selected as M set

to be mixed with D
′
set to generate the brunch node D1 set, which will be divided at Level

2. The R
′
set’s remaining source points will then be allocated the labels of the target points

in the same clusters. The target points and the source points with the same labels form
the R1 set, which is the leaf node in Fig. 7.4

.

to represent the weight of the kth Gaussian component, where πk ≥ 0,k = {1, · · ·K}, and

∑
K
k=1 πk = 1.

The Gaussian mixture model with K components may be written as:

p(pi|θ1, · · · ,θK) =
K

∑
k=1

πkN (pi|µµµk,Sk) (7.1)

where θk = {µµµk,Sk,πk} is the set of parameters for component k. µµµk is the mean vector
for kth Gaussian component, and Sk is its precision (inverse covariance matrix). We set the
joint prior distribution on the component parameters as Normal-Wishart distribution.

The conditional posterior class probabilities derived by the Dirichlet Process Gaussian
Mixture Model (DPGMM) are

for the kth component with n−i,k > 0 :

p(ci = k|c−i,µµµk,Sk,α)

∝
n−i,k

M+N−1+α
N (pi|µµµk,Sk) (7.2)
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for new Gaussian component:

p
(
ci ̸= ci′ f or all i ̸= i′|c−i,ξξξ ,ρ,β ,W,α

)
∝

α

M+N−1+α

×
∫

p(pi|µµµ,S) p(µµµ,S|ξξξ ,ρ,β ,W)dµµµ dS

∝
α

M+N−1+α
tβn−D+1

(
ξξξ ∗,

W∗ (ρn +1)
ρn (βn−D+1)

)
(7.3)

where α is the concentration parameter of the Dirichlet Process, α > 0. ξξξ ∈ RD,ρ,β , and
W ∈ RD×D are hyperparameters common to all mixture components. nk is the occupation
number, which indicates the number of points assigned to the kth Gaussian component.
−i indicates all indices except for i, and n−i,k is the number of points, excluding pi, that
are associated with the kth Gaussian component. t is the Student’s t-distribution with
βn−D+1 degrees of freedom.

βn = β +nk

ρn = ρ +nk

ξξξ ∗ =
ρξξξ +∑i:ci=k pi

ρ +nk

W∗ = W+ρξξξ ξξξ
T
+ ∑

i:ci=k
pipT

i − (ρ +nk)ξξξ ∗ξξξ
T
∗

Collapsed Gibbs Sampling method is used for the inference on the model above. For a
detailed sampling process, please refer to [160]. The DPGMM model can be expressed as
follows. The maximum conditional posterior class probability determines the clustering to
which each point belongs.

pi|ci ∼N
(
µµµci

,Sci

)
(7.4)

ci|πππ ∼ Please) (7.5)

πππ|α ∼ Dir
(

α

K
, · · · , α

K

)
(7.6)

(µµµk|Sk,ξξξ ,ρ)∼N
(
ξξξ ,(ρSk)

−1) (7.7)

(Sk|β ,W)∼W (β ,W) (7.8)

(µµµk,Sk)∼N W (ξξξ ,ρ,β ,W) (7.9)

(n1, · · ·nK)∼Multi(π1, · · · ,πK) (7.10)

where α is the concentration parameter of the Dirichlet Process, α > 0. ξξξ ∈ RD,ρ,β , and
W ∈ RD×D are hyperparameters common to all mixture components. nk is the occupation
number, which indicates the number of points assigned to the kth Gaussian component.
Cat is the Categorical distribution. Dir and Multi represent Dirichlet distribution and
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Multinomial distribution respectively.

Assume the mixed point set P has been divided into K clusters by DPGMM. P =

{C1, · · · ,CK} and Ck =
{

Ck
x,Ck

y
}

, k ∈ {1, · · · ,K}. Ck
x and Ck

y are the target points sets
and source points sets in cluster Ck respectively. The number of target points in cluster Ck

is Nk. And the label of target points xi in cluster Ck is denoted as Lk
xi

. The K clusters are
divided into R

′
set (R

′
set includes target points with a single label and source points after

cluster) and D
′
set based on the label category of target points Ck

x. Especially, even if no
cluster forms an R

′
set during the initial iteration, the original mixed point cloud will be

divided into several clusters, and the distribution of the target point and the source point in
each cluster is similar. Therefore, with the refinement and clustering of the mixed point
subsets, there will always be an R

′
set where the labels of target points are unique.

τk =
Nk

∏
i=1

δ

(
Lk

xi
−

∑
Nk
i=1 Lk

xi

Nk

)
(7.11)

where δ is the Dirac function. If τk = 1, then Ck belongs to R
′
set, otherwise Ck belongs

to D
′
set. Eq. 7.11 indicates that the R

′
set includes those clusters where the label categories

of Ck
y are unique. D

′
set consists of those clusters where the label categories of Ck

y are
various.

Refine

The irregularity of the initial partitions achieved by DPGMM will affect the subsequent
partition results, confusing label allocation. Furthermore, the confusion label will increase
the error of registration. Thus, the Refine is used to prune the clusters in R

′
set. The

regularized clusters compose the R set, which will be spliced together to recover the
labelled source points set Y. The refining path and direction are designed according to the
characteristics of point distribution. Then the label Lx will be assigned to the source points
y j in the regularized clusters.

Assume Ck̂ = [Ck̂
x,Ck̂

y] is a cluster in R
′
set, and Ck̂

x,Ck̂
y are target points and source

points in Ck̂ respectively. The degree of dispersion of the Ck̂
x,Ck̂

y in each dimension
determines the path for refining points.

Stdd
x =

√√√√√∑
Nk
i=1

([
Ck̂

x

]
i,d
−
[
Ck̂

x

]
:,d

)
Nk−1

(7.12)

Stdd
y =

√√√√√∑
nk−Nk
i=1

([
Ck̂

y

]
i,d
−
[
Ck̂

y

]
:,d

)
Nk−1

(7.13)

where
[
Ck̂
]

i,d
represents the coordinate of the ith point in the dth dimension.

[
Ck̂
]

:,d
indicates the mean value of the coordinates of all points in the dth dimension. Stdd

x and
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Fig. 7.6 Illustration for the impact of skewness on Refine. Due to the positive skew of the
C2

y on the x−axis, the points in the C2
y with the largest x-coordinate will be transferred to

the M set.

Stdd
y show the standard deviation of Ck̂

x,Ck̂
y in dth dimension, d ∈ {1,2,3}.

d∗ = argmax
d∈{1,2,3}

∣∣∣Stdd
x −Stdd

y

∣∣∣ (7.14)

d∗ involves the refining path, in which the object has the largest deformation. For example,
the stretching of an object in one dimension will lead to its squashing in another dimension.
For example, when d∗= 1, we will refine points along with the X-axis. If

∣∣Stdd∗
x −Stdd∗

y
∣∣<

γ , there is no need to refine the Ck̂. Otherwise, the refining direction must also determined
based on the refining path.

Skey=

1
nk−Nk

∑
nk−Nk
j=1

(([
Ck̂

y

]
j,d∗
−
[
Ck̂

y

]
:,d∗

))3

[
1

nk−Nk−1 ∑
nk−Nk
j=1

([
Ck̂

y

]
i,d∗
−
[
Ck̂

y

]
:,d∗

)2
] 2

3
(7.15)

Skey shows the skewness of the source points Ck̂
y in the d∗th dimension. We denote the

index of the minimal
[
Ck̂

y

]
j,d∗

as Jmin and the index of the maximal
[
Ck̂

y

]
j,d∗

as Jmax. If

Skey < 0, the
[
Ck̂

y

]
Jmin,:

will be separated from Ck̂
y and moved it into a temporary set M set.

If Skey > 0, the
[
Ck̂

y

]
Jmax,:

will be moved into M set.
[
Ck̂

y

]
j,:

represents the jth point in Ck̂
y.

It is worth noting that the initial M set is an empty set.
Fig. 7.6 takes the C2 in Fig. 7.5 as an example to illustrate the relationship between

Skey and M set. Because of the positive skewness of the source points C2
y on the x−axis,

the source points with the maximal x-coordinate are transferred to the M set.
Repeat calculating the Eq. 7.12, Eq. 7.13, Eq. 7.14, and Eq. 7.15 to determine the

refining path and direction until
∣∣Stdd∗

x −Stdd∗
y
∣∣< γ . The pseudocode for refining the Ck̂

y

in R
′
set is shown in Alg. 2.

After being separated from R
′
set, M set will be merged with D

′
set to generate the

branch node D set to be divided again. Also, the labels of Ck̂
x will be assigned to Ck̂

y. The
process for clustering and refining will be repeated until there are no points in D set to be
divided.
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Algorithm 2: Refine Ck̂
y in R set

Input: Ck̂
x,Ck̂

y,γ

Output: Ck̂
y, M set

Initialize M =∅
repeat

Calculate Eq. 7.12, Eq. 7.13 and Eq. 7.14 to get Stdd
x ,Stdd

y ,d
∗.

if
∣∣Stdd∗

x −Stdd∗
y
∣∣> γ then

Calculate Eq. 7.15 to get Skey and Jmin,Jmax; if Skey < 0 then

M set =
[

M set;
[
Ck̂

y

]
Jmin,:

]
;
[
Ck̂

y

]
Jmin,:

=∅;

else

M set =
[

M set;
[
Ck̂

y

]
Jmax,:

]
;
[
Ck̂

y

]
Jmax,:

=∅;

until
∣∣Stdd∗

x −Stdd∗
y
∣∣< γ;

As for Splice, it is a process to reassemble the labelled source points set Y and the
target points set X. The source group with label l can be denoted as Gl

y and the target
group with label l can be denoted as Gl

x. Splicing the R set together can reduce the number
of partitions and achieve less computational cost for registration to improve registration
accuracy.

7.3.3 Registration

Bayesian coherent point drift (BCPD) algorithm [89] is used to register the source group
Gl

y and target group Gl
x. BCPD is the Bayesian formulation of the Coherent Point Drift

(CPD) [85]. The key difference between BCPD and CPD is that BCPD defines motion
coherence using a prior distribution instead of the regularization term in CPD. Besides, the
transformation model in BCPD is a combination of non-rigid and similarity transforma-
tions, which enables it to handle the registration task with large deformation. As for the
computational time, BCPD uses the Nyström method [161] and the KD tree search [162]
to accelerate registration without losing registration accuracy.
The key models in the BCPD algorithm can be generalized as follows:

Transformation model:

τττ (yi) = T (yi +vi) = sR(yi +vi)+ t (7.16)

where s ∈ R is a scale factor, R ∈ RD×D is a rotation matrix, t ∈ RD is a translation vector,
and vi ∈ RD is a displacement vector that characterizes a non-rigid transformation.

Prior distribution:

p(v|y) = φ
(
v;0,λ−1G⊗ ID

)
(7.17)
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where λ is a positive constant and ⊗ denotes the Kronecker product. G =
(
gmm′

)
∈RM×M

with gmm′ = K
(
ym,ym′

)
is a positive definite matrix, where K (,) is a positive-definite

kernel. φ
(
v;0,λ−1G⊗ ID

)
is the multivariate normal distribution of v with a mean vector

0 and a covariance matrix λ−1G⊗ ID.

7.4 Experiment

The proposed approach is evaluated by performing experiments on five data sets, three
public data sets and two of our own data sets. The experiments are implemented on Intel
Xeon CPU E5-1603 @ 2.80GHz and 32G RAM.

There are three groups of parameters in the proposed framework: the maximum
distance between neighbouring points dmax for extracting boundaries in Assigning labels
module; the hyperparameters {α,ρ,β ,D} for Cluster and γ for Refine in Break and Splice
module; and λ for registration. These three groups of parameters empirically are set as
follows in experiments: dmax = 0.03; α = 1,ρ = 1,β = 3,D = 3; γ = 10−3 and λ = 10. In
addition, these data sets are filtered by down-sampling to compare the BCPD method and
tend to find the distribution and change of every point after registration. Its value is 0.002.
At last, these data sets are without background since the proposed non-rigid registration
focuses on the deformed objects, and the background does not include the deformation.
On the other hand, it is to compare FB-Warp without any background.

In this research, two frames are separated by 20 frames at least are regarded as large
inter-frame motions, and the gap between objects usually is large on [163], [10], and
RGB-D data sets created by ourselves. The proposed method is tested against the BCPD
method [89] and the FB-Warp [90] for separation and connection problems with large inter-
frame motion. The proposed algorithm and the FB-Warp are compared with quantitative
evaluation. In terms of performance metrics, the accuracy of registration is measured by
Root Mean Square Error (RMSE), Angular Similarity (AS) [164], Structural Similarity
using the colour-based feature (SSIM) [165], and the computation time measures the
efficiency of the algorithms. In these experiments, only the point sets are used to register.

7.4.1 Non-rigid Registration

The data sets with dynamic scene topology changes are used to evaluate the proposed
algorithm on large inter-frame motions. A boxing sequence in [163] as shown in Fig. 7.7
and sequences of Hat and Alex in [10] as shown in Fig. 7.9 and Fig. 7.11 are selected
because these public data sets include both separations of two objects and deformations.
In addition, RGB-D data sets are created by Kinect v2 as shown in Fig. 7.13 and Fig. 7.15
to demonstrate a rigid bunny separated from a table surface and scenes that consists of the
separation of a deformed soft pillow from a table surface. Finally, an experiment with the
connection (shown in Fig. 7.16) is conducted on the pillow data set.

Fig. 7.7 shows the results of boxing, and source points (frame 95) and target points
(frame 130) are obtained by down-sampling without any background. Significantly, body
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(a) Source image
(frame 98)

(b) Source points (c) Target image
(frame 130)

(d) Target points

(e) FB-Warp (f) BCPD (g) Ours

Fig. 7.7 The results of Boxing data: (a) and (c) are colour images. (b) and (d) are their
corresponding point sets. The second row shows the result of registration from source
points to target points, and the blue areas show the main differences: (e) uses the method of
FB-Warp, (f) uses the method of BCPD without Break and Splice, and (g) is our algorithm.

(a) FB-Warp (b) BCPD (c) Ours

Fig. 7.8 The results of connection registration on Boxing data and the source point set and
target point set in Fig. 7.7 are exchanged (Fig. 7.7 (d) as the source point set): (a) use the
method of FB-Warp, (b) uses the method of BCPD without Break and Splice, and (c) is
our algorithm.
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deformation also occurs in addition to the separation. The second row of Fig. 7.7 shows
the comparison of registration results. It can be seen that BCPD and FB-Warp are unable
to handle registration with the separation, as shown in the final results containing points
between the fist and the face (green points). However, the proposed method can effectively
register the source and the target points. Similarly, the results of Alex sequences (Fig. 7.9)
and Hat data sets (Fig. 7.11) show that the proposed Break and Splice framework can
achieve a better result than others.

In addition, to experiment with the connection, the source point set and target point set
are exchanged, and the results are shown in Fig. 7.8(Boxing data), Fig. 7.10 (Alex data),
Fig. 7.12 (Hat data). The green points in Fig. 7.8 (a) on the face are only located on the
edge. Although the result of BCPD shows good registration, between the fist and the face
only show the target points (the black circle in Fig. 7.8 (b)) compared with the proposed.
For the Alex and Hat data results, there are a few points between the topology changes, but
the distribution is uniform in the results of the proposed method.

(a) Source image
(frame 246)

(b) Source points (c) Target image
(frame 273)

(d) Target points

(e) FB-Warp (f) BCPD (g) Ours

Fig. 7.9 The results of Alex data: (a) and (c) are colour images. (b) and (d) are their
corresponding point sets. The second row shows the results of registration from source
points to target points, and the blue areas show the main differences: (e) uses the method of
FB-Warp, (f) uses the method of BCPD without Break and Splice, and (g) is our algorithm.

In order to demonstrate the effectiveness of our Break and Splice framework in dealing
with different scenes, an RGB-D camera is used to create additional point cloud data sets
and compare the proposed method with BCPD and FB-Warp on these data sets. A rigid
object (bunny, Fig. 7.13) and a non-rigid object (pillow, Fig. 7.15) are used to conduct
the experiment. Fig. 7.13 shows that when the bunny is placed far away from the table,
this final state is regarded as target points and its initial state as source points. Fig. 7.13
(e) shows that although the result of FB-Warp contains no points between the bunny and
the table, many green points are distributed on the boundary of the transformed bunny
points. The BCPD have many green points between the bunny and the table, as shown in
Fig. 7.13 (f). The result of the proposed method shown in Fig. 7.13 (g) has well-distributed
transformed points without any points between the object and the table.
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(a) FB-Warp (b) BCPD (c) Ours

Fig. 7.10 The results of connection registration on Alex data and the source point set and
target point set in Fig. 7.9 are exchanged(Fig. 7.9 (d) as the source point set): (a) uses the
method of FB-Warp, (b) uses the method of BCPD without Break and Splice, and (c) is
our algorithm.

(a) Source image
(frame 69)

(b) Source points (c) Target image
(frame 89)

(d) Target points

(e) FB-Warp (f) BCPD (g) Ours

Fig. 7.11 The results of Hat data: (a) and (c) are colour images. (b) and (d) are their
corresponding point sets. The second row shows the results of registration from source
points to target points, and the blue areas show the main differences: (e) uses the method of
FB-Warp, (f) uses the method of BCPD without Break and Splice, and (g) is our algorithm.

(a) FB-Warp (b) BCPD (c) Ours

Fig. 7.12 The results of connection registration on Hat data and the source point set and
target point set in Fig. 7.11 are exchanged(Fig. 7.11 (d) as the source point set): (a) uses
the method of FB-Warp, (b) uses the method of BCPD without Break and Splice, and (c)
is our algorithm.
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For the connection, Fig. 7.13 (a) is used as the target point set to register. Our method
can achieve a suitable result, especially for the bunny. The result of FB-Warp shows most
of the green points of the bunny distribute the head of the bunny, and the result of BCPD
fails to register the bunny(in Fig. 7.14 (b))

In the Pillow experiment (Fig. 7.15), the data set simultaneously includes significant
deformation and separation. The proposed method produces a better result than that of
FB-Warp and BCPD. In the FB-Warp, the transformed points appear at the bottom of the
pillow, and some points remain between the pillow and the table. In Fig. 7.15 (f), although
the transformed points are well-distributed for a pillow, it fails to handle the separation
between the pillow and the table. Whereas in Fig. 7.15 (g), our Break and Splice can
effectively deal with combined deformation and separation events and yield a significantly
improved result.

In addition, the source point set and target point set are exchanged to experiment with
connection and the results are shown in Fig. 7.16. It can be seen that the BCPD and our
method can achieve good registration with well-distributed green points, but the FB-Warp
has a few green points (transformed point set) on the bottom half of the pillow.

(a) Source image (b) Source points (c) Target image (d) Target points

(e) FB-Warp (f) BCPD (g) Ours

Fig. 7.13 The results of our data set with Bunny: (a) and (c) are colour images. (b) and (d)
are their corresponding point sets. The second row shows the results of registration from
source points to target points, and the blue areas show the main differences: (e) uses the
method of FB-Warp, (f) uses the method of BCPD without Break and Splice, and (g) is our
algorithm.

7.4.2 Quantitative Evaluation

The accuracy and the cost of computation of our non-rigid registration framework are
evaluated using RMSE (Eq. 7.18), AS (Eq. 7.19, Eq. 7.20 and Eq. 7.21) and SSIM
(Eq. 7.22) as measurement metrics tested on two consecutive frames (Table 7.2) and
large inter-frame motions (Table 7.3) with topology changes. RMSE efficiently measures
the registration error. Since the ground truth of non-rigid registration is the target point
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(a) FB-Warp (b) BCPD (c) Ours

Fig. 7.14 The results of connection registration on Bunny data and the source point set and
target point set in Fig. 7.13 are exchanged(Fig. 7.13 (d) as the source point set): (a) uses
the method of FB-Warp, (b) uses the method of BCPD without Break and Splice, and (c)
is our algorithm.

(a) Source image (b) Source points (c) Target image (d) Target points

(e) FB-Warp (f) BCPD (g) Ours

Fig. 7.15 The results of our data set with Pillow: (a) and (c) are colour images. (b) and (d)
are their corresponding point sets. The second row shows the results of registration from
source points to target points, and the blue areas show the main differences: (e) uses the
method of FB-Warp, (f) uses the method of BCPD without Break and Splice, and (g) is our
algorithm.

(a) FB-Warp (b) BCPD (c) Ours

Fig. 7.16 The results of connection registration on pillow data and the source point set and
target point set in Fig. 7.15 are exchanged(Fig. 7.15 (d) as the source point set): (a) uses
the method of FB-Warp, (b) uses the method of BCPD without Break and Splice, and (c)
is our algorithm.
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Table 7.1 Number of Point Sets

Alex Boxing Hat Bunny Pillow
Source point set 1264 2813 1683 2411 2244
Target point set 1294 2786 1731 2145 2504

set, The AS can be used to compare the similarity between the target point set and the
transformed point set. If the value of AS is closer to 1, the transformed point sets are the
more similar target point sets. The similarity of colour can also be an important metric
because the colour is not influenced by registration, and it is easy to find the difference
between transformed point sets and target point sets. Table 7.1 shows the number of point
sets during the experiment.

RMSD =

√
∑

N
i=1 (yi− xi)

2

N
(7.18)

where yi is transformed point sets, xi is a target point sets, N is the number of target point
sets.

sX ,Y =

√√√√√∑
M
i=1

(
1− 2

π
∗arccos(

∣∣∣∣ n⃗y
i ·⃗nx

i
∥⃗ny

i∥∥⃗nx
i∥

∣∣∣∣)))2

M
(7.19)

sY,X =

√√√√√∑
N
j=1

(
1− 2

π
∗arccos(

∣∣∣∣ n⃗y
j ·⃗nx

j

∥⃗ny
j∥∥⃗nx

j∥

∣∣∣∣)))2

N
(7.20)

AS = min{sX ,Y ,sY,X} (7.21)

where Y is the transformed point sets, X is a target point sets, sX ,Y is the score of angular
similarity with Y as the reference point set, and sY,X is the score of angular similarity with
X as the reference point set. vecnx and vecny are the normal of X and Y point sets, N and
M are the number of Y and X point sets.

SSIMpointcolor =
1
N

N

∑
i=1

(
1− |FX (q)−FY (p)|

max{|FX (q)| , |FY (p)|}+ ε

)
(7.22)

where Y is the transformed point sets, X is a target point sets, F is the feature based on
color [165], each neighborhood of Y is associated with a neighborhood of X , by identifying
for every point p of Y its nearest point q in X . ε equals the machine rounding error for
floating point numbers, and N is the number of Y point sets.

As shown in Table 7.2, our method is more accurate than FB-Warp and BCPD, and
the average error is lower by about 60% than the FB-Warp. The results of the AS and the
SSIM show that the average values of our method are higher by about 3.2% and 8.5%,
respectively. FB-Warp can achieve better results for the Boxing data since the deformation
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Table 7.2 Registration Error(consecutive frames)

Alex Boxing Hat Bunny Pillow Overall
RMSE(FB-Warp) 0.0170 0.0037 0.0208 0.0089 0.0526 0.0206
RMSE(BCPD) 0.0131 0.0037 0.0135 0.0181 0.0214 0.0140
RMSE(Ours) 0.0110 0.0029 0.0092 0.0074 0.0083 0.0078
AS(FB-Warp) 0.9508 0.9923 0.9113 0.9836 0.9577 0.9591
AS(BCPD) 0.8924 0.9105 0.8250 0.8680 0.6965 0.8385
AS(Ours) 0.9820 0.9839 0.9940 0.9910 0.9964 0.9895
SSIM(FB-Warp) 0.6246 0.6711 0.5859 0.5922 0.5120 0.5971
SSIM(BCPD) 0.6091 0.5905 0.5626 0.5740 0.4991 0.5671
SSIM(Ours) 0.6557 0.6571 0.6605 0.6314 0.6360 0.6481

Table 7.3 Registration Error(large inter-frame motions)

Alex Boxing Hat Bunny Pillow Overall
RMSE(FB-Warp) 0.7694 0.0626 0.8681 0.3337 0.3341 0.4736
RMSE(BCPD) 0.4151 0.1375 0.6034 0.1647 0.5427 0.3727
RMSE(Ours) 0.1506 0.0486 0.1752 0.0995 0.1464 0.1241
AS(FB-Warp) 0.7303 0.7711 0.8426 0.7932 0.7215 0.77174
AS(BCPD) 0.8142 0.8462 0.8374 0.7932 0.7605 0.8103
AS(Ours) 0.8377 0.8632 0.8611 0.8407 0.8443 0.8494
SSIM(FB-Warp) 0.4776 0.6277 0.6531 0.6148 0.5412 0.5829
SSIM(BCPD) 0.6071 0.6412 0.6210 0.6392 0.5910 0.6199
SSIM(Ours) 0.6136 0.6458 0.6689 0.6698 0.6249 0.6446

is slight between the adjacent frames. The proposed method can achieve the best results on
all data for the large inter-frame motions (Table 7.3). At the same time, registration time is
lower than FB-Warp, as shown in Table 7.4 (C means consecutive frames, and L means
large inter-frame motions). In this table, the Partition times are the Break and Splice, and
the registration times are the total times of two parts registration by BCPD.

7.4.3 Evaluation with Gaussian Noise

In order to evaluate the robustness of the proposed method against noise, several experi-
ments are conducted with Gaussian noise in the source points and target points, respectively.

Table 7.4 Registration Time(s)

Alex Boxing Hat Bunny Pillow Overall
FB-Warp-C 50.2430 15.8930 53.7950 36.7800 76.4530 46.6328
FB-Warp-L 45.6756 12.8875 42.8859 25.8088 53.2297 36.0975
Ours-C 13.6605 18.3537 21.6762 14.1161 28.3915 19.2496
Ours-L 10.5121 15.0353 12.2921 12.1661 9.8807 11.9773
Partition-C 1.5958 4.8619 1.1519 0.0761 0.8829 1.7137
Partition-L 0.1990 4.0456 1.1071 1.1031 1.0238 1.4957
registration-C 12.0647 13.4918 20.5243 14.0400 27.5086 17.5259
registration-L 10.3131 10.9897 11.0590 11.1890 8.8569 10.4815
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Table 7.5 Registration error with Gaussian noise

SNT STN SNTN
FB-Warp BCPD Ours FB-Warp BCPD Ours FB-Warp BCPD Ours

0.002 0.1543 0.1358 0.0267 0.1546 0.1229 0.1344 0.1296 0.1261 0.0274
0.004 0.1395 0.1224 0.0325 0.1470 0.1268 0.1325 0.1334 0.1241 0.0339
0.006 0.1660 0.1292 0.0448 0.1494 0.1228 0.1202 0.1703 0.1269 0.0484

Fig. 7.11 (b) is source points, and Fig. 7.11 (d) is target points. For the first test, we sam-
ple noise from Gaussian distribution for each point in the source point cloud, where
the mean and the standard deviation are mean(sourcepoints) and α ∗ std(sourcepoints)
(α ∈ {0.002,0.004,0.006}). During testing, FB-Warp and BCPD with noise in source
data are compared with each algorithm. Fig. 7.17 shows the results before registration,
and Fig. 7.18 shows the results of registration. The proposed method results better than
FB-Warp and BCPD when α is 0.002 and 0.004. FB-Warp performs the worst, with many
inaccurate points on the hat. However, when the α is 0.006, there are many wrong points
between hand and hat for all methods except for 7.20 (c) STN result (source point set is
original and target point set is with Gaussian noise).

Before registration

Fig. 7.17 The source point set with noise and target point set without noise(SNT) are for
different α , and figures from left to right are 0.002, 0.004 and 0.006.

In addition, the noise of the target point cloud is sampled (Fig. 7.19), where the
mean and the standard deviation are mean(target points) and α ∗ std(target points) (α ∈
{0.002,0.004,0.006}). Fig. 7.20 shows the results of registration. At last, the source
and target points are sampled Gaussian noise (Fig. 7.18). Fig. 7.22 shows the results
of registration. The proposed method gets similar registration results, and the proposed
method based on Break and Splice is robust to Gaussian noise to some degree. At the
same time, the RMSE is used to evaluate different methods, and the results are shown in
Table 7.5. The proposed method can lower errors in different situations.

7.4.4 Discussion

The proposed method works well, as expected, in dealing with separations and connections
in dynamic scenes for point set registrations. Especially in the separation event, the
proposed method achieves excellent results. Although the BCPD handles the connection
event (Fig. 7.16 (b)), it fails to register the target point set (Fig. 7.15 (f)). In addition,
the proposed Break and Splice framework achieves lower errors and fast computing time.
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(a) FB-Warp

(b) BCPD

(c) Ours

Fig. 7.18 The results of registration on Hat data with noise: (a) uses the method of FB-Warp,
(b) uses the method of BCPD without Break and Splice, and (c) is our algorithm.

Before registration

Fig. 7.19 The source point set without noise and target point set with noise (STN) are for
different α , and figures from left to right are 0.002, 0.004 and 0.006.
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(a) FB-Warp

(b) BCPD

(c) Ours

Fig. 7.20 The results of registration on Hat data with noise: (a) uses the method of FB-Warp,
(b) uses the method of BCPD without Break and Splice, and (c) is our algorithm.

Before registration

Fig. 7.21 The source point set with noise and target point set with noise (SNTN) are for
different α , and figures from left to right are 0.002, 0.004 and 0.006.
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(a) FB-Warp

(b) BCPD

(c) Ours

Fig. 7.22 The results of registration on Hat data with noise: (a) uses the method of FB-Warp,
(b) uses the method of BCPD without Break and Splice, and (c) is our algorithm.
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In addition, there are no available public data sets with various viewpoints and special
topological changes. Thus, we experiment with significant view changes. As shown in
the following (Fig. 7.23 (a) and (c) are images, Fig. 7.23 (b) and (d) are point sets), the
two-point clouds are acquired by moving the camera about 45 degrees from left to right as
a case of significant view change. The proposed method is applied to this case, as shown
in the result of labelled source points in Fig. 7.23 (e). The proposed method still works for
large view changes. This is because we always find a part of the source and target points
set under a common coordinate system after merging the two-point clouds by Cluster.
Based on this part, one of the labels can be found by Refine, and the rest of the point cloud
repeats this process (Cluster and Refine) until there is only one label in the merging point
cloud. Therefore, the proposed method will not be a failure without the initial alignment.

Meanwhile, the refinement is sensitive to the parameter γ . If the value of the parameter
γ is not desirable, the source point will not be refined, which will cause fewer source points
to be matched with the target points at the final registration stage. However, BCPD, as an
advanced non-rigid registration method, can handle the registration with an inconsistent
number of point clouds. The unsatisfied result is that the dense and sparse distribution of
the transformed point cloud is different from that of the target point cloud.

(a) Source image (b) Source points (c) Target image (d) Target points

(e) labeled source points (f) our method

Fig. 7.23 The result of registration about the large view changes: (a) and (c) are colour
images. (b) and (d) are their corresponding point sets. The second row shows the results of
assigning labels in source points (e) and registration from source points to target points (f).

7.5 Registration of Medical Instruments

The data sets for conducting point cloud non-rigid registration experiments in the previous
are captured by Kinect, which can directly obtain 3D points from the sensors. However,
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it is unsuitable for applications under the MIS background. In the context of applying
the proposed non-rigid registration method to MIS, one of the initial steps would involve
obtaining a point cloud representation of the surgical scene. Therefore, the point clouds
are estimated by the method in Chapter 4, which can accurately recover the depth of instru-
ments. Since the proposed method needs to be done without background, a segmentation
method [166] based on the image is used to compute the position of instruments. Then,
the point clouds of instruments without a background are through combining the results of
segmentation and point clouds from images, as shown in Fig. 7.24(b). Similar to before,
FB-Warp and BCPD are used to compare with the proposed method. It can be seen that
Fig. 7.24(d) and Fig. 7.24(e) fail to register with the topological changes, and Fig. 7.24(f)
achieves a better result than others.

(a) Source image (b) Before registration (c) Target image

(d) FB-Warp (e) BCPD (f) Ours

Fig. 7.24 The results of the MIS data set with instruments: (a) and (c) are colour images.
(b) is point sets before registration. The second row shows the results of registration from
source points to target points; (d) uses the method of FB-Warp, (e) uses the method of
BCPD without Break and Splice, and (f) is our algorithm.

7.6 Conclusion

In this chapter, a novel non-rigid point cloud registration framework is presented that
handles separation and connection topology changes. The Break and Splice framework
allows clustering and refinement of point sets to overcome distribution irregularities of the
point sets, which can improve the accuracy of non-rigid registration efficiently. Experiment
results have shown that the proposed method aligns two-point sets with these topology
changes more effectively than the state-of-the-art approaches.

Currently, the framework does not take into account RGB information. Thus, no
texture information is included in the results. Another issue is that the proposed approach
requires parts of the two-point clouds to be found in a common coordinate system, which
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(a) Source points (b) Target points

Fig. 7.25 An example for the cluster. (a) is a source point set, and (b) is a target point set
that a bunny is separated from the table.

must include the parts of the source point set and target point set simultaneously. If this
condition is not met, for example, in the case of large deformation, some large camera
movements may cause a failure on the label onto Y in Fig. 7.2. Especially, the proposed
method cannot handle more clusters or self-occlusion data due to getting inaccurate labels,
which are based on 2D boundary extraction. For example, Fig. 7.25 shows a dragon behind
the bunny. When the bunny is separated from the table, it is difficult to find the boundary
of the bunny since the bunny and the leg of the dragon will be regarded as an object.

At last, if the proposed non-rigid registration framework is applied to AR applications
in the next chapter, there are several problems to be handled. Firstly, the registration time
is still long and cannot reach real-time. Secondly, how to calculate the camera pose(used
to ensure stable registration of the virtual objects), but the proposed method only provides
the change of points. Finally, multi-frame non-rigid fusion or registration based on the
proposed method for reconstructing the map, which is used to provide an accurate 3D
position for a virtual object, remains a challenge. Therefore, the next chapter only uses the
proposed monocular depth estimation for AR applications.



Chapter 8

Topology-aware AR Applications under
Minimally Invasive Surgery

8.1 Background and Motivation

This chapter will introduce two AR applications based on the proposed depth estimation
framework on endoscopy videos, which is often applied in Minimally Invasive Surgery
(MIS). MIS involves performing surgical procedures through small incisions, resulting in
minimal tissue damage and faster recovery compared to traditional surgery. During MIS,
a laparoscope—a thin, tube-like instrument with a light and a lens—is inserted through
one incision to provide visual guidance. In contrast, tiny surgical instruments are inserted
through other openings for the actual surgical procedure. Challenges associated with
MIS can lead to procedure failures. These challenges include limited field of view [167],
and MIS procedures often rely on endoscopic cameras that provide only 2D information,
lacking depth perception. Therefore, obtaining accurate positional information on organs
or instruments during MIS is an active research topic. In addition, telesurgical robotics,
which is a technical solution for Robot-Assisted Minimally Invasive Surgery (RAMIS),
has the potential to achieve widespread global clinical adoption [168]. Robotic surgery
may be physically separated from the patient, and the surgical instruments are under
direct guidance and remotely controlled by human operators. RAMIS usually depends
on real-time display, using an endoscopic camera, which provides a video stream as the
primary sensory feedback from the surgical site [168]. A key challenge of image-guided
RAMIS is that clinicians need to imagine the real distance between organs through a video
stream. Therefore, accurate positioning may assist surgical operations and contribute to
the development of automated robotic surgery. Augmented Reality (AR) technology can
provide a technical solution to address these challenges. In this chapter, a topology-aware
AR application in MIS is presented. The proposed GNN-based monocular depth estimation
framework, which can accurately reconstruct the depth of instruments, is applied in the
context of topology-aware AR applications. An AR framework will be first introduced.
Secondly, experiments on the distance tracking between instruments and between the
instrument and an organ are described. Finally, an AR system framework is implemented
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to demonstrate a practical use case of the computational models of this PhD work in the
context of AR technology.

8.2 Method

The flowchart in Fig. 8.1 shows an AR application in MIS. The proposed monocular depth
estimation algorithm generates an unorganized and dense point cloud. The 3D mesh is
built based on the point cloud by Poisson surface reconstruction [169]. The mesh surface
is projected into the input image plane via a camera matrix and space transformation.
In addition, the input image is segmented by SiamMask [166] and calculates the centre
of instruments. The relative distance between the two instruments can be obtained by
combining the point cloud and the instrument’s centre. Finally, the virtual augmentation
information can be displayed on the reconstructed mesh surface.

8.2.1 Coordinates Transformation

AR aims to register virtual objects in the real world. To achieve this, coordinate transfor-
mations are necessary to ensure that virtual objects are aligned correctly with the physical
environment. In AR systems based on 3D maps, there are three Coordinates: camera coor-
dinates, world coordinates and model coordinates. Their relations are shown in Fig. 8.2.
Assuming Pm is a 3D point in model coordinates, then the 3D point can be transformed
into image plane point pc under the camera coordinates by the following equation:

pc = KTPm (8.1)

where K is the camera intrinsic matrix and T = TWCTWM. In the following experiments,
camera coordinates and world coordinates are under the same coordinates TWC = I due to
the fixed camera view. Therefore, TWM can be written to TCM, and Eq. 8.1 can be expressed
as:

pc = KTCMPm (8.2)

where TCM can be obtained by solving the Perspective-n-Point (PnP). It is similar to Eq. ??
mentioned in Chapter 3.

8.2.2 Segmentation

The purpose of segmentation is to obtain the 3D position of instruments in a MIS scene.
The SiamMask provided a solution using a semi-supervised method, including 2D object
tracking and segmentation. After a single bounding box initialisation, SiamMask can
produce an accurate object segmentation mask, as shown in Fig. 8.3. According to the
masks, the centre 2D positions can be computed. Since the estimation point cloud is
unorganized, and it’s impossible to find the corresponding 3D points based on the 2D
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Fig. 8.1 The flowchart of the proposed AR framework.
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Fig. 8.2 Coordinates Transformation.

Init Estimates

Fig. 8.3 The results of SiamMask. The initial image is obtained by the user, and others are
the results of estimation.

image positions, we can obtain an organized point cloud using the ’reshape’ function [170].
Organized point clouds typically have the same height and width as the images, which can
find the 3D points via corresponding 2D positions of images. In the following experiments,
the average value of the mask region is used as the centre of instruments.

8.2.3 Poisson Surface Reconstruction

The Poisson surface reconstruction method is an implicit surface representation. This
implicit representation allows for smooth and continuous surfaces without the need for
explicit meshing. This method also is inherently less sensitive to noise and outliers. The
Poisson surface reconstruction defines an implicit function that computes an indicator
function χ , where χ equals one if the points are inside the model and equals 0 at the outside
points. Therefore, the indicator function can be reduced to find the χ whose gradient best
approximates a vector field V⃗ ∈ R3:
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Fig. 8.4 The result of AR on DaVinci datasets.

minχ

∥∥∥▽χ−V⃗
∥∥∥ (8.3)

where min∥·∥ is to solve for the scalar function χ : R3→ R minimizing Then, it can be
transformed into a Poisson problem by applying the divergence operator, computing the
scalar function△χ where bigtriangleup is the Laplace operator:

△χ = ▽ ·▽χ = ▽ ·V⃗ (8.4)

Finally, the 3D surface can be obtained by extracting an isosurface of the resulting
indicator function [171]. Since Poisson reconstruction is a global solution that takes into
account all the data simultaneously, it produces smooth surfaces that robustly approximate
noisy data.

8.3 Experiments

The proposed AR framework is applied to two examples. The one is a real video acquired
from DaVinci datasets [128], including the movement of two instruments. Another is that
two robotic surgery videos with instruments are used to conduct experiments [11]. It offers
examples of how 3D dynamic reconstruction can be applied in AR. The AR framework is
implemented in an Ubuntu 18.04 environment. The size of image sequences is 1280×768
pixels for all experiments.

8.3.1 Instruments Tracking Based on Depth Map

Endoscopic navigation systems are crucial in achieving precision medicine and enhancing
surgical safety, and the accurate localization of instruments will be helpful for diagnosing
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(a) Frame 36 (b) Frame 48 (c) Frame 60 (d) Frame 72

Fig. 8.5 The results of AR on DaVinci datasets from Frame 36 to Frame 72.
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Fig. 8.6 The flowchart of AR on Pull dataset [11].

and treating during MIS. Therefore, a video capture from DaVinci datasets is used for
the AR application based on the proposed AR framework, as shown in Fig. 8.4. The
coordinates are shown in the corner of the left of Fig. 8.4. The distance for different
directions can be computed based on the depth estimation. Since the depth obtained by the
proposed depth estimation network is scale ambiguity, Fig. 8.4 only shows the distance
without the scale factor. It can be seen that the value of distance on Y’s axe is small, which
is similar to the real value. It provides valuable feedback information for RAMIS and
clinicians. The mesh (white line shown in Fig. 8.4) can also provide 3D information for the
registration of virtual information with patient-specific data. Fig. 8.5 shows more results
for different positions of instruments from Frame 36 to Frame 72.

8.3.2 Organ 3D Dynamic Reconstruction for AR

In some scenarios, the distance between instruments and organs is also useful for robotic
surgery automation. However, since the surgical instruments always occlude part of the
soft tissue, they may fail to obtain the distance when the organs are below the instruments.
This issue can be solved by reconstructing the whole scene without any instruments.
The [11] dataset includes two cases: one contains significant tissue pushing and pulling,
and another contains tissue cutting. There are some different parts compared with the
aforementioned AR framework. Firstly, all instruments of input images need to be masked
based on SiamMask, and the masked images are used for depth estimation. Then, these
point clouds without instruments are used to reconstruct the scene. In addition, the depth
with instruments is also estimated for distance estimation. The details can be shown in
Fig. 8.6. Fig. 8.7 shows the results of dynamic 3D reconstruction based on [11] and its
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(a) Points (b) Mesh

Fig. 8.7 The results of dynamic 3D reconstruction without instruments on Pull dataset [11]:
(a) is the point cloud, and (b) is mesh.

(a) Frame 15 (b) Frame 30 (c) Frame 45 (d) Frame 58

Fig. 8.8 The results of AR on Pull dataset [11] from Frame 15 to Frame 58.

Poisson surface reconstruction. It can be seen in Fig. 8.7(a) that the absent parts of the
scene can also be reconstructed.

Two examples are used to conduct AR experiments, as shown in Fig. 8.8 and Fig. 8.9.
Fig. 8.8 shows that an instrument is pulling the organ in which there are significant topology
changes in the mesh for the organ, and the mesh of the instruments is unchanged. Moreover,
another example is that an instrument is cutting the organs, as shown in Fig. 8.9, and the
results are similar to that of example one.

(a) Frame 36 (b) Frame 50 (c) Frame 100 (d) Frame 150

Fig. 8.9 The results of AR on Cut dataset [11] from Frame 36 to Frame 150.
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8.4 Conclusions

In this Chapter, an AR framework is proposed, which shows how the proposed depth
estimation network combined with 3D dynamic reconstruction can build a real-time
topology-aware AR application in a practical environment. Recognizing this, a graph
topology structure is used to learn non-Euclidean features on images because the graph
is similar to point clouds, including irregular and out-of-order properties. Therefore, the
proposed GNN-based method can achieve accurate depth, which can provide important
feedback signals for RAMIS, particularly for instruments. In addition, AR examples
of the endoscopy dataset also show the function of 3D dynamic reconstruction in MIS.
However, the method proposed in [11] needs multiple point clouds as the input to achieve
a reconstructed scene, which is difficult to apply in the real world. Another problem is that
there are too many preprocessing steps involved in conducting AR experiments, including
segmentation, 3D dynamic reconstruction and Poisson surface reconstruction. The results
of this chapter have highlighted both the huge potential and challenges of AR technology
for complex environment/scene applications.



Chapter 9

Conclusions and Future Works

9.1 Conclusions

This thesis demonstrates that a graph-based self-supervised monocular depth estimation
framework in Chapter 4, exploring topological structures, achieves more accurate depth
estimation and surface 3D reconstruction. Two use cases are presented in Chapter 5
for endoscopy datasets and Chapter 6 for videos captured by UAVs under unstructured
environments. In Chapter 7, a Break and Splice framework is used to handle the non-rigid
point cloud registration with special topology changes. Apart from RGB-D datasets, an
example based on the result of Chapter 5 is conducted in the endoscopy scene. While
the proposed Break and Splice framework still faces challenges in the context of AR
applications, it holds promise as a potential solution for advancing traditional 3D dynamic
reconstruction methodologies. Finally, for 8, combining the point cloud results of Chapter 5
with associated methods, like 3D dynamic reconstruction and segmentation, can improve
AR applications in MIS. To conclude:

• A mathematical background about group equivariance deep learning and projective
geometry is introduced in Chapter 3.

• A novel self-supervised depth estimation framework based on group equivariance
deep learning is proposed to improve the fine details of depth in Chapter 4.

• A use case study on endoscopy datasets aims to demonstrate the effectiveness of the
proposed self-supervised depth estimation framework, and the improved SSIM loss
function for low-illumination datasets is introduced in Chapter 5.

• Another use case study on videos captured by UAVs is in Chapter 6, which has a
similar structure to endoscopy datasets, including unstructured scenes and cameras
with free motion.

• A statistical algorithm for non-rigid point set registration, which is the essential
part of 3D dynamic reconstruction, can address the challenge of topology changes
without estimating correspondence in Chapter 7.
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• Two topology-aware AR Applications under Minimally Invasive Surgery(MIS) are
introduced in Chapter 8, One is the distance of two instruments based on depth maps
shown in real-time. Another application utilized depth to dynamically reconstruct a
background without instruments, which is to deal with miss depth when the organs
are below the instruments.

9.2 Future Works

Although the proposed depth estimation and non-rigid point set registration approaches
have demonstrated better performance than state-of-the-art methods and shown promising
applications, some challenges remain. These challenges provide potential research avenues
for future work.

• Improvement of depth estimation on UAV video. The results of depth estimation
in Chapter 6 show that the proposed method cannot handle depth with fog weather.
How to estimate the depth in the case of fog weather will be a research direction.
Recently, some works [172], [173] utilized CNN-based methods to remove the
weather, including fog, rain and snow. These methods may be helpful in improving
depth estimation. In addition, due to the limitation of hardware, all experiment is
under low-resolution. It is effective for endoscopy images, but UVA videos usually
include long-distance objects, which tend to lose detailed information under low
resolution and achieve a bad depth map. A potential method is super-pixel, which
may reduce the dependence on hardware.

• Improvement of non-rigid point cloud registration. Dealing with the mentioned
issues in Chapter 7 will be a potential direction in the future. Firstly, the development
of non-rigid registration between the part point cloud and the whole point cloud may
be helpful for large camera movements and multi-frame fusion. Then, combining
the point cloud and the segmentation based on images may solve inaccurate labels
due to clusters or self-occlusion of objects. Finally, the patch-based non-rigid 3D
reconstruction[174] may be a potential solution for addressing time consumption
issues.

• Improvement of AR application. Robustness for future AR development in medical
practices remains a challenge. For example, placing AR content in the incorrect
position could mislead the surgeon, potentially leading to critical medical errors. As
mentioned in this thesis, the depth of the monocular camera is obtained by a complex
deep-learning framework. However, it is easy to obtain an accurate and reliable
point cloud through a depth camera, such as Kinect or RealSense [175]. Therefore,
the development of depth cameras based on depth estimation algorithms in MIS may
solve some limitations on AR applications.
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