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Dual input stream transformer for vertical drift
correction in eye-tracking reading data

Thomas M. Mercier, Marcin Budka, Martin R. Vasilev, Julie A. Kirkby, Bernhard Angele, Timothy J. Slattery

Abstract— We introduce a novel Dual Input Stream Transformer (DIST) for the challenging problem of assigning fixation points from
eye-tracking data collected during passage reading to the line of text that the reader was actually focused on. This post-processing
step is crucial for analysis of the reading data due to the presence of noise in the form of vertical drift. We evaluate DIST against eleven
classical approaches on a comprehensive suite of nine diverse datasets. We demonstrate that combining multiple instances of the
DIST model in an ensemble achieves high accuracy across all datasets. Further combining the DIST ensemble with the best classical
approach yields an average accuracy of 98.17 %. Our approach presents a significant step towards addressing the bottleneck of
manual line assignment in reading research. Through extensive analysis and ablation studies, we identify key factors that contribute to
DIST’s success, including the incorporation of line overlap features and the use of a second input stream. Via rigorous evaluation, we
demonstrate that DIST is robust to various experimental setups, making it a safe first choice for practitioners in the field.

Index Terms—Machine Learning, Psychology, Pattern Recognition, Artificial Intelligence, Computer vision.

✦

1 INTRODUCTION

THE ability to read is an indispensable skill in modern
society, making reading a prominent subject in the psy-

chological and cognitive sciences. Eye-tracking technology
has emerged as a valuable tool for uncovering the cognitive
processes involved in reading, offering unique insights into
the reading patterns of individuals. It involves measuring
the gaze position on a computer screen over time with a
typical sampling frequency of 1000 Hz (although higher and
lower sampling rates such as 500 Hz and 2000 Hz are not
unusual) by analyzing the relative position of the pupil and
corneal reflection centers [1], [2]. This can provide critical
information about where and for how long an individual’s
eyes are fixating while they navigate text, revealing essential
clues about the mental processes at play [3]. From the gaze
position measurements, each gaze point can be considered
to either be part of a fixation, a state of oculomotor control
where the gaze position is held fairly constant while infor-
mation is extracted from the image on the retina, or part
of a saccade, which is a very fast, ballistic eye movement
that moves the center of the gaze to a different part of
the visual field. Depending on the properties of the visual
stimulus and the task, the mean fixation duration can vary
between 180 and 330 ms (with typical reading fixations
having lengths between 200 and 250 ms). In some tasks,
fixations as short as 50 ms and as long as 600 ms have been
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observed. The duration of a saccade is directly related to
the distance it covers in the visual field. In reading, saccade
duration usually does not exceed 30-50 ms [3].

Eye movement data have proven invaluable in the study
of reading behavior and in the diagnosis and treatment of
specific disorders such as dyslexia and schizophrenia [2],
[4], [5]. By examining eye movements during reading tasks,
researchers can better understand the cognitive mechanisms
engaged in the comprehension of written material and po-
tentially improve interventions for those who struggle with
reading due to neurological differences or other factors. Eye-
tracking experiments can also offer insight into accessibility
related issues of visual stimuli such as websites [6].

While the technological advances in recent decades have
enabled the recording of gaze position during reading with
high accuracy, eye-tracking data from such recordings con-
sists of the raw gaze position samples and thus still requires
post-processing to identify which gaze positions are part of
the fixations and which are part of a saccade. Furthermore,
these fixations need to be assigned to an area of interest in
the reading stimulus, which can be a particular character or
word, depending on the design of the experiment.

Modern eye-trackers can record gaze position with high
precision, but they can only ever be as good as their cali-
bration. Even small, involuntary participant movements can
affect the precision of the calibration, which can result in
dynamically changing offset in both the horizontal and the
vertical coordinate. Due to the way printed text is organized
in lines, an offset in the horizontal coordinate will lead to
a fixation being assigned to a different letter, or at worst
an adjacent word on the same line. Because of this, hor-
izontal drift is usually not corrected. However, a vertical
offset can lead to a fixation appearing to be on an incorrect
line, possibly many words away from the correct fixation
location [7]. This offset can be so pronounced as to make the
recorded fixation appear to lie on one or several lines above
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or below the line that the reader was actually focusing on.
An example for this phenomenon is shown in Fig. S1. The
adjustment of the vertical coordinate of a fixation point to
correct for this vertical drift is referred to as line assignment
since the vertical coordinate is set to the center of the line
that the fixation is assigned to.

Single line experiments avoid the issues associated with
line assignment as assigning fixations is trivial when there is
only one line, however, real-world readers do not typically
read single lines on an otherwise blank page or screen.
In order to get a more naturalistic sample of real-world
reading, many experiments involve full passages of text
that require each fixation to be assigned to a line of text to
carry out further analysis. Since simply assigning a fixation
point to whichever line it is closest to can lead to incorrect
assignments, more careful approaches to line assignment
have to be utilized. This can present a significant hurdle
to carrying out large number of trials for studies involving
multi-line passages of text as the process is often carried out
manually. See for example [8], [9], [10].

Line assignment of fixations is made significantly more
difficult due to noise in the tracking data, as can arise
from loss of calibration of the eye-tracker, subtle head or
body movements or even pupil dilation during the exper-
iment [7]. Such noise can take the form of dynamically
changing vertical drift of the recorded fixations, which
causes fixations to be recorded as falling on lines above or
below of the actually fixated line. There have been several
attempts to create algorithms to automate the line assign-
ment process and therefore enable researchers to carry out
larger studies of multi-line reading. See Carr et al. [7] for a
review of several available algorithms.

Such techniques, however, have not been evaluated on
multiple datasets and are commonly not easily accessible
to researchers in the field of psychology. This may lead
researchers to have concerns about their accuracy and relia-
bility as evidenced by the fact that line assignment to correct
vertical drift is still commonly done manually [8], [9], [10]
despite the availability of line assignment algorithms.
Hence, manual correction is considered the gold standard
for addressing noise in eye-tracking fixation data [7]. Un-
fortunately, any form of manual assignment depends on the
individual carrying out the task and can yield inconsistent
results based on the individual carrying out the task [11].
Nevertheless, if the available algorithms prove insufficient,
they are left with no choice but to resort to a manual
approach. In reading research involving eye-tracking, this is
still common [8], [9], [10]. Since this is both time-consuming
and increases subjectivity in the resulting assignments, it is
desirable for this process to be reliably automated, an idea
initially put forward by Cohen [12].

In this paper we present a novel way of tackling the
line assignment problem by utilizing a deep learning (DL)
architecture trained using a rank-consistent ordinal regres-
sion loss function. Our proposed architecture uses two input
streams to incorporate information about both the eye-
tracking fixations and the stimulus text used in the trial. We
call our model Dual Input Stream Transformer (DIST)1. We

1. Our code and the user interface can be found here: https://github
.com/Gittingthehubbing/DIST-Dual Input Stream Transformer

show that combining an ensemble of our proposed model
with classical algorithms in a ”Wisdom of the Crowds”
(WOC) approach outperforms the best classical algorithms
(including a WOC of all classicals) on all datasets. The idea
of combining the algorithms this way is inspired by [13].
We acknowledge that our model is unlikely to perform well
for data with very different fixation patterns than those of
the datasets used to train the model, such as experiments
using different fonts or font sizes, for example. The datasets
considered in this study all used either the Consolas or the
Courier New fonts with font sizes ranging from 11 to 22.
Nevertheless, the diversity of these datasets and the data
normalization schemes employed should allow the model
to generalize to many unseen datasets without the user
having to carry out any manual line assignment or fine-
tuning of the model. Furthermore, the combination with
the classical models via the WOC approach should further
increase resilience to data that is very unlike the training
data. Note that all datasets are based on text being read
left-to-right, so the model is unlikely to perform well on
languages read in a different way. We further acknowledge
that due to the increased complexity of our method how
the results came to be can not be easily traced. However, in
practice, this does not present a significant drawback since,
regardless of the algorithm used, some visual inspection of
the results will be necessary. Cases where the correction
algorithm made particularly large adjustments or where
there is strong disagreement between different correction
methods should be inspected in particular. In practice, this
will only apply to a small subset of trials.

To the best of our knowledge this paper presents the
first comprehensive comparison of multiple line assignment
algorithms across diverse datasets in the domain of eye-
tracking research. For practitioners in the field of psychol-
ogy the best model will likely be the one that can be
robustly applied to data from various studies. Ultimately,
widespread adoption of algorithmic tools could lead to
increased efficiency and consistency in the analysis of such
data, fostering more reliable and accurate scientific insights.

Our contributions are as follows: 1) introduction of a
novel transformer-based architecture for the problem of line
assignment of fixation coordinates, 2) comparative evalua-
tion of the newly introduced approaches on diverse data
from multiple studies, 3) increased robustness and accuracy
of line assignment to enable reading researchers to carry out
larger studies involving multi-line reading experiments.

2 RELATED WORK

Carr et al. [7] recently reviewed and evaluated several clas-
sical algorithms for correcting vertical drift in eye-tracking
data. They summarized the approaches into ten categories
and implemented each approach to enable direct compar-
ison. They reported high accuracies for most algorithms
for their small dataset of manually corrected experimental
data as well as synthetic data from simulated experiments.
By implementing all algorithms with a similar interface,
the authors greatly improved usability and comparability
of the published algorithms. We adapt their implementa-
tions to compare our model to classical work. Note that
while it is not discussed in their publication, Carr et al.
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nevertheless offers an implementation of the slice (described
below) algorithm. This brings the total number of compared
classical algorithms to eleven. As will be shown in Table 2 of
Section 7, the compared algorithms showed large variability
for the different dataset. When the accuracies across all trials
and datasets are averaged, the cluster [7], [14], merge and
regress [7], [15], [16] algorithms show the best performance
among the individual classical methods.

Carr’s cluster [7], [14] implementation applies k-means
clustering in order to assign all fixations to one of m clusters,
where m is equal to the number of lines in the passage. The
mean value of the y-coordinate of all fixations in one clus-
ter is used to find the line number that a particular cluster
corresponds to.

The merge algorithm as implemented by Carr [7] uses
Spakov et al.’s [17] post hoc correction approach with mod-
ifications. It generates progressive sequences of consecutive
fixations and merges them into larger sequences until there’s
one sequence per line of text. A y threshold defines proxim-
ity, and a regression-based merge process ensures similar
gradients and low errors between merged sequences. The
algorithm follows Spakov et al.’s [17] four phases for re-
laxing criteria, while the number of sequences is reduced to
match text lines in positional order.

The implementation by Carr et al. [7] of the regress
algorithm is based on the R package FixAlign [12]. It fits
a number of regression lines, meaning lines going through
a set of points that are found by minimizing the y-distance
of all points to the line, to the unordered fixation points and
subsequently assigns each fixation to its highest likelihood
regression line. This identifies outliers and assigns each
fixation to their most appropriate line of text.

The recently published slice algorithm works in three
main steps [18]. Firstly, it finds fixation sequences that are
likely to belong to the same line. Secondly, it goes through
the sequences, starting from the longest and finds which of
the sequences belong to the same or an adjacent line. Lastly,
it ensures that the number of detected sequences is equal to
the number of lines in the text. They report 95.3 % accuracy
for a subset of the MECO dataset.

To the best of our knowledge this paper is the first DL-
based solution to the line assignment problem. Eye-tracking
data have been utilized to train machine learning (ML) mod-
els to diagnose reading difficulties. While a review of the
many ML related eye-tracking applications is beyond the
scope of this paper, we would like to briefly discuss some
examples. In an early study by Rello and Ballesteros [19] the
authors used the eye-tracking data of 97 participants, 48 of
which had a dyslexia diagnosis, to extract features that were
deemed relevant to the problem of reading difficulty diag-
nosis. These features were fed into a polynomial Support
Vector Machine (SVM) to classify each participant as either
dyslexic or not. Using this approach the authors report a
10-fold cross-validation accuracy of 80.18 %.

In a more recent study, Vajs et al. [20] used a DL ap-
proach based on a convolutional neural network (CNN) to
perform dyslexia classification for a dataset of 30 subjects,
half of which had a diagnosis of dyslexia. They use the gaze
coordinates without extracting fixations or other features,
however, they do clean the data by removing eye blinks and
data points they consider invalid due to the gaze not being

registered by the measurement device. After splitting each
trial data into a number of sequences, the authors visualize
the gaze trace with the distance between subsequent points
being encoded as color. This visualization serves as the input
to the CNN with each visualization being assigned the label
of belonging to a dyslexic subject or not. They report an
accuracy of 87 %. These reports highlight the importance of
eye-tracking data for diagnosis of widespread pathologies.

Additionally, modeling of eye-tracking data has also
been used to assess second language proficiency by scor-
ing how similar the gaze patterns, as represented by eye-
movement features, of the subjects to those of native speak-
ers and predicting scores of other language tests via a
regression model [21]. Furthermore, DL-based models us-
ing only features extracted from eye-movements or models
that combine them with linguistic features of the text have
been applied to the task of estimating reading comprehen-
sion [22], [23]. ML models have also been used to directly
predict the fixations using an approach that incorporates
both the sequence of fixations and the sequence of words
making up the stimulus text [24].

3 DATASETS

We make use of data from nine studies (see Table 1)2.
For all these studies the authors carried out manual line
assignment of all fixations. In total these datasets contain
15,446 trials, although the two largest datasets, ChA and
TexF, only have two lines of text in their stimulus material.
The low number of lines makes the correction task for these
datasets much easier than for typical paragraph data and
therefore pushes up the average accuracies for all compared
approaches. Here, one trial is considered to be the result of
a participant reading one screen of text and yielding one fix-
ation sequence. For each of the fixations in such a sequence
the ground truth consists of the index of the line to which the
fixation is assigned, with this assignment being based on the
gold standard human-corrected manual approach. Note that
since none of the classical algorithms can discard fixations
we only consider those fixations that had been assigned to
a line by the human labeler, hence fixations that the human
labeler discarded are not considered. Across datasets this
was the case for an average of 2.8 % (ranging from 0.15 to
8.2 %) of fixations. Since the stimulus texts varied in length
and line counts, this results in a differing number of target
classes for each dataset. Please see Section 4 for how this is
handled in the model design.

Table 1 shows the dataset characteristics which varied
in a variety of aspects. This provided the model a broad
basis for learning how to assign fixations to lines under
varying experimental conditions. On average, the text stim-
uli varied between 1 and 14 lines yielding on average 19
to 247 fixations per trial. The average fixation duration is
fairly consistent except for the ChA dataset having nearly
twice the average duration. All datasets except MECOde
and Carr were collected at Bournemouth University in the
UK. The MECOde dataset was kindly shared by the creators
of the MECO dataset [18], [31]. The Carr dataset is publicly
available and associated with Carr et al. [7].

2. The preprocessed datasets and links to the raw data, where avail-
able, can be found here: https://osf.io/zt9gn.
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TABLE 1: Characteristics and associated references for all datasets. Mean no. of fixations is how many fixations appear in
a trial on average. Mean trial time is how much time in seconds passes between start and end of a trial, on average. Min
and Max no. of lines gives what range of number of lines in a trial exists for a dataset, thereby giving an indication of
paragraph length for each dataset. Max/Min no. of words gives the largest/smallest number of words appearing in the
stimuli of the dataset. No. of trials is the total number of trials in the dataset. Mean fixation duration gives the duration
of a fixation in ms. Mean no. of words per line gives the number of words per line for the trials in a dataset, on average.
Mean line width gives the width of an average line in pixels. Min/Max line width gives the smallest/largest line width in
pixels for the trials in a dataset. Age group gives the age range for the study.

Dataset Abbr [25] ChA [8] OffN [26] TexF [27] CD [28] OZ [29] Harry [30] MECOde [31] Carr [7]
Mean no. fixations 143.11 26.01 114.16 19.04 99.45 90.19 90.39 247.09 208.13

Mean trial time 39.49 10.40 31.90 4.74 26.84 22.42 27.79 59.42 49.43
Min lines 9 2 1 2 6 8 10 10 10
Max lines 12 2 12 2 8 10 10 14 13

Min words 95 15 10 13 84 82 133 144 104
Max words 132 25 155 34 116 142 153 225 168
No. trials 1599 2682 1506 6396 1150 1116 300 648 48

Mean fixation duration (ms) 237.15 376.24 208.52 206.72 220.63 209.97 234.26 203.83 223.07
Mean no. words per line 10.97 8.78 11.39 10.10 13.02 10.88 12.54 14.36 11.45
Mean line width (pixels) 826.50 671.85 964.51 759.32 821.42 704.83 1035.12 1557.36 1058.32
Min line width (pixels) 65 288 56 372 44 48 238 270 104
Max line width (pixels) 975 800 1316 1376 913 1080 1106 1770 1176

Is raw data public? Yes No No Yes Yes Yes No No Yes
Language English English English English English English English German Italian
Age group 18-45 7-10 18-64 18-26 18-40 19-63 18-31 18-39 Children + Adults

In addition to the datasets available from eye-tracking
studies, we produce a synthetic dataset of fixation sequences
with different kinds of noise added to them. To produce
the synthetic sequences we adapt code from [7]. Based on
the wikitext dataset [32] we generate passages consisting
of 8 to 14 lines of English text with each line being up to
130 characters long and the line height varying between
49 and 79 pixels. The choice for each parameter for each
passage was based on a uniform random distribution. For
each passage a sequence of up to 500 fixations is generated.
To simulate the effects of loss of equipment calibration
and other disturbances that can result in both random and
systematic errors in the recorded fixation positions the y-co-
ordinate is determined by y = N (ly, dnoise) + lydshift, where
N is the normal distribution, ly is the y-center of the line,
dnoise is the standard deviation of noise and dshift is the y-
shift in pixels. To increase how realistic the synthetic fixation
patterns are, within-line and between-line regressions are
added. Regressions refer to the phenomenon of readers
fixating parts of the text that lie before the current position.
Please see Section S3 and [7] for details on how this is
implemented.

While there are DL-based methods to produce fixation
sequences [24], we focus on Carr’s approach due to its abil-
ity to produce a large set of sequences with the ability to
control both the type and severity of noise as well as the
corresponding line correction for each fixation.

Fig. 1a shows the raw fixation point distributions for all
datasets highlighting the data diversity across studies. No-
tably, the fixation distributions show a pattern of darker blue
forming lines where the fixations cluster on the lines of text
of the different stimuli but with significant variation around
them. This clustering is visible due to the fact that within
a specific dataset the stimulus materials for the different
trials always have the lines of text in the same position. The
differences in the fixation distributions can be attributed to
dissimilarities in the stimulus materials, namely the length,
formatting and visual presentation of the passages read by

(a) No normalization with large spread of position and extent.

(b) After only applying xy-norm.

(c) After applying both xy-norm and lw-norm.

Fig. 1: Fixation density plot illustrating the distribution of
the fixation point coordinates for all datasets before and af-
ter normalizing the fixation points by subtracting the mini-
mum character bounding box coordinates in each trial (xy-
norm) and dividing by the line width and line height (lw-
norm). Darker blue colors indicate a higher concentration of
fixation points across the trials. The x- and y-axes in Sub-
figures a) and b) give the coordinates in pixels while c) is
fully normalized and thus does not have any units. Please
see Section S5 for an enlarged version of this figure.
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participants, as well as the equipment employed to present
the stimuli in each study and the experimental setup. This
diversity presents a challenge since the model will likely
only be able to correctly assign fixations to lines if the
coordinates have a similar scale and distribution to what
the model is trained on. As is shown in Fig. 1 and will be
expanded on in Section 8, we address this by normalizing
the fixation data using information from the stimuli of each
trial of the various studies.

Before feeding the fixation coordinates into the model,
the coordinates are normalized by first subtracting the min-
imum character bounding box coordinates (outer edge of
bounding box) found in the trial. We dub this scheme xy-
norm. The effect of this normalization step is illustrated in
Fig. 1b. Additionally, the fixation coordinates are further
normalized by dividing the y coordinate by the minimum
line height and the x coordinate by the maximum line width
found in the trial. We dub this scheme lw-norm. This is done
because the datasets had been recorded under different
experimental conditions and the start position of each block
of text is different for each dataset, as can be seen in Fig. 1a.
The effect of the full normalization is illustrated in Fig. 1c.

Since the different model inputs varied in their scale all
values were further normalized by subtracting the mean
and dividing by the standard deviation of all training data.

To evaluate the model’s ability to generalize beyond
its training data, we shall employ a 9-fold cross-validation
scheme, where one of the nine datasets is in turn withheld
from the training process, ensuring that the model is evalu-
ated on separate, previously unseen data.

4 FRAMEWORK

Conceptually, our dual input approach consists of a se-
quence of fixation-related features and an image that con-
tains information about both the fixations and the stimulus
material being fed into a deep sequence model that uses
this information to classify each fixation according to which
line of text it belongs to. The sequence of fixation-related
information makes up the first input stream and the image
makes up the second input stream. The problem at hand
can be described as a mapping g : x1, x2 7→ y that jointly
assigns each fixation in a sequence of length s to a line
index y ∈ {1, 2, ...,K} with K being the maximum line
index in a trial, using fixation related features x1 ∈ Rf×s

and associated trial related features x2 ∈ RH×W×C . Here f
is the number of fixation related features, s is the number of
fixations, H , W and C are the height, width and number of
channels in the input image associated with the information
fed into the second input stream.

We leverage a bidirectional encoder-only Transformer
model, while configured to be a smaller model, it largely
follows the original Bidirectional Encoder Representations
from Transformers (BERT) architecture [33], as our main
encoder model. To distinguish this encoder from the pre-
trained model introduced in the original publication, we
refer to this part of DIST simply as the main encoder.
The self-attention-based Transformer architecture [34] has
proven widely successful and has largely displaced the
previous recurrent network architectures due to their more
direct information flow across the sequence and improved

training speed and stability [35]. These architectures largely
overcome the vanishing or exploding gradient problem that
recurrent neural networks suffered from when processing
long sequences [36]. BERT-based approaches are able to take
into account context from both directions from a specific
part of the sequence [33]. This makes such encoders well
suited to handle the long fixation sequences.

Our model incorporates two input streams: one consist-
ing of normalized fixation features and one containing the
rendered page consisting of the characters, their bounding
boxes and coarsely depicted fixation point information. The
fixation features consist of the x-y coordinates of each fixa-
tion point and the line number with which the fixation point
overlaps with -1 being used when a point does not overlap
with any line. A fixation point is considered to overlap with
a line if it’s y-coordinate is within the y-coordinate-range of
the character bounding boxes making up the line. No gaps
exist between the bounding boxes of adjacent lines within a
paragraph for all datasets except CD, which has a ten pixel
gap between adjacent lines. We use an ImageNet pretrained
CoAtNet [37], [38], [39] as a feature extractor for the second
input stream. Its weights are unfrozen, so it is allowed to
train with the rest of the architecture. We choose CoAtNet
due to its ability to combine the desirable inductive biases
found in CNNs with the attention mechanism.

The second input stream information is fed into the
model by first grayscale rendering separate images for the
stimulus text of the trial, the filled character bounding boxes
and a scatter plot of the x-y-coordinates of each fixation
point in the associated sequence with the fixation start time
(scaled to between 0.25 and 1.0 for each trial) encoded as
the gray-level of the scatter plot markers. See Fig. 2 for a
depiction of the grayscale images used. These three single
channel images are concatenated in the channel dimension
to get an image with three channels as the pretrained CoAt-
Net expects. The CoAtNet then encodes this information
into a single vector for each sequence. This vector is then
projected to half the hidden dimension of the main encoder
and repeated along the sequence dimension (repeat block
in Fig. 3) to match the shape of the projected fixation
features. The tensors resulting from both input streams are
concatenated along the feature dimension and fed into the
main encoder architecture. A simple linear head network
then turns the encoder output into line prediction outputs
for each fixation in the sequence. Fig. 3 shows an overview
of the data flow through the architecture.

The main encoder model uses several blocks consisting
of a multi-headed self-attention layer, a layer norm and a
Multi Layer Perceptron (MLP). These blocks are stacked to
create a deep encoder-only transformer network. The head
of the network is a simple fully connected layer with no
activation function. A Conditional Ordinal Regression for
Neural Networks (CORN) [40] loss is used to train the
network. It takes in the target line assignments and outputs
of the last layer of the architecture, also referred to as the
logits. In contrast to a simple cross-entropy loss function
CORN takes the order of the line indices into account.

To feed the fixation features to the model in mini batches,
each sequence of fixations has to be padded to match the
longest sequence length. For the calculation of the loss and
accuracy measures this padding is taken into account by
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(a) Fixations. (b) Characters. (c) Bounding Boxes.

Fig. 2: Example of the single channel images used as second input stream to the main encoder.
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Fig. 3: Model flow with the top half showing the fixation information input stream and the bottom half showing the page
information stream. s is the length that all sequences are padded to. f is the number of fixation related features. h is the
hidden dimension of the main encoder network. l is the maximum number of lines in the datasets and therefore the highest
possible line number DIST can assign to a fixation.

masking out the padded parts of each sequence.
Since the stimulus texts and their formatting varied

across datasets, the number of possible target lines can differ
for each trial. This is addressed by using the largest line
count present across all datasets as the output dimension of
the final layer. At inference time the prediction is restricted
by clipping it to the maximum line index in the trial. It
should be noted that this does not present a significant
limitation of our approach since that information is always
available for data from passage reading studies.

As will be shown in Section 8, some datasets show very
different performance depending on what kind of normal-
ization scheme is used for the fixation data. Since it is desir-
able to have a single model work well for all datasets, we
explore an ensemble-based approach. This is implemented
by training the same DIST configuration multiple times
on the same training data, randomly reinitializing all non-
pretrained weights each time. This is done for each normal-
ization scheme (normalized fixation points are illustrated
in Figures 1b and 1c). The weights of the chosen models
are then frozen and combined in an ensemble model which
takes in the data with the different normalization schemes
applied to it and feeds it to the list of models appropriate for
each scheme. The resulting logit tensors are then averaged
and fed into the CORN inference function (shown in Equa-
tion 2). This requires no further model training. We refer to
an ensemble of DIST models as E-DIST. Inspired by Carr’s
work [13] on combining multiple classical algorithms, we
further enhance the E-DIST approach by combining it with
the WOC approach, which applies multiple algorithms and
uses a majority decision voting system for each fixation
assignment and works as follows. For a given trial, first a

set line assignments is computed for each algorithm that
is to be included in the WOC approach. For each fixation
in that sequence, the WOC algorithm counts how many of
the algorithms assign the fixation to a line number and the
line number with the highest number of votes is chosen as
the result. One can give additional weight to the vote of an
algorithm by adding multiple copies of its line assignments
to the voting pool. We refer to the approach that includes
E-DIST corrections in the voting pool as E-WOC and the
approach that only uses classically produced corrections as
C-WOC. We will show in Section 7 that E-WOC achieves the
highest accuracy of all approaches when averaged across
datasets.

5 IMPLEMENTATION

Our approach has been implemented in PyTorch [41]. We
have configured the main encoder to have a depth of
four, an internal representation dimension of 512 and eight
attention heads, this is equivalent to the ”Small” config-
uration described in [42]. The page encoding computer
vision (CV) model is configured to take in images with
size of 224x224 pixels and has its weights initialized from a
model trained to classify images from the ImageNet dataset.
For the CoAtNet we chose a model with an embedding
dimension of 512. To implement the WOC approach we
modify Carr’s implementation [43]. All training was carried
out on a machine equipped with an Nvidia RTX 3090 with
24 GB of memory and an Intel i7-7700K CPU with 64 GB
of memory. The PyTorch implementation of our model is
publicly available.
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6 TRAINING SETTING AND EVALUATION METRIC

As touched upon in Section 4 for model supervision and
evaluation during training we use the CORN loss function
shown in Equation 1 [40].

L(Z, y) =− 1∑K−1
j=1 |Sj |

K−1∑
j=1

|Sj |∑
i=1

[
log(σ(z[i])) · 1

{
y[i] > rj

}
+(log(σ(z[i]))− z[i]) · 1

{
y[i] ≤ rj

}]
(1)

where Z are the outputs of the last layer of the model,
referred to as logits in Fig. 3. y is the set of ground truth line
indices y[i] and i the index for the model output z[i]. |Sj |
denotes the size of the subset of the training data denoted
by j, that matches the condition of the rank being no higher
than rj with rj being able to take on values between 1 and
K − 1 for K possible line indices. σ is the Sigmoid function.
1 is the indicator function giving 1 if the condition is met
and 0 if it is not, with the condition being that the ground
truth label is above or below rank rj . This loss function takes
into account that the line index is ranked and the difference
between line numbers is meaningful by creating conditional
training sets for each rank, in this case line number. For
models trained using the CORN loss Equation 2 computes
the predicted line indices q[i]:

q[i] = 1 +
K−1∑
j=1

1
(
P̂
(
y[i] > rj

)
> 0.5

)
(2)

where P̂ is the predicted probabilities. CoAtNet is initial-
ized from pretraining on ImageNet, while weights of the rest
of the architecture are randomly initialized (Kaiming ini-
tialization [44]). All training uses the Adam optimizer and
is carried out using the same parameters. An exponential
warm-up of 3000 steps with a peak learning rate of 4.5e− 4
which is reduced by half every 3000 training steps until the
training ends at 25000 steps.

To compare the performance of our model to that of the
classical algorithms we use relative accuracy αr , which is
the difference between our model’s accuracy αm and the
best classical algorithm’s accuracy αc:

αr =
αm − αc

αc
. (3)

Therefore, αr > 0 indicates that the model outperforms the
best classical approach.

7 RESULTS AND DISCUSSION

To provide a fair performance benchmark for our proposed
approaches, we evaluate eleven classical line assignment
algorithms and C-WOC on all datasets. We keep the eval-
uation dataset out of the training data entirely and evaluate
the model’s performance on that dataset. In this manner, we
perform a full cross-validation for all datasets.

In Table 2 we show the average accuracy for eleven dif-
ferent classical algorithms as well as their combination via
C-WOC and our DIST, E-DIST and E-WOC approaches. The
accuracy metric is calculated for each trial in the evaluation
dataset and then averaged across all trials in that dataset.

For each dataset the accuracy of the best performing classi-
cal approach is underlined, these accuracy values were used
to calculate the relative accuracies shown in Fig. 4 and used
for the ablation studies in Section 8. The relative accuracy is
the difference between our model accuracy and the accuracy
of the best performing classical model (see Equation 3). This
presents the most challenging comparison and could be
considered somewhat unrealistic as a practitioner looking
for the best way to automatically correct their fixation data
would have no way of knowing which algorithm performs
best for their data since they would have no ground truth
data and can thus not compare the different algorithms. We
nevertheless chose this measure in order to demonstrate that
our proposed approach is likely to be the best default choice
in most scenarios. As it can be seen, E-WOC outperforms
all classical algorithms (including C-WOC) on all datasets.
Note that for the TexF and ChA, the absolute accuracy
achieved by C-WOC is already 99 % or higher, since these
datasets are the result of experiments using only two lines
of text in their stimuli, there is little room for improvement
over the classical approach. The strongest relative improve-
ments achieved by E-WOC are seen for the Abbr, MECOde
and OffN datasets. It is notable that many of the classical
algorithms show good performance for at least some of
the datasets in question with the overall best performing
classical approach being C-WOC, closely followed by cluster
and merge. Furthermore, it can be seen that E-DIST achieves
the highest accuracy on three datasets, emerging as the
second-best method.

As is shown in Fig. S4, the performance dependence on
the number of DIST instances in E-DIST is different for each
dataset. The accuracy reported in Table 2 is based on using
three DIST instances for each normalization scheme, there-
fore six instances in total. Note that the use of six instances
does not present a significant computational burden since
the inference time for each instance is small and the ma-
jority of users in the field are unlikely to want to correct
more than a few thousand trials at a time. Therefore, a small
gain in accuracy is likely well worth the extra computation.
See Table S1 for a comparison. A single DIST model using
the fully normalized fixation features as well as the second
stream information as input outperforms the classical ap-
proaches on five datasets with OffN showing the lowest ac-
curacy. OffN is the only dataset containing paragraph breaks
and is thus quite different from the other datasets.

Abbr CD Carr ChA Harry MECOde OZ OffN TexF
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Fig. 4: Cross-validation using E-WOC evaluated using aver-
age accuracies relative to the accuracy of the best classical
algorithm for each dataset. The reported accuracy is based
on allocating three votes to E-DIST in the voting pool.

In Fig. 4 we show the relative accuracy for each dataset
achieved by E-WOC. As it can be seen E-WOC outperforms
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TABLE 2: Comparison of mean accuracy for all classical algorithms, C-WOC, DIST, E-DIST and E-WOC. Bold numbers
highlight the best performing approach overall and underlined values indicate the best classical approach for each dataset.
DIST accuracies are based on using input that had both xy-norm and lw-norm applied. E-DIST accuracy is based on using
three instances of the DIST model for each normalization scheme, so six instances in total. As shown in Fig. S4, the effect
of adding more instances to E-DIST on accuracy differs across datasets while increasing the computational burden, thus
the chosen number is a compromise of these trends. The reported accuracy for E-WOC is based on allocating three votes
to E-DIST in the voting pool. This choice is a compromise of the trends shown in Fig. 5.

Method Abbr CD Carr ChA Harry MECOde OZ OffN TexF Mean
E-WOC 97.82 98.43 98.13 99.11 98.56 96.33 98.41 97.00 99.72 98.17
E-DIST 98.16 98.25 99.63 99.14 98.87 95.87 98.14 92.41 99.61 97.79
C-WOC 94.98 98.22 96.27 99.00 94.97 94.83 98.39 94.42 99.71 96.75

DIST 97.71 96.77 99.16 99.09 98.44 95.80 98.02 80.46 99.51 96.11
cluster 94.86 93.88 94.12 98.06 98.37 90.10 96.65 94.61 99.61 95.59
merge 94.62 94.85 94.20 97.22 97.83 81.16 90.32 93.97 98.84 93.67
regress 86.83 95.33 92.33 98.13 94.18 85.88 96.90 90.05 99.49 93.24

slice 94.15 93.15 95.70 98.10 97.21 94.33 95.22 71.57 99.59 93.23
warp 89.71 88.83 96.68 96.25 88.52 87.69 94.28 91.90 95.50 92.15
chain 81.92 96.47 90.51 96.45 81.90 82.72 96.77 85.50 97.56 89.98

stretch 78.74 90.51 93.97 97.59 88.30 82.78 94.67 83.11 98.35 89.78
attach 80.58 95.48 87.38 96.16 81.37 80.29 96.23 84.61 97.38 88.83
split 76.02 90.89 89.96 94.91 79.18 81.21 89.09 81.98 95.68 86.55

segment 78.82 79.93 80.19 95.42 79.75 67.34 71.65 79.53 94.41 80.78
compare 52.61 50.35 63.58 92.71 44.01 59.88 46.01 80.18 85.45 63.86

the classical approaches on all datasets with Abbr, OffN and
MECOde showing the largest gains.
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Fig. 5: Relative accuracy for E-WOC depending on the num-
ber of votes allocated to E-DIST model, which uses six DIST
instances. To take into account the differences in achieved
accuracy caused by which DIST instances are used in E-
DIST, the data shown is the result of running the experiment
15 times for each dataset with the included instances being
chosen at random (uniform probability) for each repetition.

In Fig.5 we show how E-WOC performance depends on
how many votes are allocated to E-DIST. Note the number
of votes allocated to all other algorithms is kept at one (See
Fig. S5 for different vote allocations). The performance of
E-WOC strongly depends on this vote allocation, with four
datasets showing diminishing performance gains and rest
of the datasets show decreasing performance as the number
of votes is increased. As can be expected for datasets where
E-DIST achieves lower accuracy than C-WOC, the perfor-
mance decreases as the classical algorithms loose relative

importance in the voting pool.
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Fig. 6: Confusion matrix for all datapoints in all datasets
combined. The results are based on an E-WOC with three
votes allocated to E-DIST which uses six DIST instances.
Note that the values are normalized for each row of the
confusion matrix and the colormap is restricted to between
0 and 0.06 to better illustrate the mistakes.

We show the confusion matrix for E-WOC for all datasets
in Fig. 6. As the confusion matrix shows, virtually all
mistakes are misassignments by a single line. As expected
from the high accuracies achieved on all datasets, the vast
majority of fixation points get assigned to the correct lines.

8 ABLATION STUDIES

To further analyze the model’s performance, we carry out a
range of ablation studies. To better understand how each in-
vestigated factor of our model architecture and data pipeline
affects the performance on the various datasets a full cross-
validation is carried out for every ablation study. Each con-
figuration is run at least ten times with all non-pretrained
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weights of the model being randomly initialized each time
(Kaiming initialization [44]). We present the average accu-
racy relative to the best performing classical approach and
the standard error associated with the repeated experiments.
The ablation studies are carried out for a single DIST model
for each experiment, rather than an ensemble of models.
This is done to show the variance in the performance for
the DIST model and to more clearly show the effects of each
investigated factor.
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Fig. 7: Cross-validation for DIST model without the second
input stream (labeled None), and for the different ways
of encoding the trial related information, labeled Encoder,
MLP and CoAtNet, respectively. Bar height gives average
relative accuracy (relative to the best classical model for each
dataset) of all experiments with a given configuration. Gray
line indicates the standard error. The horizontal stacked bar
chart labeled Wins indicates for how many datasets each
configuration gives the highest relative accuracy.

First, the effect of utilizing the dual input stream is in-
vestigated by training the model to predict line assignments
based on the fixation information alone as well as with
different methods of adding additional information to the
main model input. In addition to the CoAtNet approach
described in section 4, we experiment with creating a se-
quence of bounding box coordinates of all characters on the
page used as stimulus during the trial. Since this sequence
length is not the same as the number of fixations in the trial,
two approaches of preparing the bounding box information
are explored. The first approach is to use a simple MLP
consisting of two fully connected layers to first project the
bounding box x-y coordinates into a single value for each
step in the sequence of characters and then passing the
result to a second linear layer that projects the sequence
dimension to half the embedding dimension of the main
encoder. The second approach is to use a separate encoder
only transformer model to encode the projected bounding
box coordinates. As with the CoAtNet-based approach, this
results in a single encoding vector for one sequence of
fixations, which then gets repeated for every step in the
fixation sequence. For all methods of including the second
input stream the resulting tensor is concatenated with the
projected fixation related information from the first input
stream and fed into the main encoder. In Fig. 7 we show
that the model greatly benefits from using a dual input
stream approach with the accuracy dropping strongly for all
datasets when only the fixation related input stream is used.
DIST is outperformed by the classical algorithms for all
datasets when no 2nd input stream is utilized. The MLP en-
coding approach only outperforms the classical approaches
for one dataset. The encoder character bounding boxes

encoding method outperforms the classical algorithm for
three. Overall, the CV-based approach greatly outperforms
all other approaches, achieving the highest accuracy on five
datasets. The requirement of a second input stream does not
present a restriction of the model since most classical models
also rely on page related information to correct fixations
and this information is typically recorded during the eye-
tracking experiment and thus readily available.
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Fig. 8: DIST performance for using different input images as
the second input stream as input to the CoAtNet.

In Fig. 8 we show how the DIST model performs when
different kinds of page and fixation related information
are fed into the model as a second input stream. Since
the pretrained CoAtNet model that is used to encode this
information expects an input with three channels, the single
channel input rendering is duplicated three times in the
channel dimension before being fed into the model. As it can
be seen, using a scatter plot of the fixation positions without
any text or bounding box information shows much better
performance than using only the characters or character
bounding box images for the OffN dataset. The magnitude
of this difference pushes up the average performance for
this input type. However, for most of the datasets the
combination of all three types of information results in the
best performance. The concatenation of all three renderings
in the channel dimension and the non-concatenated color
rendering give roughly equal average accuracy but the
former achieving the highest accuracy on more datasets.
OffN is a particularly challenging dataset, as it is the only
one with paragraph gaps in the stimulus material, resulting
in a very different pattern of fixation sequences.
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Fig. 9: Cross-validation for DIST with training done by using
different loss functions to supervise.

Fig. 9 shows how the model performs depending on
which loss function is used to supervise the model during
the training process. The rank consistent CORN loss pro-
duces the best overall performance as judged by the number
of datasets on which it leads to the highest accuracy, closely
followed by a standard cross-entropy loss, which does not
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take the ordering information into account. Both the CORN
and the cross-entropy loss functions achieve similar average
accuracies across the datasets. The regression loss, which is a
simple mean squared error for treating the line assignment
as a continuous number between zero and the maximum
line in all datasets, does poorly on most datasets, showing
the lowest average accuracy and no wins.
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(a) Comparison of performance for using only xy-norm.
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(b) Effect of using only lw-norm compared to using both xy-
norm and lw-norm.
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(c) Effect of using only xy-norm compared to using both xy-
norm and lw-norm.

Fig. 10: Effect on relative accuracy of using different nor-
malization schemes for the fixation points of the first input
stream. Note that when both schemes are applied, the xy-
norm is always applied first.

Fig. 10 shows the effect of using different normalization
schemes for the fixation coordinates on the DIST model
performance on the various datasets. As it can be seen,
the chosen normalization scheme has a major effect on
model performance for some datasets with the CD, OffN
and MECOde seeing the biggest effect. Fig. 10a shows that
if lw-norm is not used, the effect of using xy-norm is small
for five datasets, while retaining an overall positive effect on
the mean of all relative accuracies.

Fig. 10b shows the effect of using lw-norm with and
without xy-norm. It can be seen that most datasets benefit
from this combination while the OffN dataset sees a strong
drop in relative accuracy.

Fig. 10c shows the effect of using xy-norm with and
without lw-norm. As it can be seen, the difference in per-
formance is very pronounced for the MECOde, CD and
OffN datasets. The MECOde dataset performs very poorly

without this normalization step while both the OffN and CD
datasets see a strong boost when the line height and width
normalization is not used.

The above analysis shows that none of the schemes or
its combinations is a clear best choice for all datasets. This
motivates the utilization of an ensemble-based approach
which can make use of the benefits of both approaches and
give good performance on all datasets when used in E-WOC
as can be seen in Fig. 4. See Section 4 for an explanation of
how the different normalization schemes are used in the E-
DIST model and how this is used as part of E-WOC.
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Fig. 11: Effect of using different amounts of synthetic data
during training on the relative accuracy. The thick blue
line indicates the mean of repeated experiments while the
shaded area indicates the standard error. Note, the scale of
the relative accuracy axis is not kept the same across the
subplots to show the trend for each dataset.

In Fig. 11 shows how the relative accuracy develops
depending on the number of synthetically created trials in
the training data. Please see Section 3 and Section S3 for
an explanation on how these trials can be generated. As it
can be seen, the Abbr, Carr, Harry and MECOde datasets
benefit significantly from adding at least 2000 synthetic
trials to the training data. OffN is the only dataset where
adding any synthetic trials to the training data results in
a significant drop in relative accuracy while the accuracy
of the remaining datasets is largely unaffected. As it can be
seen in Table 1 in Section 3 MECOde is the only dataset with
14 line long stimulus texts, therefore adding synthetically
created trials with the same number of lines will likely help
the model learn such assignments.
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Fig. 12: Effect of adding the line-overlap feature as addi-
tional fixation related information to the first input stream.

Fig.12 shows how DIST performs with and without the
line-overlap feature in the first input stream. While for most
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datasets the addition of the line overlap feature does not
change the relative accuracy by much, the CD, OZ and OffN
see a large increase in performance. This results in an over-
all positive effect of adding the overlap feature. Since the
overall amount of training data is limited, the model clearly
benefits from being given this additional information.

9 CONCLUSIONS

We have introduced DIST, a dual input stream architecture
using encoder only transformer model to assign fixations
from eye-tracking data collected during passage reading to
their most appropriate line of text. The dynamically chang-
ing vertical drift of the recorded gaze positions makes this
line assignment a crucial processing step. Our architecture
utilizes fixation related information as well as trial related
information to map each fixation to a line index. We evaluate
our model as well as eleven classical approaches found
in literature on data from nine eye-tracking studies. It is
demonstrated that an ensemble of DIST models using fixa-
tion data normalized in two different ways combined with
the classical algorithms in a WOC approach outperforms all
classical approaches on all datasets. The high performance
of the ensemble approach is attributed to the finding that for
some datasets a single DIST model performs very differently
depending on how the fixation coordinates are normalized.
In addition, we show that while many classical algorithms
show impressive performance, the achieved accuracy varies
greatly, depending on the dataset. Our combined approach,
in contrast shows robust performance on all datasets and
is hence a safe choice for any fixation alignment dataset.
The addition of a line overlap feature for each fixation point
emerges as crucial for achieving high accuracy for some of
the datasets. It is also demonstrated that the use of a second
input stream in addition to the fixation related features
greatly benefits the model performance with a CV-based
approach emerging as particularly effective. We furthermore
show that the inclusion of synthetic data in the training
dataset is beneficial for some datasets. Overall, our approach
presents a considerable improvement over previously pub-
lished classical approaches in terms of accuracy and ro-
bustness to differences in stimulus settings. This makes
the presented method a safe first choice for practitioners,
enabling them to carry out and analyze eye-tracking studies
with larger amounts of text without being limited by the
bottleneck of human corrected line assignments.
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