
EUROGRAPHICS 2024 / A. Bermano and E. Kalogerakis
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 2

Monte Carlo Vortical Smoothed Particle Hydrodynamics
for Simulating Turbulent Flows

Xingyu Ye1,2, Xiaokun Wang1,2,†, Yanrui Xu1,3, Jiří Kosinka3, Alexandru C. Telea4, Lihua You2, Jian Jun Zhang2, Jian Chang2,†

1School of Intelligence Science and Technology, University of Science and Technology Beijing, China
2National Centre for Computer Animation, Bournemouth University, United Kingdom

3Bernoulli Institute, University of Groningen, Netherlands
4Department of Information and Computing Sciences, Utrecht University, Netherlands

Figure 1: The divergence-free SPH (DFSPH) method (left) produces basic wake flow motions. Our MCVSPH method (right) effectively
generates intricate vortical motions throughout the fluid domain, exhibiting transportation, merging, and splitting of vortices.

Abstract
For vortex particle methods relying on SPH-based simulations, the direct approach of iterating all fluid particles to capture
velocity from vorticity can lead to a significant computational overhead during the Biot-Savart summation process. To address
this challenge, we present a Monte Carlo vortical smoothed particle hydrodynamics (MCVSPH) method for efficiently simulating
turbulent flows within an SPH framework. Our approach harnesses a Monte Carlo estimator and operates exclusively within
a pre-sampled particle subset, thus eliminating the need for costly global iterations over all fluid particles. Our algorithm is
decoupled from various projection loops which enforce incompressibility, independently handles the recovery of turbulent details,
and seamlessly integrates with state-of-the-art SPH-based incompressibility solvers. Our approach rectifies the velocity of all
fluid particles based on vorticity loss to respect the evolution of vorticity, effectively enforcing vortex motions. We demonstrate,
by several experiments, that our MCVSPH method effectively preserves vorticity and creates visually prominent vortical motions.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Fluid animation constitutes a captivating area of research within
the computer graphics community. Among various fluid simula-
tion techniques, the Navier-Stokes equations [CF88] serve as the
cornerstone for modern fluid solvers. In the conventional operator
splitting scheme [Bri15], the particle velocity field un at time step n
is updated in two steps. First, non-pressure effects (such as gravity
and viscous forces) are applied to calculate an intermediate velocity

† Corresponding authors: wangxiaokun@ustb.edu.cn,
jchang@bournemouth.ac.uk

field ūn. Next, ūn is projected onto a divergence-free field. Due to
the application of non-pressure forces (and self-advection in Eule-
rian approaches) without considering incompressibility, divergent
velocity components are inevitably generated. As Figure 2 shows,
the pressure projection step, which aims to eliminate these divergent
components from the velocity field, often leads to a loss of turbulent
details [ZBG15].

Visually realistic simulations of inviscid or low-viscosity liquids
with high Reynolds numbers require capturing fine turbulent details.
Vortex methods are used to simulate turbulent flows in many studies,
where vorticity is stored and evolved using vortex particles [SRF05;
WL93] for general fluid simulation; vortex filaments [AN05; WP10]

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Associa-
tion for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1111/cgf.15024

CGF 43-2 | e15024

https://doi.org/10.1111/cgf.15024
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcgf.15024&domain=pdf&date_stamp=2024-04-30


2 of 12 X. Ye et al. / Monte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Turbulent Flows

projection

Figure 2: Left: Velocity field un at time step n. Middle: Non-pressure
forces push the original velocity un into a divergent intermediate ve-
locity ūn. Right: The pressure force mitigates the divergent (normal)
component of ūn, causing turbulent detail loss.

for three-dimensional fluid simulation; and vortex sheets [BKB12]
for boundaries. While such methods can capture vorticity features
and preserve fine turbulent visual details, the computational cost of
iterating over the vortex elements is significant [NWRC22]. For in-
stance, the direct approach to integrating the vortex particle method
into SPH-based fluid simulation frameworks involves directly con-
sidering all fluid particles as vortex particles to track vorticity evo-
lution and compute velocity through the Biot-Savart summation.
Typical simulations use many fluid particles, so this direct method
imposes high computational costs.

Inspired by the work of Rioux-Lavoie et al. [RSÖ*22] using a
Monte Carlo estimator to simulate fluids in an Eulerian framework,
we propose the Monte Carlo Vortical Smoothed Particle Hydro-
dynamics (MCVSPH) method to simulate turbulent fluids in an
SPH framework. Our method operates independently of pressure
projection loops, allowing the use of existing state-of-the-art incom-
pressibility solvers [ICS*14; BK17] and simplifying the process of
implementing a complete Lagrangian fluid solver. We incorporate
our vortex particle method into an SPH-based framework using the
Monte Carlo stochastic method. This adaption allows us to derive a
corrective velocity from vorticity using the Biot-Savart summation
within a pre-sampled small particle subset, and makes it feasible to
implement the vortex particle method efficiently within a pure parti-
cle framework, all without the need for expensive global iterations.
To organise vortex particles, we treat vortex and SPH particles as
separate entities. Following Monte Carlo method principles, we ran-
domly sample a subset of SPH particles and pair each of them with
a corresponding vortex particle. This enables us to adopt probabilis-
tic methods to estimate velocities that would otherwise necessitate
iterating through all SPH fluid particles.

Our main contributions are summarised as follows:

• A Lagrangian approach enhancing turbulent details;
• Improved Biot-Savart summation in SPH with a Monte Carlo

method;
• An organisation scheme for vortex particles for turbulent detail

preservation.

The remainder of this paper is organised as follows. We start
by reviewing related work (Sec. 2) and also briefly introduce SPH
and the vortex particle method (Sec. 3). Next, we introduce our
MCVSPH approach (Sec. 4). We illustrate our approach by a series

of three-dimensional simulation experiments and comparisons with
other SPH-based methods for turbulent flow (Sec. 5). Finally, we
conclude the paper and provide directions for future work (Sec. 6).

2. Related work

A substantial body of research exists within the computer graphics
community focusing on fluid simulation and SPH methods. We next
provide a concise review of relevant work focusing on SPH and
techniques for enhancing turbulent details.

SPH-based Incompressible Fluids. Simulating visually authen-
tic fluids often requires incompressibility. Many previous studies
focus on achieving incompressible fluid simulations through SPH-
based methods. Becker and Teschner [BT07] developed an explicit
approach to compute pressure from densities using the Tait equa-
tion. Yet, the simulated fluids remain weakly compressible. To over-
come this, Solenthaler and Pajarola [SP09] proposed a predictive-
corrective scheme (PCISPH), iteratively solving particle pressures
from density change using a global stiffness constant. Ihmsen et
al. [ICS*14] enhanced the pressure-solving iterations with the im-
plicit incompressible SPH (IISPH) using density deviation computed
from velocities and computing stiffness for each particle per time
step. However, PCISPH and IISPH solve the Pressure Poisson Equa-
tion (PPE) without explicitly enforcing a divergence-free velocity
field.

Bender and Koschier [BK17] proposed divergence-free SPH (DF-
SPH), where position updates correct densities and velocity updates
mitigate velocity divergence. In our work, we use DFSPH for its abil-
ity to enforce invariant densities and divergence-free velocities. Yet,
typical SPH-based incompressible fluid solvers exhibit noticeable
numerical damping from coarse discretisations [IOS*14], leading to
significant loss of turbulent details and the need for additional ap-
proaches to preserve vorticity and turbulent motions. Our MCVSPH
method enhances turbulent details for general fluid simulations in-
dependently of the pressure projection process and can be integrated
with most existing incompressibility solvers.

Numerical Dissipation Mitigation. The semi-Lagrangian method
is commonly employed to achieve accurate advection. Yet, it can
inadvertently blur high-frequency fluid motion information due to
the use of low-order accuracy interpolation computations. Eulerian-
Lagrangian hybrid methods, such as PIC [Har62] and FLIP [ZB05],
mitigate numerical dissipation, yet frequent interpolations dur-
ing particle-grid transfers can cause momentum loss. Jiang et
al. [JSS*15] proposed the affine particle-in-cell (APIC) scheme,
which considers angular momentum and shearing deformation dur-
ing grid-particle transfers. Fu et al. [FGG*17] expand upon the
APIC method by generalising the local function on each particle. Qu
et al. [QLDJ22] compute weights for particle-grid transfers using the
power particle method, which ensures uniform particle distributions
and volume preservation.

In the realm of pure Eulerian simulation, Qu et al. [QZG*19]
introduce the BiMocq scheme which capitalises on dual mesh char-
acteristics and multi-level mapping to effectively compensate error
in a back-and-forth manner. Zehnder et al. [ZNT18] propose an
advection-reflection scheme applying an energy-preserving reflec-
tion operator halfway through the advection step to reduce the dissi-

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 14678659, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15024 by B

ournem
outh U

niversity, W
iley O

nline L
ibrary on [23/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



X. Ye et al. / Monte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Turbulent Flows 3 of 12

pation at the projection step. Nabizadeh et al. [NWRC22] enhance
the advection-reflection scheme by incorporating covectors to pre-
serve circulation. Previous efforts to mitigate numerical dissipation
primarily address advection dissipation present in Eulerian meth-
ods. In contrast, our work focuses on maintaining intricate turbulent
details within a Lagrangian framework.

Vorticity Confinement. The vorticity confinement method, in-
troduced to the computer graphics community by Fedkiw et
al. [FSJ01], amplifies existing vortices using corrective forces. Le-
tine et al. [LAF11] enhance the computation of these forces for
improved energy and momentum conservation. While initially pro-
posed for grid-based scenarios [JKB*10; WM19], vorticity confine-
ment was applied to SPH-based methods fluids by Macklin and
Müller [MM13] to enhance particle vortical motions. Although the
vorticity confinement method is relatively simple to implement, its
sensitivity to parameters can result in the generation of excessive
energy and unstable simulations. Moreover, since the amplification
forces are contingent on existing vortices, this approach cannot gen-
erate new vortices, which restricts its use in simulating fluids with
rich turbulent features.

Micropolar Fluids. The micropolar fluid method [Eri66; Luk99]
describes fluid micro-structures with non-symmetric stress tensors.
This approach finds applications in areas where fluid micro-motion
is significant, such as heat transfer [PMZ22], blood flows [KSPS20],
and magnetised fluids [ANK22]. Bender et al. [BKKW19] intro-
duced the micropolar method to computer graphics and applied it to
SPH-based methods (MPSPH) to simulate turbulent flows. However,
as pointed out by Chen et al. [CLL10], micro-rotations represent non-
solid-body-like rotation (gyration). Given that this method does not
explicitly model solid-body-like rotation (vorticity), the resulting
turbulent features often manifest themselves as small-scale rota-
tional motions. Our method instead employs the vorticity equation
to explicitly model vortical motions.

Non-Navier-Stokes Methods. To circumvent the challenges faced
by general Navier-Stokes solvers, such as vorticity loss, some
methods have turned to non-Navier-Stokes methods. Chern et
al. [CKP*16] introduced Clebsch variables and the Schrödinger
equation to computer graphics. While conventional fluid solvers
use velocity or vorticity for direct fluid motion simulation, this
method evolves the wave function and extracts velocity and density
information from it. Hence, the need for advection is eliminated
in a pure Eulerian setting, resulting in significant improvements
in addressing numerical dissipation issues. Subsequent research
has expanded the use of the Clebsch method. For example, Yang
et al. [FLX*22] combine it with the gauge method to effectively
capture coherent vortical structures in incompressible flow. Xiong
et al. [XWWZ22] integrate the Clebsch method with a level-set
approach to simulate free-surface turbulent flow. However, since
these methods are developed based on models that diverge from
the Navier-Stokes equation, integrating them with existing high-
performance Navier-Stokes fluid solvers is challenging. In contrast,
our approach seamlessly integrates with existing Navier-Stokes fluid
solvers, enabling the simulation of incompressible and turbulent
fluids with minimal changes to current fluid simulation methods.

Vortex Methods. Vortex methods [CK00; MM21] leverage La-
grangian elements, such as vortex particles [SRF05; WL93] and

vortex filaments [AN05; WP10], to trace and evolve vorticity. Zhu
et al. [ZYF10] simulate vortical fluids by a hybrid SPH-FLIP
solver with the vorticity equation solved on local grids. Wang et
al. [WLB*20] proposed a turbulence refinement method using the
Rankine vortex model to recover the energy lost in rotational de-
grees of freedom. Zhang et al. [ZBG15] propose the IVOCK scheme
to restore lost vorticity and expedite the Biot-Savart summation
using the fast multipole algorithm [Dar00]. Liu et al. [LWB*21]
adopt the vorticity equation and the stream function to reconstruct
turbulent details in SPH fluid simulations, where the Biot-Savart
summation traverses vortex particles within the support radius. How-
ever, the computational overhead of traversing all vortex particles in
the Biot-Savart summation is high. Previous studies have introduced
solutions to expedite this process within Eulerian frameworks, such
as PPPM [ZB14] and the Monte Carlo method [RSÖ*22]. Yet, the
application of vortex methods to SPH frameworks remains relatively
unexplored.

Given the effectiveness of the vortex particle method in modelling
vortex motion, we harness its potential to generate turbulent motion
within SPH-based fluids. Our approach leverages the vortex particle
method within an SPH-based framework using a Monte Carlo es-
timator, conducting the Biot-Savart summation via a pre-sampled
subset of particles.

3. Fundamentals of SPH and the vortex particle method

As we use SPH-based approaches in our work, we next revisit the
governing Navier-Stokes equations and general SPH-based numeri-
cal computations for various differential operators needed in fluid
simulations (Sec. 3.1). We also cover the basics of the vortex particle
method and explain the bottleneck of its use in SPH (Sec. 3.2).

The Navier-Stokes equations [CF88] read

Du
Dt

=− 1
ρ
∇p+υ∆u+g,

∇·u = 0,
(1)

where Du
Dt = ∂u

∂t +(u ·∇)u is the material derivative; p is the pres-
sure; υ is the kinematic viscosity; and g models external forces. The
equations govern fluid dynamics and form the basis of fluid solvers.
However, for computational purposes, it needs to be discretised.

3.1. SPH discretisation

SPH is used as a spatial discretisation method to numerically ap-
proximate the differential operators within the governing equa-
tions [KBST19]. For general approximation without any differential
operators, values on fluid particle i are evaluated by

Ai = ∑
j

m j

ρ j
A jWi j, (2)

where j denotes a neighbor particle of particle i; m j and ρ j are
the mass and the density, respectively, of particle j; and Wi j =
W (xi−x j,h), where x denote particle positions, is a kernel function
with support radius h. In this paper, we use for W the cubic spline

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 14678659, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15024 by B

ournem
outh U

niversity, W
iley O

nline L
ibrary on [23/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 12 X. Ye et al. / Monte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Turbulent Flows

function [KBST19] given by

W (x,h) = σd


6(a3−a2)+1 0≤ a≤ 1

2

2(1−a)3 1
2
< a≤ 1

0 otherwise,

(3)

where a =
∥x∥

h , and σd is a kernel normalisation factor varying with
the simulation dimension d: σd = 4

3h for d = 1; σd = 40
7πh2 for d = 2;

and σd = 8
πh3 for d = 3, respectively.

Density. Applying Eqn. (2) to the density ρ leads directly to

ρi = ∑
j

m jWi j. (4)

Vorticity. Vorticity ω is defined as the curl ∇×u of the velocity.
In the context of discretisation, two SPH formulations exist for
representing this curl. The symmetric curl form is given by

(∇×A)i = ρi ∑
j

m j

(
Ai

ρ2
i
+

A j

ρ2
j

)
×∇Wi j, (5)

Alternatively, with A ji = A j−Ai, the difference curl is given by

(∇×A)i =
1
ρi

∑
j

m jA ji×∇Wi j. (6)

As Eqn. (6) exhibits lower error in boundary areas [BKKW19], we
use this form for vorticity computation in our method.

The difference form of SPH formulations can also be applied to
the discretisation of the gradient operator

∇Ai = ∑
j

m j

ρ j
A ji⊗∇Wi j, (7)

where m⊗n = mnT denotes the dyadic product.

Viscosity. In scenarios where the simulated fluid is not entirely
inviscid, the computations of the Laplacian of velocity ∆u and the
Laplacian of vorticity ∆ω become necessary. We use the following
SPH approximation to discretise the Laplacian operator:

∆Ai = 2(d +2)∑
j

m j

ρ j

Ai j ·xi j

∥xi j∥2 +0.01h2∇Wi j, (8)

where xi j = xi−x j , and d is the spatial dimension of the simulated
scenario. This approach reduces the order of the differential equation,
enhances numerical stability, and helps conserve linear and angular
momenta [Mon92].

Pressure. The pressure force enforces incompressibility of the fluid
field. In our work, we opt for the divergence-free SPH solver (DF-
SPH) [BK17], which maintains constant density and a divergence-
free velocity field.

Boundary handling. We address interactions between fluid and
surrounding solids by the approach of Akinci et al. [AIA*12]. This
involves representing solid boundaries using particles, treating them
similarly to fluid particles. The smoothed mass of a solid boundary
particle i with density ρ0 and neighbouring boundary particles k is
computed as

Ψi =
ρ0mi

∑k mkWik
=

ρ0

∑k Wik
, (9)

SPH ParticlesVortex Particles

Figure 3: Left: Circulation loop. The vortex strength vector β is
the circulation around position x. Middle: Stokes’ theorem converts
a surface integral into a volume integral. Right: Convergence to a
vortex particle. The loop size is small enough so that volume inte-
gration can be approximated by the product of a constant vorticity
and the volume.

where mi is the non-smoothed mass of particle i.

3.2. The vortex particle method

The vortex particle method has two key components: the vortex
strength vector and the Biot-Savart summation, as follows.

The vortex strength vector β represents the circulation at a specific
position x within the fluid field. In fluid dynamics, the general
circulation is computed as

β =
∮

∂V
udl, (10)

where ∂V is a closed curve in 2D or a closed surface in 3D sur-
rounding position x (see Fig. 3 left). Using Stokes’ theorem, we can
transform Eqn. (10) in 3D to

β =
∫∫∫

V
∇×udv =

∫∫∫
V

ωdv, (11)

where V is the volume enclosed by the surface ∂V (see Fig. 3 middle).
Ideally, when computing β at a given position x, the closed surface
∂V and the enclosed volume V should be infinitesimal. In practice, V
should be small enough so that ω can be considered constant when
evaluating β. In this case, the vortex strength vector β of vortex
particle k can be approximated as

βk ≈ ωkvk, (12)

where ωk is the vorticity of vortex particle k and vk is its (small)
volume, respectively (see Fig. 3 right).

The Biot-Savart summation [WL93] recovers the velocity field
from vorticity as

u = (K×)∗ ω̃, (13)

where K× represents the Biot-Savart kernel, ∗ denotes the con-
volution operator, and ω̃ is the approximated vorticity. In three-
dimensional scenarios, the Biot-Savart kernel is given by

K×= K(x)×=− x
4π∥x∥3 × . (14)

Expanding the convolution operator ∗, Eqn. (13) can be written as

u(x) =
∫∫∫

χ

K(x−x′)× ω̃(x′)dx′, (15)

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 14678659, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15024 by B

ournem
outh U

niversity, W
iley O

nline L
ibrary on [23/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



X. Ye et al. / Monte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Turbulent Flows 5 of 12

where χ denotes the domain enclosed by ∂V .

However, Eqn. (15) involves an integration that is not conducive
to numerical computation. To discretise this equation, we use the vor-
tex particle method, wherein vortices are abstracted as particles that
store position and vortex strength information. The approximated
vorticity ω̃ is represented as

ω̃(x) =
Np

∑
k=1

βkδ(x−xk), (16)

where xk denotes the position of vortex particle k; δ is the Dirac
delta function; and Np is the total number of vortex particles used to
cover the whole fluid domain.

By substituting Eqn. (16) into the Biot-Savart law (Eqn. (15)), the
velocity computation becomes

u(x) =
∫∫∫

χ

K(x−x′)×

(
Np

∑
k=1

βkδ(x′−xk)

)
dx′

=
Np

∑
k=1

K(x−xk)×βk =
Np

∑
k=1
− x−xk

4π∥x−xk∥3 ×βk.

(17)

This shows that the velocity field is recovered from vorticity by
iterating over all vortex particles. In SPH, physical attributes (such
as position, velocity, and pressure) of a fluid are tracked using
a collection of SPH fluid particles – which could also serve as
vortex particles that hold vorticity information. Yet, due to the high
number of fluid particles, iterating over all these particles becomes
impractical when applying the vortex particle method to SPH. An
optimised approach, which we present next, solves this issue.

4. MCVSPH Scheme

We apply the vortex particle method in SPH-based fluid simulations
to recover turbulent features. For this, we use the vorticity equa-
tion for vorticity evolution to compute vorticity loss in the velocity
field (Sec. 4.1). We optimise computing velocity corrections from
vorticity loss by Monte Carlo sampling, as described next (Sec. 4.2).

4.1. Vorticity loss

To recover turbulent details, we start from the vorticity equation
representing the time evolution of vorticity ω =∇×u

Dω

Dt
= (ω ·∇)u+υ∆ω, (18)

where υ is the same kinematic viscosity as the one in Eqn. (1).
The first term (ω ·∇)u gives the vortex stretching governing the
evolution of vortex filaments.

In an ideal scenario, the curl ∇× u of velocity is identical to
the vorticity ω. This is not the case in practice, due to distinct
equations governing the evolution of velocity and vorticity and
the numerical dissipation during the splitting scheme for updating
velocity. Zhang [ZBG15] proposed a method that evaluates lost
vorticity by the difference between updated vorticity and the curl of
updated velocity. Inspired by this, in our SPH-based approach, we
‘save’ the advection step and approximate differential operators by
SPH formulations to evaluate vorticity loss. Specifically, we quantify
vorticity loss for each particle by the following steps:

• Compute vorticity ω
n at current time step n using the curl of

current velocity field ω
n =∇×un;

• Evolve current vorticity ω
n with the vorticity equation (18) to

obtain the vorticity ω
n+1 at the next time step;

• Apply non-pressure forces fnon-pressure to the current velocity un

to acquire the intermediate velocity ūn by

ūn = un +∆t fnon-pressure; (19)

• Quantify the vorticity loss for each fluid particle as

ω
n+1
loss = ω

n+1−∇× ūn. (20)

It is worth noting that we have the flexibility to choose either
∇× ūn or∇×un+1 as the second term in Eqn. (20), where un+1 is
the pressure projection outcome of ūn, since the curl of the pressure
gradient is zero. We adopt the difference curl (Eqn. (6)) to discretise
the velocity curl as

(∇×u)i =
1
ρi

∑
j

m j(u j−ui)×∇Wi j. (21)

Computing the vortex-stretching term needs the gradient of ve-
locity∇u, which is given by

∇ui = ∑
j

m j

ρ j
(u j−ui)⊗∇Wi j. (22)

For viscid fluids, we compute viscosity with the Laplacian of
velocity and vorticity using Eqn. (8). Putting it all together, Alg. 1
summarises the computation of vorticity loss.

Algorithm 1 Vorticity loss evaluation

Input: ∆t,un Output: ω
n+1
loss

1: for all SPH fluid particles i do
2: ω

n
i ← (∇×u)n

i ▷ Eqn. (21)
3: ūn

i ← un
i +∆tfnon-pressure ▷ Eqn. (19)

4: for all SPH fluid particles i do
5: ω̄

n
i ← VortexStretch(∆t,ωn

i , ū
n
i ) ▷ Eqn. (22)

6: ω
n+1
i ← Viscosity(ω̄n

i ) ▷ Eqn. (8) if viscid
7: ω

n+1
loss, i = ω

n+1
i −∇× ūn

i ▷ Eqn. (20)

4.2. Vortex particles with Monte Carlo estimators in SPH

The Monte Carlo method is an effective technique for randomly
sampling a field – velocity u, in our case – based on a stochas-
tic distribution and estimating the required value. Rioux-Lavoie et
al. [RSÖ*22] improve the discretised Biot-Savart law (Eqn. (17))
with Monte Carlo estimation in an Eulerian framework via

u(t,x) = 1
N

N

∑
i=1

K(x−yi)×βi

P(yi| t,x)
, (23)

where yi are all sampled N positions measured in the above-
mentioned Eulerian grid – that is, much fewer than the total number
of globally distributed vortex particles Np used in Eqn. (16); and P
denotes the probability of the corresponding position x.

We adapt the Monte Carlo estimator to particle methods, making
it feasible to correct the velocity field with the vortex particle method.
In our method, rather than iterating over all N f SPH fluid particles,

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 14678659, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15024 by B

ournem
outh U

niversity, W
iley O

nline L
ibrary on [23/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 12 X. Ye et al. / Monte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Turbulent Flows

SPH ParticlesVortex Particles

h

Figure 4: Vortex particle organisation. Every sampled SPH fluid
particle (white, with volume Vk) is paired with a vortex particle
(cyan, with volume cVk) as a cohesive moving unit. The smoothed
vorticity loss ω̂loss of the vortex particle is computed using SPH (28).

we stochastically sample N ≪ N f fluid particles to form a small
subset Γ of the entire particle-set. Each sampled SPH fluid particle
is paired with a single vortex particle as a moving unit (Fig. 4).
Since implementing an infinitely small vortex particle is numerically
impractical, we assign a small fixed volume vk to each vortex particle
k in Γ, given by

vk = cVk, (24)

where Vk is the volume of the corresponding SPH fluid particle, and
c ∈ (0,1), which we next call the volume coefficient, controls the
volume of the vortex particle.

By substituting Eqns. (12) and (24) into the Monte Carlo-sampled
Biot-Savart formulation (Eqn. (23)), we obtain

ui =
cVk
N

N

∑
k=1

K(xi−xk)×ωk
Pk

. (25)

Similarly, by converting the vorticity ωk to the smoothed vorticity
loss ω̂loss,k, we derive the velocity correction ucorr,i for SPH particle
i as

ucorr, i =
cVk
N

N

∑
k=1

K(xi−xk)× ω̂loss,k

Pk
, (26)

where N is the number of vortex particles and Pk is the probability
of vortex particle k, given by a stochastic distribution. In practice,
we use the uniform distribution

Pk =
1

N f
, (27)

where N f is the number of fluid particles from which Γ is sampled.

By replacing A in Eqn. (2) with the vorticity loss, we find the
smoothed vorticity loss ω̂loss,k of vortex particle k as

ω̂loss,k = ∑
j

m j

ρ j
ωloss, jWk j, (28)

where j are particle k’s neighbouring SPH fluid particles (see Fig. 4).
For solid particles (used to model boundaries, see Sec. 3.1), we set
the vorticity loss to 0.

Algorithm 2 MCVSPH

Input: ∆t, un, N Output: un+1

1: Subset Γ← Sample and link particle pairs ▷ Sec. 4.2
2: repeat
3: for all SPH fluid particle i do
4: ūn

i ← ApplyNonPressureForces(∆t,un) ▷ Eqn. (19)
5: for all SPH fluid particle i do
6: un+1

i ← EnforceIncompressibility(∆t, ūn) ▷ DFSPH
7: for all SPH fluid particle i do
8: ω

n+1
loss, i← ComputeVorticityLoss(∆t,un) ▷ Alg. 1

9: for all vortex particle k in Γ do
10: ω̂

n+1
loss,k← SmoothVorticityLoss(ωn+1

loss ) ▷ Eqn. (28)
11: for all SPH fluid particle i do
12: un+1

corr, i←MonteCarloBiotSavart(ω̂n+1
loss ) ▷ Eqn. (26)

13: un+1
i ← un+1

i +un+1
corr, i ▷ Eqn. (29)

We leverage the velocity correction ucorr to compensate the origi-
nal fluid velocity field and enhance turbulent details by setting

ui← ui +ucorr, i. (29)

Algorithm 2 outlines our MCVSPH approach. We start by stochas-
tically sampling the fluid particles to yield the subset Γ (line 1).
Each sampled fluid particle is linked to a vortex particle; these
paired particles next move together as cohesive units. During the
simulation loop, we perform five steps, making our approach work
independently of pressure-projection loops: First, after applying
non-pressure forces (line 4), we enforce incompressibility by meth-
ods such as DFSPH [BK17] (line 6). Next, we compute vorticity
loss for each fluid particle using the vorticity equation on the cur-
rent velocity field (line 8). Smoothed vorticity loss values for each
vortex particle are computed by an SPH approximation (line 10).
Corrective velocities for each fluid particle are computed using the
Biot-Savart summation method, enhanced by the Monte Carlo tech-
nique (line 12). Finally, these corrective velocities are added to the
original velocities to obtain the updated velocity field (line 13).

5. Results

We next present several experiments to validate MCVSPH, which
we implemented using the Taichi graphics programming lan-
guage [HLA*19]. All computations are done on a desktop PC with
a 3GHz 8-Core Intel Core i7-9700 processor, an NVIDIA Quadro
RTX 4000 GPU, and 32GB memory. Rendering uses the Karma
renderer of Houdini 19.5. All experiments are visualised in the
accompanying video.

5.1. Impact of parameters

5.1.1. Effect of sample size N

We next present experiments to evaluate the impact of the sample
size N (Sec. 5.1.1) and the volume coefficient c (Sec. 5.1.2) on the
performance of turbulence generation of our method.

We evaluate the impact of different sample sizes N in our
MCVSPH method by simulations of a dam break scenario with 1.2

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 14678659, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15024 by B

ournem
outh U

niversity, W
iley O

nline L
ibrary on [23/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



X. Ye et al. / Monte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Turbulent Flows 7 of 12

(a) N = 100 (b) N = 500

(c) N = 1200 (d) N = 5000

Figure 5: Dam breaking scenario featuring 1.2 M SPH fluid parti-
cles and a rotating propeller, with particles colour-coded by vorticity
(white for high, blue for low vorticity). The volume coefficient c is
set to 0.05. Results are shown for various sample sizes N: 100 (a),
500 (b), 1200 (c), and 5000 (d). Results for N = 100 and N = 500
exhibit pronounced noise. In contrast, results for N = 1200 and
N = 5000 show reduced noise levels and enhanced realism.

1200 (1‰ of the number
of fluid particles)In

di
ca

to
rs

0 5 10 15
Time (seconds)

-2

0

2 10-4

Figure 6: Indicators evolving with the sample size N for the scenario
in Fig. 5. Top: Progression of non-dimensional variables dimension-
less vorticity ω̂, time overhead per frame t̂0, and energy variation
d̂E, for different N values. In all cases, the curves exhibit nonlinear
and rapid evolution for N < 1200. Bottom: Comparison of energy
variation evolution for a single particle over time across different
sample sizes N. The noise in the energy flattens out as N increases.

M fluid particles and a rotating propeller at 120 r/min (see Fig. 5).
In these experiments, we set the volume coefficient c = 0.05 and
vary N ∈ {100,500,1200,5000}; note that N = 1200 corresponds
to 1‰ of fluid particles. We visualise the results by rendering parti-
cles colour-coded by vorticity (white for high vorticity, blue for low
vorticity, see Fig. 5). We see that the fluid simulation becomes noisy
and unrealistic for smaller sample sizes (N = 100 and N = 500).
A visually plausible and moderately turbulent flow is obtained for
N = 1200. Increasing the sample size to N = 5000 results in smooth-
ing of turbulent details due to excessive vortex particles with lower
vorticity being distributed throughout the fluid field.

(a) c = 0.04

(b) c = 0.05

(c) c = 0.06

(d) c = 0.07

Figure 7: Illustration of a fast streaming water scenario with
2.3 M fluid particles. The simulation employs MCVSPH with a
constant sample size N‰ = 2300 and varying volume coefficients
c ∈ {0.04,0.05,0.06,0.07}. As c increases, turbulent details be-
come more pronounced.

To further assess the effect of the sample size N, and compare
our method with DFSPH, we show in Fig. 6(top) the dimension-
less vorticity ω̂ = ∥ω∥/∥ωDFSPH∥, the dimensionless time overhead
per frame t̂0 = t0/tDFSPH

0 , and the dimensionless energy variation
d̂E = dE/dEDFSPH. Smaller sample sizes (below 1200) lead to sig-
nificantly higher vorticity values ω̂; larger sample sizes converge to
stable values. Regarding d̂E, smaller sample sizes result in a much
noisier and unstable fluid energy variation. Figure 6(bottom) further
refines this observation by illustrating the energy variation dE evolv-
ing with time for different sample sizes. Analysing t̂0 (Fig. 6 top),
we see a non-linear behaviour when N < 1200, with linear evolution
for N > 1200. Interestingly, the t̂0 curve for N < 1200 says that the
time overhead of MCVSPH is even lower than that of DFSPH. This
is due to the sparser distribution of fluid particles with smaller sam-
ple sizes, leading to fewer density correction iterations in DFSPH.
Once the sample size exceeds 1200 and the noise is suppressed, the
number of density correction iterations aligns with typical DFSPH,
resulting in linear increase in the t̂0 curve with respect to N. This
also demonstrates the impracticability of treating all fluid particles
as vortex particles due to the heavy computational burden (approx-
imately 63 times slower than DFSPH per frame). By exclusively
iterating over a pre-sampled subset N ≪ N f of particles, we sub-
stantially reduce the computational overhead, making our method
comparable with the baseline DFSPH.

From these results, we see that setting the sample size N to
roughly 1‰ of the total fluid particle count yields a well-optimised
fluid animation with visually realistic vorticity, reduced noise, and
reasonable computation time. We use this setting of N for all further
results in this paper, and indicate it next by the notation N‰.

5.1.2. Effect of volume coefficient c

To assess the effect of c, we show in Fig. 7 a dynamic scenario
featuring fast streaming water with 2.3 M fluid particles, a stationary

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 14678659, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15024 by B

ournem
outh U

niversity, W
iley O

nline L
ibrary on [23/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 12 X. Ye et al. / Monte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Turbulent Flows

(a) DFSPH

(b) MPSPH with νt = 0.08

(c) VRSPH with α = 1.0

(d) MCVSPH with c = 0.05, N‰ = 1100

Figure 8: Falling water column with 1.1 M fluid particles coloured
by vorticity. Comparison of DFSPH, MPSPH with νt = 0.08, VR-
SPH with α = 1.0, and our MCVSPH with volume coefficient
c = 0.05 and sample size N‰ = 1100. We see that VRSPH creates
unrealistic local aggregation patterns resulting from its Biot-Savart
summation within local neighbourhoods. Turbulent details get lost
quickly in DFSPH and VRSPH. In contrast, MPSPH generates fine
ripples on the fluid, and our MCVSPH preserves vortices.

ball, and open boundaries on the left and right sides. Fluid particles
are initialised with leftward velocities of 3 m/s. We show results
for different volume coefficients c ∈ {0.04,0.05,0.06,0.07} for a
constant sample size N‰ = 2300.

We see that, as the volume coefficient c increases, the water flow
becomes progressively more turbulent – simply put, this shows how
one can control the intensity of turbulent flow via tuning c.

5.2. Validation of generating turbulent flows

We further confirm the effectiveness of our MCVSPH approach in
capturing turbulent details by five simulation scenarios. We also com-
pare our method with the micropolar SPH (MPSPH) [BKKW19], the
vorticity refinement SPH (VRSPH) [LWB*21], and the divergence-
free SPH (DFSPH) [BK17] methods.

Falling water column. Our first experiment simulates a falling
water column with 1.1 M fluid particles (Fig. 8). The fluid, initially
shaped as a box column with a height of 6.0 m and a cross-section

(a) DFSPH (b) MPSPH with νt = 0.15

(c) VRSPH with α = 1.0 (d) MCVSPH c = 0.06, N‰ = 1200

Figure 9: Dam breaking with 1.2 M SPH fluid particles and a rotat-
ing propeller at 120 r/min. Comparison of DFSPH, MPSPH with
νt = 0.15, VRSPH with α = 1.0, and our MCVSPH with c = 0.06
and N‰ = 1200. MCVSPH yields more visible turbulent motions
than the other three methods.

0 5 10 15
Time (seconds)

4

6

8

10

To
ta

l e
ne

rg
y 

pe
r p

ar
t. 
E

10-3

0 5 10 15
Time (seconds)

0

20

40

60

V
or

tic
ity

 ω
 

Figure 10: Comparison of total energy E (top) and vorticity ω

(bottom) among various methods simulating a propeller scenario
(see Fig. 9). MCVSPH produces more total energy for vortical mo-
tions with similar vorticity levels compared to other methods (see
MCVSPH with c = 0.06 vs MPSPH with νt = 0.15).

area of 4 m2, experiences free fall under gravity. We compare our
MCVSPH approach (c = 0.05, N‰ = 1100) with DFSPH, MPSPH
(with the transfer coefficient νt = 0.08), and VRSPH (with the gain
α = 1.0). From Fig. 8, we see that both DFSPH and VRSPH fail
to capture turbulent details effectively, leading to a quick loss of
such features. Also, the left image for VRSPH shows noticeable
artefacts in the water column, where fluid particles clump together
unnaturally in local regions. We attribute this behaviour to VRSPH’s
usage of the Biot-Savart summation within the support radius of
each SPH particle, which causes significant local movements. We
also see that both MPSPH and MCVSPH can effectively preserve
turbulent details, but with differing patterns: MPSPH creates small-
scale ripples, whereas MCVSPH produces visible vortical motions
resulting from our vorticity-explicit method.

Dam breaking with a rotating propeller. We further show the
effectiveness of MCVSPH by a dynamic scenario involving the

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 14678659, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15024 by B

ournem
outh U

niversity, W
iley O

nline L
ibrary on [23/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



X. Ye et al. / Monte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Turbulent Flows 9 of 12

(a) DFSPH

(b) MPSPH with νt = 0.1

(c) VRSPH with α = 1.2

(d) MCVSPH with c = 0.07, N‰ = 2300

Figure 11: Fast streaming milk with 2.3 M fluid particles and a static chocolate ball (same scenario settings and layout as Fig. 7). Comparison
of DFSPH, MPSPH with νt = 0.1, VRSPH with α = 1.2, and our MCVSPH with c = 0.07 and N‰ = 2300. On the left, our MCVSPH approach
generates prominent vortical details on fluid surfaces. As the fluid slows down and becomes shallower, as shown on the right, our MCVSPH
yields a realistic simulation of tranquil shallow liquid similar to DFSPH.

(a) DFSPH

(b) MPSPH with νt = 0.05

(c) MCVSPH with c = 0.057 and N‰ = 2500

Figure 12: A small boat moving forward with 2.5 M vorticity colour-coded fluid particles and a propeller at 60 r/min. Comparison of DFSPH,
MPSPH with νt = 0.05, and our MCVSPH with c = 0.057 and N‰ = 2500. DFSPH shows basic wake flow from the boat rear. MPSPH yields
a more detailed flow. Our MCVSPH yields explicit visible transportation, merging, and splitting of vortices.

acceleration of 1.2 M fluid particles by a rotating propeller (Fig. 9).
The propeller, rotating at 120 r/min, induces turbulent motion in the
fluid. We compare our method (c = 0.06, N‰ = 1200) with DFSPH,
MPSPH with νt = 0.15, and VRSPH with α = 1.0. The results show
that VRSPH exhibits fewer turbulent details compared to MPSPH
and MCVSPH. MPSPH generates fine turbulent motions, visualised
as ripples. Our MCVSPH produces more prominent vortical motions
than the other studied methods (see the accompanying video).

The graphs in Figure 10 illustrate the temporal progression of the
total energy E per particle (top) and vorticity ω (bottom) over a 15
second period. The bottom graph shows that all compared methods
generate a higher vorticity than the baseline DFSPH method. No-
tably, both our MCVSPH approach with c = 0.06 and the MPSPH
method with νt = 0.15 exhibit similarly elevated vorticity levels,
the highest in this comparison. However, the top graph reveals that
MCVSPH yields a greater total energy, suggesting that the increased
vorticity is primarily attributed to intensified vortical motions in the

MCVSPH method. At a higher level, we see that our method does
not score significantly negatively with respect to estimation of E or
ω with respect to the compared methods. The E and ω differences
are small and, as the other images in this paper show, our method
produces more visually-realistic effects than the compared methods.

Fast streaming milk with a static chocolate ball. In this simulation
(Fig. 11), the setup is identical to the experiment in Fig. 7. We
compare DFSPH, MPSPH with νt = 0.1, VRSPH with α = 1.2,
and our MCVSPH with c = 0.07 and N‰ = 2300 to demonstrate
the effectiveness of our method. Observing the left images, we see
that both MPSPH and MCVSPH produce rich turbulent details,
with MCVSPH showing a more prolonged persistence of turbulent
flows compared to MPSPH. As the fluid gradually slows down and
becomes shallower (images on the right in Fig. 11), our MCVSPH
provides a more credible simulation of a tranquil shallow fluid, more
similar to DFSPH as compared with the other studied methods.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 14678659, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15024 by B

ournem
outh U

niversity, W
iley O

nline L
ibrary on [23/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 12 X. Ye et al. / Monte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Turbulent Flows

(a) DFSPH

(b) MPSPH with νt = 0.08

(c) MCVSPH with c = 0.05 and N‰ = 1500

Figure 13: A dam breaking scenario with 1.5 M vorticity colour-coded fluid particles, a static Stanford dragon, and two static Stanford
bunnies. Comparison of DFSPH, MPSPH with νt = 0.08, and our MCVSPH with c = 0.05 and N‰ = 1500. Our MCVSPH approach produces
evident vortical movements within the fluid domain, which is visible in the middle and right images.

Table 1: Average kinetic energy Ek, average total energy E, average
kinetic energy percentage εk = Ek/E×100% per second per par-
ticle, and average computational time per frame t0 (three methods,
four fluid particle counts n, first 450 frames). While it is slightly
slower than the other two, our approach can produce a larger per-
centage of kinetic energy, which means our approach has a higher
efficiency in generating turbulent motions.

n Approach t0 Ek E εk
[million] [ms] [×10-3 s-1] [%]

1.1
(Fig. 8)

DFSPH 259.9 16.0 47.5 33.7
MPSPH 276.6 15.1 44.8 33.7
MCVSPH 295.2 14.3 41.8 34.2

1.2
(Fig. 9)

DFSPH 436.0 2.3 9.9 23.2
MPSPH 439.7 3.1 10.9 28.4
MCVSPH 452.4 4.4 14.4 30.6

2.5
(Fig. 12)

DFSPH 459.4 0.103 11.2 0.92
MPSPH 516.5 0.097 10.0 0.97
MCVSPH 629.3 0.111 8.2 1.35

1.5
(Fig. 13)

DFSPH 603.8 2.3 8.8 26.1
MPSPH 625.1 2.3 8.6 26.7
MCVSPH 629.2 2.7 9.0 30.0

Forward moving boat on tranquil water with a propeller. In this
experiment, we simulate a scenario involving a boat moving forward
with a propeller at 60 r/min and 2.5 M fluid particles (Fig. 12). We

compare three methods: DFSPH, MPSPH with νt = 0.05, and our
MCVSPH with c = 0.057 and N‰ = 2500. DFSPH generates basic
wake flows from the rear of the boat. MPSPH adds more details to
the flow. Our MCVSPH approach clearly shows the transportation,
merging, and splitting of vortices driven by the propeller at the rear
of the boat (see the accompanying video).

Dam breaking with a static Stanford dragon and two static
Stanford bunnies. In our final experiment, we simulate a dam
breaking scenario with 1.5 M fluid particles alongside a static Stan-
ford dragon and two static Stanford bunnies (Fig. 13). We compare
DFSPH, MPSPH with νt = 0.08, and our MCVSPH with c = 0.05
and N‰ = 1500. Differences are primarily noticeable in the middle
and right figures. The figures illustrate that DFSPH shows almost no
turbulent features, while MPSPH and our MCVSPH preserve clear
turbulent motions (see accompanying video).

Performance comparison. Table 1 summarises the average com-
putational times t0 per frame, the average kinetic energy Ek, the
average total energy E, and the percentage of kinetic energy εk per
second per particle of the first 450 frames for the compared methods.
Our approach (MCVSPH, bottom row) exhibits a slightly lower
speed than MPSPH and DFSPH, as traversals over particle samples
are still required. This somewhat limits the scalability of our ap-
proach, indicating the need for research into further enhancements.
However, the comparison of the percentage of kinetic energy εk
demonstrates that our approach can generate a higher proportion of
kinetic energy per second. Thus, even if it is slightly slower than

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 14678659, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15024 by B

ournem
outh U

niversity, W
iley O

nline L
ibrary on [23/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



X. Ye et al. / Monte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Turbulent Flows 11 of 12

the other two methods, our approach can produce turbulent motions
with a higher efficiency in general simulation scales.

6. Conclusion

We have presented a Monte Carlo vortical SPH approach for sim-
ulating turbulent flows with SPH-based frameworks. Our method
works independently of pressure projection loops and flexibly in-
tegrates with existing efficient pressure solvers. We leverage the
vortex particle method within an SPH-based framework to model
turbulent motions. To enhance the efficiency of computing correc-
tive velocity from vorticity loss, we use a Monte Carlo estimator
to compute the Biot-Savart summation on a pre-sampled particle
subset. We pair vortex particles with a randomly sampled subset of
fluid particles making them move together as cohesive units. Vortex
particles, which are different in volume from SPH particles, carry
smoothed vorticity loss approximated using SPH.

The effectiveness of our method is mainly influenced by the sam-
ple size N and the volume c of vortex particles. Setting N to roughly
1‰ of fluid particles yields an optimal balance among turbulent
details, computational efficiency, and visual quality. Additionally, in-
creasing the volume c of vortex particles enhances turbulent effects.
Our experiments show that our MCVSPH method can effectively
generate and preserve visually prominent vortical motions.

While our method enhances turbulent details in SPH-based fluid
simulations, several unresolved issues remain. Firstly, in terms of
incompressibility and volume preservation, our method does not pro-
vide performance gains compared to DFSPH. Additionally, traver-
sals over particle samples are still indispensable in our approach,
which limits the scalability to large-scale simulations. Furthermore,
as the distribution of particle samples is randomly initialized, this
induces slightly stochastic fluid motions in each simulation, even if
all parameter settings are the same. Apart from that, a fully robust
setting of our method’s parameters is still a topic to be explored –
again, similar with comparable methods. We aim to develop viable
solutions for these challenges in our future research endeavors.

Acknowledgements

We would like to thank the Taichi graphics community for the
kind support in coding and high-performance computation. This
research was supported by National Key Research and Develop-
ment Program of China (No. 2022ZD0118001), National Nat-
ural Science Foundation of China (Nos. 62376025, 62332017,
U22A2022), Guangdong Basic and Applied Basic Research Foun-
dation (No. 2023A1515030177), China Scholarship Council, and
was partially funded by Horizon 2020-Marie Skłodowska-Curie
Action-Individual Fellowships (No. 895941).

References
[AIA*12] AKINCI, NADIR, IHMSEN, MARKUS, AKINCI, GIZEM, et al.

“Versatile Rigid-Fluid Coupling for Incompressible SPH”. ACM Trans-
actions on Graphics 31.4 (July 2012), 1–8. DOI: 10.1145/2185520.
2185558 4.

[AN05] ANGELIDIS, ALEXIS and NEYRET, FABRICE. “Simulation of
Smoke Based on Vortex Filament Primitives”. Proceedings of the 2005
ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Los
Angeles California: ACM, July 2005, 87–96. DOI: 10.1145/1073368.
1073380 1, 3.

[ANK22] ABBAS, NADEEM, NADEEM, SOHAIL, and KHAN, MUHAM-
MAD N. “Numerical Analysis of Unsteady Magnetized Micropolar Fluid
Flow over a Curved Surface”. Journal of Thermal Analysis and Calorime-
try 147.11 (June 2022), 6449–6459. DOI: 10.1007/s10973-021-
10913-0 3.

[BK17] BENDER, JAN and KOSCHIER, DAN. “Divergence-Free SPH for
Incompressible and Viscous Fluids”. IEEE Transactions on Visualization
and Computer Graphics 23.3 (Mar. 2017), 1193–1206. DOI: 10.1109/
TVCG.2016.2578335 2, 4, 6, 8.

[BKB12] BROCHU, TYSON, KEELER, TODD, and BRIDSON, ROBERT.
“Linear-time Smoke Animation with Vortex Sheet Meshes”. SCA ’12.
Lausanne, Switzerland: Eurographics Association, 2012, 87–95. DOI:
10.5555/2422356.2422371 2.

[BKKW19] BENDER, JAN, KOSCHIER, DAN, KUGELSTADT, TASSILO,
and WEILER, MARCEL. “Turbulent Micropolar SPH Fluids with Foam”.
IEEE Transactions on Visualization and Computer Graphics 25.6 (June
2019), 2284–2295. DOI: 10.1109/TVCG.2018.2832080 3, 4, 8.

[Bri15] BRIDSON, ROBERT. Fluid Simulation for Computer Graphics, Sec-
ond Edition. Taylor & Francis, 2015. ISBN: 9781482232837 1.

[BT07] BECKER, MARKUS and TESCHNER, MATTHIAS. “Weakly Com-
pressible SPH for Free Surface Flows”. Proceedings of the 2007 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’07.
San Diego, California: Eurographics Association, 2007, 209–217. DOI:
10.5555/1272690.1272719 2.

[CF88] CONSTANTIN, PETER and FOIAŞ, CIPRIAN. Navier-Stokes Equa-
tions. Chicago Lectures in Mathematics. Chicago: University of Chicago
Press, 1988. ISBN: 978-0-226-11549-8 1, 3.

[CK00] COTTET, GEORGES-HENRI. and KOUMOUTSAKOS, PETROS D.
Vortex Methods: Theory and Practice. Cambridge ; New York: Cambridge
University Press, 2000. ISBN: 978-0-521-62186-1 3.

[CKP*16] CHERN, ALBERT, KNÖPPEL, FELIX, PINKALL, ULRICH, et
al. “Schrödinger’s Smoke”. ACM Transactions on Graphics 35.4 (July
2016), 1–13. DOI: 10.1145/2897824.2925868 3.

[CLL10] CHEN, JAMES, LIANG, CHUNLEI, and LEE, JAMES D. “The-
ory and Simulation of Micropolar Fluid Dynamics”. Proceedings of the
Institution of Mechanical Engineers, Part N: Journal of Nanoengineer-
ing and Nanosystems 224.1-2 (Mar. 2010), 31–39. DOI: 10.1177/
1740349911400132 3.

[Dar00] DARVE, ERIC. “The Fast Multipole Method: Numerical Implemen-
tation”. Journal of Computational Physics 160.1 (May 2000), 195–240.
DOI: 10.1006/jcph.2000.6451 3.

[Eri66] ERINGEN, A. CEMAL. “Theory of Micropolar Fluids”. Journal of
Mathematics and Mechanics 16.1 (1966), 1–18. JSTOR: 24901466 3.

[FGG*17] FU, CHUYUAN, GUO, QI, GAST, THEODORE, et al. “A Polyno-
mial Particle-in-Cell Method”. ACM Transactions on Graphics 36.6 (Nov.
2017), 222:1–222:12. DOI: 10.1145/3130800.3130878 2.

[FLX*22] FENG, FAN, LIU, JINYUAN, XIONG, SHIYING, et al. “Impulse
Fluid Simulation”. IEEE Transactions on Visualization and Computer
Graphics (2022), 1–1. DOI: 10.1109/TVCG.2022.3149466 3.

[FSJ01] FEDKIW, RONALD, STAM, JOS, and JENSEN, HENRIK WANN.
“Visual Simulation of Smoke”. Proceedings of the 28th Annual Conference
on Computer Graphics and Interactive Techniques. SIGGRAPH ’01. New
York, NY, USA: Association for Computing Machinery, 2001, 15–22.
DOI: 10.1145/383259.383260 3.

[Har62] HARLOW, FRANCIS H. The particle-in-cell method for numerical
solution of problems in fluid dynamics. Technical Report, Los Alamost
National Labs. Mar. 1962. DOI: 10.2172/4769185 2.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 14678659, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15024 by B

ournem
outh U

niversity, W
iley O

nline L
ibrary on [23/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1145/2185520.2185558
https://doi.org/10.1145/2185520.2185558
https://doi.org/10.1145/1073368.1073380
https://doi.org/10.1145/1073368.1073380
https://doi.org/10.1007/s10973-021-10913-0
https://doi.org/10.1007/s10973-021-10913-0
https://doi.org/10.1109/TVCG.2016.2578335
https://doi.org/10.1109/TVCG.2016.2578335
https://doi.org/10.5555/2422356.2422371
https://doi.org/10.1109/TVCG.2018.2832080
https://doi.org/10.5555/1272690.1272719
https://doi.org/10.1145/2897824.2925868
https://doi.org/10.1177/1740349911400132
https://doi.org/10.1177/1740349911400132
https://doi.org/10.1006/jcph.2000.6451
http://www.jstor.org/stable/24901466
https://doi.org/10.1145/3130800.3130878
https://doi.org/10.1109/TVCG.2022.3149466
https://doi.org/10.1145/383259.383260
https://doi.org/10.2172/4769185


12 of 12 X. Ye et al. / Monte Carlo Vortical Smoothed Particle Hydrodynamics for Simulating Turbulent Flows

[HLA*19] HU, YUANMING, LI, TZU-MAO, ANDERSON, LUKE, et al.
“Taichi: A Language for High-Performance Computation on Spatially
Sparse Data Structures”. ACM Transactions on Graphics 38.6 (Nov. 2019),
201:1–201:16. DOI: 10.1145/3355089.3356506 6.

[ICS*14] IHMSEN, MARKUS, CORNELIS, JENS, SOLENTHALER, BAR-
BARA, et al. “Implicit Incompressible SPH”. IEEE Transactions on Vi-
sualization and Computer Graphics 20.3 (Mar. 2014), 426–435. DOI:
10.1109/TVCG.2013.105 2.

[IOS*14] IHMSEN, MARKUS, ORTHMANN, JENS, SOLENTHALER, BAR-
BARA, et al. “SPH Fluids in Computer Graphics”. Eurographics 2014 -
State of the Art Reports. Ed. by LEFEBVRE, SYLVAIN and SPAGNUOLO,
MICHELA. The Eurographics Association, 2014. DOI: 10.2312/egst.
20141034 2.

[JKB*10] JANG, TAEKWON, KIM, HEEYOUNG, BAE, JINHYUK, et al.
“Multilevel Vorticity Confinement for Water Turbulence Simulation”.
The Visual Computer 26.6-8 (June 2010), 873–881. DOI: 10.1007/
s00371-010-0487-1 3.

[JSS*15] JIANG, CHENFANFU, SCHROEDER, CRAIG, SELLE, ANDREW, et
al. “The Affine Particle-in-Cell Method”. ACM Transactions on Graphics
34.4 (July 2015), 51:1–51:10. DOI: 10.1145/2766996 2.

[KBST19] KOSCHIER, DAN, BENDER, JAN, SOLENTHALER, BARBARA,
and TESCHNER, MATTHIAS. “Smoothed Particle Hydrodynamics Tech-
niques for the Physics Based Simulation of Fluids and Solids”. Eurograph-
ics 2019 - Tutorials. Ed. by JAKOB, WENZEL and PUPPO, ENRICO. The
Eurographics Association, 2019. DOI: 10.2312/egt.20191035 3,
4.

[KSPS20] KARVELAS, EVANGELOS, SOFIADIS, GIORGOS, PAPATHANA-
SIOU, THANASIS, and SARRIS, IOANNIS. “Effect of Micropolar Fluid
Properties on the Blood Flow in a Human Carotid Model”. Fluids 5.3
(July 2020), 125. DOI: 10.3390/fluids5030125 3.

[LAF11] LENTINE, MICHAEL, AANJANEYA, MRIDUL, and FEDKIW,
RONALD. “Mass and Momentum Conservation for Fluid Simulation”.
Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. Vancouver British Columbia Canada: ACM, Aug.
2011, 91–100. DOI: 10.1145/2019406.2019419 3.

[Luk99] LUKASZEWICZ, GRZEGORZ. Micropolar Fluids: Theory and Ap-
plications. Modeling and Simulation in Science, Engineering and Tech-
nology. Boston: Birkhäuser, 1999. ISBN: 978-0-8176-4008-8 3.

[LWB*21] LIU, SINUO, WANG, XIAOKUN, BAN, XIAOJUAN, et al. “Tur-
bulent Details Simulation for SPH Fluids via Vorticity Refinement”.
Computer Graphics Forum 40.1 (2021), 54–67. DOI: 10.1111/cgf.
14095 3, 8.

[MM13] MACKLIN, MILES and MÜLLER, MATTHIAS. “Position Based
Fluids”. ACM Transactions on Graphics 32.4 (July 2013), 104:1–104:12.
DOI: 10.1145/2461912.2461984 3.

[MM21] MIMEAU, CHLOÉ and MORTAZAVI, IRAJ. “A Review of Vortex
Methods and Their Applications: From Creation to Recent Advances”.
Fluids 6.2 (Feb. 2021), 68. DOI: 10.3390/fluids6020068 3.

[Mon92] MONAGHAN, JOSEPH. “Smoothed Particle Hydrodynamics”. An-
nual Review of Astronomy and Astrophysics 30.1 (Sept. 1992), 543–574.
DOI: 10.1146/annurev.aa.30.090192.002551 4.

[NWRC22] NABIZADEH, MOHAMMAD SINA, WANG, STEPHANIE, RA-
MAMOORTHI, RAVI, and CHERN, ALBERT. “Covector Fluids”. ACM
Transactions on Graphics 41.4 (July 2022), 113:1–113:16. DOI: 10.
1145/3528223.3530120 2, 3.

[PMZ22] PASHA, POOYA, MIRZAEI, SAEID, and ZARINFAR, MEYSAM.
“Application of Numerical Methods in Micropolar Fluid Flow and Heat
Transfer in Permeable Plates”. Alexandria Engineering Journal 61.4 (Apr.
2022), 2663–2672. DOI: 10.1016/j.aej.2021.08.040 3.

[QLDJ22] QU, ZIYIN, LI, MINCHEN, DE GOES, FERNANDO, and JIANG,
CHENFANFU. “The Power Particle-in-Cell Method”. ACM Transactions
on Graphics 41.4 (July 2022), 118:1–118:13. DOI: 10.1145/3528223.
3530066 2.

[QZG*19] QU, ZIYIN, ZHANG, XINXIN, GAO, MING, et al. “Efficient and
Conservative Fluids Using Bidirectional Mapping”. ACM Transactions on
Graphics 38.4 (July 2019), 128:1–128:12. DOI: 10.1145/3306346.
3322945 2.

[RSÖ*22] RIOUX-LAVOIE, DAMIEN, SUGIMOTO, RYUSUKE, ÖZDEMIR,
TÜMAY, et al. “A Monte Carlo Method for Fluid Simulation”. ACM
Transactions on Graphics 41.6 (Nov. 2022), 240:1–240:16. DOI: 10.
1145/3550454.3555450 2, 3, 5.

[SP09] SOLENTHALER, BARBARA and PAJAROLA, RENATO. “Predictive-
corrective Incompressible SPH”. ACM SIGGRAPH 2009 Papers. SIG-
GRAPH ’09. New Orleans, Louisiana: Association for Computing Ma-
chinery, 2009. DOI: 10.1145/1576246.1531346 2.

[SRF05] SELLE, ANDREW, RASMUSSEN, NICK, and FEDKIW, RONALD.
“A Vortex Particle Method for Smoke, Water and Explosions”. ACM
SIGGRAPH 2005 Papers. SIGGRAPH ’05. Los Angeles, California:
Association for Computing Machinery, 2005, 910–914. DOI: 10.1145/
1186822.1073282 1, 3.

[WL93] WINCKELMANS, GRÉGOIRE S. and LEONARD, ANTHONY. “Con-
tributions to Vortex Particle Methods for the Computation of Three-
Dimensional Incompressible Unsteady Flows”. Journal of Computational
Physics 109.2 (Dec. 1993), 247–273. DOI: 10.1006/jcph.1993.
1216 1, 3, 4.

[WLB*20] WANG, XIAOKUN, LIU, SINUO, BAN, XIAOJUAN, et al. “Ro-
bust Turbulence Simulation for Particle-based Fluids Using the Rankine
Vortex Model”. The Visual Computer 36.10 (2020), 2285–2298. DOI:
10.1007/s00371-020-01914-5 3.

[WM19] WEN, JINGHUAN and MA, HUIMIN. “Real-Time Smoke Simula-
tion Based on Vorticity Preserving Lattice Boltzmann Method”. The Vi-
sual Computer 35.9 (Sept. 2019), 1279–1292. DOI: 10.1007/s00371-
018-1514-x 3.

[WP10] WEISSMANN, STEFFEN and PINKALL, ULRICH. “Filament-Based
Smoke with Vortex Shedding and Variational Reconnection”. ACM Trans-
actions on Graphics 29.4 (July 2010), 115:1–115:12. DOI: 10.1145/
1778765.1778852 1, 3.

[XWWZ22] XIONG, SHIYING, WANG, ZHECHENG, WANG, MENGDI, and
ZHU, BO. “A Clebsch Method for Free-Surface Vortical Flow Simulation”.
ACM Transactions on Graphics 41.4 (July 2022), 116:1–116:13. DOI:
10.1145/3528223.3530150 3.

[ZB05] ZHU, YONGNING and BRIDSON, ROBERT. “Animating Sand as a
Fluid”. ACM Transactions on Graphics 24.3 (July 2005), 965–972. DOI:
10.1145/1073204.1073298 2.

[ZB14] ZHANG, XINXIN and BRIDSON, ROBERT. “A PPPM Fast Summa-
tion Method for Fluids and Beyond”. ACM Transactions on Graphics 33.6
(Nov. 2014), 206:1–206:11. DOI: 10.1145/2661229.2661261 3.

[ZBG15] ZHANG, XINXIN, BRIDSON, ROBERT, and GREIF, CHEN.
“Restoring the Missing Vorticity in Advection-Projection Fluid Solvers”.
ACM Transactions on Graphics 34.4 (July 2015), 52:1–52:8. DOI: 10.
1145/2766982 1, 3, 5.

[ZNT18] ZEHNDER, JONAS, NARAIN, RAHUL, and THOMASZEWSKI,
BERNHARD. “An Advection-Reflection Solver for Detail-Preserving
Fluid Simulation”. ACM Transactions on Graphics 37.4 (July 2018),
85:1–85:8. DOI: 10.1145/3197517.3201324 2.

[ZYF10] ZHU, BO, YANG, XUBO, and FAN, YE. “Creating and Preserv-
ing Vortical Details in SPH Fluid”. Computer Graphics Forum 29.7
(2010), 2207–2214. DOI: 10.1111/j.1467-8659.2010.01809.
x 3.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

 14678659, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15024 by B

ournem
outh U

niversity, W
iley O

nline L
ibrary on [23/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1145/3355089.3356506
https://doi.org/10.1109/TVCG.2013.105
https://doi.org/10.2312/egst.20141034
https://doi.org/10.2312/egst.20141034
https://doi.org/10.1007/s00371-010-0487-1
https://doi.org/10.1007/s00371-010-0487-1
https://doi.org/10.1145/2766996
https://doi.org/10.2312/egt.20191035
https://doi.org/10.3390/fluids5030125
https://doi.org/10.1145/2019406.2019419
https://doi.org/10.1111/cgf.14095
https://doi.org/10.1111/cgf.14095
https://doi.org/10.1145/2461912.2461984
https://doi.org/10.3390/fluids6020068
https://doi.org/10.1146/annurev.aa.30.090192.002551
https://doi.org/10.1145/3528223.3530120
https://doi.org/10.1145/3528223.3530120
https://doi.org/10.1016/j.aej.2021.08.040
https://doi.org/10.1145/3528223.3530066
https://doi.org/10.1145/3528223.3530066
https://doi.org/10.1145/3306346.3322945
https://doi.org/10.1145/3306346.3322945
https://doi.org/10.1145/3550454.3555450
https://doi.org/10.1145/3550454.3555450
https://doi.org/10.1145/1576246.1531346
https://doi.org/10.1145/1186822.1073282
https://doi.org/10.1145/1186822.1073282
https://doi.org/10.1006/jcph.1993.1216
https://doi.org/10.1006/jcph.1993.1216
https://doi.org/10.1007/s00371-020-01914-5
https://doi.org/10.1007/s00371-018-1514-x
https://doi.org/10.1007/s00371-018-1514-x
https://doi.org/10.1145/1778765.1778852
https://doi.org/10.1145/1778765.1778852
https://doi.org/10.1145/3528223.3530150
https://doi.org/10.1145/1073204.1073298
https://doi.org/10.1145/2661229.2661261
https://doi.org/10.1145/2766982
https://doi.org/10.1145/2766982
https://doi.org/10.1145/3197517.3201324
https://doi.org/10.1111/j.1467-8659.2010.01809.x
https://doi.org/10.1111/j.1467-8659.2010.01809.x

