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A B S T R A C T

Dyslexia is a common neurocognitive learning disorder that can seriously hinder individuals’ aspirations if
not detected and treated early. Instead of costly diagnostic assessment made by experts, in the near future
dyslexia might be identified with ease by automated analysis of eye movements during reading provided by
embedded eye tracking technology. However, the diagnostic machine learning methods need to be optimized
first. Previous studies with machine learning have been quite successful in identifying dyslexic readers,
however, using contrasting groups with large performance differences between diagnosed and good readers.
A practical challenge is to identify also individuals with borderline skills. Here, machine learning methods
were used to identify individuals with low performance of reading fluency (below 10 percentile from a normal
distribution) using their eye movement recordings of reading. Random Forest was used to select most important
eye movement features to be used as input to a Support Vector Machine classifier. This hybrid method was
capable of reliably identifying dysfluent readers and it also provided insight into the data used. Our best
model achieved accuracy of 89.7% with recall of 84.8%. Our results thus establish groundwork for automatic

detection of dyslexia in a natural reading situation.
1. Introduction

Dyslexia is a neurocognitive learning disorder characterized by
reading and spelling impairments despite normal intelligence [1]. It is
one of the most common learning disorders [2] with estimated preva-
lence of 5% to 12% [3,4]. Dyslexia often has negative consequences
on the academic and occupational success [5], the self-esteem [6], and
the social-emotional development [7] of an individual. Studies [6,8,9]
have shown that the earlier dyslexia is detected and support given in
teaching, the more its negative effects can be mitigated [10].

One emerging educational technology is eye tracking, which is a
method to measure a user’s gaze position on, e.g., a computer screen
based on analysis of pupil movement and infrared-induced corneal
reflection on eye video. The two main types of eye movements in
reading are 200 to 300 ms stay-put moments of gaze, termed fixations
[11–13] intervened with rapid ballistic (15 to 80 ms) movements called
saccades [12,14].

Readers with dyslexia exhibit quite different eye movement be-
havior compared to typical readers [14], namely by exhibiting sub-
stantially more and longer fixations, shorter saccade duration and
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length, and more backward directed saccades, i.e. regressions, than
typical readers [13–15]. The underlying reason for the eye movement
abnormalities is proposed to be due to the difficulties the person has in
decoding and recognizing printed words [14,16].

The long-standing promise of eye tracking is to combine it with com-
putational methods to provide fine-grained information of the individ-
ual’s cognitive processes [14]. An important step to realize this promise
is the creation of methods to reliably identify reading difficulties from
eye movements. Machine learning methods have been successfully
implemented in the detection of dyslexia from eye movements with
promising results by [17–19] and [20]. For reviews, see [21–23].

1.1. Related work

Even if the prevalence rate of dyslexia in children is 5%–12% [3,4],
many recent studies that apply nonlinear classifiers for the detection
of dyslexia are trained with nearly equal proportions. Such direct
circumvention of the class-imbalance problem negatively affects the
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performance of learning algorithms, hindering the generalization of the
trained models to the population level [24].

For instance, in [17], a controlled trial was performed with 97
participants (aged 10–54), out of which 48 had a diagnosed dyslexia.
The assessment setting consisted of 12 readings of 60 words in Spanish
by each participant. Using a Support Vector Machine (SVM) model,
the authors obtained a 10-fold cross-validation accuracy of 80.2% to
identify the dyslexics, using trial-and-error based selection of reading
time, mean of fixation time, and age of the participant as features.

In another study [18], altogether 185 Swedish children (aged 9–
10) with 97 poor readers (5th percentile in word decoding) and 88
typical readers with an average or above average word decoding skill,
were studied. Not surprisingly, due to large differences in the read-
ing skill between the groups and almost equal group sizes, the SVM
classifier scored 95.6% 10-fold cross-validation accuracy. A diverse
set of eye movement features relating to progressive and regressive
saccade lengths and their corresponding fixation durations was used
in the analysis. The same dataset was reanalyzed with Particle Swarm
Optimization (PSO) based Hybrid Kernel SVM-PSO method in [19],
ending up again with 95% classification accuracy. In this study, the
eye movement features were transformed into principal components.

In [20], 69 Greek children (aged 8–12), out of which 32 (46 %) were
clinically diagnosed as having dyslexia, were studied. The reading skill
difference between the groups was substantial as children of the control
group were also clinically confirmed not to have reading problems. Eye
movements were collected during reading two texts summing up to 324
words. With SVM and the LASSO technique for feature selection, 97%
accuracy was obtained with features of saccade length, number of short
forward movements, and number of multiply fixated words.

In higher education, [25] reported an ambitious study trying to
separate highly skilled university students from low skilled students
in their literacy proficiency from eye movements of reading (𝑛 = 61).
Interestingly, these two groups of students did not differ in their overall
eye movement parameters such as mean fixation duration or saccade
length, but the identification was based on more subtle eye movement
patterns related to reading comprehension processes. These features
were sentence or paragraph specific forward fixation time, first-pass
rereading time, second-pass fixation time, and regression path reading
time, leading to the classification accuracy of 80.3% with the SVM
method.

Recently, two studies with large test groups of young dyslexics
were published. In [26] the assessment of 2679 children (aged 7–9)
concluded that fixation duration had the highest correlation with the
reading speed and accuracy. An approach not utilizing eye movements
was reported in [27], where reading exercises in an online gamified
test with 32 linguistic exercises in Spanish for 3644 respondents (aged
7–17) were processed. Dyslexia diagnosis was given to 392 (10.8%) of
the participants. Random Forest (RF) classifier with a rich set of 196
features in total, where 4 represented demographic features and 192
performance features from the interaction during playing, scored in
10-fold cross-validation 79.7/79.1% precision and 80.4/78.4% recall
in Dyslexia/No dyslexia separation. The analysis of the RF model
showed that the two most important features were gender and general
performance in Spanish classes.

A fresh review on the eye tracking techniques and applications in
[28, Table 3] summarizes SVM as the most commonly used technique,
the rising popularity of the convolutional neural networks and deep
learning techniques, but identifying only three preliminary studies with
the Random Forest technique.

1.2. Our contribution

The promising results of the previous studies with eye tracking
and machine learning have largely relied on using small, balanced
groups of clinically diagnosed dyslexics with a strictly different con-
2

trol group of non-dyslexics. Our present study extends the machine
learning approach to identify reading difficulties based on an arbitrary,
albeit rather generally used, cut-off criterion on the reading fluency
continuum. While posing a maximal difficulty for the detection, such
an identification task is also of utmost practical importance. In most
clinical and educational settings, diagnosis is based on a similar gener-
ally used arbitrary cut-off score (e.g., below 10 percentile performance
in standardized reading tests) in a normally distributed skill [29]. This
issue concerns especially reading fluency which is the hallmark of
dyslexia in transparent orthographies, where dyslexia is characterized
as slow yet rather accurate word reading [30]. Instead, in opaque
orthographies dyslexia is characterized by a large number of word
reading errors, which is due to the complex correspondence between
spoken and written language [31]. Importantly, the cut-off scores based
on normal distribution for a reading difficulty are often a major factor
in administrative decision-making, i.e., for deciding whether a student
is deemed eligible for special education services or not [32].

In Section 2, we describe the dataset and the machine learning
methodology we used. In Section 3, we present our computational
results which are further discussed in Section 4. Section 5 briefly
concludes this paper. The method and results were originally created
as part of the Master’s Thesis of the first author [33]. For this paper,
we have distilled and clarified the major findings of the thesis work.

2. Materials and methods

2.1. eSeek Internet reading skill data

The data set used in this research was gathered by the project eSeek
from the Department of Psychology at the University of Jyväskylä.
The project studied Internet reading skills among Finnish students with
and without learning disorders. The data had been obtained over the
course of three years from 165 youngsters with an average age of
12.5 years. It includes results of the Internet reading skill tests, eye-
movement data, and a partial analysis of these. The students had been
chosen from a class of about 400 students. Of the chosen students, 30
(18 %) met the criteria for a reading disorder based on choosing the
10th worst percentile of the reading fluency performance score. This
criteria was used to label the students as either dyslexic or typical
readers. The eye movements of the participants were recorded using
an EyeLink 1000 eye-tracker with a sampling frequency of 1000 Hz.
A Dell Precision T5500 workstation with an Asus VG-236 monitor
(1920 × 1080, 120 Hz, 52 × 29 cm) at the viewing distance of 60 cm
was used for displaying the stimuli. The calibration of the device was
performed before the experiment and repeated between trials, if visible
head movements were made, a drift was detected on the researcher’s
screen used for following the eye movements, or the calibration error
exceeded 0.30 visual degrees. [34]

During the experiment, participants completed a practice task and
then 10 simulated information search tasks. The tasks consisted of read-
ing a contextualized question and then selecting a search result (out of
four options) that would help them answer the question. An example
of the given question is ‘‘Find out why pandas are endangered?’’ [34]

The eye movement data was obtained from the question page shown
to the participants. Fig. 1 shows one question page in which four
sentences and a ‘‘Continue’’ button were displayed. The second and the
third sentence had an important role; one contained the task (question)
for this information search, the other was a distractor with irrelevant
information. The placement of these varied between the tasks, i.e., the
task could also be on the third row and the distractor on the second. The
first and last sentences provided some context and narrative for the task
assignment. Like the distractor, these sentences contained information
that is relevant to the context but not to the task.

In the case of Fig. 1, the distractor is the third sentence. The first
sentence reads ‘‘The reclusive panda is a herbivore that moves slowly’’.
The second sentence, which is the task, reads ‘‘Next, find out why
pandas are endangered’’. The distractor sentence translates to ‘‘The
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Fig. 1. Example of the question page shown during the task (in Finnish).

endangered pandas spend their time looking for food and resting’’.
Finally, the last sentence reads "Contrary to normal bears, giant pandas
do not hibernate’’.

To avoid confusion with the ‘‘task sentence’’, each of the 10 infor-
mation search tasks and the practice task that an individual partici-
pant completed are henceforth referred to as a trial. We also use the
shorthand notation T1, T2,. . . , T11 to refer to each of these 11 trials.

Before use in this study, we removed participants with incomplete
reading fluency test results or technically failed trial recordings. After
such cleaning, 161 students were left in the data file. Of these, 30
(i.e., 18.6%) were recognized as having a reading disorder based on
their reading fluency performance score being in the 10th lowest
percentile.

2.2. Machine learning methods

After selecting an arbitrary threshold in reading fluency (10th per-
centile in this study) and labeling the trials accordingly, our goal
becomes that of creating a binary classifier using supervised machine
learning. While a massive number of alternatives exist, we found good
reasons to use the ones discussed next.

Support Vector Machine (SVM) [35] was a very clear first choice
for us because it has been used in all prior works on dyslexia detection
based on eye-tracking that we found and overviewed in Section 1.1.
Thus, using SVM as a baseline method puts us in a comparable zone
with other systems under development. SVM maps its input vectors
into a high dimensional feature space through a chosen non-linear
mapping and then finds an optimal hyperplane to separate the classes
with a maximal margin which reduces generalization error [36]. In
this study, we used the SVM implementation in the Python module
Scikit-learn [37] which applies the LIBSVM library [38] internally.

Random Forest (RF) [39] is a classifier comprising an ensemble of
randomized decision trees, which make a joint decision on the class.
Like SVM, RF has been used with good results in various tasks [40].
Our reasons to use RF were plenty. First of all, we wanted to compare
SVM with at least one other popular method. The timeframe of our
project would not allow a fully comprehensive comparison of every
method available, so we opted to pick one with greatest promises. In
addition to its demonstrated practical usefulness, we were intrigued by
the reported robustness, generalization capability, and intrinsic feature
selection opportunities embedded in decision tree-based methods [41,
42]. In this study, we picked also the RF implementation from the
Scikit-learn Python module [37] as we did with SVM.

2.3. Hyperparameter optimization

Appropriate configuration of hyperparameters is necessary in order
to produce a model with the best performance for the problem. In
order to strike a compromise between adequate performance and time
spent in exploring the hyperparameter space, we opted to use grid
3

search for two influential parameters in both methods and leave other
hyperparameters to the default settings in Scikit-learn. In such a low-
dimensional setting, grid search is presumed to be superior to manual
search both in efficiency and reliability [43].

For this research, we chose to use the default kernel type of Scikit-
learn which is the radial basis function. Exhaustive search of the most
suitable kernel type was deliberately left out of our current scope. For
the two hyperparameters, C (regularization cost) and gamma (radial
basis width), a grid search was performed.

For RF, we chose two parameters that we regarded most influential.
The number of trees in the forest is defined by the n_estimators
parameter. Having a larger number of trees is usually better, but that
also increases the computation time for the model [41]. When splitting
a node in the decision tree, the feature used for the split is selected from
a random subset of features. The number of features chosen into this
subset is determined by the max_features parameter [41]. Other
parameters of the RF were left to the default settings of Scikit-learn.

2.4. Cross-validation

While 10-fold cross-validation is usual [44], other numbers of folds
can be used according to use scenario [45]. We chose to use 5 folds
in order to conserve computational time and to increase the number of
underrepresented dyslectic cases in each fold (6 instead of 3). The latter
effect enabled more intelligible probing of fold-wise results which was
useful at the early method development stage reported here. We used
stratified subsampling in creating the folds.

2.5. Training and evaluation algorithm

Algorithm 1 was used in simultaneously training and evaluating the
models and searching for optimal hyperparameters. We implemented it
using Python and Scikit-learn and additionally the Pandas module for
input data handling. The source code is available at https://r.jyu.fi/
DHV.

The training and evaluation are done in cycles; each cycle consists
of training the model and obtaining the results. The cycles constant
determines how many times the whole cross-validation cycle is done.
p1 and p2 are two hyperparameters chosen to be optimized (C and
gamma for SVM; n_estimators and max_features for RF).

Algorithm 1 Training and evaluation with cross-validation.
for i = 1, ... , cycles do
for p1, p2 in hyperParameters do

Create five cross-validation folds
for each cross-validation fold do

Create classifier
Fit model with data
Store resulting predictions
Calculate and store confusion matrix

end for
end for

end for
Sort resulting models according to the recall score

The combinations of hyperparameters are compared against each
other by a performance metric. In our case, we used the recall score of
dyslexics predicted. Recall is the fraction of correctly predicted samples
out of all the samples of the positive class. This was chosen as the
performance metric in this research as it was deemed more important
to correctly detect the dyslexics than typical readers. In addition to
the recall score, we also observed the overall accuracy of the model.
Using only the accuracy score is not enough, because the classes are
unbalanced in our data. It would be possible to obtain an accuracy of
81.4% by just declaring all of the test subjects as typical readers. This
would give a false picture of the model’s performance.

In the case of RF, the algorithm also calculates the feature impor-
tances for each model created in the cross-validation folds. We shall
return to the topic of feature selection using RF in Section 2.7.

https://r.jyu.fi/DHV
https://r.jyu.fi/DHV
https://r.jyu.fi/DHV
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Fig. 2. Features in increasing level of complexity.
Fig. 3. Example of a transition matrix used in this study.

2.6. Feature extraction

A major part of this study was the exploration of possible features,
i.e., classifier inputs, that enable discrimination in our binary classifi-
cation task. Fig. 2 outlines our procedure of creating feature sets with
increasing complexity, based on earlier studies (Section 1.1) and also
some newly devised ideas.

The left side of Fig. 2 introduces the most obvious and simplistic fea-
ture set, labeled AVG in result analysis later on. The AVG set contains
simple averages and sums of fixations and saccades observed in the eye-
tracking recordings. There are 4 features for each 161 participants. The
saccade amplitude and saccade duration are partially tied to each other,
as the larger the amplitude, the longer the saccade lasts.

In the center of Fig. 2, we have first computed a transition ma-
trix [11] representing the transitions of the participant’s gaze from one
area of interest (AOI), i.e., sentence, to another. Contrary to tradition,
we include on the diagonal the times that the gaze has shifted within
one AOI. This was considered relevant because dyslexics have been
known to have more fixations while reading. The abbreviations F, T, D,
and L denote the first, task, distractor, and last sentence, respectively.
Fig. 3 shows an example of a transition matrix. We can see that the eyes
of the participant have moved within the first sentence 11 times, moved
from the first sentence to the task 1 time, first sentence to distractor two
times, and so on.

We conjectured that the transitions between sentences could be
useful in separating the readers with difficulties from typical readers.
The reasoning is that dyslexics would have more difficulty finding the
task sentence out of the four than typical readers. This would cause
them to have a more erratic gaze movement among the sentences, and
by comparing transition matrices it should be possible to notice this
difference.

Our feature set labeled TMA contains averages of the transition
matrix values (16 features) and fixation duration averages and sac-
cadic amplitude averages within each area of interest (AOI), i.e., each
sentence, (+8 features) averaged over all the trials. The intention
behind averaging was to lower the dimensionality of the feature set
and possibly reduce the noise.
4

The feature set labeled TM contains these 16 + 8 = 24 features
separately for each trial, thus the dataset size is 240 features for each
161 participants.

For the feature set TR, we also rephrased and relabeled the clas-
sification task to identify not participants but individual trials, so we
have 24 features for each 1610 individual trials. For evaluation, a
participant’s result is determined by a vote: Each of the 10 separate
trials of a participant are classified, and the final prediction is dyslexic
when more than five (i.e., half of the trials) say so.

The rightmost feature set of Fig. 2, labeled TMH, includes not
averages but 5-bin histograms of 3 values: fixation duration, saccade
duration, and saccade amplitude. The histograms were created sepa-
rately for each 4 sentences in each 10 trials. The 160 transition matrix
values of TM were also included in TMH. This causes the feature set to
have 5 × 3 × 4 × 10 + 160 = 760 features for each 161 participants. The
bin intervals were calculated beforehand by evenly dividing the entire
range of data values into five equally sized partitions. Each feature is
min–max scaled to range [0, 1] before use.

2.7. Feature selection

In addition to the feature sets described in Section 2.6, we created
some reduced ones via feature selection [46]. The basic idea is to use
the RF classifier to select the most important features, which are then
given to SVM for classifying the data in a manner similar to [47]: We
calculate the feature importances with RF for every fold, every cycle,
and every hyperparameter combination. Of these feature importances,
the 10 most important ones are saved at each fold rotation. Once the
hyperparameter combination with the best recall value for the dyslexia
class has been found, the 𝑛 most frequent features are picked into their
own feature set, where 𝑛 is the number of features chosen. We tried out
𝑛 = 10, 20, 30, 35, and 40 to heuristically search for the optimal feature
set. In result analysis, we use the labels RFF10, RFF20, RFF30, RFF35,
and RFF40, respectively.

3. Results

We applied the method of Section 2.5 with 100 cycles and a 5-
fold cross-validation for various classifiers and feature sets. Table 1
shows an overview of the best results. The ‘‘Method’’ column indicates
the machine learning method used to produce the model. The ‘‘Bal’’
tag indicates that the class weights were balanced for the Scikit-learn
library SVM by adjusting them inversely in proportion to class frequen-
cies. The ‘‘Feat’’ column holds the names of the feature sets as given
in Sections 2.6 and 2.7. The ‘‘Accuracy’’ column holds the average
fraction of correct predictions for all of the 100 models created in the
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Table 1
Best models created with their accuracy and recall scores.

Method Feat. Accuracy Recall

SVM RFF35 89.8% ± 4.7% 75.9% ± 17.1%
TR 86.4% ± 1.8% 55.7% ± 6.4%

SVM Bal RFF35 89.7% ± 4.0% 84.8% ± 14.0%
RF RFF35 86.9% ± 4.6% 54.0% ± 20.4%

Table 2
Results for SVM using features selected by Random Forest.

Feat. Accuracy Recall C 𝛾

RFF10 85.7% ± 5.7% 57.5% ± 20.6% 8000 0.05
RFF20 86.5% ± 5.0% 61.4% ± 20.6% 30 1.0
RFF30 89.9% ± 4.6% 73.8% ± 17.5% 30 1.1
RFF35 89.8% ± 4.7% 75.9% ± 17.1% 30 1.09
RFF40 89.5% ± 4.7% 74.5% ± 17.1% 30 0.9
RFF35bal 89.7% ± 4.0% 84.8% ± 14.0% 1 1

Table 3
Results for SVM using feature sets apart from RFF𝑛.

Feat. Accuracy Recall C 𝛾

AVG 85.0% ± 2.1% 42.8% ± 18.1% 100000 0.05
TMA 80.9% ± 2.8% 46.5% ± 19.6% 500 0.09
TM 78.2% ± 3.9% 38.5% ± 19.3% 1000 0.001
TMH 85.0% ± 3.1% 41.6% ± 19.5% 200 0.009
TR 86.4% ± 1.8% 55.7% ± 6.4% 50000 0.1

Table 4
Results for RF using the generated feature sets.

Feat. Accuracy Recall maxF #Est

AVG 80.7% ± 5.5% 50.2% ± 19.2% 4 10
TMA 83.6% ± 5.0% 41.3% ± 19.2% 18 30
TM 81.7% ± 5.3% 36.9% ± 20.1% 240 20
TMH 84.5% ± 4.6% 39.9% ± 19.2% 550 20
TR 86.7% ± 1.1% 36.3% ± 5.1% 24 20
RFF35 85.4% ± 1.1% 42.6% ± 19.7% 5 20

algorithm cycles. The error given is the standard deviation of these
accuracy scores. Similarly, the ‘‘Recall’’ column contains the average
recall scores with standard deviation.

The best results for SVM were achieved by the RFF𝑛 feature sets.
hese results are displayed in Table 2. The first column holds the name
f the feature set. The two last columns contain the SVM hyperparam-
ter values that yielded the best result. By balancing the class weights,
he recall score of the RFF35 model was improved significantly with a
inuscule decrease in accuracy. Table 3 displays the results obtained
ith SVM by using the rest of the feature sets. The best accuracy and

ecall scores were obtained with the TR feature set.
The best results obtained by the Random Forest classifier are dis-

layed in Table 4. The two last columns contain the hyperparameters
ptimized with grid-search and used by each model. As can be seen, the
esults are not as good as with SVM. Yet, using RF as a feature selection
echanism enabled us to find the best predictions using SVM.

. Discussion

Analyzing the most relevant features obtained in the RFF𝑛 sets
enables us to make observations that may be of interest in designing fu-
ture tests for dyslexia screening. Fig. 4 displays the number of features
related to each sentence chosen for the top 10 most important features
each fold rotation. The total number of features chosen is 10 × 𝑓𝑜𝑙𝑑𝑠 ×
𝑐𝑦𝑐𝑙𝑒𝑠 = 10 × 5 × 100 = 5000. Of these, 2900 (58%) were related to the
first sentence on the task question page. This relation means that the
feature was generated from gaze activity in the first sentence. The other
sentences had a much lesser effect. This finding may be related to the
usage of contextual information in reading. Knowing the context helps
5

Fig. 4. Importance of each sentence.

Fig. 5. Importance of each trial.

readers read faster as they are able to predict upcoming words [48]. In
first sentence, the context is not yet established and therefore readers
have to rely mostly on their word recognition, decoding and syntactic
language skills, which are known to be primarily affected in dyslexia.
In other words, the finding suggests that dyslectic readers may rely
relatively more on context in their reading as a compensatory reading
strategy [49].

The different trials T2–T11 seemed to be another factor in feature
importance. Fig. 5 presents the number of features related to each trial
chosen for the top 10 each fold rotation. The features generated from
T2 data (i.e., first actual trial) occur most often (32%), indicating a
high significance in classifying the two classes correctly. For the rest
of the trials, the feature count stays somewhat in the same range, with
low points at T6 and T9. The high importance of T2 is speculated to be
the result of the participants not having yet established a context and
cognitive schema for the information searching task. Again, dyslexics
suffer more from not knowing the context of the text than fluent read-
ers. This could explain the importance of T2 trial features in separating
the two classes; at this point the participants had not yet seen enough
trials to establish the context and form of the question page text. Later
on in the experiment, the context is established and thus it is harder to
distinguish the readers with difficulties from typical readers.

Fig. 6 shows the number of times the most important features were
picked. We can see that features concerning the first sentence (indicated
by an ‘‘F’’) and ones from T2 have occurred most often, indicating their
importance, as stated above. In addition, by looking at the histogram
bin numbers in the feature names, we can also see that in the case of
saccadic features, the most frequent bin is the first. Respectively, for the
features that are created from fixation data, the most important bin is
the last. These observations indicate that the shortest saccades and the
longest fixations help the classification the most. This is a conclusion
that agrees with the results obtained by [13,15].

We can also notice that features extracted from saccadic data are
more important than ones from fixation data, although also a reverse
pattern has been reported [26]. The use of transition matrices did not
contribute greatly to the classification; only one feature in the 35 most
important features is from a traditional transition matrix. The other
three features in this list (T2F-F, T10T-T and T3D-D) are the numbers
of fixations made within the indicated sentence.
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Fig. 6. Importance of fine-grained features.

5. Conclusions

In this study, we developed a classifier to identify dyslexic readers
from eye movement data. Importantly, we defined dyslexia here by an
arbitrary threshold in reading fluency score which is a realistic and
practically important choice, leading to an inherently difficult classi-
fication task. Our feature extraction augments the traditionally used
transition matrices by using gaze patterns within AOIs and histograms
rather than plain average values of fixation and saccade measures.
An SVM classifier using most relevant eye movement features selected
using RF met an accuracy of 89.7% and a recall score of 84.8%. The
result is promising, and deeper analysis of the feature importances
provides insight that can be used in guiding future research towards
fast and reliable dyslexia screening tools.
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