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Abstract: For video style transfer, naively applying still image techniques to process a video frame-
by-frame independently often causes flickering artefacts. Some works adopt optical flow into the
design of temporal constraint loss to secure temporal consistency. However, these works still suffer
from incoherence (including ghosting artefacts) where large motions or occlusions occur, as optical
flow fails to detect the boundaries of objects accurately. To address this problem, we propose a
novel framework which consists of the following two stages: (1) creating new initialization images
from proposed mask techniques, which are able to significantly reduce the flow errors; (2) process
these initialized images iteratively with proposed losses to obtain stylized videos which are free of
artefacts, which also increases the speed from over 3 min per frame to less than 2 s per frame for the
gradient-based optimization methods. To be specific, we propose a multi-scale mask fusion scheme
to reduce untraceable flow errors, and obtain an incremental mask to reduce ghosting artefacts. In
addition, a multi-frame mask fusion scheme is designed to reduce traceable flow errors. In our
proposed losses, the Sharpness Losses are used to deal with the potential image blurriness artefacts
over long-range frames, and the Coherent Losses are performed to restrict the temporal consistency
at both the multi-frame RGB level and Feature level. Overall, our approach produces stable video
stylization outputs even in large motion or occlusion scenarios. The experiments demonstrate that
the proposed method outperforms the state-of-the-art video style transfer methods qualitatively and
quantitatively on the MPI Sintel dataset.

Keywords: style transfer; video stylization; video stabilization; deep networks

1. Introduction

Due to advances in digital technology, it is becoming easier for the public to produce
professional multimedia content, such as photos, videos and digital arts, which were once
limited by specialists’ knowledge and skills. For example, image processing techniques like
bilateral filter [1] and style transfer methods like StyleGAN [2] are used to create artistic
videos with cartoon-like effects [3,4], and superpixel techniques for image segmentation [5]
are applied to produce wonderful photos with stylistic brushes [6]. In addition, there
are extended techniques like those in [7,8] which aim to create photorealistic results with
reference styles and translate them within image domains. In this work, we pay attention
to artistic video stylization which extends artistic style transfer from static images to
video applications.

Recently, the success of artistic style transfer for still images [9] has inspired a surge
in works [10–17] which tackle the style transfer problem and style classification [18–20]
task based on deep correlation features. In their seminal work on artistic style transfer,
Gatys et al. [9] sought to transform the artistic style of a painting into another photorealistic
image by formulating the task into a gradient-based optimization problem. Starting with
random white noise, a new image is evolved to present similar spatial structures to a content
image and have stylistic feature correlations with a painting image. The stylized outputs
are impressive but the heavy optimization process leads to a slow performance in run time.
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To address this issue, Johnson et al. [10] presented a speed-up solution by introducing an
offline feed-forward network. Chen et al. [14] proposed another feed-forward network
which swaps arbitrary styles between content images and also gives pleasing results. This
work introduces a patch-based matching technique that replaces the content image with
the style image patch-by-patch through neural activations. Huang et al. [13] proposed to
replace Chen et al.’s style swap layer with an adaptive instance normalization layer, which
is capable of transferring arbitrary artistic style in real-time.

These aforementioned methods have achieved great success in transforming static
photorealistic images into artistic styles. However, they fail in terms of the video style
transfer application, which aims to transfer the artistic style of a reference image into a
video. For example, processing an input video sequence via per-frame stylization using
methods (e.g., [10,13]) often leads to flickering and incoherence problems (e.g., inconsistent
texture patterns and colours) between adjacent outputs. To obtain coherent video style
transfer, the stylized videos should preserve the consistent temporal features (including
artistic texture patterns and colours) between consecutive transferred frames. The rea-
sons behind the temporal incoherence problem may vary with different types of artistic
style transfer methods. For gradient-based optimization methods (e.g., [9]), their random
initialization and non-convex nature leads to the local minima of the style loss, which
causes unstable transferred texture appearances in consecutive frames, and to some extent,
ghosting artefacts. For methods based on feed-forward networks [10–14], slight changes
in illumination and movements in adjacent frames cause large variations in the stylized
results. Therefore, the temporal consistency of consecutive frames in video processing
techniques (e.g., [21,22]) should be considered for video stylization.

Within the literature, there are mainly two branches of methods focusing on coherent
video style transfer. One of them is using optical flow estimation for temporal consistency,
such as the early works [23–25] which built on Gatys’ optimization networks as well as
recent works [26–34] which have built on Johnson’s feed-forward networks. To solve the
temporal incoherence problem, the common idea behind these methods is to obtain warped
initial images with optical flow estimation, then stylizes them frame-by-frame with learned
temporal constraints. For example, Ruder et al. [30] presented an approach based on a feed-
forward network, which takes per-frame processed frames as additional inputs and trains
their network with incorporating optical flow into temporal consistency loss. Their method
needs optical flow estimation in both the training and test stages. However, when motions
(or occlusions) are too large, these feed-forward based methods (e.g., [29,30]) still have inco-
herence problems due to flow errors as optical flow fails to track the boundaries of objects
correctly. Methods from the other branch tackle the temporal incoherence problem without
optical flow estimation, and instead they try to learn temporal features directly from input
videos before combining them with learned style representations to stylize video frames.
For example, Li et al. [35] discovered that the normalized affinity of generated features is
the same as that for content features, thus it is suitable for obtaining stable frame-based
video style transfers without optical flow estimation, as the normalized affinity of stylized
features naturally contains temporal information like content features do. Wang et al. [36]
and Wu et al. [37] proposed relaxed constraints for their objective functions for feature-
level patterns to achieve temporal consistency because they reduce the effect of local noise
from illumination and movements on variations in the stylized results. More recently,
Gu et al. [38] proposed a joint learning framework for both image and video domains using
a transformer network, which involves a domain interaction transformer to make video
style transfer more efficient computationally and propagates the temporal information
from input video sequences to output video frames. However, these methods from the
second branch achieve temporal consistency by sacrificing faithful style transformation
on videos, as their learned temporal information is focused on content structures between
consecutive frames but not the stylistic effects of artistic images (including texture patterns
and colours), and their relaxed constraints on style transformation leads to unfaithfully
stylized results.
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It is difficult for previous methods to handle the balance of style effects and temporal
consistency. The methods from the first branch have the advantage of preserving artistic
styles well but have less temporal consistency as optical flow methods fail to detect the
boundaries of objects accurately, while the approaches from the second branch are able
to keep the temporal consistency but there are unfaithful style effects in outputs as their
relaxed constraints on style transformation lead to unfaithfully stylized results. To obtain
the balance, we revisit the gradient-based optimization method due to its nature of effec-
tively preserving style effects and easily obtaining temporal consistency with extra relaxed
constraints. In this work, we propose a novel framework to perform video style transfer
from a new perspective which consists of the following two stages: 1. new mask techniques
are proposed to create new initialization images; 2. these initialized images are iteratively
processed with proposed losses to obtain stable stylized videos. To be specific, our approach
proposes a set of new mask techniques such as a multi-scale scheme, incremental mask and
multi-frame mask fusion to prevent the temporal incoherence problem (including ghosting
artefacts). And we are able to significantly reduce flow errors even for large motion or
strong occlusion cases. Each initialized image obtained via our mask techniques needs
much fewer iterations to produce a consistent style transformation over a certain number
of frames, while at the same time the speed increases from over 3 min per frame to less
than 2 s per frame. In addition, we discover that taking into account both the multi-frame
RGB-level and Feature-level Coherent Losses will result in a better temporal consistency.
During the experiments, we also discovered that the image quality of initialized images
degrades over long-range frames. To retain the quality, we propose Sharpness Losses to
deal with potential image blurriness artefacts.

Overall, the main contributions of the approach proposed in this paper are the following:

1. Novel mask techniques for new initialized images, which are capable of reducing flow
errors even for large motions or strong occlusion cases.

2. Extra constraints like Coherent Losses and Sharpness Losses, which help to obtain a
better temporal consistency and retain image quality over long-range frames.

3. The speed of the gradient-based optimization methods is increased from minutes per
frame to less than 2 s per frame.

In this way, our gradient-based optimization method produces coherent video outputs
which preserve the faithful style effects and the temporal consistency of the original images
as well even for large motion or strong occlusion cases.

The organization of this paper is as follows: Section 2 will give a review of the literature
on image style transfer and video style transfer; Section 3 will illustrate the motivation
behind this work, the proposed system overview, the novel initialization via proposed
mask techniques, loss functions for retaining image quality and loss functions on both
RGB-level and Feature-level constraints for temporal consistency; Section 4 will give the
implementation details for reproducibility; Section 5 will demonstrate ablation studies of
the proposed components and comparisons to state-of-the-art methods with qualitative
and quantitative evaluations; and Section 6 will offer some conclusions and ideas for
further works.

2. Related Work

In this section, we will give a detailed literature review of some representative ap-
proaches for image style transfer and video style transfer, which illustrates their method-
ologies in brief and points out their limitations. To help readers to clearly understand
the research history and relationships between the studies presented here, this section
will be followed first by Section 2.1 Image Style Transfer and then by Section 2.2 Video
Style Transfer.
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2.1. Image Style Transfer

In their exploration of deep neural networks, Gatys et al. [39] qwew the first to show
that the feature maps learnt by hidden units can be applied to synthesize texture when
fusing the feature correlations of an image. Based on this, Gatys et al. [40] extended their
method to image transformation task, which sought to generate a new image that succeeds
in preserving the spatial structure content from one real world photograph and while
preserving the artistic style (including texture, tone and colour) of a painting. The appealing
visual appealing effects attracted a number of subsequent works [10–14,25,35,41–49] on
artistic style transfer for still images based on deep neural networks.

The initial approach proposed by Gatys et al. [9] used the network for image classifica-
tion purposes, like VGG-19 [50], to complete the style transformation task. They introduced
two loss functions and formulated an optimization problem. The optimization process gen-
erates a new image from white noise which contains both a similar spatial structure to the
content image and similar stylistic features to the style image. This online gradient-based
optimization method is burdened by a heavy iteration computation process which leads
to a very slow execution time. To address this problem, Johnson et al. [10] proposed a fast
offline network to approximate the optimum of Gatys et al.’s loss functions. They used
perceptual loss functions [10] to train feed-forward convolutional neural networks [51,52]
and complete image transformation task in real time. Inspired by this successful approach,
techniques (e.g., [12,13]) based on feed-forward networks have been adopted by popular
APPs such as Prisma and DeepArt. Recently, the following works [53–59] introduced the
self-attention mechanism to an encode–transfer–decode framework for better style transfer.
To date, researchers [16,34] have attempted to perform image style transfer via diffusion
models with a style prompt. However, such an attention mechanism needs much more com-
putational resources to complete the task, which is not practical in real-world applications.

2.2. Video Style Transfer

There are two main branches of approaches proposed for video style transfer, and they
are categorised into two types: video style transfer with optical flow estimation and video
style transfer without optical flow estimation. Early works [23,24] firstly introduced optical
flow estimation to enhance the temporal consistency between adjacent stylized frames,
which were built on original gradient-based optimization methods (e.g., [9]). However,
such approaches are less practical as they need minutes to stylize one single frame. To
speed up the style transformation process, more works such as [27–29,60] proposed feed-
forward-based video style transfer methods which use optical flow estimation during the
training stage but can stylize videos without them in the test stage. These methods leverage
a running performance of up to three orders of magnitude faster speed while obtaining
coherent stylized videos.

However, the methods mentioned above all need optical flow with extra complex
computation, which makes it impractical to stylize high-resolution or long videos. To avoid
such extra computation, Lai et al. [61] proposed a blind video post-processing technique
which is capable of preserving temporal consistency. Their method processes the per-frame
stylized results and achieves a real-time execution time as no optical flow is needed in the
test stage, but their results still suffer from temporal incoherences as no prior knowledge
about style effects is considered. Li et al. [35] proposed a new linear transformation matrix
to minimize the difference between the covariance of content features and style features,
which maintains temporal consistency by propagating the computed matrix from the
beginning frame to the rest of them. Wang et al. [36] proposed a novel method to make the
stylization loss term more robust to motions without optical flow estimation. Deng et al. [62]
proposed a multi-channel correlation network which is able to fuse style features and input
content features for maintaining the coherence of input videos and stylized videos. More
recently, Wu et al. [37] proposed a universal versatile style transfer method with a novel
Contrastive Coherent Preserving Loss, which is capable of preserving the coherence of the
content source but without degrading the stylization performance. Gu et al. [38] proposed
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a Unified Style Transfer framework with a domain interaction transformer, which enables
temporal information from input videos with rich texture appearance to be integrated with
the style reference image for stylized videos. However, these methods without optical flow
estimation fail to find the balance between stylization effect and temporal consistency.

3. Methods

To better understand the proposed methodology, this section will present the method
with two parts: the concept behind the idea and details of the proposed framework. The
first part aims to describe how the idea for this paper appeared, what problems we will
deal with when following the idea to process video style transfer, and what potential
solutions we can propose based on the discoveries behind problems. The second part
aims to illustrate the proposed framework from top levels (e.g., the outline of framework
and architecture of proposed network) to bottom levels (e.g., initialization with proposed
mask techniques and loss functions). Specifically, Section 3.1 describes the idea for the
composition of stylized frames, the intuition behind the mask designs, and points out the
problems (e.g., texture discontinuity and image blurriness artefacts) to be solved and the
potential solutions in this work; Section 3.2 illustrates the proposed framework outline and
the architecture of the proposed gradient-based optimization network; Section 3.3 demon-
strates the new initialization with the proposed mask techniques (for texture discontinuity);
Sections 3.4 and 3.5 give details about the loss functions including Sharpness Losses (for
image blurriness artefacts) and Coherent Losses (for enhanced temporal consistency).

3.1. Motivation

For artistic video stylization, the unexpected flickering problem hinders satisfactory
results when still image style transfer methods (e.g., [10,13]) are applied to process frames
independently. As shown in Figure 1, the adjacent per-frame stylized results exhibit
some colour and texture incoherence (e.g., middle columns in zoom-ins). To preserve the
coherency for video style transfer, this work starts with a straightforward idea.

To simplify, we start with two consecutive original video frames f t−1
v and f t

v, and their
corresponding per-frame stylized results f t−1

s and f t
s , and their corresponding optical flow

Ft from f t
v to f t−1

v ; then, we produce a warped image w t = W( f t−1
s , Ft) by warping f t−1

s
with Ft, and a mask Mt containing per-pixel flow traceable (e.g., values tend to be 1) and
untraceable regions (e.g., values tend to be 0). (A warp operation with optical flow means
that pixels in the image will be moved to the locations in the next frame by multiplying
pixel-level motion vectors. The flow contains these pixel-level motion vectors.) To obtain a
stable consecutive stylized result, a straightforward idea which came up was to compose the
warped image w t and f t

s in the traceable and untraceable flow regions, respectively. In this
way, the we are capable of preserving the coherency of the composition result as much as
possible. However, there is one prerequisite that the pasted contents at untraceable regions
must have the exact original content details especially in occlusion regions. Otherwise,
a heavy image compensation/optimization process is needed during video stabilization.
Fortunately, artistic style transfer methods for still images (e.g., [10]) satisfy this prerequisite
as they may change the textures or colours in the occluded regions but they indeed do
not damage the consistency of the original content’s details. For example, in Figure 2,
compared to the original frame f t

v, the content structures (in red and orange rectangles) of
the composition result preserve the consistency better than the warped image wt, as the
warped image wt has unexpected content structures in the red box and duplicated ones in
the orange box. Hence, this straightforward idea is worth carefully investigating to obtain
stabilized video outputs.
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Figure 1. Flickering artefacts in video style transfer. The first row shows two original consecutive
video frames (left) and the style image (right). The second row shows the temporal incoherence
artefact by Johnson et al. [10]. The green and purple rectangles indicate the different appearances
(texture patterns and colours) between these two stylized outputs, which exhibit flickering artefacts.
The third row shows the stable results produced by our method, where the outputs preserve consistent
texture appearances.

Figure 2. Prerequisite. We test the straightforward idea by recomposing pasted stylized content in
untraceable flow regions (please see zoom-in rectangles), which shows that the composition result
preserves the consistency of content structures better than the warped image wt, as the warped image
wt has unexpected content structures in the red box and duplicated ones in the orange box. ⊗ denotes
the warp operation, which warps f t−1

s into wt with Ft, and ⊕ denotes element-wise addition in this
paper. Please zoom in to see the details.
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Based on this observation, we investigate this idea, and find out that naively applying
this straightforward composition may produce two new issues. Firstly, it clearly may
produce discontinuous transferred textures in the composition result. For example, in
Figure 3, the errors caused by the optical flow method lead to unexpected flow errors in the
mask, which directly cause discontinuous textures or colours. Secondly, naively copying
and pasting pixels from a warped image w t into corresponding flow traceable regions
degenerates image quality and produces blurriness artefacts. For example, in Figure 4,
the copied and pasted results will accumulate degeneration errors and produce image
blurriness artefacts in eye regions (red rectangles) over a long period.

Figure 3. Texture discontinuity problem. Naively combining w t and f t
s via Mt into flow regions

causes texture discontinuity problem. For example, in the green rectangle, the gray colours preserved
from wt lose the consistency of texture context (in red colours) which look like noise artefacts.

Figure 4. Image blurriness artefacts. Images in the upper rows are original video frames. The
blurriness artefacts become more obvious with time step.

To address the texture discontinuity problem, we propose a set of new mask techniques
which include multi-scale mask fusion, incremental mask and multi-frame mask fusion.
The reason behind the proposed mask design choices is to reduce the errors of untraceable
(shown in black colour in mask images) and traceable flow regions (shown in white colour
in mask images) in the mask obtained from the optical flow method (e.g., [63]). We
discovered that the flow errors mostly occur at the boundaries of objects between adjacent
frames as the optical flow method fails to accurately detect them. For example, the errors
in untraceable flow regions are mainly caused by the low sensitivity of still objects in two
adjacent frames, and the errors of traceable flow regions are mainly caused by the lack of
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long temporal information (e.g., considering multiple consecutive frames at the same time).
To reduce the errors in untraceable flow regions, we propose a multi-scale mask fusion
technique which will only preserve untraceable flow regions at all scale levels and remove
the untraceable ones in few levels. In this way, the sensitivity of the optical flow method is
leveraged to still objects. However, this multi-scale scheme could also make the untraceable
flow regions become much thinner than before, especially at the boundaries of moving
objects, which introduces ghosting artefacts. To solve this problem, an incremental mask is
proposed to make the boundaries thick again. To reduce the errors of flow traceable regions,
we propose fusing the mask results from multiple adjacent frames, which only preserves
the traceable flow regions (white colour in mask images) in these consecutive frames. By
this means, the proposed mask techniques are able to handle large motions in multiple
consecutive frames as the flow errors are effectively mitigated. In the end, we obtain a mask
with much fewer errors and compose the warped image w t and per-frame stylized result
f t
s with it. The composition image will be the new initialization for the gradient-based

optimization method to preserve consistency. To reduce the image blurriness artefacts, we
adopt Perceptual Losses from [10] and Pixel Loss as the Sharpness Losses to update the
pixel values iteratively.

The aforementioned techniques and losses only preserve two-frames’ coherency. To
ensure coherency at entire video level, we introduce both multi-frame RGB-level and
Feature-level Coherent Losses which contribute lower average stability errors than a sin-
gle one of them independently [64]. In addition, we adopt the recurrent convolutional
network strategy [65] so that our network takes the current stabilized warped frame
w t = W(x̂t−1

out , Ft) and the current per-frame stylized frame f t
s as inputs, and then produces

a stabilized output x̂t
out. During the optimization process, we enforce Coherent Losses and

Sharpness Losses to ensure coherency and image quality between the generated image x̂t

and the previous output image x̂t−1
out . In this manner, our method propagates all the flow

traceable points as far as possible during the entire video style transfer process.

3.2. Fast Coherent Video Style Transfer
3.2.1. System Outline

Figure 5 shows an overview of the proposed framework. Our method takes the
original video frames f t−2

v , f t−1
v , f t

v and per-frame stylized results f t
s and previous output

x̂t−1
out as inputs, and produces coherent output video frames x̂t

out where t ∈ {1, . . . , N} and
N denotes the total number of frames. We develop a mask generation method consisting of
the set of techniques mentioned in Section 3.1 to reduce the flow errors, and an initialization
generation method to output a new initial image which is much closer to the final coherent
result which speeds up the gradient-based optimization method. Specifically, starting
with original the video frames f t−2

v , f t−1
v and f t

v in time step t, our method generates a
backward flow Ft from time t to t − 1 using Flownet2 [63], an image w t that warps previous
output image x̂t−1

out and Ft and a mask Mt. Then we compose these three images to obtain
an initial image x̂t

init which is fed into the network along with the three images above.
The optimization process needs much less iterations than previous methods (e.g., [23,24])
as flow errors have been reduced significantly in the initial image. In order to obtain a
long-term coherency, we adopt a recurrent strategy so that the output result x̂t

out will be
fed as input into the next time step. Figure 6 shows the recurrent strategy. The short-term
coherency between adjacent outputs is propagated into a long-term temporal consistency
during the entire video style transfer process. In this way, our method is capable of
propagating all the flow traceable points as far as possible. The details of mask generation,
initialization generation and gradient-based optimization network will be discussed in
following subsections.
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Figure 5. System overview. Starting from three consecutive frames, our system takes corresponding
per-frame stylized f t

s , mask Mt and warped image w t as inputs, then computes initialization x̂t
init for

gradient-based optimization video stabilization network.

Figure 6. Recurrent strategy for video style transfer.
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3.2.2. Network Architecture Overview

Figure 7 shows the details of the proposed gradient-based optimization network. In
time step t, there are four images in total which are used as inputs passed into the network
which are per-frame stylized result f t

s , mask Mt, warped image w t and initial image x̂t
init.

Coherent Losses force temporal consistency between adjacent outputs, and Perceptual
Losses and Pixel Loss ensures that the image blurriness artefacts are reduced. The Coherent
Losses contain an RGB-level loss and a Feature-level loss where the first one constrains
the mean square error between RGB values of x̂t and w t and the second one restricts the
mean square error between feature representations of them. The Perceptual Losses force
differences between x̂t and f t

s inside the network to be reduced, and the Pixel Loss intends
to keep the RGB values between x̂t and f t

s . During each iteration, the generated image
x̂t gradually compensates for discontinuous texture points and updates features into the
entire image. Specifically, the gradients computed from Total Loss are back propagated into
the network, and the updated weights and biases inside of each CNN layer push x̂t to grow
into an image with more similarity to the inputs. In addition, the proposed gradient-based
optimization network is much faster than previous methods found in the literature [23,24]
as it uses a new initial image x̂t

init. The reason for this is that the proposed optimization
process needs much less iterations than previous methods [23,24] using w t, since the initial
image x̂t

init has significantly reduced flow errors while w t does not.

Figure 7. Network architecture overview. During optimization, the network takes x̂t
init obtained from

initial generation, current per-frame stylized result f t
s , mask Mt and a warped image w t as inputs,

and gradually optimizes initial image x̂t
init into x̂t

out based on gradients computed from losses.

3.3. A New Initialization for Gradient-Based Optimization Network

Based on the observation mentioned in Section 3.1, the most important part of the
initial generation is to create a reliable flow mask to reduce flow errors. To this end, we
propose a mask generation method to deal with it. At the beginning, we start with the
following items: original adjacent video frames f t−2

v , f t−1
v and f t

v, per-frame stylized results
f t−2
s , f t−1

s and f t
s . Then we rescale the original video frames into multiple resolutions. For

the MPI Sintel dataset [66], we consider two scales r ∈ R where R = {σ, 1
2 σ} denotes

the set of resolutions and σ denotes the original video resolution. And we utilize optical
flow methods (e.g., [63]) to compute the corresponding forward flow Ft

r f and backward
flow Ft

rb . At this time, we obtain a warped image w t = W( f t−1
s , Ft

σb) at the original video
resolution by warping the previous per-frame stylized result f t−1

s and flow Ft
σb . Next,

we calculate multi-scale per-pixel flow masks which are given by a forward–backward
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consistency check. The values at points of flow masks tend to be 1 in traceable flow regions
where both forward and backward direction estimation agrees. On the contrary, the values
at positions of flow masks tend to be 0 at disagreeing points. Then, we rescale the flow
masks into the original video resolution and compose them into one mask in a value
maximum manner which remains the maximum values from those flow masks at each
pixel location. This step is able to fix unexpected untraceable flow errors. For example, the
untraceable flow errors (black regions) in the red rectangle are fixed by multi-scale fusion
in Figure 8. In addition, we find out that copying the current per-frame stylized results
into the corresponding untraceable flow regions may cause worse ghosting artefacts as
the flow untraceable regions become much thinner than before multi-scale fusion. Hence,
we propose an incremental mask Mt=>t−1

θ which generates an incremental circle along
with untraceable flow regions. Specifically, the points in the circle closer to untraceable
regions has lower values. In this work, the circle width is set by default to 3 pixels and
the gradient is 0.2. To further reduce traceable flow errors where large motions occur, we
consider combining multiple incremental masks Mt=>t−i

θ , i ∈ T where T denotes the set
of indices of adjacent video frames. We combine Mt=>t−i

θ (i ∈ T ) in a value minimum
manner to correct errors. In general, the fusion in a maximum manner reduces untraceable
flow errors (black regions, see Figure 8) and the fusion in a minimum manner reduces
traceable flow errors (white regions). in Section 5.1.

Figure 8. The process of multi-scale mask fusion and incremental mask. The unexpected flow
untraceable errors (see red rectangles) are fixed in this step. The fused mask after the multi-scale
scheme may cause worse ghosting artefacts as the flow untraceable regions become thinner than
before; thus, the incremental mask is proposed to thicken the boundaries (see green rectangles).

Eventually, we obtain a flow mask Mt = min(Mt=>t−i
θ ), (i ∈ T ) which is used for

initialization generation by composing the warped image w t and per-frame stylized result
f t
s . The generation of the initial image is shown in Figure 9. The proposed initial image is

defined as:

x̂t
init = Mt ⊗ w t + (1 − Mt)⊗ f t

s (1)

where ⊗ denotes element-wise multiplication. Mt is a single channel mask. x̂1
init is the first

per-frame stylized result f 1
s when t = 1.
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Figure 9. Initialization generation. Mt is a single channel per-pixel mask which is obtained from
mask generation. Note that the generated x̂t

init contains much fewer errors than the warped image w t

in purple and red rectangles, which leads to much fewer iterations needed to compensate for correct
pixel values.

3.4. Loss Functions for Image Sharpness

Over a long period of video processing, especially for time-lapse videos, some points in
frames are propagated from the beginning to the end and the copied pixel values gradually
lose their quality, which results in the loss of image quality. To prevent image degeneration,
we adopt the Perceptual Losses [10] and a Pixel Loss into the proposed network. The
Perceptual Losses constrain the differences between high-level feature representations
of the generated image x̂t and the current per-frame stylized result f t

s . The Pixel Loss
preserves the pixel values between the generated image x̂t and f t

s in the RGB domain.
The Perceptual Losses contain a Content Loss Lcon(x̂t, f t

s ), Style Loss Lsty(x̂t, f t
s ) and

Total Variation Regularization Ltv(x̂t), which can be formulated as follows:

Lperce(x̂t, f t
s ) = αLcon(x̂t, f t

s ) + βLsty(x̂t, f t
s ) + γLtv (2)

where α, β and γ are the weights of three loss terms, respectively. In our experiments, the
ratio of α/β close to 0.3 produces better image quality, and we set γ = 1e − 3 (default
in [10]) in all experiments. The Pixel Loss is defined as the mean square error between the
generated image x̂t and current stylized result f t

s :

Lpixel(x̂
t, f t

s ) =
1
D

D

∑
i,j
(x̂t

(i,j) − f t
s(i,j))

2 (3)

where D = 3 × H × W denotes the total number of pixels in the input image and H × W
denotes the height times width. In this work, we refer to Perceptual Losses and Pixel Loss
as our Sharpness Losses which ensure the image’s sharpness during the entire video style
transfer process. The Sharpness Losses are the combination of Perceptual Losses and Pixel
Loss, which is defined as:
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Lsharpness = Lperce + κLpixel (4)

where κ denotes the weight for Pixel Loss.

3.5. Loss Functions for Temporal Consistency
3.5.1. Rgb-Level Coherent Loss

The flickering artefact is actually represented by texture and colour discontinuities in
RGB-level regions between consecutive frames, such as disoccluded regions and motion
boundaries. Pixel values in these areas change in adjacent frames, and the optimizer [9]
or feed-forward network [10] transforms them differently in a particular style as well. To
detect these disoccluded regions and motion boundaries, we apply optical flow methods
(e.g., Flownet2 [63]) to estimate these flow traceable areas between coherent frames. Let
f t−1
s and f t

s denote two adjacent per-frame stylized results, x̂t−1
out denote the previous output,

W(·) denote the function to warp image and w t denote the warped image using the
previous output image x̂t−1

out and the optical flow Ft from f t
s to f t−1

s (backward direction).
The warped image w t is then given by:

w t = W(x̂t−1
out , Ft) (5)

In [23,24], the Coherent Loss function is supposed to preserve the pixel values of the
traceable flow regions in the stabilized outputs, and the flow errors in w t are then rebuilt
through the style transfer process. The straightforward two-frame temporal coherency loss
considers the consistency between two adjacent frames; thus, the two-frame RGB-level
Coherent Loss is denoted as the mean squared error between the generated image x̂t and w t:

LRGB
two (x̂t, w t, Mt) =

1
D

D

∑
i=1

Mt
i · (x̂

t
i − w t

i )
2 (6)

where D = N × H × W denotes the dimensionality of x̂t and w t. N denotes the number
of image channel and H × W is height times width, and Mt denotes the per-pixel flow
mask with weights of the coherent loss. This LRGB

two only considers consistency between
two adjacent frames, which causes small errors as the proposed initial image utilizes a
mask operating on multiple consecutive frames. To further enhance the coherency, we take
consistency between more adjacent frames into account. Let us consider a multi-frame
coherency between several adjacent frames, and let T (same as Section 3.3) denote the
set of indices for video frames which are considered as relative frames. For instance,
T = {1, 2, 3} denotes that processing frame x̂t considers coherency between frame f t

s and
frame f t−1

s , frame f t
s and frame f t−2

s , frame f t
s and frame f t−3

s . Then the multi-frame RGB-
level Coherent Loss is defined as the combination of three two-frame RGB-level coherent
loss Lwos:

LRGB
mul (x̂

t, w t−T ) = ∑
i∈T :t>i

LRGB
two (x̂t, w t−i, Mt−i) (7)

3.5.2. Feature-Level Coherent Loss

In previous methods [27,28,30], RGB-level coherent loss was considered to constrain
the consistency between pixel values of the warped w t and generated x̂t images. However,
it may not be accurate in preserving stylized texture consistency since their methods do not
take into account the temporal consistency of feature representations in CNN layers. Hence,
we adopt a feature-level Coherent Loss [64] for preserving texture consistency which is
capable of constraining the feature consistency in high-level CNN layers. Let ψl(x̂t) ∈
RNl×Hl×Wl and ψl(w t) ∈ RNl×Hl×Wl denote the feature representations of generated images
x̂t and warped images w t at layer l, respectively, and Mt denote the per-pixel mask, then
the two-frame Feature-level Coherent Loss for two frames is defined as the mean squared
error between ψl(x̂t) and ψl(w t):
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L f ea
two(x̂

t, w t, Mt) = ∑
l∈L f ea

coh

1
Nl

Nl

∑
i

Mt
i · (ψl

i (x̂
t)− ψl

i (w t))2 (8)

where L f ea
coh denotes the set of layers computing Feature-level Coherent Loss and Nl denotes

the dimensionality of feature representations ψl(·). Similar to RGB-level Coherent Loss,
we also consider the feature-level coherent loss between more adjacent frames (same T in
LRGB

mul ), and propose the multi-frame Feature-level Coherent Loss term:

L f ea
mul(x̂

t, w t−T ) = ∑
i∈T :t>i

L f ea
two(x̂

t, w t−i, Mt−i) (9)

The total multi-frame Coherent Losses are defined as the combination of LRGB
mul and L f ea

mul :

Lcoherent = λRGB
coh LRGB

mul + λ
f ea
cohL

f ea
mul (10)

where λRGB
coh and λ

f ea
coh are the weights to corresponding terms. We find that the ratio of

λRGB
coh /λ

f ea
coh close to 2.5 makes a better temporal consistency preservation.

Overall The total loss term for the optimization process in each time step is defined as:

Ltotal = Lsharpness + Lcoherent (11)

4. Implementation Details

Code Development: our method was developed on a Torch implementation called
artistic video style transfer [24] in Ubuntu 18.04 LTS, which uses the Lua script language and
a pretrained-VGG19 as the backbone neural network. The code was built with CUDA 10.8
on a single NVIDIA GeForce 1080Ti card. The optimizer for the iterations is L-BFGS. The
stopping criterion: we consider the optimization to be converged when the total loss does
not change by more than one during ten iterations.

Choices of Layers for Losses: the {relu1_1, relu2_1, relu3_1, relu4_1, relu5_1} layers
are chosen for the Style Loss, and the {relu3_2} layer is chosen for the Content Loss within
the Perceptual Losses. We choose {relu3_2} for the Feature-Level Coherent Loss.

Inputs and Outputs: The following inputs are fed into our method: a per-frame stylized
image f t

s as the feature and style target, a warped image w t
t−i (i ∈ T ) as the temporal

consistency target, a mask Mt as the per-pixel flow weight and the x̂t
init generated from

Equation (1) as the initial image. Outputs: the stylized result x̂t
out. In all the experiments, we

used two scales (original resolution and half of the original resolution) of frame resolution
for the mask fusion mentioned in Figure 8.

Choices of Hyperparameters in Equations (2), (4), (7), (9) and (10): For videos at
1024 × 436 (MPI Sintel dataset) and 854 × 480 (Davis 2017 dataset) resolution, the hyperpa-
rameters were chosen as follows: α = 3× 101, β = 9× 101 and γ = 1× 10−3 in Equation (2),
κ = 9 × 10−7 in Equation (4), T = {1, 2} in Equations (7) and (9), λRGB

coh = 5 × 101 and

λ
f ea
coh = 2 × 101 in Equation (10). Discussions about these choices: in our experiments, a

ratio of α/β close to 0.3 preserves the stylistic texture appearance of the per-frame stylized
image fs in the outputs better. A higher ratio will generate results with more sharpness
but fewer stylistic textures; on the contrary, a lower ratio degenerates image quality due
to excessive stylization. A coherent ratio of λRGB

coh /λ
f ea
coh close to 2.5 preserves the balance

between execution time and temporal consistency better. A higher coherent ratio of warps
f t
s on RGB-level may cause pixel errors to accumulate along with propagation, which costs

more time as the network has to correct them. While a lower coherent ratio tends to reduce
the stylization consistency of the same object among consecutive frames. In addition, a
κ close to 9 × 10−7 maintains a better balance between image quality and temporal con-
sistency. For example, larger κ values tend to produce outputs with better image quality
(e.g., pixels updated more frequently) but poor temporal consistency as pixels propagated
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from the beginning are lost with time. Smaller κ values, to some extent, fail to effectively
mitigate blurriness artefacts but preserve a better temporal consistency. In this paper we
chose the aforementioned hyperparameters values for all the testing videos. The optical
flow used in this paper was Flownet2 [63], but Deepflow2 [67] is also supported.

Speed Compared to the gradient-based optimization methods in the literature [23,24]
(3–5 min per frame), the proposed optimization process takes around 1.8 s per frame for a
resolution of 1024 × 436 and around 1.6 s per frame for a resolution of 854 × 480 on a single
NVIDIA GTX 1080 Ti graphics card. The reason for the fast speed is that the optimizer
(e.g., L-BFGS) in our work needs much fewer iterations as there are already enough for
temporal consistency and image sharpness.

5. Experiments
5.1. Qualitative Evaluation
5.1.1. Analysis of Initialization

Figure 8 in Section 3.3 shows that the mask generation is capable of reducing untrace-
able flow errors (see rectangle). In this section, we analyze the capability of reducing flow
traceable errors (including ghosting artefacts), which mainly degrades the visual image
quality. Figure 10 shows the effect of the proposed initialization on the reduction of flow
traceable errors. Starting from three adjacent original video frames, the mask generation
outputs a mask with much fewer traceable flow errors (white regions in the right side) than
previous single scale mask. This directly helps the composed initial image contain more
consistent textures (see rectangles) than xt

init in Figure 3 in Section 3.1. The small discontin-
uous textures on the left are then fixed by the gradient-based optimization network with
Sharpness Losses.

Figure 10. The decrease in traceable flow errors (white regions in the right side) by using the proposed
initialization. The rectangles indicate the error difference between the initialization x̂t

init and xt
init

without our mask generation. The fusion in a maximum/minimum value manner indicates that we
remain the maximum/minimum values from those masks at each pixel location.

Ablation study on proposed mask techniques. As mentioned in Section 3.3, we
propose a multi-scale scheme, incremental mask and multi-frame mask fusion for initial-
ization generation. To analyze these techniques fairly, we divided the proposed mask
techniques into four different groups: naive method (without any proposed techniques),
w/ multi-scale scheme, w/ multi-scale + incremental and w/ multi-scale + incremental
+ multi-frame. The outputs of the four groups are shown in Figure 11. As can be seen,
the zoomed-in rectangles on naive method indicate that the general flow mask proposed
by [24] causes the ghosting artefacts. Adding a multi-scale scheme into the naive method is
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able to reduce the untraceable flow errors (see Figure 8) while also causing worse ghosting
artefacts. We gradually add incremental mask (bottom-left) and multi-frame mask fusion
(bottom-right) techniques into the w/ multi-scale scheme method, which finally produces
results without ghosting artefacts.

Figure 11. Qualitative ablation study on proposed mask techniques of Alley_2 scene from MPI Sintel
dataset [66]. The naive method using the flow mask produced by [24] causes ghosting artefacts
(see unexpected grids and curves in red and orange rectangles). The multi-scale scheme causes
worse ghosting artefacts. By gradually adding the incremental mask and multi-frame mask fusion
techniques, the unexpected grids and curves are effectively mitigated which produces better visual
quality without ghosting artefacts.

5.1.2. Analysis of Loss Functions

Sharpness Losses. Figure 12 shows the effect of Sharpness Losses in our approach.
Without the Sharpness Losses, the straightforward idea that copying and pasting pixels
from the per-frame stylized result f t

s and the warped image w t into corresponding regions
through the mask Mt causes the pixel loss, and this loss accumulates along the entire video
process, which results in a significant number of image blurriness artefacts. By adding the
Sharpness Losses, our approach ensures that the pixel values are compensated for from the
beginning to the end which prevents image blurriness artefacts in the video outputs.

Coherent Losses. Figure 13 shows the effect of Coherent Losses in our method.
Per-frame processing methods like [10,13] produce flickering artefacts in adjacent frames
(see the zoom-ins) without any consideration of temporal consistency. The proposed
method takes the per-frame stylized frames as inputs and produces the texture consistent
consecutive outputs; for example, the rectangle areas.
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Figure 12. The effect of image sharpness. The top rows are original video frames, the middle rows
are outputs without Sharpness Losses, and the bottom rows are outputs with Sharpness Losses. The
red rectangles indicate the difference of image sharpness.

Figure 13. The effect of temporal consistency. The per-frame processing methods are
Johnson et al. [10] and Huang et al. [13]. The red and green rectangles indicate the discontinuous
texture appearances.

5.1.3. Comparisons to Methods Found in the Literature

Figure 14 shows a qualitative comparison between the proposed approach and more
recent state-of-the-art methods [36–38,62]. As the figure shows, all five of the methods give
visually satisfying transfer results in terms of long-term temporal consistency. However, the
representation of texture pattern from the style reference image varies differently, and the
details (e.g., object contours) are preserved with artefacts. For example, the representative
mosaic texture patterns from the style image basically do not appear in any of the results
of previous four methods [36–38,62], but the colour information does. In addition, Deng
et al. [62] and Wu et al. [37] produced distorted results with severe artefacts in which object
contours are distorted in the zoom-ins (please see the zoom-ins in the third and fourth
row). Gu et al. [38] introduced strange vertical artefacts (please see zoom-ins in the fifth
row) into their results. Wang et al. [36] produced unfaithful colour information in their
results compared to the other methods. In contrast, our results preserve the mosaic texture
patterns better and object contours do not have distortions.
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Figure 14. Comparison to latest state-of-the-art methods [36–38,62] on bike-packing scene from DAVIS
2017 dataset [66]. The red rectangles indicate the differences in long-term temporal consistency results.

Figure 15 shows a comparison between our approach and Li et al. [35]. The method
proposed by Li et al. [35] learns a linear transformation matrix to minimize the difference
between the covariance of the transformed content features and style features, which serves
as a second-order statistics transformation of the reference image onto the content image in
prior methods [9,10]. The linear transformation is highly efficient but causes less stylistic
texture to be present in transformed videos. For instance, the mosaic texture patterns in the
style reference image in Figure 14 do not appear in their transferred video frames, which
increases the temporal consistency among adjacent frames but leads to the appearance of
less artistic texture. However, our method preserves temporal consistency (c.f. last table)
and texture patterns better than theirs (c.f. zoom-ins).
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Figure 15. Comparison to Li et al. [35] on Soapbox scene from DAVIS 2017 dataset [66]. Both the red
and green rectangles indicate the differences in two adjacent stabilization results. Please view our
Supplementary Video for better observations.

Figure 16 shows the comparison between our approach and Ruder et al. [30] in a
large motion and strong occlusion case. The network-based video style transfer approach
proposed by Ruder et al. [30] fails to produce consistent texture appearances around
traceable flow areas (white areas) as their method is not able to correct such flow errors.
while our approach corrects these traceable flow errors via the proposed mask techniques,
and generates consistent texture appearances in the given contexts.

Figure 16. Comparison to Ruder et al. [30] on Ambush_4 scene from MPI Sintel dataset [66]. The
per-frame processing method for both methods is Johnson et al. [10]. The rectangles indicate the
difference in the consistent texture appearances in a few adjacent stabilization results. Orange
rectangles show the texture appearances around large occlusion boundaries (including flow traceable
errors) by Ruder et al. [30] are discontinuous with context, while purple boxes demonstrate that our
textures are consistent with context. Please view our Supplementary Video.
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5.2. Quantitative Evaluation

We verified our method on the MPI Sintel dataset [66] and Davis 2017 dataset [68],
and tested our approach on more than 40 videos including animation and real-world
videos. To fairly evaluate the performance of different approaches, we adopted two
metrics to assess the transferred videos on stylization effects and temporal consistency.
Here, the SIFID score is adopted to measure the style distribution distance between the
generated image and its style input. And a lower SIFID value indicates the closer style
distribution of a pair. In addition, the stability error is adopted to measure temporal
consistency, and a lower stability error value indicates the better temporal consistency. In
this section, we firstly detail the ablation studies for image sharpness, temporal consistency
and proposed mask techniques in initialization to verify our Sharpness Loss, Coherent
Losses and initialization. Then, we quantitatively compare our method with state-of-the-art
methods ([10,13,30,35–38,62]) by using the term stability error estab which calculates the
temporal errors between pairs of adjacent frames in an output video. The stability error
estab is defined as:

estab =

√√√√ 1
(N − 1)× D

N

∑
t=2

D

∑
i=1

mt
i(xt

i − w t
i )

2 (12)

where N denotes the total frame number of a video output, D denotes the total number of
pixels in one video frame and mt denotes the per-pixel flow weight. This formulation is
similar to Equation (6), except that we sum up all the temporal loss for pairs of consecutive
frames in a video. The warped image w t warps the = xt−1

out at t − 1 which is time forward to
t. The ground truth of optical flow and flow weight can be obtained from Flownet2 [63] or
the MPI Sintel dataset [66].

5.2.1. Ablation Study on Loss Functions

Sharpness Losses. To quantitatively verify the Sharpness Losses, we chose a No-
reference autoregressive(AR)-based Image Sharpness Metric (ARISM) which is proposed
particularly for assessing image sharpness [69]. The ARISM is established on the hypothesis
that AR model parameters estimated from eight connected neighbourhoods of one image
pixel tend to be very close to each other when this pixel is located in a comparatively
smooth region; otherwise, these parameters are clearly distinct when this pixel is in a sharp
region. The ARISM sharpness score is formulated as:

ρ = ∑
k∈Ω

θkρk (13)

where Ω = {E, C, Ebb, Cbb} and θk are the weights of each component. E and C are two
classical metrics used to define the difference between the maximum and minimum values
of AR parameters at point (i, j) of the input image. Ebb and Cbb are the block-based
pooling [70] of E and C, respectively.

ARISM has been proved to be robust in assessing colour images with no reference,
which is suitable for our case since the outputs of the video style transfer are colourful and
also have no reference images. Figure 17 shows the scores of each frame in the Alley_2
scene (MPI Sintel dataset) which are obtained from w/ Perceptual Losses + Pixel Loss
(aka, Sharpness Losses blue line) and w/ Perceptual Losses (red line) and w/o Sharpness
Losses (magenta line), and the higher ARISM score is better. The scores of w/ Perceptual
Losses + Pixel Loss are steady around the average score 2.674, while the average score of w/
Perceptual Losses tend to decrease from 2.674 to 2.66, and those of w/o Sharpness Losses
are close to 2.651. Note that the scores of w/ Sharpness Losses are always higher than those
of w/o Pixel Loss, which indicates that outputs with both Sharpness Losses contain much
fewer blurriness artefacts than those without Pixel Loss.
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Figure 17. Ablation study on Sharpness Losses of Alley_2 scene from MPI Sintel dataset [66]. The
higher ARISM score is better. The outputs with our Sharpness Losses achieve higher ARISM scores
than those without pixel loss and Sharpness Losses, which indicates that Perceptual Losses and Pixel
Loss in the proposed Sharpness Losses both contribute to reducing blurriness artefacts.

Coherent Losses. We carried out the quantitative ablation study on Coherent Losses
in five testing scenes to compare the stability errors of two groups of Temporal Losses:
multi-frame RGB-level only and both levels. Table 1 shows the detailed stability errors in
the baseline method [10] and two groups. It is noticeable that multi-frame RGB-level only
Coherent Loss contributes to a 58.8% improvement compared to the baseline method [10],
while multi-frame Feature-level Coherent Loss contributes a further approximately 2.2%
improvement which finally leads to 61.0% improvement in total.

Table 1. Ablation study on Coherent Losses (×10−2) of five testing videos in MPI Sintel dataset.
Style: Woman with A Hat. Scene1: alley_2, Scene2: bamboo_2, Scene3: bandage_1, Scene4: cave_4,
Scene5: market_2. The best result is highlighted with underline. As baseline method doesn’t have
improvement of itself, thus we add * in below.

Method
MPI Sintel Dataset + Style

Scene1 Scene2 Scene3 Scene4 Scene5 ave Improvement

Baseline [10] 10.55 7.21 6.34 12.06 6.34 8.50 *
RGB-Level only 2.71 3.17 2.79 5.93 2.90 3.50 58.8%

Both Levels 2.43 3.00 2.59 5.74 2.75 3.31 61.0%

5.2.2. Ablation Study on Initialization

As mentioned in Section 3.1, we propose a set of new mask techniques to address the
texture discontinuity problem. We now give a detailed analysis of image quality of the
proposed techniques including the multi-scale scheme, incremental mask and multi-frame
mask fusion. To fairly compare these techniques, we follow Section 5.1.1 and divide them
into four groups, and we compare the general Image Quality Assessment (IQA) scores of
the four groups using the following term proposed in [60]:

Q =
1

Np

Np

∑
i

yi (14)
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where Np denotes the number of patches which are chosen from the given image, and
yi denotes the estimated visual qualities of patch i. We chose this IQA score (refer to
DIQaM-NR method in [60]) as our general image quality metric because it is capable of
assessing image quality by coping with several distortion types such as luminance and
contrast changes, compression, Gaussian noise and the Rayleigh fading channel. Figure 18
shows the detailed ablation study carried out on the proposed mask techniques, and a
lower score indicates better visual image quality. Note that the multi-scale scheme only
(magenta line) reduces untraceable flow errors (see Figure 8) but it causes higher scores
than the naive method (blue line). The incremental mask technique (red line) helps to
achieve lower average scores than the naive method (blue line) and w/ multi-scale scheme
method (magenta line), and multi-frame mask fusion (green line) further improves the
image quality by decreasing the average score from 30.69 (dashed blue line) to 29.71 (dashed
green line). This observation practically follows the qualitative evaluation in Figure 11.

Figure 18. Ablation study on image quality assessment of Alley_2 scene from MPI Sintel dataset [66].
A lower score indicates better visual image quality. Note that adding multi-scale scheme (magenta
line) causes image quality loss (higher score) compared to naive method (blue line), while adding
incremental mask and multi-frame fusion (red line and green line) contributes to achieve lower scores
than naive method (blue line).

5.2.3. Quantitative Evaluation in Literatures

The stylized perceptual strokes/patterns in the results of the different methods are
clearly distinct even for one particular style, which may make the IQA comparison unfair.
Thus, we here give a detailed comparisons of the stability errors which are invariant to
diverse strokes/patterns. Table 2 lists the stability errors created by the three different
approaches in the MPI Sintel dataset [66] and Davis 2017 dataset [68]. Our approach takes
per-frame stylized results produced by per-frame processing methods as inputs and obtains
the stable outputs; thus, we give two comparisons in Table 2. There are five different scenes
chosen from each dataset and combined with two representative styles. It is noticed that,
for all testing videos, our method significantly reduces the stability errors compared to
per-frame processing methods [10,13].

Table 3 lists the stability errors and SIFID metrics of state-of-the-art (SOTA) methods
and our approach. We verified our method and six other representative coherent video
style transfer approaches on 20 different scenes from the MPI Sintel dataset [66]. All
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the testing videos used the 1024 × 436 resolution, and the groundtruth optical flow with
corresponding masks are all provided from MPI Sintel dataset [66]. The stability errors are
re-calculated. As the dataset only provides the forward direction of optical flow, the image
w t in equation (12) warps the per-frame stylized result f t+1

s at time t + 1 back to t. Our
method may achieve higher average stability errors than Wang et al. [36], but we achieved
the lowest SIFID distance, which indicates that our transferred results are closer to the style
reference image in terms of faithful texture patterns and colour preservation. Our method
also achieves both lower average stability errors and SIFID scores than more recent SOTA
methods such as Li et al. [35], Deng et al. [62], Wu et al. [37] and Gu et al. [38], which is
consistent with the qualitative comparisons shown in Figures 14 and 15.

Table 2. Stability errors (×10−2) of per-frame processing methods and our approach on five testing
videos in each dataset. Style1: Candy, Style2: Mondrian. In MPI Sintel Dataset, there are five scenes
used in this table, and they are S1: alley_1, S2: bamboo_2, S3: cave_4, S4: market_5, S5: temple_3. In
Davis 2017 Dataset, there are five scenes used and they are S1: dance-flare, S2: car-turn, S3: parkour,
S4: soapbox, S5: stroller. The best results are shown underlined.

Method
MPI Sintel Dataset + Style1 Davis 2017 Dataset + Style2

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

Johnson et al. [10] 8.15 7.91 11.96 13.06 14.50 12.73 12.63 13.01 13.62 14.11
Ours 3.13 3.56 6.82 7.88 8.25 4.08 4.42 4.85 4.92 5.13

Huang et al. [13] 9.16 10.11 14.51 14.32 14.44 15.50 14.52 15.43 15.77 16.28
Ours 3.46 4.39 7.66 8.28 8.38 5.00 4.99 5.86 5.90 6.14

Table 3. Quantitative comparison of stability errors (×10−2) and SIFID metrics of six state-of-
the-art methods and ours on 20 videos in MPI Sintel dataset. The groundtruth flow and occlusion
masks are provided by MPI Sintel dataset. All the image resolutions are 1024 × 436. The baseline
model of Ruder et al. [30] and ours is Johnson et al. [10]. Style1: Candy, Style2: The_Scream, Style3:
Woman With A Hat. The best two results are highlighted in one underline and two underlines.

Method
Stability Errors (↓) SIFID (↓)

Style1 Style2 Style3 Mean Style1 Style2 Style3 Mean

Ruder et al. [30] 8.56 5.06 6.84 6.82 1.47 0.82 1.04 1.1117
Li et al. [35] 8.19 5.06 6.13 6.46 1.70 0.84 1.30 1.2772

Deng et al. [62] 9.72 5.26 6.89 7.29 2.09 1.00 1.62 1.5695
Wu et al. [37] 9.52 5.74 7.49 7.58 1.95 1.17 1.57 1.5632
Gu et al. [38] 8.17 5.34 5.47 6.33 1.97 1.04 1.63 1.5481

Ours 7.76 4.95 6.15 6.29 1.52 0.67 0.99 1.0615
Wang et al. [36] 6.68 3.57 5.75 5.34 1.94 1.76 1.40 1.7002

5.2.4. User Study

Furthermore, we carried out a user study experiment for comparison. To be specific,
we used five videos and three style images to present fifteen video clips from seven
methods to 50 participants. The demographic consisted of 27 males and 23 females, aged
from 22 to 40. Then, we asked for their preferences over three aspects for each video:
temporal consistency, style transformation effect (including the preservation of colour and
texture patterns) and overall preference. In total, we received 150 votes for each video and
2250 votes from the 50 subjects. Figure 19 shows that our method obtained the majority of
votes for style transformation effect and overall preference, but took second place in terms
of temporal consistency compared to Wang et al. [36]. These results are consistent with
Table 3.
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Figure 19. User Study. It is noticed that Wang et al. [36] received the most votes in terms of temporal
consistency, but our proposed method obtained the most majority of votes for overall preference and
style transformation effect compared to six other state-of-the-art methods. The number of votes for
each method is consistent with Table 3 [30,35–38,62].

6. Conclusions

We discovered that previous state-of-the-art methods for video style transfer have
difficulties in finding the balance between temporal consistency and faithful style effects in
their stylized videos. To obtain the balance, we revisited the gradient-based optimization
methods using optical flow, and proposed solutions to their problems, including flow
errors and a low-speed run time. Our solutions consist of a new initialization strategy with
proposed mask techniques that is presented to reduce flow errors and constraints with
proposed losses that are performed to ensure temporal consistency and image quality over
long-range frames. Specifically, we propose a multi-scale mask fusion scheme to reduce the
flow untraceable errors, an incremental mask to reduce ghosting artefacts and a multi-frame
mask fusion technique to reduce the flow traceable errors. The initialized images obtained
via our mask techniques increase the running speed from over 3 min per frame to less than
2 s per frame for gradient-based optimization algorithms. In addition, we also introduced
multi-frame Coherent Losses to enhance the temporal consistency on both RGB-level and
Feature-level, and Sharpness Losses to effectively mitigate the image blurriness artefacts
over times. In the end, the ablation studies validated that each component of the proposed
framework serves their purposes, and experiments on public datasets demonstrate that
our approach achieves a better balance between temporal consistency and faithful style
effects compared to state-of-the-art methods. We notice that the proposed method still
needs several seconds for each frame to perform style transformation, which may be a little
bit slower in practice. We will further investigate offline feed-forward networks to quickly
approximate solutions to our style transformation problem in the near future.

Supplementary Materials: The following supporting information can be downloaded at: https:
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