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Abstract

Concurrent with the rapid advancement of applications and

3D scanning sensors, the demand for 3D deep learning based

technology and data has increased dramatically. Especially

3D shape with semantic labels plays a significant role in 3D

vision problems, such as auto-driven, 3D object detection and

3D scene segmentation, etc. As the deep learning era arrives,

automatic, high-quality, and large-scale solutions in annota-

tion 3D shape to the 3D vision problem are desired. Point

cloud, as one of the most popular representations of 3D, is

facing the same desire.

Point cloud generative model is one type of model that can

be used to synthesize a new point cloud. The characteristic of

the point cloud generative model indicates that it contains the

semantic structure of a point cloud. The interrelationships

of point cloud attract many researchers to explore to use of

point cloud generative to solve annotated point cloud acquire

problems. However, it is still challenging to acquire expressive

and accurate annotated point clouds.

This thesis addresses the aforementioned challenge by explor-

ing three aspects: the synthesis of high-quality 3D point cloud

objects, the point-label pairs generation, and the evolution of

their enhancement strategies.

• This work introduces a point cloud diffusion generation

model combining stochastic differential equations and
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Markov Chain Mento Carlo samplers. This method can

synthesise high-quality 3D point cloud objects and al-

lows a more flexible sampling method to point cloud

generation.

• Furthermore, the thesis presents a point-label pairs gen-

eration method to alleviate the cost of large-scale point

cloud annotation. This method investigates the charac-

teristics of diffusion-based point cloud generation model

and exploits a feature interpreter to generate a point

cloud with corresponding semantic labels for each point.

• Last, a filter approach for generated point-label pairs is

employed to improve the quality of the generated point

cloud dataset. As a result, the proposed method resolves

the point cloud generation and annotation effectively.

To demonstrate the effectiveness of the proposed method,

various experiments were conducted across different scenar-

ios. These experiments not only validated the reliability of

the generated point cloud and point-label pairs but also il-

lustrated their superior performance in comparison to GAN-

based point-label generation methods. This research repre-

sents a substantial contribution to the enhancement of the

quality and applicability of 3D point cloud data and under-

standing.
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Chapter 1

Introduction

1.1 Background and Motivation

The applications of 3D visualisation have emerged in all aspects of our

digital lives. From industrial manufacturing to individual consumer prod-

ucts, 3D vision technology has become more prevalent and sophisticated.

As shown in Figure 1.1, with the aid of 3D vision technology, ordinary

users can create their 3D content (Mo et al. 2019); Advances in Virtual

Reality (VR) products have contributed to the development of novel

experiences in tourism; autonomous driving technology has witnessed

breakthrough advancements that augment safe navigation (Aksoy et al.

2020); the domain of automated animation generation has seen consid-

erably relieve manual labour costs (Tevet et al. 2023). The realisation of

these applications is inseparable from the support of advanced 3D vision

technologies and massive amounts of 3D data. Therefore, cutting-edge

3D understanding and analysis techniques, along with the production of

corresponding data, are of significant importance.

3D data has various representation forms, as shown in Figure 1.2.

Generally speaking, 3D data can be represented by mesh, point cloud,

Non-Uniform Rational B-Spline (NURBS), voxel, multi-view projections,

implicit field, primitives, etc. Among them, Mesh is a geometric repre-

sentation of triangles or quadrilaterals, which is widely used in modelling

and rendering three-dimensional objects (Mortenson 1997). NURBS
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Figure 1.1: Example applications related to 3D point cloud technical.
The images are cited from (Mo et al. (2019), Hong et al. (2022), Aksoy
et al. (2020), Matrone et al. (2020))

represents standard geometric figures (straight lines, circles, ellipses, spheres,

rings) and free-form geometric figures (car bodies, human bodies), mak-

ing it an ideal choice for computer-aided modelling. Voxel represents

a value on a regular grid in three-dimensional space (Laine and Karras

2010), which can be memory-intensive and has driven recent research to-

wards exploring more memory-efficient 3D representations (Yang 2020).

Multi-view image projections are typically used for visualisation in

2D settings (Carlbom and Paciorek 1978, Su et al. 2015, Madsen and

Madsen 2016). It has found extensive applications in neural rendering

(Mildenhall et al. 2021), robotics (Sünderhauf et al. 2018), etc. Implicit

field is a scalar field defined by an implicit function, such as a field

value represents the distance from a point to the surface of a 3D shape

(Park et al. 2019, Mescheder et al. 2019). Implicit fields are often used

in physics-based simulations and shape modelling, where it’s important

to capture the properties of a 3D shape without explicitly defining its

boundaries. Primitive uses a collection of simple parts or components

to represent 3D shape, and often used to approximate the geometry (Zou

et al. 2017). 3D point cloud is an unordered set of point coordinates

in space, sampled from the surface of an object. These 3D data types
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apply to different research scenarios and application requirements (Qi

et al. 2017a, Berger et al. 2017).

Figure 1.2: An illustration of different data representations on the Stan-
ford Bunny benchmark.

Among these representation formats, point clouds are the closest rep-

resentation of raw sensor data without any quantization loss (as in vol-

umetric representations) or projection loss (as in multi-view represen-

tations) (Qingyong 2022). Besides, point clouds offer a straightforward

representation, which is capable of vividly visualizing 3D shapes and

facilitating direct editing operation (as in implicit field and primitive)

(Arikan et al. 2013). A point cloud is a collection of spatial coordinates

of points, which avoids the complexity of meshes (such as polygon defini-

tion and connectivity). Given these advantages, point cloud has become

increasingly popular for 3D applications due to its inherent advantages.

The rise in point cloud-based applications has created a pressing demand

for advanced 3D understanding methodologies and a large-scale supply

of 3D dataset.

Generally speaking, point cloud data understanding and analysis in-

volves various tasks such as segmentation, classification, detection (Wu

et al. 2016a, Xiao et al. 2023). The application of deep learning has

revolutionized the field of 2D vision, leading to significant advancements

in tasks such as image segmentation, classification, object detection and

3



Figure 1.3: Challenges for 3D point cloud learning (Bello et al. (2020)).
(a) Irregular: dense and sparse areas; (b) No grid/Unstructured: each
point is independent and the distance between adjacent points is not
fixed; (c) Unordered: point cloud consists of a set of points and is per-
mutation invariant.

image generation. Inspired by these successes, researchers have sought to

leverage deep learning technology to similarly transform the understand-

ing and analysis of 3D point cloud data (Xiao et al. 2023). These tasks

are fundamental in deriving actionable insights and extracting valuable

information from point cloud data for various applications, including seg-

mentation, classification, registration, and generative modelling. How-

ever, the extension of deep learning methods from 2D to 3D data is not

straightforward due to inherent differences in 3D point cloud structure.

As illustrated in Figure 1.3, the primary challenge lies in the irregular

and sparse nature of point cloud data, making it difficult to develop data

representations and processing techniques that can robustly handle the

attributions. Furthermore, deep learning is generally accomplished by

deep neural networks, which rely heavily on substantial labelled data to

optimise parameters (Shi et al. 2021). Unfortunately, obtaining annota-

tions for 3D point cloud data, especially for point-level annotated, also

presents significant difficulty (Shi et al. 2021). This difficulty in annota-

tion is primarily due to expensive and resource-intensive (Monica et al.

2017). Given these considerations, it is beneficial to solve the issues of

reducing the acquisition and annotation cost of 3D point cloud dataset.
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The 3D deep generative model is a probabilistic model that has gar-

nered significant interest among researchers since its inception (Carlson

1982, Tangelder and Veltkamp 2008, Van Kaick et al. 2011b, Chaudhuri

et al. 2011, Xue et al. 2012, Kalogerakis et al. 2012, Kar et al. 2015, Bansal

et al. 2016, Blanz and Vetter 2023). This model is regarded as capable of

synthesising the structure of 3D shapes by capturing the flexible proba-

bility distribution that defines high-dimensional data (Kalogerakis et al.

2012). The anticipation of this model is due to its potential to provide a

solution to the challenges associated with acquiring complex 3D shapes.

Point cloud generative model based on deep learning is a type of proba-

bilistic model that can synthesise new data based on what it has learned

from existing dataset. This work focuses on 3D point cloud generation,

specifically in the context of generating new realistic and point-level la-

belled samples of point cloud. Point cloud generative models crucially

facilitate 3D data generation by learning from and reconstructing origi-

nal data in existing data repositories to produce new synthetic instances.

This is of particular importance as it addresses the challenge of scarcity

and diversity in point cloud dataset. Moreover, point cloud generative

models enable the exploration of new samples of point cloud data. By

learning to generate new instances, these models capture key character-

istics and patterns in the data, which can be leveraged for point cloud

understanding.

Nevertheless, there are several limitations to extending current tech-

niques for generating point cloud and corresponding point-wise semantic

labels.

Limited generation ability of existing generative models.

Due to methodological limitations, many prior techniques have em-

ployed VAE-based (variational autoencoder) or GAN-based (generative

adversarial network) generative models to tackle the task of 3D point

cloud generation. VAE-based models typically need affinity architecture,

that is the autoencoder model, and auxiliary objectives to ensure accurate
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likelihood computation (Song and Ermon 2019). GAN-based models, on

the other hand, achieve good results on various evaluation criteria, but

it requires adversarial training, which can result in an unstable training

process and mode collapse (Ho et al. 2020). In practice, VAE-based and

GAN-based point cloud generation models are generally supervised by

either the Chamfer Distance (CD) or Earth Mover’s Distance (EMD) to

optimise the parameters of the network. However, CD loss prioritises

accuracy instead of the uniform distribution of shape and does not cal-

culate the matching distance between ground truth and synthesis. EMD

loss considers the overall distribution of the point cloud but is computa-

tionally expensive. While recent point cloud diffusion-based generation

models (Zhou et al. 2021, Luo and Hu 2021) can address these issues, the

point cloud diffusion generation models are still in their early stages and

have not been fully developed yet. These methods realise high-quality

point cloud generation with a stale training process and can be easily

applied to various tasks, such as point cloud completion, reconstruction,

etc. The initial successes of these methods highlight the need for a more

efficient approach to point cloud generation.

Inadequate accuracy of generated point cloud and its label

pairs.

On the one hand, the present approach to producing deep point cloud

generative models has opened up the possibility of generating 3D point

clouds at a reduced initial expense. However, it is crucial to acknowledge

that useful point cloud dataset depends on the accurate annotated point

clouds and shapes. On the other hand, although related technologies such

as point cloud part segmentation (Xu et al. 2010, Wang et al. 2020, Zhao

et al. 2021b), domain adaptation (Qin et al. 2019), have been well studied

in annotate point cloud fields and endeavoured to solve the shortage of

annotate point cloud, their potential in actual point cloud generation

remains unknown, as there is no evident validation of these methodologies

on synthetic dataset. Furthermore, most existing approaches focus on the
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generation of point cloud dataset emphasise semantic part-based control.

The most typical guideline is to divide the generation process of GAN-

based point cloud generative models into two stages (Kol et al. 2022, Yang

et al. 2021, Shu et al. 2019a). The structural key points or structural trees

of the three-dimensional shape are generated in the first stage, and then

the annotation of each point is inherited from these structural features.

Due to the irregular shape distribution of the point cloud, the accuracy

of the annotation of each point generated by this method is insufficient.

Additionally, these methods require a substantial amount of annotated

data to facilitate point cloud dataset generation, potentially hindering

their practical application. At present, there is relatively little work on

the direct construction of annotated point clouds.

Lack of generated point cloud and its label pairs evaluation

method.

In addition, the quality of the generated point cloud and its corre-

sponding label pairs is not evaluated in the current generation methods,

so it is difficult to directly construct a large dataset and make it available

for downstream tasks. It is crucial to enhance and assess the quality of

the produced point-label pairs and demonstrate their validity in order to

form them as the point cloud dataset. Furthermore, given the expensive

nature of annotations, the evaluation method should be capable of en-

suring usable point cloud dataset with annotated labels, even with only

a limited number of annotated samples available.

This research aims to address the aforementioned challenges and lim-

itations in order to contribute to the development of point cloud genera-

tive models and dataset generation techniques. Furthermore, addressing

the limitations of existing methods could lead to more effective solutions

for real-world applications, benefiting both academia and industry.
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1.2 Research Questions

Although related technologies such as point cloud part segmentation (Xu

et al. 2010, Wang et al. 2020, Zhao et al. 2021b), domain adaptation (Qin

et al. 2019), and part-aware point cloud generation (Shu et al. 2019b,

Yang et al. 2021, Li et al. 2021c) made great efforts to address the prob-

lem of annotated point cloud data lacking from various perspective. All

indicators suggest that the automatic generation of dataset is still in its

early stages. This presents a challenge in obtaining precise part labels

and realistic point clouds for high-quality point-label pairs. This thesis

proposes a solution to the challenge of point cloud and its corresponding

point-level semantic label generation using a diffusion-based generative

model. The research question is about how the diffusion generation model

can be adopted to enhance the point cloud synthesis, with a specific fo-

cus on the effectiveness of the generation and automatic annotation. The

development of this research will help to reduce the production cost of

the point cloud dataset and open new views for related methodologies.

This thesis will develop experimental approaches to validate the proposed

methods and verify them in different setups. This will prove the effec-

tiveness of the proposed approaches. There are sub-questions related to

this that will be studied:

• How to develop a diffusion-based generative model to enhance the

quality of the generated point cloud? Despite the significant ad-

vancements in point cloud generative models, there remain inherent

limitations when it comes to synthesising high-quality point clouds.

As mentioned in the last section, emerging diffusion-based gener-

ative models have a theoretical foundation that may surpass the

other prevalent paradigms of generative models. However, the do-

main of point cloud generation, specifically regarding to diffusion-

based models, remains a novel field. Therefore, further exploration

into the fundamental principles of point cloud diffusion models, and

8



enhancing their capability to generate high-quality data, presents

a significant challenge.

• Once the point cloud diffusion generative model is established, the

subsequent question pertains to how to leverage it for point-label

pair generation by innovating annotation techniques. The point

cloud dataset comprises two components: the point cloud shape

and the point-label correspondence. Because the generative model

inherently captures the structure, pattern, and concept of the 3D

model, the interwoven relationship between the point cloud shape

and point-label correspondence illuminates a promising direction

for exploiting the generative model to create point-label pairs. This

exploration goes beyond solving the difficulties in acquiring anno-

tated point clouds, it also helps in understanding of the implicit

features of point cloud generative models. Thus, it enhances the

value and meaning of developing such methods across different lev-

els.

• How to develop an evaluation approach to assess the quality of

the generated point cloud and its corresponding labels, thereby

expanding their utility in downstream tasks? As a probabilistic

model, a generative model can generate a large number of sam-

ples. However, it inherently has the risk of generating point clouds

with indistinct shapes or establishing incorrect point-label corre-

spondences. A dataset consisting of these unqualified results will

fail to be used for downstream tasks. These characteristics bring

another challenge into focus: how to design an automated approach

to assess the generated point-label pairs, and be able to integrate

seamlessly with the point-label pair generation pipeline? Further-

more, this approach should provide a mechanism for filtering the

unqualified generated point-label pairs, thereby ensuring their ef-
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fectiveness and applicability as augment datasets in downstream

tasks.

1.3 Research Objectives

Following the research questions discussed above, this thesis aims to

achieve three major objectives:

Improved Point Cloud Generative Model: The primary aim

of this research is to develop an advanced point cloud generative model

capable of generating higher-quality point clouds. The present study

hypothesises that the point cloud generation can be treated as a transi-

tion of point cloud and prior distribution, which can be simulated by a

stochastic process. The hypothesised that an improved generative model

in which leverages Stochastic Differential Equations (SDEs) to solve the

stochastic process. Thus one objective here is to exploit a point cloud

generative model combined with SDEs. This model indicates the ability

that effectively addresses the limitations of existing VAE or GAN-based

point cloud generation methods.

Point-label Pairs Generation based on Diffusion-based Point

Cloud Generation Model. The second objective is to address the

challenges of generating accurate and valid annotated point clouds. To

achieve this goal, this study proposes a novel method for creating point-

label correspondences. The proposed approach leverages the intermedi-

ate features of point cloud generative models to train a semantic predic-

tor. This objective builds upon the first objective to create point-wise

semantic labels based on obtained high-quality point cloud shapes. This

involves constructing a pipeline for point-label pairs produced.

Evaluation and Filtering of Generated Point-label Pairs. The

third objective of this research is the evaluation and enhancement of gen-

erated point cloud dataset. This objective is met by introducing a novel

approach based on the query strategy of active learning. Specifically,
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this approach computes an uncertainty score for annotated point clouds,

serving as a quantitative metric for evaluating their quality. This uncer-

tainty score is then utilised to filter out unsatisfactory point-label pairs,

guaranteeing the quality and validity of their application in downstream

tasks. The designed module can be integrated with the point-label pairs

generation pipeline.

1.4 Contributions

The thesis proposes an advanced technique for generating and annotat-

ing point clouds. It is launched around the diffusion-based point cloud

generative model and its application. The contributions of the approach

of this thesis are:

• A Point Cloud Diffusion Generative Model. This research

proposes to regard point cloud generation as a continuous time

stochastic process. By leveraging Stochastic Differential Equations

(SDEs), this research presents a promising generative model for

point clouds, overcoming the limitations of current VAE-based and

GAN-based methods. Compared to other point cloud diffusion

generative models, the proposed approach put forward a flexible

and refined generation process, coupling with techniques such as

Markov Chain Monte Carlo sampling and time encoding. Exper-

imental results have demonstrated that the proposed model not

only generates expressive point clouds but also achieves competi-

tive results when benchmarked against other methods. This lays

the foundation that produces fidelity point cloud for point cloud

dataset construction. A detailed discussion of the methodology

will be provided in subsequent chapters.

• Generating annotated point cloud based on point cloud

generation model. To address the annotated point cloud genera-

tion, this study offers an advanced approach for creating point-label
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correspondences. Instead of struggling with network architecture or

structural representation of shape, this method observes the gen-

eration pattern and implicit feature of the diffusion-based point

cloud generation model. The proposed method enhances the effi-

ciency and accuracy of point cloud data generation. Furthermore,

this method provides an investigation approach for the characteris-

tic of point cloud generative model. This approach can be applied

in prevailing baselines of point cloud generative models and vi-

sually reveal whether exploring the features inside the generative

model can generate point-label pairs. The comparison experiments

further illustrate the advantages of the diffusion-based point cloud

generative model. Particularly, experimental results have indicated

the effectiveness of the proposed methods and the usability of the

generated point-label pairs. The generated point cloud dataset has

been made publicly accessible, thus providing a valuable resource

to the wider research community.

• Evaluation and validation of the generated point-label pairs.

This method proposes a filter technique aimed at improving the ac-

curacy and quality of generated point cloud and its corresponding

labels. With the support of this filtering mechanism, the valida-

tion of the produced point-label pairs has been comprehensively

discussed and examined. Specifically, the experimental setup for

few-shot learning provides evidence of the efficacy of the proposed

method. Experimental results verify the validity of the generated

point cloud dataset which can argument segmentation task perfor-

mance.

1.5 List of Publications

The research of this thesis has led to the following publications in peer

reviewed journals and conferences:
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• Tingting Li, Meili Wang, Xiaoxiao Liu, Hui Liang, Jian Chang, Jian

Jun Zhang. 2023. Point cloud synthesis with stochastic differential

equations. Computer Animation and Virtual Worlds, p.e2140.

• Tingting Li, Yunfei Fu, Xiaoguang Han, Hui Liang, Jian Jun Zhang,

Jian Chang. 2022, October. DiffusionPointLabel: Annotated Point

Cloud Generation with Diffusion Model. In Computer Graphics

Forum (Vol. 41, No. 7, pp. 131-139).

Other publication out of the scope of this thesis:

• Jiahui Mao, Tingting Li, Feiyu Zhang, Meili Wang, Jian Chang,

and Xuequan Lu. 2021. Bas-relief layout arrangement via au-

tomatic method optimisation. Computer Animation and Virtual

Worlds, 32(3-4), p.e2012.

1.6 Outline of Thesis

This chapter presents the background and motivation of the point cloud

annotation method based on the diffusion generative model and lists

the contribution of this work. The following chapters of this thesis are

organised as follows:

• Chapter 2 reviews the related works and technology for point cloud

descriptor learning, point cloud generative models and point cloud

segmentation without strong supervision.

• Chapter 3 introduces the preliminaries of stochastic process, stochas-

tic differential equations and Markov Chain Mento Carlo sam-

pling. This chapter shows how stochastic differential equations and

Markov Chain Mento Carlo sampling is applied to point cloud gen-

eration.
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• Chapter 4 presents an investigation approach based on the point

cloud generative model and demonstrates the discriminability of the

intermediate feature. This chapter introduces the implementation

details of point-label pairs generation and shows the experimental

results.

• Chapter 5 proposes a filter approach based on uncertainty measure-

ment and how the proposed point cloud pairs generation method

is improved. It illustrates the effectiveness of the proposed method

and verifies the validity of generated point-label pairs as dataset.

• Chapter 6 concludes this thesis and suggests some possible future

directions of the current work.
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Chapter 2

Literature Review

In this thesis, the research of point cloud generation is conducted us-

ing the deep learning method. To begin with, this chapter reviews the

current methods for extracting point cloud feature description operators

and analyzes the characteristics of these methods in Section 2.1.

Then this chapter surveys the current development of point cloud

generation models and makes a comprehensive comparison and analysis

according to different training paradigms (Section 2.2).

Finally, to follow the course of this research, which is to generate

point-level semantic labels for point cloud effectively, this chapter revisits

the development of point cloud semantic segmentation without strong

supervision (Section 2.3).

2.1 Point Cloud Feature Descriptor Learn-
ing Methods

This section analyses and compares point cloud feature operator extrac-

tion methods according to the evolution progress. The discussion begins

with a summary of traditional methods, which are centred around the

use of computational geometric operators for point cloud feature extrac-

tion. Then this section shifts to a review of methods that utilise deep

neural networks for point cloud feature descriptor learning. Specifically,

this section categorises the current methods according to the operator

types that are used in their methods. The existing methods fall into

15



five broad categories: multi-views projection-based methods, voxel-based

methods, graph-based methods, domain point convolution-based meth-

ods, and point set-based methods.

2.1.1 Traditional Methods for Point Cloud Feature
Descriptor

In traditional point cloud feature descriptor extraction algorithms, most

methods are designed to adapt to the particular needs of specific tasks,

such as 3D shape segmentation, retrieval, and registration (Qi et al.

2017a, Tangelder and Veltkamp 2008).

These feature descriptors are crafted in alignment with the unique

requisites of visual tasks, and the inherent statistical and geometric prop-

erties of point cloud data, such as distinctive variations. They can gen-

erally be classified into intrinsic descriptors (Wang and Solomon 2019)

(e.g. WKS (Aubry et al. 2011)), HKS (Bronstein and Kokkinos 2010a)

and extrinsic descriptors (Wang and Solomon 2019) (e.g. PFH (Rusu

et al. 2008)), D2 (Osada et al. 2002), Inner Distance (Ling and Jacobs

2007), Spin Image (Johnson and Hebert 1999), etc.). Depending on their

encoding range, point cloud descriptors can also be classified as local de-

scriptors (e.g. PS (Chua and Jarvis 1997), USC (Tombari et al. 2010),

FPFH (Rusu et al. 2009)) or global descriptors (e.g. VFH (Rusu et al.

2010), CVFH (Aldoma et al. 2011)). Local descriptors encode the geo-

metric properties of a point’s local neighborhood, while global descriptors

encode the overall shape of the entire point cloud. Local descriptors are

more compact but less distinctive, while global descriptors have a wider

encoding range but are more time-consuming to compute.

2.1.2 Deep Learning Methods for Point Cloud Fea-
ture Descriptor Learning

Currently, deep neural networks emerged and become a popular direction

for this research field. For a specific task, the design and selection of the
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best feature descriptors for 3D point cloud data and feature selection

using deep learning techniques are at the forefront topic of 3D point

cloud processing research (Fang et al. 2015).

However, in contrast to the regular arrangement of 2D images, 3D

point cloud data is characterised by disorder and irregularity in space.

Therefore, the operators of point cloud objects and point cloud scenes

should be rotationally invariant and scale invariant. These two character-

istics make it difficult to directly apply the network structure and experi-

ence of 2D images to the field of point cloud processing. For this reason,

researchers within the field have attempted to organise and represent

point cloud data in different ways in order to extend deep learning tech-

niques to feature extraction from point cloud data. The existing meth-

ods fall into five broad categories: multi-view projection-based methods,

voxel-based methods, graph-based methods, domain point convolution-

based methods and point set-based methods.

2.1.2.1 Multi-view Projection-based Methods

While 2D images have a regular pattern and positions, the main charac-

ter of 3D point cloud data is disorder and irregularity in space. Besides,

point cloud objects do not have a fixed orientation or scale. These two

fundamental characteristics cause difficulty to directly apply the network

structures and techniques used for 2D images to point cloud processing.

Many researchers in the field have attempted to organise and model point

cloud data in different ways to extend deep learning techniques for ex-

tracting features of point cloud data.

The multi-views projection-based approach first projects the 3D point

cloud in multiple views and estimates a set of corresponding depth im-

ages, as shown in Figure 2.1. Then the approach performs feature extrac-

tion directly on each projected image using a Deep Convolution Neural

Network (CNN) designed for 2D images, and subsequently fuses the ex-

tracted feature maps as the feature descriptor of point cloud. Therefore,
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Figure 2.1: Illustration of multi-view projection-based approach of point
cloud (Su et al. 2015)

the main challenges of these methods are how to determine the number

and view angle of the projected images and how to fuse the features of

the depth images to obtain the most expressive feature.

Su et al. (2015) proposed a method that projects 3D objects at fixed

view angles and takes the 2D projected images for feature extraction.

The global feature of the point cloud is obtained by maximum pooling

the set of features of 2D projected images. They apply the method to

classification tasks and verify the effectiveness. Yu et al. (2018) em-

phasised the importance of relationships between projection images from

different view angles and proposed the use of relational networks to con-

nect corresponding features between different projection images, such

as region-region and view-view. This method aggregates the features of

these views to obtain a global feature of the 3D shape. Lawin et al. (2017)

believed that the features 3D shapes is in alignment with the feature of

2D projected images. They propose to project the 3D point cloud as a

2D image from multiple virtual views and then use a 2D convolutional

network to predict the semantic labels for each projected image. Finally,

the predicted results are mapped back to 3D space to obtain the segmen-

tation labels of the point cloud. Tatarchenko et al. (2018) proposed a
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method based on tangent convolution for the feature extraction method

of 3D point clouds. In their method, the multi-view images are the tan-

gent planes of each point in the point cloud, and feature extraction of

the tangent plane is used as a feature of the point cloud, i.e. by tangent

convolutions.

The main goal of the above methods is to solve the problem of how to

apply 2D convolution to 3D point clouds, which has been relatively well

developed. The key designs of these methods are to reduce occlusion

caused by 2D projections or to increase the linkage of projections and

refine point cloud structure and geometric features.

2.1.2.2 Voxel-based Methods

The voxel-based method leverages the voxel representation of 3D shape

to extract the feature descriptor. Voxels divide space into 3D grids. A

voxel shape is defined by the grids that contain the shape. The main

advantage of voxel representation is that it can directly be used by a 2D

convolution operator to a 3D vision field.

Maturana and Scherer (2015) first proposed transforming 3D point

clouds into regular 3D grids and applying 3D neural convolution to learn

point cloud features. Wu et al. (2015) represented 3D point clouds as

probability distributions of binary variables on a 3D voxel grid. Although

this representation approach has achieved good performance for various

small-scale point cloud recognition tasks, using voxel to represent the

3D point cloud space requires high computational cost. This is because

the 3D point cloud is very sparse and contain surface information of the

object. Many methods have proposed various ways to improve storage

costs and reduce computing costs. Riegler et al. (2017) used a hybrid grid

octree structure to hierarchically partition point cloud and encodes the

octree structure using a bitstring representation. The indexes of feature

vector for each voxel grid can be obtained. This method significantly re-

duces the amount of memory and computation required for training 3D
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Figure 2.2: Illustration of the VoxNet Architecture (Maturana and
Scherer 2015)

convolutional networks. Le and Duan (2018) proposed a hybrid neural

network, PointGrid, that efficiently processes point cloud data. Point-

Grid integrates point and voxel representations. Huang and You (2016)

proposed using 3D convolutional networks to predict voxel-level labels

for 3D segmentation tasks. The semantic label of each voxel determines

the label of the point within that voxel grid. However, the accuracy of

this method is not high enough. To obtain a more accurate segmentation

effect, Tchapmi et al. (2017) proposed SegCloud, which adopts trilinear

interpolation and conditional random field strategies to improve Huang

and You (2016)’s method. In order to achieve more efficient network

training, Graham et al. (2018) proposed the Submanifold Sparse Convo-

lutional Network (SSCN). This method extracts 3D point cloud features

on voxels containing points while excluding empty space. This reduces

computations and speeds up training. SSCN requires fewer resources and

less time to train a network for 3D point cloud feature learning.

In summary, voxel-based methods allow 3D convolutions to be di-
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rectly applied to point cloud data. However, this type of approach

needs to make trade-off between fidelity and computer efficiency. Be-

cause coarse voxel will lead to loss of detail, while fine voxel grids require

substantial computing resource.

2.1.2.3 Domain Point Convolution-based Methods

The method based on domain point convolution defines the convolu-

tion operation according to the spatial distribution (generally continuous

distribution or discrete distribution) of the local adjacent points of the

point cloud. The output of the convolution kernel is a weighted combi-

nation of adjacent point features. The weight of adjacent points is de-

termined according to their spatial position relative to the current point.

Li et al. (2018b) put forward PointCNN, which converts point cloud

data into latent features and reorders points using an X-transformation

matrix to capture the local feature of each point. This method then ap-

plies typical convolutional operators to the transformed features. This

method samples a random point and its k-nearest neighbour (k-NN)

points from local neighbourhoods. These neighbourhoods undergo an X-

transformation block before passing through a PointNet-like multi-layer

perceptron (MLP). The X-transformation matrix facilitates the reorder-

ing of points within local neighborhoods before applying typical convo-

lutional operators. Xu et al. (2018b) defined the convolution of the point

cloud as the product of a step function and a Taylor polynomial on k

nearest neighbours. The step function obtains geometric information by

encoding the local geodesic distance, and the Taylor polynomial is used

to capture complex geometric changes in the 3D point cloud. Esteves

et al. (2018) represented 3D objects as multivalued spherical functions

and constructed spherical convolution networks.

Liu et al. (2019b) proposed RS-CNN, which uses multi-layer percep-

trons (MLP) to learn the mapping from low-level features to high-level

features between local neighboring points and determine the weights of
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neighboring points. PointConv, a method proposed by (Wu et al. 2019),

transforms a convolution kernel as a nonlinear function of the coordinates

of neighbouring points. The kernel includes weight and density functions

that define the influence of the points on each other during the convolu-

tion operation. KPConv (Thomas et al. 2019) approximated continuous

convolution kernels by using discrete kernel points.

2.1.2.4 Graph-based Methods

Many approaches also suggest reconstruct the 3D point cloud based on

the structure of the graph, and then defining a convolution operation on

the graph to learn features. Te et al. (2018) came up with an RGCNN

for building graphs for point clouds. The graph’s edge is the connec-

tion between each point and all the other points, which construct a set.

During training, the graphs for point clouds get updated at each layer

by adjusting the Laplacian matrix. Simonovsky and Komodakis (2017)

regarded each point as a vertex of the graph, and the directed edges

of the graph are the connections between each vertex and all its neigh-

bours in the graph. These approaches are relatively straightforward but

demand significant computing resources. Wang et al. (2018) proposed

LocalSpecGCN, a spectral convolution network that operates on local

graphs. The local graph is constructed from the k nearest neighbours.

This method can exploit local structural information and require less

computational resources than previous approaches. Zhang and Rabbat

(2018) proposed an alternative graph construction strategy. They built

the graph based on the k nearest neighbours of a point cloud, weighting

each edge using a Gaussian kernel. They defined convolutional filters as

Chebyshev polynomials in the graph spectral domain. Global pooling

and multi-resolution pooling captured global and local features of the

point cloud. Wang et al. (2019) proposed the DGCNN, which constructs

a graph using the latent features of each point. Similar to EdgeConv

(Wang et al. 2019), this approach first used a multi-layer perceptron
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(MLP) to extract the features of each edge in the graph. It aggregates

these features across channels to serve as the features of neighbouring

points. Liu et al. (2019a) put forth a Dynamic Points Agglomeration

Module or DPAM, which relies on graph convolution. This approach

simplifies sampling, clustering, and pooling points into a single step by

multiplying an agglomeration matrix with a points feature matrix.

2.1.2.5 Point-Set-based Methods

Point-set-based methods aim to process 3D point clouds as point sets.

The key intuition of this type of method is to use multiple shared multi-

layer perceptrons (MLPs) to extract the feature of each point indepen-

dently and acquire the feature descriptor of the point by aggregation

functions. Point-set-based methods are simple and effective and have

gradually become the mainstream method of 3D point cloud representa-

tion learning.

Qi et al. (2017a) proposed PointNet, which is the baseline of point-set

based method. This method uses a multi-layer perceptron to extract the

features of all points of the point cloud to a high-dimensional feature

space and then aggregates the features through maximum pooling to ob-

tain a global description of the point cloud. PointNet pioneered a simple

and powerful approach to 3D point cloud representative learning, which

inspired many subsequent methods. The follow-up work PointNet++ (Qi

et al. (2017b)) improves upon PointNet by addressing its limitation of

ignoring local features of point clouds. This method extracts features of

the local neighbourhood points and uses a hierarchical network structure

to aggregate the extracted features.

Along with the same intention, Hu et al. (2020) used point features

and positions as input to assist local feature aggregation. In addition, this

method gradually increases the scope of the receptive field for each point,

thereby it can effectively preserving the geometric details of the point
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cloud and the integrity of the position information. Lin et al. (2019) pro-

posed to build an index table for point cloud and features spaces learned

by PointNet and this index table can accelerated the inference process.

Moreover, many specialised networks have been presented to capture

the global feature for each point and local structures in the meanwhile,

including methods based on neighbouring feature pooling (Zhao et al.

2019a), attention-based aggregation (Yan et al. 2020), and local-global

feature concatenation (Duan et al. 2019, Sun et al. 2019).

2.1.2.6 Transformer Structured based Methods

As the Transformer-structured networks achieve great effect in the nat-

ural language processing (NLP) area, many studies in the 3D vision

community have been devoted to applying Transformer to point cloud

feature learning. Since the self-attention mechanism is the primary fac-

tor of Transformer’s success, Point Attention (P-A) (Feng et al. 2020),

PCT (Guo et al. 2021), and ShapeContextNet (Xie et al. 2018) all pro-

posed point cloud feature learning frameworks that combine point-based

and self-attention mechanisms. These methods achieved excellent perfor-

mance compared with the state-of-the-art convolutional networks. Build-

ing on their works, subsequent research proposed combining Transformer

models and point cloud feature learning in a more thorough manner.

Zhao et al. (2021a) introduced a vector subtraction attention operator

in the point cloud Transformer network. Compared with the commonly

used scalar attention, vector attention supports adaptive modulation of

individual feature channels, which has better representative learning abil-

ity. This representation appears to be very beneficial in 3D data process-

ing. In 3DCTN, Lu et al. (2022) investigated and compared different

self-attention operators in 3D Transformer, including scalar attention

and different forms of vector attention.

In summary, this section has provided a comprehensive review of point

cloud feature descriptor learning methods, tracing their evolution path.
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As these methods have progressed, their capabilities have become in-

creasingly powerful, algorithms more robust, and accuracy higher. The

introduction of deep learning has had a significant impact on the field

of point cloud feature learning. The evolution reflects technological ad-

vances and a deepening understanding of the point cloud data, opening

up new views for research in this field.

2.2 Point Cloud Generation Methods

3D shape generation is a crucial problem in computer graphics and com-

puter vision, with numerous applications in fields such as virtual reality,

video games, and architecture. In order to generate accurate and realistic

3D shapes, researchers have developed a variety of algorithms, ranging

from traditional methods based on computational geometry principles

to more recent data-driven approaches that leverage the power of deep

learning.

Traditional computer graphics usually start with computational geometry-

based principles to solve 3D shape generation problems, such as im-

plicit surfaces, parametric surfaces and triangle meshes (Bloomenthal

and Wyvill 1990, Velho et al. 1999, Tavakkoli and Dhande 1991, Shum

et al. 1996, Stal and Turkiyyah 1996, Wong et al. 1989). Their common

algorithm for this problem is to use implicit modelling for creating and

editing 3D models in an interactive and intuitive way and then generating

shapes with desired properties according to specific design or engineering

requirements.

Generally, the algorithms follow a set of processing steps that include

defining a shape representation, such as a set of implicit surfaces, and

then using optimisation techniques to explicitly optimise the 3D shape

to meet specific criteria. These methods lay a solid foundation for the

basic concepts and techniques used in traditional 3D shape generation

algorithms and serve as a starting point for understanding this challenge.
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2.2.1 Traditional Data-driven Methods

With the enrichment of 3D digital assets, numerous pioneering approaches

have proposed the utilisation of data-driven methods to address the syn-

thesis of 3D shapes. Velho et al. (1999) utilised a facial database to

construct an average face deformation model. Given a new facial image,

they aligned and combined this image with the model, adjusting rele-

vant model parameters and deforming the model until the discrepancy

between the model and the facial image was minimised. During the gen-

eration, texture optimisation adjustments were performed to finalise the

facial modelling process. Kalogerakis et al. (2012), Huang et al. (2015),

and Chaudhuri et al. (2011) proposed the assembly-based methods to

reconstruct part-oriented object generation and extend the generation of

large-scale 3D databases. Their methods generate new 3D digital mod-

els by retrieving and merging parts from existing databases. However,

these methods for object synthesis are non-parametric. These methods

can only generate objects that have a similar geometry structure and

make minor morphological modifications. They are also limited by ex-

ternal lighting conditions of source images and the characteristics of the

object itself. The robustness of this type of method is insufficient, and

adjustments to the reconstruction algorithm are needed to accommo-

date different reconstruction objects. Building on the work of Stal and

Turkiyyah (1996), Sarkar and Chakrabarti (2014) put forward to explore

the design space to develop potential design solutions. They employed

twelve distinct search methods to identify the target domain of problems,

create solutions and assess solutions.

To further exploit the potential of the database, several approaches

(Kar et al. 2015, Kanazawa et al. 2018) made an attempt to combine deep

learning and 3D shape synthesis. This method extracts the features of

the 2D images and then takes them as priors to estimate 3D shapes. But

their method is limited to a specific category and cannot handle complex
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geometries.

The methods mentioned above are limited by the generalisation of

the algorithms, so it is difficult to use them directly to further develop

3D content creation and thus contribute to the development of the 3D

visual community.

As the importance of creative support in 3D modelling has become

more widely recognised, numerous improved techniques have been pro-

posed to assist users in freely exploring the modelling space through 3D

generation. In recent years, generative models have gained significant

attention as a promising approach for this purpose. The potential of neu-

ral network-based generative models is particularly noteworthy, as they

demonstrate the ability of neural networks to understand and generate

plausible 3D objects. These models aim to generate novel point cloud

representations of 3D objects, which can be used for various applications,

including shape synthesis, data augmentation, and completion (Achliop-

tas et al. 2018). On the other hand, the growth of generative models

has brought new opportunities for creative exploration in 3D modelling,

while the development of more sophisticated generative models is likely

to lead to further advances in this field.

Broadly, these techniques can be further distinguished by the train-

ing methodologies they employ, such as Variational Autoencoder

(VAE)-based, Generative Adversarial Network (GAN)-based,

and autoregressive-based 3D generation, etc.. The rest of this sec-

tion focuses on the recent advancements in point cloud generative models,

which are categorised based on their training methods.

2.2.2 Autoregressive based Methods

PointGrow (Sun et al. (2020)) is one of the notable works of Autoregressive-

based methods. It estimated the probability of samples autoregressively

based on previously generated points. However, this method is restricted
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to generating a fixed-dimension point cloud because it assumes a de-

terminate order of point cloud. Cheng et al. (2022) also leveraged an

autoregressive-based network to generate a point cloud. To improve the

limitation of PointGrow, they propose to resort disorder point cloud by

canonical mapping.

2.2.3 VAE based Methods

Generally speaking, VAE-based point cloud generation networks consist

of encoders and decoders, as illustrated in Figure. 2.3 (Kramer 1991).

Figure 2.3: Illustration of point cloud VAE-based generation method

The VAE-based point cloud generation method assumes that the en-

coder can learn the distribution of feature descriptors of all point clouds

in the dataset and align them to a prior distribution. The methods dis-

cussed in Section 2.1 show that a neural network can be trained to learn

the feature descriptor of a point cloud. Building upon foundational re-

search of feature learning, VAE-based point cloud generation networks

leverage the rich informational content of feature descriptors to facilitate

the synthesis of new point clouds. Meanwhile, a generator (the decoder)

can be trained to produce points based on the feature descriptor. point

clouds not present in the dataset are synthesized by randomly sampling

from a prior distribution. The model is optimised by the variational in-

ference and maximizing ELBO to ensure the final output is identical to

the input. Usually, the VAE-based point cloud generative models are

optimised by two loss functions:
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Lrec = ∥x− x̂∥2 = ∥x−G(z)∥2

LKL = DKL(N (µ, σ)||N (0, I))

LV AE = Lrec + LKL

(2.1)

where Lrec denotes the reconstruction loss; LKL denotes the similarity

loss; ∥x− x̂∥2 denotes the Euclidean (L2) norm of the difference between

x and its reconstruction from decoder G(z); DKL(N (µ, σ)||N (0, I)) rep-

resents the Kullback-Leibler Divergence between a normal distribution

with mean µ and standard deviation σ and the standard normal distri-

bution; The overall loss is the sum of the reconstruction and similarity

losses.

Girdhar et al. (2016) presented TL-Net, a method for learning a low-

dimensional vector representation of 3D objects. Although TL-Net does

not directly address point cloud generation, it focuses on generating ob-

jects from an image. The vector representation learned by TL-Net could

potentially be utilised as input for point cloud generation methods for

3D data. Toward generation task, Achlioptas et al. (2018) proposed

a method using a deep autoencoder (AE) architecture with adversarial

training and demonstrated the effectiveness of the proposed method on

various benchmark datasets.

Yang et al. (2018) proposed FoldingNet, which uses a graph-based

encoder and a two-level cascade decoder to fold a grid within the global

feature. It provides a baseline paradigm for point cloud generation that

introduces folding a 3D grid to generate. The frame of this method is

shown in Figure 2.4. Gadelha et al. (2018) proposed a hierarchical tree

structure to capture both local and global features of a point cloud to

process large-scale point clouds. The hierarchical structure was obtained

from the downsample and upsample of the point cloud. In contrast to

previous methods that predict the distribution of each point in a point

cloud and the overall shape distribution, Yang et al. (2019) proposed

PointFlow, which leverages continuous normalising flows (Papamakarios
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Figure 2.4: FoldingNet Architecture (Yang et al. 2018). The decoder is a
two-cascade structure represented by a green square. Both decoders are
folding and concatenating with a codeword, which is a replicated global
latent variable.

et al. (2021)) to approximate complex distributions of a point cloud. This

method can generate high-quality and diverse point clouds. It serves as

one of the baselines of point cloud generation. Kim et al. (2020) proposed

to use efficient "discrete" affine coupling layers instead of computation-

ally expensive ODE solvers for training and generation in continuous nor-

malising flows. This method designs two-level hierarchical latent space

to approximate the distribution of shape and use softflow framework to

optimise normalising flow. Their model can generate point cloud with

fine-grained geometry and diverse shape. However, the training and gen-

eration efficiency of ODE solvers is very low. To address this, Klokov

et al. (2020) proposed to use the discrete affine coupling layer to speed

up both the training and generation of point cloud models. Nguyen et al.

(2021) proposed using sliced Wasserstein distance instead of Chamfer dis-

tance to optimise the generator’s parameters. Although this modification

can lead to faster training and reduced computational cost, the quality

of the generated point clouds may not surpass that of previous methods.

Li et al. (2022a) proposed EditVAE, a framework for parts-aware point

cloud generation that disentangles latent space into parts, enabling con-

trollable parts editing while preserving inter-part dependencies. Likewise,
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Postels et al. (2021) adopted a mixture of normalising flows to generate

a part-ware point cloud. However, the boundaries between the generated

parts are not clearly defined, and the meaning is ambiguous. The mo-

tivation of Postels et al. (2021) is to fit the distribution of parts, while

from the perspective of improving shape distribution fitting, PointOT

(Zhang et al. (2022b)) proposed to use SCOT (semi-continuous optimal

transportation) to optimise the latent space of point cloud. In 2022, Li

et al. (2022c) proposed Primitive3D, a point cloud generation method

with semantic labels. Unlike EditVAE (Li et al. (2022a)), which involves

a two-stage training process, the training of this model prioritises learn-

ing the semantics of the generated parts. This is achieved through the

acquisition of a semantic tree via data preprocessing.

With the proposal of the Transformer network structure, the ability

of the network to process high-precision information within the module

has increased significantly. The successful application of Transformers

(Vaswani et al. 2017) in vision tasks has significantly enhanced the net-

work’s capability to process high-precision information within the mod-

ule. Drawing on (Vaswani et al. 2017), Kim et al. (2021) presented

SetVAE that incorporates a self-attention mechanism and a hierarchical

latent space. This combination enables the model to attend to different

points of disorder set and capture long-range dependencies, thereby en-

hancing the network’s ability to process high-precision information. The

proposed architecture overcomes the challenge of processing disordered

point clouds, offering improved performance. It improves the generation

results by improving the problem of processing disordered point clouds.

Zhang et al. (2022a) introduced a two-level cascaded generation network

structure with an attention mechanism. This architecture is based on the

FoldingNet framework. The first network generates coarse point clouds,

and the second network refines the output to produce a high-quality 3D

point cloud model.
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2.2.4 GAN based Methods

Figure 2.5: Illustration of point cloud GANbased generation method

As shown in Figure 2.5, a GAN-based generative model (Goodfellow

et al. 2020) is a deep learning model consisting of a generator network

and a discriminator network. The generator network generates new data

samples resembling the training data, while the discriminator network

distinguishes between generated and real data. During training, the gen-

erator tries to deceive the discriminator by producing realistic samples,

leading to improvements in generating realistic data. This method of

adversarial generation can be represented by the following equation:

min
G

max
D

LGAN = logD(x) + log(1−D(G(z))) (2.2)

Wu et al. (2016b) first applied GAN to 3D generation; however, due to

the limitations of the convolution kernel operator, they utilised voxels as

the representation of generated data, which requires substantial comput-

ing resources. Subsequent research aimed to reduce the amount of com-

putation necessary by building upon their approach. Li et al. (2018a) pro-

posed the first GAN-based 3D point cloud generation method. Valsesia

et al. (2018) designed a GAN model that combined multi-layer dynamic

graph convolutions network (GCN) to extract local features from point

clouds. The experimental results demonstrate that their generators could
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be transferred to many downstream tasks, such as segmentation and up-

sampling. However, the dynamic matrix of their method resulted in high

computational costs.

Shu et al. (2019a) proposed Tree-GAN, which forms the latent vari-

able of point cloud to a tree-structure representation and utilises graph

to perform convolution on point clouds. While it is able to edit point

clouds on the semantic level without prior knowledge, the accuracy of

the label fell short of the expectation. To address this, Gal et al. (2020)

extend it into a multi-root version, where each node could generate and

control different parts of the point cloud. However, there was no clear

classification boundary between different parts, meaning they lacked a

clear semantic definition. Ramasinghe et al. (2020) introduced Spectral-

GANs, which utilized spherical harmonics to represent point clouds and

improve the quality of generated point clouds. Mo et al. (2020) pro-

posed PT2PC that divided each 3D point cloud into a top-down tree

structure and used an encoder to learn the semantic and structural in-

formation of each node. However, this method required preprocessing

data and prior knowledge, limiting its applications. Li and Baciu (2020)

proposed Self-Attention GAN for Point Clouds (SAPCGAN), based on

Tree-GAN, which integrated self-attention-based graph learning with the

tree structure of a point cloud to generate informative 3D point clouds.

This method suffered from non-convergence and mode-collapse.

Hui et al. (2020) refined the graph network into a cascade architec-

ture, progressively generating point clouds. Since their discriminators

also adopt a cascade structure, the network parameters are significantly

increased and heighten the complexity of optimisation. Arshad and Beksi

(2020) proposed a method for conditional progressive point cloud gener-

ation. This method is designed to generate colored point clouds within

a specific category. During each training iteration, a point transformer,

which builds on graph convolutions, is used to progressively evolve the
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Figure 2.6: Unsupervised 3D point clouds generated by tree-GAN for
multiple classes (Shu et al. 2019a).

coarse point vector into an increasing resolution point cloud while con-

ditioning on class labels for multiclass point cloud creation. HSGAN

(Li and Baciu 2021a) used Hierarchical Self-Attention GAN that hierar-

chically converts the prior distribution into a graph representation, and

then transforms it into a 3D shape. SG-GAN (Li and Baciu 2021b)

made attempt to generate a point cloud within aware topology repre-

sentation. It designs a network with a hierarchical mixture model that

combines self-attention with an inference tree structure to generate 3D

shapes with accurate and compact geometric structures. Like wisely,

Yang et al. (2021) proposed a method for generating a point cloud and

corresponding part semantic labels from a different perspective. They

use a two-level cascade generation approach, where the first cascade net-

work generates key structural points, and the second network completes

the entire point cloud based on those key structural points. The differ-

ence from SG-GAN is that it adopts two-stage generation and the key

structure points generated in the first stage can be used to explicitly

edit the shape of the point cloud. Li et al. (2021c) proposed SPGAN,

which significantly improves the quality and accuracy of generated point

clouds. They introduced an adaptive instance normalisation layer in the

generator, based on the design of StyleGAN (Karras et al. 2020). Their
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network structure has become the mainstream backbone of point cloud

work. Wen et al. (2021) proposed a framework using dual-network as a

generator to improve the quality of point cloud generation. This dual

network is constructed by two generators, where the first generator con-

structs a dense point cloud to sketch the fundamental geometric structure

of the point cloud, and the second generator enhances this point cloud

to produce a refined output. WarpingGAN (Tang et al. 2022) proposed

a novel approach to 3D shape generation by formulating the process as

learning a function that warps multiple 3D priors into different local re-

gions of a 3D shape, guided by local structure-aware semantics. This

method further utilises a stitching loss to eliminate gaps between dif-

ferent partitions of a generated shape corresponding to different priors,

thus improving the quality of the generated shapes. Yang et al. (2022)

proposed PC-cGAN, a method for synthesising high-quality point clouds

with conditional information. It adopts the BranchGCN, an improved

tree-structured graph network, to aggregate the features of the root of

a tree and its neighboring points. This method can generate objects

with specific desired categories and avoid intra-category hybridisation,

that is where generated objects do not belong to a specific category and

data imbalance problems. Instead of improving controllable generation

and generation quality, Wang et al. (2023) proposed MSG-Point-GAN

that uses a multi-scale progressive method to improve the stability of the

training process.

Inspired by SP-GAN, Kim et al. (2023) proposed a point cloud editing

method based on GAN inversion. It combines canonical mapping to

retrain the encoder of SP-GAN and inputs the target point cloud to

encoder to obtain the style feature vector. Their method improves the

editing effect while retaining the high-quality generation results of SP-

GAN.
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2.2.5 Diffusion based Methods

Contrary to the GAN-based methods, which attempt to improve the

point cloud generation model from the perspectives of delicate network

structure or representation design, the diffusion models propose to realise

the point cloud generation model by originating from the perspectives of

training paradigm and generation theory. Denoising Diffusion Probabilis-

tic Model (DDPM) (Sohl-Dickstein et al. 2015) proposed a bi-direction

process. The forward process systematically and gradually destroys data

distribution by injecting prior noise. The network learns the reverse dif-

fusion process, yielding a flexible and tractable generative model of the

data.

The success of the diffusion probabilistic distribution (Yang and Wang

2019, Nichol and Dhariwal 2021) approach has inspired many follow-up

works that extend the diffusion probabilistic approach to 3D point cloud

generation. They have viewed 3D point cloud generation as a probabilis-

tic distribution transform. For example, Cai et al. (2020) learned the

gradient of the log probability density with respect to point clouds and

samples point clouds using Langevin dynamics. Luo and Hu (2021) ex-

ploited the Denoising Diffusion Probabilistic Models (DDPM) with fixed

time-steps for point cloud generation. Following their work, many re-

search works applied DDPM to various point cloud related-fields, such

as point-voxel generation (Zhou et al. 2021), point cloud completion (Lyu

et al. 2021a) and achieved remarkable results. LION (Vahdat et al. 2022)

and 3D-LDM (Nam et al. 2022) both use the diffusion process in latent

space, similar to the continuous normalising flow. This further explores

the development of 3D point cloud diffusion generative models. Diffusion

has an advantage over GAN in that the generalisation of the generation

effect is higher. Lee et al. (2023) took advantage of this and explored the

use of diffusion models to generate scene-level 3D point clouds, which

consist of multiple objects and their spatial relationships. It successfully
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uses 3D generation models for the first time on scene-level 3D data.

2.3 Point Cloud Annotation Without Strong
Supervision

Part segmentation refers to the process of subdividing a 3D shape into its

constituent parts and assigning corresponding labels to these segments

based on their semantics (as depicted in Figure. 2.7). The difficulty

for part segmentation of 3D shapes is twofold. First, shape parts with

the same semantic label have a large geometric variation and ambiguity.

Second, the method should be robust to noise and sampling (Guo et al.

2020).

This section mainly reviews the methods that used a small number

of point clouds with ground-truth labels to obtain a large number of

annotation samples. There are many solutions for solving this task, such

as semi/weakly supervised semantic segmentation, few-sample 3D point

cloud segmentation, point cloud abstract representation learning, etc.

Figure 2.7: 3D point cloud part segmentation examples (Kalogerakis
et al. 2017)

2.3.1 Traditional Methods for 3D shape Annotation

This section reviews early techniques for 3D shape semantic annotation,

which generally used geometric features or other hand-crafted descrip-

tors.
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Traditionally, part segmentation has focused on extracting low-level

features from shape over-segmentation, such as from shape features using

edges (Rabbani et al. 2006) or surface attributes, such as normals, cur-

vatures, and orientations (Rabbani et al. 2006, Jagannathan and Miller

2007), concavity-aware fields (Au et al. 2011), then groups similar fea-

tures through a clustering algorithm, thereby splitting the original blocks

corresponding to the features. The extracted features include scale-

invariant heat kernel signatures (SIHKS) (Bronstein and Kokkinos 2010b),

shape-diameter function (SDF) (Shapira et al. 2008), Gaussian curvature

(GC) (Gal and Cohen-Or 2006), etc. However, 3D shape segmentation

effect strongly depends on human high-dimensional semantic cognition,

so it is very difficult to accurately segment 3D shapes using a single

surface geometric feature (Chen et al. 2009).

To further improve the generalisation performance of the segmenta-

tion algorithms and segmentation accuracy, some methods proposed to

use the potential correlation to segment a set of models, also known as

the co-segmentation problem. Such methods usually use data-driven as

the core algorithm and can achieve more accurate segmentation of 3D

semantic parts (Wang et al. 2012). Both Golovinskiy and Funkhouser

(2009) and Chen et al. (2009) used a top-down approach to construct a

corresponding structure map for each type of shape to segment the 3D

model. Simari et al. (2009) first proposed to introduce prior knowledge to

solve co-segmentation. Their approach requires users to provide seman-

tic knowledge specific to each shape or part of shapes and formulate this

knowledge to fit the optimisation framework. Their method can only be

applied to objects that can be aligned spatially. Xu et al. (2010) proposed

to use anisotropy to split the 3D model into style and content and use

deform-to-fit to segment the 3D model. According to their framework,

’style’ refers to the anisotropic scales of shape components, character-

ized by individual and relative scales, while ’content’ encompasses the

geometric and functional attributes of these components, including their
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functions and spatial arrangements within the object. These methods

are all unsupervised data-driven methods.

2.3.2 Data-driven Methods for 3D shape Annotation

Kalogerakis et al. (2010) proposed for the first time the use of super-

vised data-driven methods to segment 3D mesh models. They proved

that segmentation accuracy and adaptive ability of the algorithm can be

significantly improved by introducing supervision information. As per

Van Kaick et al. (2011a), it is possible to enhance prior knowledge by

utilising segmented examples to improve the accuracy of segmentation.

Huang et al. (2011) proposed a method to globally optimise the segmen-

tation of an entire 3D model dataset, aiming for an effect akin to fully

supervised. However, the stability of the proposed method is significantly

compromised by the initialisation patches, which leads to inconsistent

performance across different times. The initial patches are produced

through the collection of distinct segments resulting from randomized

patch clustering. In response to this issue, Sidi et al. (2011) introduced

a method that clusters and segments based on implicit features, rather

than relying on geometric characteristics. However, this approach tends

to categorise geometrically distant parts as the same semantic label. This

limitation hinders their method’s performance on benchmarks evaluating

Intersection over Union (IoU). Meng et al. (2013) and Hu et al. (2012)

both addressed the problem of 3D model segmentation by proposing an

approach that begins with an overly segmented initialisation patch, fol-

lowed by a clustering step based on corresponding shape descriptors.

However, the effectiveness of their methods is heavily dependent on the

precision of the manual-designed shape descriptors. Building upon the

structure and part descriptors introduced by (Kalogerakis et al. 2012),

such as curvature histograms, shape diameter, and silhouette features,

Huang et al. (2015) proposed a method for joint analysis and synthesis of

3D shape features. This method combined and analysed these 3D shape
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features, then matched similar parts using a probability model to achieve

semantic segmentation. Kim et al. (2013) extend the work of Kalogerakis

et al. (2010) by using geometric pattern templates. Likewise, Zheng et al.

(2014) devised a probabilistic model that captures spatial relationships

between different parts. This model facilitates the identification of com-

mon configurations across various shapes. Xie et al. (2014) introduced

the application of the Extreme Learning Machine (ELM) technique to

further enhance segmentation accuracy. Despite the advantageous per-

formance of such learning-based approaches over methods dependent on

manually crafted feature descriptors, they bear inherent challenges. Par-

ticularly, when input 3D models are subjected to extensive rigid trans-

formations, the precision of segmentation would decline and easily be

trapped in unsatisfactory local minima.

With the rapid progression of deep learning, a series of methods have

been introduced to leverage deep learning for addressing the weakly su-

pervised segmentation of 3D models. Guo et al. (2015) put forward an

approach that involves learning from stacked feature descriptors of in-

dividual triangular patches. Shu et al. (2016) proposed a method that

initially generates random patch feature descriptors, and then utilises

a deep encoder to cluster feature vectors with similar semantic charac-

teristics. When compared to previous unsupervised learning methods,

these techniques demonstrate conspicuous improvement in segmentation

accuracy.

2.3.3 Point Cloud Part Segmentation based Deep Learn-
ing Methods

This section investigates the most recent and advanced methods for point

cloud annotation, which are predominantly based on deep learning.

While the aforementioned methods in the last section are designed

specifically for mesh-form 3D models, their performance significantly
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hinges on the construction of the 3D model mesh. Recently, deep learn-

ing methods based on point features have been employed for point cloud

segmentation. The point cloud feature operators in networks such as

PointNet (Qi et al. 2017a)) and PointNet++(Qi et al. 2017b), which dis-

cussed in Section.2.1, have proposed a paradigm of connecting learned

global descriptors with point features, then classifying each point into

a part category through a multi-layer perceptron (MLP). These models

offer an oriented toward point solutions. DGCNN (Wang et al. 2019)

uses graph convolutions for point clouds. PointConv (Wu et al. 2019)

reconstruct the point cloud to establish neighborhoods for the convolu-

tion operator, and GDANet (Xu et al. 2021) utilised attention along-

side MLP. Capsule Networks (Zhao et al. 2019b) propose architectural

changes that implicitly model parts for tasks like object classification

and segmentation. However, their performance in weakly supervised and

semi-supervised segmentation tasks considerably falls behind that in fully

supervised tasks.

Yi et al. (2016a) proposed a semi-supervised machine learning ap-

proach for 3D model annotation. Their method utilises active learning

to identify the most uncertain shape parts in each model and requires

user intervention for manual annotations. This approach achieves high

precision in 3D model annotation, but it is labor-intensive. To address

the challenges of annotating articulated 3D models, Yi et al. (2018) pro-

posed a method that jointly extracts shape correspondences and parts.

Unlike the strategies proposed by Hu et al. (2012) and Sidi et al. (2011),

they extracted feature descriptors through convolution operations. Their

approach involves manipulating these feature descriptors in the feature

space. This allows for a more efficient label transfer from a select set of

template shapes to unseen shapes, guided by a process of deformation-

driven reconstruction.

To discover and segment semantically meaningful parts in 3D shapes

using tags associated with the shapes, Muralikrishnan et al. (2018) de-
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veloped a hierarchical network structure named WU-NET, trained us-

ing weakly supervised datasets. Their approach segments 3D shapes

by learning a correspondence between high-level semantic tags and the

geometric parts of the shapes. In the attempt to further reduce the

demand for labeled data, Sharma et al. (2019) proposed a few-shot

learning approach to 3D shape segmentation. They trained a cascad-

ing network where the first network abstracts high-dimensional features

of each point, and the second network classifies the semantic label of each

high-dimensional feature. However, their method’s reliance on building

tree-structure hierarchies and suboptimal segmentation precision limit

its efficacy. Similar to the deformation-reconstruction-alignment method

proposed by Yi et al. (2018), methods proposed by Yuan and Fang (2020)

and Wang et al. (2020) deform the to-be-annotated point cloud into a

shape similar to the annotated point cloud. Then it transfers labels

based on changes during the deformation process. Notably, ROSS (Yuan

and Fang 2020) is specifically for one-shot semantic segmentation tasks,

while Wang et al. (2020) proposed improving label transfer accuracy by

estimating semantic labels for each point using a continuous probability

distribution function.

Xu and Lee (2020) put forward an approach for handling incomplete

label data, capable of providing a complete semantic label annotation

even when only 10% of the supervised information is available for each

3D point cloud. Xie et al. (2020) presented a view that a shortcoming in

previous methods, which the representations learning via these methods

are the main barrier for assisting downstream segmentation tasks. They

proposed a contrastive learning-based representation of point clouds and

demonstrated the pre-trained representation of point cloud can support

part segmentation tasks when applied with semi-supervised fine-tuning.

Similarly employing contrastive learning, Jiang et al. (2021) introduced

pseudo-label guidance for contrastive loss computation and a category-

balanced sampling strategy to mitigate the class imbalance in point
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clouds. Inspired by PointContrast (Xie et al. 2020), Hou et al. (2021)

proposed to leverage point-level correspondence and spatial context in

the scene into the contrastive learning framework. The proposed method

improves the performance on semi-supervised part segmentation. Loizou

et al. (2020) designed BoundaryNet that learns semantic part boundaries

from geometric features. Hassani and Haley (2019) and Gadelha et al.

(2020) both utilised clustering features in point-based architectures to

achieve semantic part segmentation. Their methods depend on highly

structured point cloud representation, typically requiring a pre-trained

3D model convex decomposition model. Deng et al. (2021) proposed a

semi-supervised pre-training system that includes user queries and as-

sistance for dataset labelling. This system provides point clouds with

pseudo labels that come from a pre-trained segmentation model.

Kawana et al. (2021) presented a multi-view unsupervised part de-

composition method to explicitly target man-made articulated objects

with mechanical joints. Sharma et al. (2022) introduced PRIFIT which

is designed for the extraction of semantic shapes in 3D shape abstraction.

Their approach can be viewed as a semantic segmentation technique that

employs a point-based network to learn point-wise features. These fea-

tures are then utilised as input for concurrent training of a primitive

extraction network via clustering and a semantic segmentation network.

This method enables semantic segmentation with a limited number of

labeled samples. Although these two methods are proposed for shape

abstraction, but they can also be used to annotate a point cloud with

semantic label (Sharma et al. 2022).

Li et al. (2021b) developed a semantic part segmentation network

framework combined with self-supervised learning, which is a GAN-based

model. The generator in the traditional GAN is replaced by a segmen-

tation network in this approach, with the discriminator assessing the

accuracy of the segmentation. While this method can segment the se-

mantic part of the 3D model with few-shot annotated a point cloud, it
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also inherits the high training cost associated with GANs. Following a

similar solution, Cheng et al. (2021) proposed Sspc-net, a method inte-

grating self-supervision into semantic segmentation tasks. This method

builds a graph of a small region based on labelled points and uses this

graph to generate pseudo labels by dynamic propagation. Deviant from

these two methods, Sun et al. (2022) designed a self-supervised network

learning to separate and reconstruct mixed point cloud shapes. In this

manner, the trained self-supervised network can segment the semantic

part of the point cloud with only a small number of labelled points.

Towards semi-supervised segmentation tasks for scene-level point clouds,

Wei et al. (2020) put forward a hierarchical network that employs a pre-

trained classification network to generate pseudo labels for the objects

within the scene. Then the semantic segmentation network is trained in

a fully supervised manner by leveraging these pseudo labels.

Zhang et al. (2021a) designed a transfer learning-based strategy aimed

at enhancing the performance of weakly supervised point cloud segmen-

tation. Their proposed method consists of two components: a self-

supervised pre-trained task and sparse label propagation algorithm. The

self-supervised pre-training task learns the prior distribution through

point cloud colouring and transfers it to the weakly supervised network to

improve its representation ability; sparse label propagation can spread

the label to unlabeled points and expand the supervision information.

and reduce computational complexity. This method requires an addi-

tional dataset for learning prior knowledge and transferring this knowl-

edge to the weakly supervised segmentation task. Likewise, Zhang et al.

(2021c) presented an enhanced self-supervised learning framework by in-

troducing a perturbed branch. This perturbed branch ensures predictive

consistency between the perturbed and original branches, subsequently

improving prediction accuracy. SQN (Hu et al. 2022) demonstrated a sig-

nificant decline in current semi-supervised segmentation methods when

the label percentage drops below 0.1% in large-scale point cloud semantic
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segmentation. This method constructed a compact representation based

on the high-dimensional features of sampling points and neighborhood

points. They used semantic segmentation to prove the effectiveness of

the learned representation. Their method is very stable and significantly

improves the segmentation results in this scenario.

Jones et al. (2022) proposed SHRED for more granular semantic seg-

mentation of 3D models. SHRED comprises three modules: ’split’, which

oversegments a point cloud into small mutually exclusive sets; ’fix’, which

clusters these small sets into individual regions; and ’merge’, which fuses

these small regions into finely-grained parts. Each module is trained sep-

arately, resulting in segmentation accuracy that outperforms the base-

line. Drawing inspiration from the prototypical network by Snell et al.

(2017), Su et al. (2022) proposed adding a multi-prototype classifier be-

fore the segmentation network, which enhances the recognition ability of

cross-category semantic labels with identical functions by introducing a

multi-prototype classifier. This classifier is capable of representing the

subclasses within each semantic category by maintaining multiple pro-

totypes for each class. Building upon this, Zhao et al. (2021b) designed

computing geometric dependencies and semantic correlations point-wise

using attention mechanisms. Their method showed considerable improve-

ments in segmentation accuracy compared to the baseline.

1T1C (Liu et al. 2021), SegGroup Tao et al. (2022), and LESS (Liu

et al. 2022) all proposed leveraging a small amount of user-provided an-

notations as ground-truth to aid segmentation. In these methods, the

user-provided annotation information can be used to generate semantic

labels for sub-regions, which are then propagated to other points within

the same region. However, there are some differences: SegGroup requires

more granular annotations, while LESS targets LIDAR point clouds and

pre-processes the data using heuristic algorithms.

Adopting a strategy similar to active learning, Chen et al. (2023) pre-

sented a class-level confidence-based 3D semi-supervised learning method
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to address the data imbalance issue in semi-supervised point cloud se-

mantic segmentation. Their proposed method distinguishes the learning

status of point clouds based on confidence, and then samples for learn-

ing from point clouds with a lower learning status. The learning status,

that is measure of how well a point cloud has learned to classify each

semantic part within a dataset, is computed by class-level confidence

samples by dynamic thresholding and a re-sampling strategy. Sun et al.

(2023) proposed a semi-supervised 3D shape segmentation method, using

multi-level consistency and part replacement to enhance network train-

ing, thereby facilitating 3D segmentation learning from a small amount

of labeled data and a large amount of unlabeled data. The multi-level

consistency loss is employed to enforce the consistency of network pre-

dictions at multiple levels, while the part replacement scheme is used to

enhance the structural variations of labeled 3D shapes. Gkanatsios et al.

(2023) put forward a semi-parametric learning framework named Ana-

logical Networks for 3D scene parsing. The model employs analogical

reasoning to map input scenes to modified and combined past labeled

visual experiences, rather than directly mapping input scenes to part

segmentation.

With the rise of multimodality, more and more works have been de-

voted to multimodal-based few-sample point cloud segmentation. Chen

et al. (2021) proposed a framework based on multimodal semi-supervised

learning, which aims to utilise 3D data from different modalities to im-

prove data efficiency for 3D classification and retrieval tasks. The modal

information mainly used by the proposed method includes different rep-

resentations of 3D data, including point clouds, images, and meshes. The

framework introduces instance-level consistency constraints and a novel

Multimodal Contrastive Prototype (M2CP) loss. Liu et al. (2021) used

semi-supervised learning to infer the 3D structure of generic objects. This

approach decomposes real 2D images into latent representations such as
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category, shape, albedo, lighting, and camera projection matrices using

a federated learning fitting module to obtain segmented 3D shapes.

This chapter has undertaken a review of the methodologies for ad-

vancing point cloud feature learning, generation and segmentation with-

out strong segmentation methods. It reviews the current methods for

extracting point cloud feature descriptors and explores the popular point

cloud generation models. It also investigates the innovative annotation

techniques that mitigate the cost for extensive labelled datasets. By

showcasing the potential of these techniques, this thesis aims to harness

deep learning’s transformative power for enhancing 3D point cloud an-

notated data generation.
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Chapter 3

Point Cloud Generative Model
based on Stochastic Differential
Equations

In line with the aforementioned in Section 1.1 Chapter 1, an expressive

point cloud is necessary for building a high-quality point cloud dataset.

Therefore, to address the issue of generating datasets using point cloud

generative models, the first step is to generate high-quality point clouds.

In this chapter, a point cloud generative model based on stochastic dif-

ferential equations is proposed. More specifically, this model integrates

normalizing flows and time encoding to create the framework, and the

model parameters are optimized by leveraging the training objective of

SDE. To further improve the quality of the generated point cloud, and

to fully exploit the characteristics of diffusion-based models, a sampler

drawing upon the Markov Chain Monte Carlo sampling method, referred

to as the Corrector Sampler, is introduced. To illustrate the method

and implement details of the proposed point cloud generation model, the

organisation of this chapter is shown as follows:

• Section 3.1 overviews the proposed method and motivation of each

module.

• Section 3.2 begins with a review of stochastic processes, leading to a

comprehensive understanding of Stochastic Differential Equations
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(SDE) and their reverse counterparts. Then it formulates how to

employ these principles to simulate a point cloud generation pro-

cess.

• Section 3.3 discusses the Markov Chain Monte Carlo sampler, in-

vestigating how to apply it in the point cloud generation process

and formulating the approach of a point cloud sampling generation

algorithm that leverages the MCMC sampler.

• Section 3.4 details the network design of the point cloud generation

model. It includes the incorporation of the normalising flow model,

practical details of the diffusion model-based point cloud generation

with a flexible time process, and the definition of the loss function.

• Section 3.5 outlines the experimental design and the evaluation

methods, and presents a comprehensive analysis of the experimen-

tal results.

• Section 3.6 summarises this chapter.

3.1 Introduction

The point cloud is one of the most popular 3D shape representations

that can represent diverse shapes with a set of sparse and discrete 3D

points. Recent advancements in 3D sensors have catalysed a multitude of

3D processing and understanding tasks based on point clouds, including

object classification and semantic segmentation (Zhao et al. 2019c). The

past decade has witnessed great advances in deep neural learning on 3D

point cloud tasks (Qi et al. 2017a b). The main goal of these methods

is to design a suitable structure of the deep neural network to learn

representations and then apply them to a variety of 3D tasks, which can

demonstrate the effectiveness of the methods.

As one of the most important members of the unsupervised learning

family, self-supervised learning fundamentally does not rely on manually
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labeled data for the acquisition of high-quality representation learning.

Generative models, as a subset of self-supervised learning, can effectively

learn the representations, and the ability of the generative models is

demonstrated by the quality of yielded objects. A robust point cloud

generation model can provide expressive 3D data that is different from

the existing 3D data repository, which can further be used to augment

3D understanding tasks. This highlights the importance of point cloud

generation in the field of 3D analysis.

Recently the 3D vision community has contributed significant devel-

opment for point cloud generative models. This development in genera-

tive models provides an alternative solution for acquiring 3D data, such as

variational auto-encoders (VAEs) (Gadelha et al. 2018, Zamorski et al.

2020), generative adversarial networks (GANs) (Wu et al. 2016b, Ra-

masinghe et al. 2020, Shu et al. 2019a), auto-regressive (Sun et al. 2020),

etc. All aforementioned point cloud synthesis methods are supervised

by either the Chamfer Distance (CD) or Earth Mover‘s Distance (EMD)

to optimise the network to generate expressive point clouds (Lyu et al.

2021b). However, CD loss does not compute the matching distance be-

tween ground truth and synthesis and emphasises accuracy rather than

the uniform distribution of shape. EMD loss can be computed as the

minimal value of a linear program, which is sensitive to the overall dis-

tribution of the point cloud, but its computational expense is high.

In light of these challenges, Diffusion Probabilistic Generative Models

(Ho et al. 2020) have emerged as a promising solution, demonstrating

state-of-the-art performance on multiple tasks. These models employ

a simple mean squared error (MSE) loss function, circumventing the

weaknesses of previous methods. Therefore, point cloud synthesis based

on the diffusion probabilistic model can avoid the weakness of previous

methods.

Existing point cloud synthesis approaches based on Diffusion Proba-

bilistic Models (DDPMs) (Luo and Hu 2021, Zhou et al. 2021, Cai et al.
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2020) follow a process of gradually introducing noise into the ground

truth point cloud, subsequently employing a neural network to reverse

this process. Nevertheless, these techniques often approximate the diffu-

sion process with a fixed-step Markov chain. This leads to limitations in

the expressiveness of the synthesised point clouds.

Drawing inspiration from Song et al. (2020), this thesis proposes a

method for point cloud synthesis based on Stochastic Differential Equa-

tions (SDE). Different from the aforementioned methods, this method

proposes to formulate the point cloud generation as a continuous time

stochastic process. Our goal is to learn a transition kernel that can

synthesise plausible point clouds based on SDE. Time embedding is em-

ployed to exploit the arbitrary sample of time. It allows the reverse pro-

cess can be applied with arbitrary time length. Point cloud synthesis can

benefit from this in two aspects: a) the network can better understand

the time variable; b) the transform process is smoother and more flexible.

Additionally, Langevin MCMC (Parisi 1981) samplers with SDE-based

approaches are introduced and applied to improve over simple progres-

sion sampling methods. The proposed model is implemented on point

cloud generation and unsupervised representation learning. Experimen-

tal results demonstrate that our model achieves competitive performance

on three learning tasks: point cloud synthesis, auto-encoding generation,

and point cloud completion. The content in this section has been derived

from our previously published paper Li et al. (2023).

3.2 Point Cloud Generation based on Stochas-
tic Differential Equations

This section reviews preliminaries of stochastic process, and stochas-

tic differential equations. Then this section analyses how to apply the

stochastic differential equations to point cloud generation. The overview

of the key idea is given in Figure 3.1.
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Figure 3.1: Overview of point cloud generative modeling through SDE.
The desired shape is synthesised from a noise point cloud with prior
distribution via a continuous-time SDE-Net.

Section 3.2.1 reviews the fundamentals of stochastic processes, in-

cluding their definition, classification, and key conceptions. Section 3.2.2

revisits stochastic differential equations, examining their definition, for-

mulation, and interrelationships. Lastly, section 3.2.3 explains the ap-

plication of stochastic differential equations to point cloud generation,

detailing the derivation process.

3.2.1 Preliminaries of Stochastic Process

A stochastic process, central to probability theory and related fields, rep-

resents a collection of random variables indexed by time. A stochastic

process can be defined as a mathematical object regarded as a collection

of random variables (Parzen 1999). These variables are usually associ-

ated with or indexed by a set of numbers, typically viewed as points in

time, giving the interpretation of a sequence of random events (Doob

1942). Fundamentally, the stochastic process represents the evolution of

a system of random values over time or space, thus providing a mathe-

matical framework for modelling and understanding systems that evolve

in a way that may be probabilistically determined but not precisely pre-

dictable (Parzen 1999, Krylov and Vladimirovich 2002). The general

definition of stochastic process is as follows:
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Definition: Let (ω,F , P ) be a probability space, if there is a family of

random variables X = {Xt}t∈[0,∞) (that is, for each t, Xt is a measurable

function of (ω,F) → (R,B)), then X is called a probability space, and

(R,B) is called the state space of the stochastic process.

In this definition, F is a sigma-algebra on ω (a collection of events

for which probabilities can be assigned); and P is a probability measure

that assigns probabilities to the events in F ; ω can be regarded as every

possible pollen grain or every possibility of pollen grain movement; and

Xt(ω) is a function at every moment t, which describes the position of

this pollen. Although possibility is an abstract concept, each possibility

has some specific values to describe it. For example, the momentum,

acceleration, and velocity of a particle are all specific values that describe

this abstract ω, so for each ω, corresponding to position information

Xt(ω), which is a function of ω.

Stochastic processes have many significant characteristics, such as

separability (Itō 2006), indistinguishable (Rogers and Williams 2000),

independence (Lapidoth 2017), regularity (Khoshnevisan 2002). The

properties used in this research are as follows:

• Independence: If the random variables in the process are mutually

independent at different times or spatial points, then the process

exhibits independence, which enlightens the assumption in Chapter

4.

• Stationarity: A stationary stochastic process refers to its statisti-

cal properties remaining unchanged with time or space shifts, in-

cluding first-order stationarity (mean is constant) and second-order

stationarity (correlation only depends on the time interval and is

independent of specific time).

Stochastic processes can be classified by their state space, index sets,

or inter-variable correlations. A common approach is based on the cardi-

53



nality of the index set and state space, which helps distinguish between

discrete and continuous time stochastic processes.

These processes, despite their contrasting temporal structures, often

share connections. For instance, continuous-time Markov chains and ran-

dom walks can be viewed as generalised versions of their discrete-time

counterparts.

• Discrete-time Processes: Since time points are countable, discrete-

time stochastic processes can be represented with sequences or ma-

trices. They are usually easier to analyse and compute mathemati-

cally. Some common methods include Markov chains and stochastic

difference equations.

• Continuous-time Processes: For continuous-time stochastic pro-

cesses, time points are uncountable, and continuous functions, dif-

ferential equations, or stochastic differential equations are used to

represent them. They often require more advanced mathematical

tools to analyse and solve problems. Common methods include

stochastic integral equations, Monte Carlo methods, and particle

filters.

The stochastic process has different representation approaches, in-

cluding the Bernoulli process, Wiener process, Markov process, martin-

gale, Levy process, etc., the following are some common methods:

• Bernoulli Process: is a type of discrete-time stochastic process

with two possible outcomes. It is defined by a series of independent

random variables {Xt, t ∈ {0, 1, 2, . . .}}, where each Xt follows a

Bernoulli distribution with parameter p. This process is a Bernoulli

process. Bernoulli process can be formulated as:

P (Xt = 1) = p , P (Xt = 0) = 1− p, (3.1)
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where the probability p is expressed as the probability of occurrence

of Xt = 1.

Bernoulli process is often used to describe two possible outcomes of

experiments, such as flipping a coin, where the value of the prob-

ability p is 1, and the probability 1 − p is 0. However, it is note-

worthy that the Bernoulli process can only be used for the motion

process of a single particle in low dimension, and the variable state

of Bernoulli is binary, so it cannot be directly used to simulate the

point cloud generation process.

• Markov process: If the random process X(n) satisfies at any time,

the distribution of all the distances experienced in the past is the

same as that of the nearest point, that is

F (x, t|xn, xn−1, · · · , x2, x1, tn, tn−1, · · · , t2, t1) = F (x, t|xn, tn),

(3.2)

which implies

P{X(t) ≤ x|X(tn) = xn, · · · , X(t1) = x1}

= P{X(t) ≤ x|X(tn) = xn}.
(3.3)

All random processes with Markov property can become Markov

process. Markov property is the so-called finite memory. Markov

process is a special type of stochastic process in which only the

current value of a variable is relevant for future predictions, while

the historical values of the variable and how the variable has evolved

from past to present are not relevant for future predictions.

• Random Walk: Consider a simple, symmetric random walk of

particles on a straight line. In each time increment ∆t, a particle is

allowed to move right with a probability p = 1
2
, covering a distance

∆x > 0, or with an equivalent probability p = 1
2
, it can move left

by ∆x. Each movement event is independent of the others. If Xt
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designates the position of the particle at time t, and ∆x = c
√
∆t

as ∆t→ 0, then

Xt ∼ N (0, c2t) (3.4)

is representative of a random walk. If this process is extended to

a point cloud, whereby X symbolises a cluster of points states in

a three-dimensional space, the diffusion motion of the point cloud

can be effectively described.

• Wiener Process/Brownian motion: Assume that the incre-

ment ∆x in the random walk process is stable and follows a normal

distribution with an expectation of 0 and a variance of c2t, then

Xs+t −Xs ∼ N
(
0, c2t

)
(3.5)

At this point, Xt becomes a continuous function of t. {Xt : t ⩾ 0}

is referred to as Brownian motion or Wiener process, with c = 1

denoting standard Brownian motion.

Assuming X0 = 0, it is called standard Brownian motion with zero

initial value. At this time

Xt ∼ N (0, t) (3.6)

By infinitely dividing the discrete random walk, Brownian motion

in the continuous case can be attained. While Brownian motion

is continuous, it is not differentiable everywhere, which prevents it

from being solved by universal differential equations. However, the

Brownian motion exhibits Markov property, and the independent

increment satisfies the normal distribution. In the process of point

cloud generation, each point can be seen as moving in continuous

Brownian motion over time.

The primary focus of this thesis is the application of stochastic process

to simulate the point cloud generation process.
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3.2.2 Preliminaries of Stochastic Differential Equa-
tions

Stochastic Differential Equations (SDE) are a tool for describing the

evolution of a stochastic process (Stochastic Process) over time or space.

SDE typically consist of two components: a deterministic part and a

stochastic part. The deterministic component represents the behaviour

of the system in the absence of random perturbations, while the stochas-

tic component represents the impact of random perturbations on the

system’s evolution. In this way, SDE can be used to model the dynamic

behaviour of a system under the combined influence of deterministic and

random factors. The stochastic component is typically comprised of one

or more random processes, such as the Wiener process or Brownian mo-

tion.

Stochastic Differential Equations (SDE): A typical Itô stochas-

tic differential equation has the following form:

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t), (3.7)

where X(t) is the stochastic process (such as stock price, pollution con-

centration, etc.), t is time, f and g are known functions, and W (t) is one

or more stochastic processes, usually Brownian motion. dX(t), dt and

dW (t) represent small changes in X(t), t and W(t), respectively.

SDE simulates a stochastic process with a given initial state. SDE

provides a functional tool to model the stochastic process that supports

point cloud generation.

Backward Stochastic Differential Equations (BSDE): Like SDE,

BSDE models the behaviour of stochastic processes under the influence

of both deterministic and random factors. The primary difference is that

BSDE works in the reverse direction, starting from the final state and

seeking to determine the initial conditions of the process.

The general form of a backward SDE can be formulated as follows:
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Y (t) = ξ +

∫ T

t

f (s, Ys, Zs) ds−
∫ T

t

ZsdWs, 0 ≤ t ≤ T, (3.8)

where Y (t) is an anti-stochastic process, W (t) is a Brownian motion,

Z(t) is a function of Y (t) and t, f(t, Y (t), Z(t)) is a related function, and

ξ represents the process value at time T.

BSDE incorporates information about the system’s state at the end

of the time interval through the terminal condition ξ. This allows BSDE

to be used in situations where specific terminal conditions need to be

met.

Ma and Yong (1999) put forward that solving forward-backwards SDE

can be formulated by an optimal system:


dX(t) = [aX(t)− b2Y (t)] dt+ dW (t),

dY (t) = −[aY (t) +X(t)]dt+ Z(t)dW (t),

X(0) = x, Y (T ) = X(T ).

t[0, T ] (3.9)

where the equation for X(·) is forward (since it is given the initial datum)

and the equation for Y (·) is backward (since it is given the final datum).

3.2.3 Application of Stochastic Differential Equations
on Point Cloud Generation

The last sections revisit stochastic process, SDE, and BSDE. These ap-

proaches are particularly useful in cases where the object or scene being

modeled exhibits a behaviour that can be described by stochastic process.

The point cloud generation is similar to a stochastic process, moving the

noisy and disordered points slowly to form a shaped point cloud. There-

fore, a solution can be sought from the stochastic process theory.

By simulating the stochastic process, the point cloud generation can

be regarded as the transition between the prior distribution and realistic

point cloud with varying noise and uncertainty. To address this challenge,

this section elaborates on how to utilise SDE to model the movement and
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behaviour of this transition, so that simulates the stochastic process in

point cloud generation. Furthermore, the solution of SDE is proposed,

which is based on Bayes’ theorem.

Forward stochastic process. This diffusion process can be rep-

resented as an Itô SDE (Itô 1973). It is the rule for differentiating a

function of a stochastic process. In this thesis’s setting, it is the process

that gradually transforms a 3D shape into 3D Gaussian noise. It can be

formulated as:

dx = f(x, t)dt+ g(t)dw, (3.10)

where w is the standard Brownian motion (Wiener process); f (·, t) :

Rd → Rd is a drift coefficient of xt, and g (·) : R → R the diffusion

coefficient of xt. In this thesis, the diffusion coefficient is a d × d scalar

matrix.

Therefore, the forward process of diffusion process can be discretised

as:

xt+∆t = xt + ft (xt)∆t+Gtϵt, t = 0, 1, . . . , T − 1 (3.11)

where ϵi ∈ N (0, I), which conforms with Gaussian distribution. In

this case, when the ∆t→ 0, Equation 3.11 can be transformed to:

xt+∆t − xt = ft (xt)∆t+ gt
√
∆tε, ε ∼ N (0, I) (3.12)

The diffusion process itself does not depend on the starting distri-

bution of the point cloud. Formally, let platent = N (0, I) denotes the

distribution of point cloud at t = T , where N is the Gaussian distribu-

tion. Given N points in a point cloud X = { xi|i = 1, .., N} ∈ RN×3,

we assume pdata to be the distribution of the each point cloud X in the

dataset. For each point xi in point cloud X, the status in diffusion pro-

cess xi
t can be indexed by a continuous time variable t ∈ [0, T ].

Then, the stochastic process can be used to model the transition pro-

cess of the distribution of the point cloud, which effectively induces a
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desired shape of points by transforming a prior distribution pdata. The

synthesis of the point cloud can thus be represented by the reverse dif-

fusion process.

It’s important to note that xT is an unstructured prior distribution

(3D Gaussian Distribution), and x0 and pdata share the same distribution.

Therefore, solving Equation 3.12 can be transformed into a probability

problem, more specifically, estimating the likelihood of p(xt+∆t).

Backward stochastic process. Equation 3.12 allows the condi-

tional probability to be given by:

p (xt+∆t | xt) = N
(
xt+∆t;xt + f t (xt)∆t, g2t∆tI

)
∝ exp

(
−|xt+∆t − xt − f t (xt)∆t|2

2g2t∆t

)
(3.13)

Applying Bayes’ theorem directly gives:

p (xt−1 | xt) =
p (xt | xt−1) p (xt−1)

p (xt)
(3.14)

and conditional Bayes’ theorem

p (xt−1|xt,x0) =
p (xt|xt−1) p (xt−1|x0)

p (xt|x0)
(3.15)

It can be substituted into Equation 3.13 to get

p (xt | xt+∆t) ∝ exp

(
−∥xt+∆t − xt − f t (xt)∆t∥2

2g2t∆t
+ log p (xt)− log p (xt+∆t)

)
(3.16)

When ∆t → 0, p (xt+∆t | xt) will not equal to 0. Therefore, we can

use Taylor expansion to analyse Equation 3.16 when the ∆t→ 0:

log p (xt+∆t) ≈ log p (xt) + (xt+∆t − xt) · ∇xt log p (xt)+

∆t
∂

∂t
log p (xt)

(3.17)
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where the p(xt) denotes the probability density of a random variable

equal to xt at time t. After substituting the Equation 3.17 into Equa-

tion 3.16:

p (xt | xt+∆t) ∝ exp

(
−∥xt+∆t−xt−[f t(xt)−g2t∇xf

log p(xt)]∆t∥2
2g2t∆t

+O(∆t)

)
≈ exp

(
−∥xt−xl+∆t+[f t+∆t(xt+∆t)−g2i+∆t∇xt+∆t

log p(xl+∆t)]∆t∥2
2g2l+∆t∆t

)
(3.18)

In this case, p (xt|xt +∆t) can be regarded as a normal distribution

with mean equals to xt+∆t−
[
ft+∆t (xt +∆t)− g2t+∆t∇xt+∆t

log p (xt+∆t)
]
∆t

and normal distribution equals to g2t+∆t∆tI). When taking the limit of

∆t→ 0, then corresponding to SDE:

dx =
[
ft (x)− g2t∇x log pt (x)

]
dt+ gtdw (3.19)

Solve stochastic differential equations. To solve for∇x log pt(x),

the forward stochastic process can be presented discretely:

xt − xt+∆t =−
[
f t+∆t (xt+∆t)− g2t+∆t∇xt+∆t

log p (xt+∆t)
]
∆t

+ gt+∆t

√
∆tε

(3.20)

This formulation simulates the point cloud generation process. And

we can obtain

p (xt | x0) = lim
∆t→0

∫
· · ·
∫∫

p (xt | xt−∆t) p (xt−∆t | xt−2∆t)

· · · p (x∆t | x0) dxt−∆txt−2∆t · · ·x∆t

(3.21)

When the ft(x) ∝ x, p(xt|x0) can be solved analytically

p (xt) =

∫
p (xt | x0) p̃ (x0) dx0 = Ex0

[
p
(
xt|x0

)]
, (3.22)

where p̃(x0) denotes the distribution of data pdata. Then,

∇xt log p (xt) =
Ex0 [∇xtp (xt | x0)]

Ex0 [p (xt | x0)]
=

Ex0 [p (xt | x0)∇xt log p (xt | x0)]

Ex0 [p (xt | x0)]
(3.23)
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Since the solution of p(xt|x0) involves the average of all training sam-

ples x0, the amount of calculation is large, and the generalisation ability

is not good enough. Therefore, a neural network can be used to learn a

function sθ(xt, t), so that it can directly calculate ∇xt log p(xt).

To make sθ(xt, t) equal to the weighted average of ∇xt log p(xt|x0),

the value of ∥sθ(xt, t)−∇xt log p(xt|x0)∥2 should be minimised, which is

Ex0 [p (xt|x0) ∥sθ (xt, t)−∇xt log p (xt|x0) ∥2]
Ex0 [p (xt|x0)]

(3.24)

When the samples are sufficiently diverse, the value of Ex0 [p (xt|x0)]

does not change. For simplicity, Equation 3.24, we can remove it directly,

and obtain:

∫
Ex0

[
p (xt | x0) ∥sθ (xt, t)−∇xt log p (xt | x0)∥2

]
dxt

=Ex0,xt∼p(xt|x0)p̄(x0)

[
∥sθ (xt, t)−∇xt log p (xt | x0)∥2

] (3.25)

3.3 Point Cloud Sampling based on Markov
Chain Monte Carlo Sampler

The major difference between the diffusion-based model and other types

of generative models is the flexible inference approach. To further take

advantage of this characteristic, a Markov Chain Monte Carlo based sam-

pling method is proposed in this section.

In this section, Markov Chain Monte Carlo and its definition are

briefly reviewed in Section 3.3.1. Section 3.3.2 designs a sampling method

based on Markov Chain Monte Carlo, which can be employed by the point

cloud generative model.

3.3.1 Preliminaries of Markov Chain Monte Carlo

One attribution of diffusion models is their objective of calculating the

gradients of log probability density functions, which makes them apart

from others (Song and Ermon 2019). Consequently, once a diffusion
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model has been trained, point cloud generation is realised by literate

sampling like a backward stochastic process. This inference process offers

a more flexible method of generation. Hence, this section introduces the

concept of employing Markov Chain Monte Carlo (MCMC) sampling

methods to enhance the quality of the generated point clouds.

The Markov Chain Monte Carlo (MCMC) method is a variant of the

Monte Carlo algorithm, which is mainly used for sampling from complex

probability distributions. The MCMC method combines the characteris-

tics of the Markov chain (Markov Chain) and the Monte Carlo method

and approximates the target distribution by constructing a Markov chain,

so as to realise the sampling of the distribution. Markov chain Monte

Carlo mainly has the following two characteristics:

• Markov chain: represents a series of variables wherein each subse-

quent state’s occurrence relies exclusively upon its immediate pre-

decessor, with no dependency on any preceding states. In such se-

quences, the future is conditionally independent of the past, given

the present state.

• Monte Carlo method: This is a method of performing numerical

calculations with random sampling. In statistical physics, for ex-

ample, Monte Carlo methods can be used to simulate the behaviour

of a system.

Markov chain Monte Carlo methods use Markov chains to perform

random walks in the state space to generate samples of the target prob-

ability distribution. If the Markov chain is properly designed, then as

the walk progresses, the samples generated by the Markov chain will get

closer and closer to the target probability distribution. Therefore, the

state of the Markov chain can be used as a sample drawn from the target

probability distribution. The basic steps of the MCMC method are as

follows:
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• Initialisation: Select an initial state x0, and a suitable Markov chain

transition matrix.

• Transition: Transition from the current state xt to the next state

xt+1 according to the transition matrix of the Markov chain. This

process may require adjusting the transition probabilities using an

accept-reject criterion so that the stationary distribution is equal

to the target distribution.

• Convergence Judgment: Check whether the Markov chain is con-

verged. If not converged, return to step 2. If converged, continue

to the next step.

• Sampling: Sample from the converged Markov chain. Since these

samples come from the stationary distribution of the target distri-

bution, they can be used to estimate the expectation, variance, and

other statistics of the target distribution.

Common algorithms of MCMC include the Metropolis-Hastings algo-

rithm, Gibbs Sampling, Langevin sampling method, etc.

3.3.2 Application of Markov Chain Monte Carlo Sam-
pling on Point Cloud Generation

Langevin MCMC (Parisi 1981) uses gradient information to guide the

stochastic process, letting the stochastic process converge to the target

distribution faster. This is very helpful for sampling in high-dimensional

spaces, especially if the shape of the target distribution is complex (e.g,

multimodal or highly skewed). Langevin MCMC sampler combines the

characteristics of stochastic gradient descent and Markov chain to sam-

ple more efficiently when exploring the target distribution. Specifically,

starting from the current sample x(t), an update is conducted in the

gradient direction, and a random disturbance is added to obtain a new

sample x(t+ 1).
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To illustrate the Langevin MCMC sampler in point cloud generation,

the inference phase of the proposed model is initially scrutinised. By

starting from noise with the prior distribution platent and reversing the

diffusion process, a point cloud shape can be obtained from the data

distribution pdata. During the inference phase, a sampling approach that

combines the reverse stochastic process and the Langevin MCMC ap-

proach is designed and applied. Specifically, Xt−∆t for Xt is estimated

via the SDE-Net model sθ and global latent variable z on each time

step, and then Langevin MCMC sampler can be used to refine Xt. This

simplified corrector conditional sampler is as follows Algorithm.1:

Algorithm 1 Corrector Sampler
Initialisation:{xT , z ∼ N (0, I), σ, r}
for i← T to 1 do

for j ← 1 to n do
ω ∼ N (0, 1)# Sample random noise
g ← sθ(X

j−1
i , σi, z)# Predict gradient

ϵ← 2(r∥ω∥2/∥g∥2)2# Refine gradient
Xj

i ← Xj−1
i + ϵg +

√
2ϵω

X0
i−1 ← Xn

i

As shown in Algorithm.1, r denotes the signal-to-noise ratio of the

Langevin MCMC sampler. ∥ω∥2 is a random noise with Gaussian distri-

bution. ω, r and output of the SDE-Net sθ jointly determine the step

size ϵ. This additional step, which is referred to as the corrector step,

helps us to obtain a more accurate point cloud. This section incorporates

material from the following publication Li et al. (2023).

3.4 Method

This section introduces the design details of the point cloud generative

model. The overview of the point cloud generation based on the stochas-

tic process is shown in Figure 3.2.

The point cloud generative model utilises a point-based network to

extract each shape’s latent variable and employs a normalising flow to
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Figure 3.2: The illustration of the directed graphical model of the
stochastic process for point cloud

transform the latent variable distribution into a Gaussian prior distribu-

tion. During the training stage, forward stochastic differential equations

and feature distribution are leveraged to train the point cloud generator.

The two main modules in the point cloud generative model - nor-

malising flow and time encoding - are introduced. Normalising flow is

a tuple-stack model that learns complex data representations, and its

definitions, functions, and implementation details are discussed in Sec-

tion 3.4.1. Time encoding simulates the continuous time of stochastic

differential equations, facilitating a more flexible sampling of the stochas-

tic process. The effects and formulations of time encoding are explained

in Section 3.4.2. The adopted research framework partitioned the train-

ing objective into three components. Section 3.4.3 details the training

objective and implementation.

3.4.1 Latent Variable Reparameterization

This section details the implementation of the normalising flows tech-

nique (Rezende and Mohamed 2015, Dinh et al. 2016) within the point

cloud generation model based on stochastic differential equations. Nor-

malising flows are a class of deep-learning models used to perform density

estimation and probabilistic modelling. The core idea behind normalising

flows is to transform a simple probability distribution (such as a Gaussian

or Uniform distribution) into a more complex one by applying a series
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Figure 3.3: Illustration of normalising flow

of invertible, differentiable transformations. These transformations are

devised to adjust the probability density of the initial distribution to

resemble the target data distribution (Figure 3.3).

A normalising flow constitutes a stack of affine coupling layers f =

{f1, .., fn} as a reversible transform between a prior distribution and a

complicated distribution. In particular, pdata = fn ◦ fn−1 ◦ . . . f1 (z) is

the output variable and z can be estimated from pdata via the inverse

mapping:

z = f−1
1 ◦ . . . f−1

n (pdata) , (3.26)

where ◦ denotes the Hadamard product. Normalising flows are particu-

larly useful for modeling complex, high-dimensional probability distribu-

tions, and have applications in generative modeling, Bayesian inference,

and other areas of machine learning.

The transformations used in normalising flows are reversible, enabling

their application in both forward and reverse directions. This attribute

facilitates efficient sampling from the learned distribution (via inverse

transformations) and computation of the probability density function of

a data point using the change of variables formula. Additionally, nor-

malising flows can learn highly expressive and complex probability dis-

tributions by concatenating a series of straightforward transformations,

as shown in Figure 3.4. By adjusting the architecture and depth of the

model, normalising flows can capture intricate dependencies and correla-

tions in the data.
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Figure 3.4: The illustration of one layer of normalising flow.

Given these properties and challenges, a specific application is pro-

posed for the modelling of point clouds. The permutation invariance

property of point clouds necessitates careful handling, which can be com-

putationally demanding and complex. To tackle this, the distribution of

distribution framework (Yang et al. 2019) is employed, modelling the gen-

eration process as a distribution of point cloud distributions framework.

The distribution of distribution framework refers to the framework that

generates a point cloud, which is the distribution of output based on a

latent code, that is, the simulated distribution of the point cloud dataset.

This framework is a hierarchical approach for modelling 3D point clouds,

where the first level of distribution represents the overall shapes, and

the second level models the distribution of points within a given shape.

This framework decouples the generation process into two stages. In the

first stage, this network samples a latent code from the base distribution,

which captures the global shape properties and variations across different

point clouds. In the second stage, the network models the local structure

and fine-grained details of individual point clouds.

The chosen form of Normalising Flows for this task is the Finite Flows,
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Figure 3.5: Illustration of normalising flow architecture

comprising a finite number of reversible transformations. Figure 3.5 illus-

trates the architecture of normalising flow that is adopted in the exper-

iment. Formally, given the latent variable pdataX with distribution pdata,

let network φ denote instantiated affine coupling layers that map pdata to

the output variable z with prior distribution P (z). The exact probability

of the output variable is estimated by the change of variables formula:

P (pdata) = P(z)

(
∂ϕ

∂z

)
(3.27)

,where z = φ−1 (pdata).

3.4.2 Time Encoding

This section introduces the concept of Time Encoding, which facilitates

the accurate capture of temporal sequences within the point cloud gener-

ation. It elaborates on the theory behind Time Encoding and its specific

implementation in the experimental framework.

Time encoding (Vaswani et al. 2017, Devlin et al. 2018, Lazar and

Pnevmatikakis 2011) is a technique used in neural networks to incorpo-

rate information about the order or position of elements in a sequence,

such as tokens in a sentence or time steps in a time series. Time encod-

ing refers to methods that embed temporal information into the input

features, helping the model to understand the order of events in a time

series or the progression of tokens in a sequence. Time encoding can

be implemented using various techniques, such as adding timestamps
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or time-based features to the input data, or using time-aware attention

mechanisms in the model architecture. Time encoding is particularly use-

ful for time series analysis, forecasting, and sequence-to-sequence tasks.

In this point cloud generation diffusion model with a stochastic dif-

ferential equation, the additional input time step t allows a single model

to use a common set of parameters to handle different noise levels. How-

ever, the experiment shows the network can ignore the time step t when

attaching it with input directly. Besides, it is suboptimal to increase the

parameter of the network to handle this parameter, which increases the

learning burden. Therefore, the proposed method adopts time encoding

with Gaussian random features to encode time step t (Tancik et al. 2020).

In particular, the time embedding TE is defined as:

TE = [sin (2πwt); cos (2πwt)] (3.28)

where operator [a, b] denotes the concatenation; w ∼ N (0, I) is a

frozen random matrix. This time embedding plays a crucial role in en-

suring the time-aware capability of our model, allowing it to adequately

account for temporal dynamics present in the point cloud generation pro-

cess. The use of Gaussian random features for time encoding is justified

by their flexibility and expressiveness, making them suitable for repre-

senting complex time-dependent dynamics. Moreover, since w is frozen

(i.e., it does not change during training), this approach does not add any

learnable parameters to the model, thereby reducing the computational

cost and the risk of overfitting.

3.4.3 Training Objective

It can be seen from Equation 3.25 that the network can simulate the

denoising of point cloud generation process by minimising ∥sθ(xt, t) −

∇xt log p(xt|x0)∥2. In this section a forward stochastic process is con-

structed and shows how to solve ∇xt log p(xt|x0).
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However, it is not easy to solve p(xt|x0). Therefore, without loss of

generality, it can be assumed that the data set confirms the standard

normal distribution, that is p̃ (x0) ∼ N (x0;0, I) and p (xt−1|xt, x0) con-

forming to Gaussian distribution.

Defined in DDPM (Ho et al. 2020),

p(xt|x0) ∼ N (xt; ᾱtx0, β̄
2
t I), (3.29)

where α > 0, β > 0, α2 + β2 = 1.

In this case,
xt = ᾱtx0 + β̄tϵ

xt+∆t = ᾱt+∆tx0 + β̄tϵ
(3.30)

However, unlike DDPM, which fits a Markov chain with a fixed num-

ber of steps, the proposed method tries to simulate a continuous stochas-

tic process. Therefore, this research assumes t ∈ [0, 1], ᾱ0 = 0, ᾱ1 = 1,

β̄0 = 0, β̄1 = 1.

Combined with Equation 3.13, we can obtain:

xt+∆t = xt + ft∆txt + gt∆tϵ

= (1 + ft∆t)xt + gt
√
∆tϵ

(3.31)

From this we can get,

ᾱt+∆t = (1 + ft∆t) ᾱt

β̄2
t+∆t = (1 + ft∆t)2 β̄2

t + g2t∆t
(3.32)

Let ∆t→ 0 , respectively solve,

ft =
d

dt
(ln ᾱt) =

1

ᾱt

dᾱt

dt
, g2t = ᾱ2

t

d

dt

(
β̄2
t

ᾱ2
t

)
= 2ᾱtβ̄t

d

dt

(
β̄t

ᾱt

)
(3.33)

In this case, the optimize objective in Equation 3.25 can be denoted

as

∇xt log p (xt | x0) = −
xt − ᾱtx0

β̄2
t

= − ε

β̄t

(3.34)
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Figure 3.6: The illustration of the training phase of the proposed model.
The z is noise with a prior distribution. The Global Latent Variable pdata
is the distribution of data. The affine layers map the data distribution
to the latent variable platent with Gaussian distribution.

According to Ho et al. (2020), we can set sθ(x, t) = − ϵθ(x,t)

βt
based on

Bayesian definition, and substituting the above formula into the Equa-

tion 3.25 can get

1

β̄2
t

Ex0∼p̄(x0),N∼(N,I)

[∥∥εθ (ᾱtx0 + β̄tε, t
)
− ε
∥∥2] (3.35)

Our model is trained in an end-to-end fashion by minimising the

above objective of all point sets in the dataset. The training phase is

shown in Figure 3.6. The θ in the figure denotes the diffusion model to

approximate stochastic differential equations, and network ϕ learns the

distribution of pdata.

The proposed method implements a point cloud auto-encoder based

on stochastic differential equations in experiments. It is possible to di-

rectly apply KL loss over the latent variable outputted by ϕ, but it has

been proved that it unavoidably restricts the performance of network

(Chen et al. 2016). We employ normalising flow to enhance the represen-

tation of the network instead of using KL loss to parameterise the latent

variable. Formally, leveraging on Equation 3.25, we rewrite the objective

of our network:
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L(θ, ϕ, φ) =
(
εθ (x, t)

β̄t

)2

+DKL

(
ϕ(pdata|X0)∥P(z)

∣∣∣∣det(∂φ

∂z

)∣∣∣∣−1
)

+H
[
ϕ(pdata|X0)

]
(3.36)

where the first optimise objective
(

εθ(x,t)

β̄t

)2
is the training objective of

the SDE-Net θ; the second training object det
(
∂φ
∂z

)
is for optimize the

affine layers φ; KL loss and entropy loss are used to optimize the encoder

ϕ and the affine layers. The training adopts end-to-end fashion. Portions

of this section are based on the published paper Li et al. (2023).

3.5 Implementation process and experiments

This section details the process of implementation and analyses the ex-

perimental results to evaluate the performance of our proposed point

cloud generation model. The experiments are designed to explore the

model’s capacity in various tasks, such as point cloud generation, recon-

struction, and completion. This section incorporates material from the

following our paper Li et al. (2023).

First, in Section 3.5.1, the experimental setup is introduced, includ-

ing the dataset, the configuration of the point cloud generation network,

and the specific parameters adopted during the training phase. Next,

Section 3.5.2 explains the Evaluation Metrics in detail, which are crucial

for evaluating tasks related to point cloud generation. The section also

includes the respective definitions of each metric. The selection of these

metrics was based on their ability to provide a comprehensive evaluation

of the point cloud generation model’s performance. Then, the experi-

mental results of the point cloud generation network on the generation

task are shown and comprehensively discussed the experimental results

in Section 3.5.3. Because the network framework adopts the Autoen-

coder structure, the results of the point cloud reconstruction experiment
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are shown and compared as well in Section 3.5.4. The extended appli-

cation of the generation network - the results of point cloud completion

are discussed in Section 3.5.5.

3.5.1 Experimental setting

The experiment of this section is carried out on the ShapeNet datasets

(Chang et al. 2015) and ModelNet40 (Uy et al. 2019). ShapeNet consists

of 51,127 point clouds for the training set and 1,184 for testing from

55 object categories. The proportion of training, testing and validation

sets respectively are 80%, 15% and 5%. ModelNet40 contains 12311

mesh CAD models from 40 categories, of which 9843 CAD models are

used for training, and 2468 CAD models are used for testing. The main

experiments of this chapter are conducted on chair, airplane, car, and

guitar models to demonstrate the proposed method’s effectiveness. For

each shape for training, we randomly sample 2048 points from it. It

should be emphasised that the implementation of our method is not

constrained by the number of sample points.

The proposed method adopts PointNet for the architecture of encoder

ϕ. The architecture of PointNet is shown in Figure 3.7. As for latent

variable parameterisation φ, the proposed method uses 3 layers with 256

hidden units and a ReLU activation function. An MLP architecture is

employed for modelling network θ with stochastic differential equations.

We apply 6 layers of full linear for the model θ. We use 1 layer of 64

hidden units for the Time encoding.

3.5.2 Evaluation Metrics

The experiment uses 128 batches (batch size) to train on different cat-

egories of the two datasets and uses 128 batches for direct training on

all categories. The Adam optimiser with a momentum of 0.9 is used

for optimisation, the initial learning rate is set to 0.001, and the decay

rate is 0.5. For the classification network, it needs to train 1000 rounds
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Figure 3.7: Illustration of PointNet architecture (Qi et al. 2017a).
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(Epoch). It takes about 12 hours for training point cloud generation to

converge. All experiments are performed on NVIDIA RTX 2080Ti GPU.

During the inference phase, we set T=1000 to generate each point cloud.

In the context of deep learning, compared with traditional computer

systems, models trained from large amounts of data have higher diversity

and complexity. Therefore, benchmark evaluation technology will cover a

wide range of applications and provide various evaluation standards. This

section summarises the benchmarks in the field of point cloud generation.

Coverage (COV) (Achlioptas et al. 2018) is a metric to assess how

well the model can capture the diversity and characteristics of the data

distribution of the ground-truth dataset. For a set of high dimensional

data, for example, a set of N-dimensional data vectors, each of them

represents a specific sample, then the COV can be used to describe the

variation relationship between each pair of dimensions in these samples.

COV can reveal which features of the data are correlated, whether those

features are positively or negatively correlated, and to what extent they

are correlated.

To compute the Converage between the generated dataset X = {x}

and the ground-truth dataset Y = {y}

COV (X, Y ) =
|{argminy∈Y D(x, y) | x ∈ X}|

|Y |
(3.37)

where |Y | denotes the number of the point cloud in the ground-truth

dataset; D(·, ·) denotes a distance measurement method that can be CD

or EMD; COV ∈ [0, 1], where COV = 0 denotes none of the point

clouds in dataset X is covered by the point clouds in dataset Y within

the distance threshold ϵ; COV = 1 denotes all of the point clouds in

dataset X are covered by the point clouds in dataset Y within the distance

threshold ϵ. COV alone might not provide a complete assessment of the

performance of a generative model. It is often used in conjunction with

other metrics to provide a more comprehensive evaluation of the model’s

performance.
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Minimum matching distance (MMD) (Achlioptas et al. 2018) is

a similarity metric used to compare two sets of points or objects, typically

in Euclidean space. The key idea behind MMD is to find the best possible

correspondence between the points in the two sets, such that the overall

distance between the matched points is minimised.

To compute the Maximum Mean Discrepancy (MMD) between the

generated dataset X and the ground-truth dataset Y , we first need to

calculate the mean embeddings of the two distributions X and Y in a

Reproducing Kernel Hilbert Space (RKHS) using a kernel function K.

MMD(X, Y ) =
1

|Y |
∑
y∈Y

min
x∈X

D(X, Y ), (3.38)

where D(·, ·) can be replaced by CD or EMD;

1-NN classifier accuracy (1-NNA) (Xu et al. 2018a) is a measure

of the performance of the KNN classifier on a given dataset. This metric

can be used to measure whether the distributions of two sets are equal.

1−NNA(X, Y ) =

∑
x∈X D [Nx ∈ X] +

∑
y∈Y D [Ny ∈ Y ]

|X|+ |Y |
, (3.39)

where Nx denotes the nearest sample of x in X. For each sample, its 1-

NNA classifier classifies it into X or Y according to its nearest neighbour

sample. If X and Y are sampled from the same distribution and there are

enough samples, then the classifier should be 50% accurate. The closer

the accuracy rate is to 50%, the distribution of X and Y are closer.

Jensen-Shannon Divergence (JSD) (Yang et al. (2019)) is a sym-

metric and bounded measure of similarity between two probability dis-

tributions. It is based on the Kullback-Leibler (KL) divergence, which is

another measure of divergence between probability distributions. JSD is

defined as the average of two KL divergences, one for each distribution
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Figure 3.8: The illustration of the inference phase of the proposed model.
The dashed line represents the loop process.

with respect to a mixture of the two distributions:

JSD(X∥Y ) = 0.5 ∗KL(X||X + Y

2
) + 0.5 ∗KL(Y ||X + Y

2
)

KL(X∥Y ) =
∑

P (x) log
X

Y

(3.40)

JSD is always non-negative, with JSD(X∥Y ) = 0 if and only if X =

Y . JSD is bounded between 0 and log(2), where the upper bound occurs

when the two distributions are completely disjoint.

For point cloud synthesis, we follow the evaluation set-up in Yang

et al. (2019) and Achlioptas et al. (2018) to compare in terms of all the

above metrics.

3.5.3 Point Cloud Generation Experiments

This section shows the results of the generation experiment. In addition,

the experiments in this section also performed quantitative comparative

experiments to demonstrate the superiority of our method through tables

and compared them through visual effects.

Figure 3.8 shows the inference phase of this process. Figure 3.9 shows

some examples of point clouds generated by the proposed model. We nor-

malise each generated shape and evaluate the proposed model generated

point clouds by the metrics in Section 3.5.2. The experimental results
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demonstrate that the proposed method can synthesise a point cloud with

a distinguished structure and clear surface.

(a) Examples of car and guitar synthesised by the proposed
model

(b) Examples of chair and bag synthesised by the proposed
model

Figure 3.9: Examples of point clouds synthesised by the proposed model.
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(a) Examples of airplane and lamp synthesised by the pro-
posed model

Figure 3.9: Examples of point clouds synthesised by the proposed model.

In addition, we quantitatively compare the proposed method with the

following state-of-the-art generative models: PC-GAN (Achlioptas et al.

2018), GCN-GAN (Valsesia et al. 2018), TreeGAN (Shu et al. 2019a)

and PointFlow (Yang et al. 2019). The comparison results are shown in

Table 3.1. It can be seen that the proposed method outperforms other

types of point cloud generative models and reaches competitive results

compared with the diffusion-based point cloud generative model.

3.5.4 Point Cloud Reconstruction Experiments

Because according to the design in Section 3.2, the proposed model

adopts the framework of Autoencoder. To further demonstrate the effec-

tiveness of this approach, this section presents the effect of point cloud

reconstruction. In the point cloud reconstruction experiment, firstly, the

effect of the method is compared and displayed in a visual way. Then

the validity of the method is proved by quantitative comparison.
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Table 3.1: Comparison of point cloud generation performance.

Category Model
MMD(↓) COV(%,↑) 1-NNA(%,↓) JSD(↓)

CD EMD CD EMD CD EMD -

Airplane

Wu et al. (2016b) 3.819 1.810 60.17 13.84 97.59 98.52 6.188
Valsesia et al. (2018) 4.713 1.650 51.04 18.62 89.13 98.60 6.669
Shu et al. (2019a) 4.323 1.953 51.37 8.40 84.86 99.67 15.646
Yang et al. (2019) 3.692 1.990 47.98 64.65 82.39 85.36 3.296
Luo and Hu (2021) 3.588 1.101 45.00 44.65 79.20 83.22 2.921

Ours 3.508 1.132 45.02 39.20 78.00 82.12 2.383

Chair

Wu et al. (2016b) 13.436 3.104 90.23 22.14 69.67 100.00 6.649
Valsesia et al. (2018) 15.354 2.213 34.84 15.09 81.86 95.80 21.708
Shu et al. (2019a) 14.936 3.613 32.02 6.77 82.92 100.00 13.282
Yang et al. (2019) 13.631 1.856 36.86 26.38 76.13 78.40 12.474
Luo and Hu (2021) 12.211 1.900 33.84 44.22 70.20 69.44 7.821

Ours 12.879 1.819 39.53 41.86 69.46 73.50 9.499

Figure 3.10: The illustration of the reconstruction phase of the proposed
model. The dashed line represents the loop process.

We compare with state-of-the-art point cloud auto-encoder: Atlas-

Net (Groueix et al. 2018), PointFlow (Yang et al. 2019), and ours. We

evaluate the quality of the proposed method with three categories: air-

plane, chair, and all categories, and the comparison results are shown in

Table 3.2. As shown in Table 3.2, the proposed method achieves bet-

ter performance in CD score and competitive results when compared to

EMD. All the point cloud in comparison experiments contain the same

number of points and are normalised by the same approach. We visu-

alise the point cloud reconstruction as shown in Figure 3.11. It can be

seen that the proposed method can reconstruct faithful and clean point

clouds.
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Figure 3.11: Examples of point cloud reconstruction.

Table 3.2: Comparison of point cloud reconstruction performance.

Dataset Metric (Groueix et al. 2018)(S1) (Yang et al. 2019) Ours

Airplane
CD 2.000 2.420 2.921

EMD 4.311 3.311 3.624

Chair
CD 6.979 6.795 6.631

EMD 5.550 5.008 4.578

All
CD 6.906 7.550 6.130

EMD 5.617 5.172 4.456

We further implement extrapolation and visualise the point cloud in

Figure 3.12. In this experiment, we project the global latent variable

produced by the auto-encoder encoder and interpolate between them.

The interpolation results show the interpolated shapes generated by the

proposed method, demonstrating the model’s ability to learn informative

representations and smoothly transition between different point cloud

formations within the latent space.

3.5.5 Point Cloud Upsampling Experiments

This section illustrates the effect of point cloud upsampling. During

inference, the proposed model can generate a sequence of point-wise move

distance sampling each point cloud, which allows point cloud completion.

Motivated by this property, we conduct an additional experiment to point

cloud upsampling and completion as the applications of the proposed
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Figure 3.12: Global latent variable interpolation.

method.

Specifically, we use the partial point cloud as the input and use the

pre-trained encoder to estimate the global shape variable. Then we em-

ploy the global shape variable and the partial point cloud to synthesise

the completed point cloud. The visualised qualitative results are shown

in Figure 3.13. As shown in the results, the proposed model can complete

a precise point cloud when the reference point cloud is sparse.

Figure 3.13: Visualised experimental results of point cloud completion.
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3.6 Summary

In this chapter, point cloud generation is transformed as a transition

process between a distinguished shape and noise with prior distribution,

which is the Gaussian distribution in a discussion. Then stochastic pro-

cess and stochastic differential equations are incorporated to simulate

and solve the generation process. A framework for a point cloud gener-

ative model based on SDE is detailed and implemented. The proposed

work brought a new point cloud conditional generation approach to the

family of point cloud generation based on diffusion models. By com-

bining the time encoding and SDE, the proposed method can make the

transformation between the noise and point cloud more smooth and more

flexible. Additionally, the Lagvien MCMC sample is employed to improve

the quality of the generated point cloud. Experimental results demon-

strated that the proposed model can generate an expressive point cloud

and achieve competitive results compared with other methods.
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Chapter 4

Generative Approach to 3D
Point Cloud Annotation
Method

The preceding chapter focuses on solving the annotated 3D point cloud

generation challenge. This chapter proposes a label-efficient point cloud

annotation solution based on a point cloud generative model, building

upon the foundational understanding developed.

As discussed in Chapter 1, point cloud generative models capture

point cloud collections’ shape, pattern and semantic information. In

light of this, the goal of this method is to reuse a pre-trained point cloud

generative model to generate point cloud and its corresponding label.

To demonstrate the effectiveness of the proposed approach, experiments

have been conducted on the point-wise semantic transformation of a point

cloud generator, demonstrating its usability for semantic segmentation

tasks. The experimental results indicate that the intermediate features

learned through the point cloud diffusion-based model are interpretable

compared to the representations obtained by existing supervised tech-

niques, such as Zhao et al. (2019b), Yang et al. (2019). This chapter is

organised as follows:

• Section 4.1 overviews the motivation and the overall architecture

of the proposed method. Additionally, this section summarises the

observation in point cloud diffusion-based generative models and
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brings up the main assumption, which motivates the proposed ap-

proach.

• Section 4.2 explores an approach to generate point-label pairs based

on the point cloud diffusion-based method. In this section, the

introduction of the intermediate feature of point cloud generation is

first presented, and a method to analyse the intermediate feature is

provided. Based on the analysis of intermediate features, a feature

interpreter is introduced and applied to generate point-label pairs.

• Section 4.3 shows the experimental results of the proposed method

in different experimental setups and compares the effectiveness of

the proposed method.

• Section 4.4 summarises this chapter.

4.1 Introduction

With the advancements in hardware such as LIDAR and scanners, there

has been a corresponding surge in applications reliant on three-dimensional

data. These applications have stimulated the demand for advanced three-

dimensional technologies, emphasizing the need for refined tools and

methods capable of handling, processing, and understanding complex

3D data structures, amongst which those techniques based on deep learn-

ing have exhibited the most rapid development, demonstrating impres-

sive capabilities in handling complex 3D data. Despite their remarkable

performance, deep neural networks demand a large quantity of labelled

and clean data for training, making the process both time-consuming

and costly. This limitation hinders the widespread development of these

technologies in real-world applications.

Another solution that uses a point cloud generative model to generate

point cloud with point-wise semantic label, Mo et al. (2020), Gal et al.
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(2021), Yang et al. (2021), Shu et al. (2019b), is to synthesise expres-

sive point clouds while having control of the structure. Point clouds and

point-wise semantic labels are bred from key structural points in these

methods. However, due to the irregular distribution and high complexity

of 3D point clouds, existing generative models often struggle with explicit

structural controllability and producing realistic-looking shapes. The ap-

proach in this chapter goes beyond existing solutions in terms of explicit

point-label pairs generation as it generates point-wise labels without af-

fecting the shape generation results because the semantic information is

obtained from the intermediate features of the generator.

By learning from unlabeled data, the generative model produces point

clouds with prominent semantic features, demonstrating a robust repre-

sentation learning ability. This is because the process of generating re-

alistic point clouds inherently involves learning the spatial configuration

of various semantic components, therefore, encoding valuable semantic

information within the point cloud generation network. This approach is

motivated by two observations: First, the coarse structure of the point

cloud is primarily recovered at the early stage of the diffusion process

by the generator of the diffusion model, with details gradually enriched

at the later stages. Second, during the diffusion process, the generator

should generate a set of independent and identically distributed random

variables, and it can form a plausible shape.

These observations lead us to analyse the intermediate features of the

point cloud diffusion generative model, seeking to understand its discrim-

inability and its potential for semantic interpretation. The intermediate

features are aggregated and transformed into point-wise semantic labels

by the Feature Interpreter. This approach enables the annotation of

point-wise labels without affecting the quality of point cloud generation.

The above section extends the discussion from our published work Li

et al. (2022b).
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4.2 Intermediate Feature Analysis and Fea-
ture Interpreter

This section presents the method, referred to as DiffusionPointLabel, for

generating point cloud datasets along with their corresponding semantic

labels. The objective of this method is to extract meaningful information

from the pre-trained generative model and create an effective representa-

tion of structure and semantics within the generated point cloud datasets.

This approach can be divided into two main parts: Intermediate Feature

Analysis (Section 4.2.1) and the Feature Interpreter (Section 4.2.2). This

section details each of these components and discusses their respective

roles in point cloud dataset generation.

4.2.1 Intermediate Feature Analysis

This section introduces the intermediate feature in the point cloud gen-

erative model and a general approach for analysing it. Then this section

elaborates on how to analyse the intermediate feature of the point cloud

diffusion-based generative model. The analysis demonstrates the dis-

criminability of intermediate features that can serve as the foundation

for developing the Feature Interpreter, which is essential for generating

explicit semantic labels.

4.2.1.1 Intermediate Feature Analysis Preliminary

An ongoing criticism of using neural networks is that they are black-box

approaches with little understanding of what the network does in the

form of simple human-consumable algorithms. Therefore, some methods

have been proposed to gain insight into the learning process of the net-

work by analysing the characteristics of the middle layer of the neural

network, improving its design and performance, so enhance the inter-

pretability of deep neural network. One of the widely studied topics is to

learn good intermediate representations from a nearly unlimited amount
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of unlabeled images and videos, which can then be used in various super-

vised learning tasks such as image classification (Ng and Jordan 2001)

and recognition (Ranzato et al. 2011, Hinton 2007).

In a deep neural network, the input data is sequentially transformed

by a series of layers. Each layer performs a specific operation (e.g., con-

volution, pooling, normalization, or activation) and generates a new set

of features. As data spans through the network, features become more

abstract and high-level, enabling the network to recognise and represent

more complex relationships in the data. Intermediate features are the

result of applying transformations to the input data as it spans through

the network. They capture increasingly complex patterns, structures,

and abstractions in the data, enabling networks to learn and generalise

efficiently. One of the examples is shown in Figure 4.1. As illustrated

in this Figure, different layers of the network focus on different features,

showing that the network can distinguish among various data types at

different layers. This figure provides a tangible example of how interme-

diate features work in image generation networks.

Zeiler and Fergus (2014) and Zintgraf et al. (2017) exhibited that each

layer in an image classifier network captures an increasingly complex and

abstract representation of the input data. Each layer of the network

gradually extracts more and more advanced image features until the last

layer compares these features to make a classification result. Li et al.

(2021a) and Zhang et al. (2021b) demonstrated that the intermediate

of the GAN-based image generative model can be used to realise image

segmentation.

Different from the above two types of methods to analyse the char-

acteristics of the image classification neural network, this paper mainly

analyses the characteristics of the middle layer of the point cloud genera-

tion model and whether it has interpretable value. Moreover, this study

further proposes how to use these intermediate layer features to gener-

ate point cloud semantic label. The following analysis will highlight the
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characteristics and the learnable value of the middle layer in point cloud

generation models.

Figure 4.1: Visualization of the intermediate feature in an image genera-
tive model (Zeiler and Fergus 2014). For each layer of visualization, the
nine images with the largest reconstructed values are displayed, repre-
senting distinct features the layer is attentive to.

4.2.1.2 Intermediate Feature Analysis Approach

This section is based on findings from our publication Li et al. (2022b).

The point cloud generation process based on the diffusion generative

model is shown in the top row of Figure 4.2. As shown in Equation 3.20,

the output of the diffusion generator at each step should be independent

and identically distributed random variables. However, in the early and
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later stages of the diffusion process, the change tendency of the point

cloud is different: coarse structure in the former and fine details in the

latter. Therefore, we assume that the point representation of the diffusion

generator has different discriminability alongside the diffusion process.

Figure 4.2: Visualization of the diffusion process and corresponding K-
means clustering of intermediate features of the point cloud generative
model. The top row represents the states of the point cloud in the diffu-
sion process in the time variable. The bottom row represents the results
of the corresponding K-means clustering features of the intermediate fea-
tures.

To prove our assumption in Section 4.1, we use the K-means cluster

to analyse the intermediate features of the diffusion generator at different

time steps. In practice, we freeze a diffusion model θ and take a point

cloud X ∈ RN×3 and a time step t as the inputs of θ. Then we extract

the intermediate features of one layer of the generator θG. Because the

generator we used is an MLP, the intermediate features of every layer at

each time step t can be denoted by Ci,t ∈ RN×outi . We use the K-means

clustering algorithm to estimate the cluster group of each point from

the intermediate features of X and visualise the results, as shown in the

bottom row of Figure 4.2. In K-means clustering, the number of clusters

(K) is informed by the number of semantic parts from the ground truth of

the point cloud being analysed. For example, the airplane in Figure 4.2
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has 4 semantic parts, and then we set the K-means cluster number to

be 4. The results of K-means demonstrate that the discriminability of

intermediate layer features gradually increases with decreasing time steps

and is interpretable at the semantic level.

To further determine which layer of features we should extract or

at which time steps, we quantitatively compute the K-means clustering

results. If the K-means clustering effect is good (the cluster groups of the

close points are very similar, and the cluster groups of the distant points

are not the same), it means that the discriminability of this intermediate

feature is very high. Otherwise, it will remain low and cannot be used for

further learning. We extract and cluster the intermediate features of each

layer of θG from time t = 0 to T . We compute the clustering results with

the Calinski-Harabasz Index algorithm Caliński and Harabasz (1974),

and the result is shown in Figure 4.3. The Calinski-Harabasz Index

algorithm is used to measure the quality of the cluster model without

the ground-truth label. The Calinski-Harabaz score is defined as the

ratio of separation and cohesion of clusters. The formulation is shown as

follows:

s =

(
SSB

k − 1

)
/

(
SSW

N − k

)
(4.1)

where k denotes the number of clusters, N denotes the number of point

of point cloud, SSB denotes the variance between different clusters, and

SSW denotes the variance within one cluster. The higher the score, the

better the clustering effect of K-means.

As shown in Figure 4.3, the Calinski-Harabasz Index score starts con-

verging to a high value when t = T/4, which means the features are more

discriminative and can be well clustered. The experiments utilise the in-

termediate features at t < T/4. It is worth mentioning that this score

becomes stable at t→ T . The attribution is that the discriminability of
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intermediate features tends to be consistent at this time, and the point

features represent the object’s category or overall shape information.

Figure 4.3: Calinski-Harabasz Index of intermediate features clustering
results. The score represents the quality of the cluster. Different colors
represent different layers of the θG

By analysing the intermediate features of the diffusion generator, we

have demonstrated their potential to provide valuable information for

learning representations of structure and semantics, which is essential

for the subsequent development of the Feature Interpreter.

4.2.2 Feature Interpreter

The following section extends the discussion from our published work Li

et al. (2022b). Building upon the insights gained from our intermediate

feature analysis in section 4.2.1, this section develops the Feature Inter-

preter to generate explicit semantic labels for the generated point cloud,

thereby creating a more comprehensive and meaningful representation of

the data.
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Figure 4.4: Architecture of proposed method.

4.2.2.1 Method Architecture

In our proposed method, the first stage is the extraction of intermediate

features from the point cloud. Given a random latent code z ∼ N (0, I)

and a random noise of point cloud X ∈ RN×3 ∼ N (0, I), our aim is to

generate a point cloud X ∈ RN×3 along with its corresponding seman-

tic labels SL ∈ RN×b. Here, b denotes the number of semantic label

categories in the point cloud.

This is achieved by extracting intermediate features from different

layers of the diffusion generator θG at specific time steps t = ti|i = 1, .., T .

Each Ci,j ∈ RN×Couti represents the intermediate feature of the i-th layer

at time step t = j. We then concatenate multiple Ci,j into a composite

feature C∗.

In the second stage, the Feature Interpreter takes the composite fea-

ture C∗ and transforms it into point-label pairs, providing the detailed

semantic information associated with the point cloud.

The overall of this method is shown in Figure 4.4. The feature in-
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terpreter can serve as a parallel extension as the point cloud generative

model, which would not affect the performance of the point cloud gener-

ator.

4.2.2.2 Feature Interpreter Details

In the process of generating a point cloud dataset using a diffusion gener-

ative model, not only the point cloud but also the corresponding semantic

labels should be generated in order to better understand the underlying

structure and semantics of the objects in the point cloud. Therefore,

this section introduces the concept of feature interpreter to realise the

generated point cloud to generate clear point-wise semantic labels.

Feature Interpreter aims to bridge the gap between intermediate fea-

tures extracted from generative models and semantic labels. By leverag-

ing the multi-layer perceptron (MLP) or a self-attention mechanism, the

feature interpreter converts the concatenated intermediate features into

point label pairs, providing a way to associate the resulting point cloud

with its corresponding semantic label. This process not only enables the

generated point cloud to generate explicit point-wise semantic labels but

also enhances the interpretability of the generated point cloud.

The Feature Interpreter takes the intermediate features as the input,

aiming to generate explicit semantic labels for the generated point cloud.

An MLP is implemented to realise the label prediction. Similar to the

K-means clustering process, we freeze a diffusion model θ and take a

point cloud X ∈ RN×3 and a time step t as the inputs of θ. Based on the

analysis in section 3.1, we sample C0,t across different time steps, where

t < T/4. Then the intermediate features C0,t of the θG are upsampled via

linear interpolation and concatenated to form C∗ ∈ RN×1024. In practice,

we use a three-layers MLP to predict the semantic label for each point

from the C∗. The Feature Interpreter is optimised by cross-entropy loss.

Figure 4.5 shows the structural details of the function of the Feature

Interpreter.
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Figure 4.5: Illustration of the point-label pairs generation method.

4.3 Evaluation

This section presents the specific implementation details of the experi-

mental setup. Firstly, the data set used in the experiment is introduced,

and the evaluation metrics used in the evaluation experiment are intro-

duced. Then it analyses the function of Feature Interpreter and how to

design an experiment to evaluate the effect. Then this section conducts

ablation and comparative experimental research on the experiments in

this section. The experiments and analysis presented here were originally

discussed in our previous publication (Li et al. 2022b).

4.3.1 Experimental setting

This section introduces the dataset that used in the experiments and

implementation and training details.

Dataset Description. In the 3D point cloud object part segmenta-

tion task, training and testing are carried out on ShapeNetPart (Yi et al.

2016b). The dataset contains 16880 CAD models in 16 categories; each

model is labelled with 2 to 6 parts, and there are 50 parts for all objects
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in total. The experiment follows the division of the standard training

set/test set, and selects the model of this category for training according

to whether the point cloud generation model is a category-specific model,

and uses all the models in the test set for testing. Sampling 2048 points

for all original 3D objects, using the coordinates xyz as the input of the

network for training.

Implementation and Training Details. The model is imple-

mented based on Pytorch and trained a single NVIDIA GeForce GTX

2080ti graphics card. For different categories of objects, the experiment

chooses two structures of multi-layer perceptrons (MLP) with ReLu acti-

vation function. For objects with only three partial semantic categories,

the experiment is chosen to be performed on a three-layer MLP, and the

middle hidden layers are 512, 256, respectively. For objects with more

than three partial semantic categories, the experiment is chosen to be

performed on a five-layer MLP, and the middle hidden layers are 512,

256, 128, and 64, respectively.

The experiment uses batches with 16 samples for split training, and

for the case of few-shot, the batch size is the same as the number of

samples. The experiment uses the Adam optimiser with a momentum of

0.9 for optimization, the initial learning rate is set to 0.001, and the decay

rate is 0.5. The experiment requires training for 500 rounds. It takes

about 8 hours for the semantic segmentation task to train to converge.

The experiments include PointNet++ (Qi et al. (2017b)) as the base-

line that evaluates the effectiveness of the Feature Interpreter.

4.3.2 Evaluation Metrics

Intersection over Union (IoU) is a widely recognized metric in object de-

tection and segmentation tasks, measuring the degree of overlap between

two areas. It is computed by dividing the area of overlap between the

predicted bounding box (or segmentation mask) and the ground truth
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bounding box (or mask) by the area of their union. In semantic segmen-

tation, unlike object detection, which typically involves regular-shaped

bounding boxes, the prediction output is a segmentation mask that out-

lines the shape of an object or region point-wise. IoU in semantic seg-

mentation compares predicted and ground truth masks point-by-point

to evaluate label accuracy. This method evaluates IoU by measuring

alignment between predicted and ground truth object outlines, ensuring

segmentation correctness. The illustration of IoU is shown in Figure 4.6.

IoUi =
TPi

TPi + FNi + FPi

, (4.2)

where TPi, FNi, FPi is the True Positive, False Negative and False

Positive score of class i, respectively. As shown in Figure 4.6, True Pos-

itive denotes the intersecting region between the ground truth and the

segmentation mask; False Positive denotes the region of the segmentation

mask that is beyond the boundaries of the ground truth; False Negative

denotes the section of the ground truth that the model did not manage

to identify.

Figure 4.6: Illustration of IoU metrics for semantic segmentation (Kukil
2013).

Its role is not only to determine positive and negative samples but

also to evaluate the distance between the output box (predicted box)

and ground-truth. IoU not only can reflect the detection effect of the

predicted detection frame and the real detection frame, but it also has a

characteristic of scale invariance.
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This experiment mainly uses Mean Intersection over Union (mIoU)

as the evaluation metric. mIoU is the most commonly used evaluation

metric in semantic segmentation and object detection.

mIoU =
1

K

K∑
i=1

TPi

TPi + FNi + FPi

, (4.3)

where K denotes the number of classes number. Overall, the formula

indicates that the intersection of the predicted value and the real value

of each category is divided by the union, and then the average is taken,

that is, the average of the IoU value.

4.3.3 The effectiveness of Feature Interpreter

We believe that one of the future application scenarios of our method

is to generate point cloud datasets for a new category. Since the cost

of point cloud annotating is too high, we can use few-shot examples of

point-label pairs and generate large-scale annotated point cloud datasets.

Therefore, it is important to verify whether our method can generate re-

sults with high segmentation accuracy when the example samples are

scarce. We conduct few-shot segmentation to verify the effectiveness of

our method. Figure 4.7 shows the visualised results of the segmentation

results. Moreover, we compare the evaluation results with baseline Qi

et al. (2017b) as shown in Table 4.1. Our method demonstrates compa-

rable performance to the baseline when trained on a few samples. The

comparison results demonstrate that our method is capable of generating

compelling point-label pairs in a few-shot setting. In this experiment, we

set the training epoch as 20, the learning rate starts from 0.001, which

decayed by 0.1 every 2 epochs. This experiment incorporates material

from the previous publication Li et al. (2022b).

4.3.4 Validation of Representation Effectiveness

Since the intermediate features of feature analysis and learning are ex-

tracted from a diffusion generative network with an autoencoder frame,
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Figure 4.7: Visualisation examples of segmentation results.
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Category Model k=1 k=3 k=5 k=10 k=16 k=32

Airplane
Baseline 20.9 47.2 29.4 43.3 59.6 64.6

Ours 58.1 62.8 63.9 64.8 66.0 67.2

Chair
Baseline 33.9 63.8 50.0 64.8 79.5 81.6

Ours 66.2 67.9 72.1 74.7 77.6 78.2

Table 4.1: Few-shot segmentation on the ground truth dataset. k are the
number of samples that are used in Training.

Figure 4.8: Qualitative comparison of intermediate features based on a
different baseline using K-means cluster.

we naturally question whether these learnable intermediate features have

nothing to do with the diffusion process but only benefit from the au-

toencoder framework. Therefore, we conduct an experiment to find out

whether other methods capable of extracting intermediate features from

point clouds can achieve the same effect. To the best of our knowledge,

this is the first work to find out the discriminability of intermediate fea-

tures in a point cloud generative model.

As in our method, we first collect and cluster latent feature spaces of

existing generative models: CapsNetwork (Zhao et al. 2019b), PointFlow
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(Yang et al. 2019), and FoldingNet (Yang et al. 2018). The cluster effect

is shown in Figure 4.8.

The comparison results answer our question: the discriminability of

the intermediate features benefited from the diffusion process, and not

all point cloud autoencoder networks have similar discriminability. The

possible explanations could be that (a) these models use CD-Loss to opti-

mise the parameter of the network, which calculates the overall structural

similarity; (b) these models train the network in a one-shot discriminative

way.

Therefore, their intermediate features do not contain fine-grained in-

formation. This finding also explains why recent works that extract

feature blocks to do segmentation tasks choose PointNet++ instead of

PointNet. The former can recognise fine-grained local features. The

reason we use PointNet as an encoder is to prove that even without a

complicated or deep hierarchy, the diffusion model is still able to bring

out local features. This analysis builds upon the methodology I devel-

oped in our earlier work (Li et al. 2022b).

4.3.5 Ablation Study

Intuitively, there are two deterministic factors of representation discrim-

inability. This section has been developed from concepts and data from

our publication (Li et al. 2022b). The first is that intermediate features

with the highest dimension have better discriminability because they may

contain the most information. The second is that we tend to consider

the features of the shallow layer because the feature of the deeper layer

is closer to the estimated noise of the diffusion process, while the shallow

layers contain abstract information, such as semantics.

Then we compare it to the following settings: a) the features of the

shallow layers are upsampled to the highest dimension; b) the features

of the layer that has the highest dimension.
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C(0,0) Upsample C(0,0) C(2,0)

Airplane 75.7 76.0 72.8

Table 4.2: Evaluation of the different intermediate feature extraction
variations for part segmentation.

The results are proved in Table 4.2. The intermediate features within

the highest dimension slightly underperform the features of the shallow

layers. The experimental results confirmed that the intermediate features

of the shallow layer have better discriminability.

4.4 Summary

To conclude, this chapter presents a simple and useful paradigm for the

generation of point-label pairs. The intermediate feature analysis focuses

on the investigation of the intermediate features of the point cloud gen-

eration diffusion model. By analysing these features at different time

steps, this section aims to gain insights into the abstract information

learned by the generative model, and how it represents the interpretable

structure and semantics of point clouds. This analysis can be served as

the foundation for developing the Feature Interpreter, which is essen-

tial for generating semantically interpretable semantic labels. Feature

interpreter builds upon the insights gained from the Intermediate Fea-

ture Analysis. Feature Interpreter is employed to transform intermediate

features of the point cloud diffusion generative model into the semantic

label. By leveraging a Multi-Layer Perceptron (MLP), the Feature Inter-

preter realises label prediction and optimises it using cross-entropy loss.

The effectiveness and efficiency of the proposed method are demonstrated

via semantic label prediction without strong supervised samples. This

section is summarized from our previous paper (Li et al. 2022b).
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Chapter 5

Improvement for Point Cloud
Dataset Generation

This chapter elaborates on the approach for improving the quality of

the generated point cloud dataset. The main goal of the proposed ap-

proach is to facilitate the generated dataset that can be utilized by the

downstream semantic segmentation task. To this end, drawing inspira-

tion from the query strategies of active learning, this chapter proposed

a point-label pairs filter method based on Query-By-Committee. This

chapter is organised as follows:

• Section 5.1 introduces the motivation of the filter module and overview

of the proposed method.

• Section 5.2 lays the theoretical groundwork for our approach by ex-

ploring the fundamentals of active learning and the specific strategy

of Query-By-Committee (QBC). Then it discusses how to use it to

filter low-quality point clouds and unqualified corresponding labels.

• Section 5.3 highlights the design of experimental and practical ap-

plication of this method. The experimental results demonstrate the

effectiveness of the proposed method.

• Section 5.4 summarizes this chapter.
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5.1 Introduction

In the above chapters, this research has proposed point cloud and point-

wise semantic label generation methods. The proposed method realises

point cloud dataset generation with few-shot annotated point cloud sam-

ples. To ensure that the point cloud and its corresponding point-wise

labels can be effectively used for downstream applications, such as se-

mantic segmentation methods, it is important to carefully examine and

verify the accuracy and precision of the generated datasets. The method

proposed in this chapter addresses how to make the generated point cloud

datasets useful.

On the one hand, the point cloud dataset generation pipeline in the

previous chapters contains an implicit assumption that every point cloud

generated by the point cloud generation model has a distinguishable 3D

shape. However, this is not always the case as generative models can

occasionally produce results that deviate from the expected distribution

or lack a discernable shape (Zhang et al. 2021b). On the other hand,

although the pipeline established above has demonstrated significant po-

tential in reducing the cost of point cloud dataset generation, the feature

interpreters trained with few-shot learning techniques are not sufficiently

developed for practical use in generating point-label pairs for downstream

tasks (Li et al. 2022b). Towards to address these challenges, this chapter

proposes an approach to elevate the quality of the generated 3D point-

label pairs, which can further be used to filter unqualified samples. The

proposed solution draws on uncertainty measurement, which is a strategy

widely used in active learning to select valuable train samples and en-

hance the performance of training deep neural networks. By integrating

uncertainty measurement into the generation process, the quality of the

generated point cloud dataset can be significantly improved.

The experiments show that integrating uncertainty metrics into the

proposed method for generating point-label pairs can outperform pre-
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vious state-of-the-art methods by more than 15% in terms of mIoU.

Additionally, it can provide substantial benefits to downstream seman-

tic segmentation tasks. Thus, this chapter highlights the value of our

proposed method in augmenting the quality and scale of the point cloud

dataset, thereby paving the way for more reliable and efficient down-

stream applications.

5.2 Uncertainty Measurement

Section 5.2.1 elaborates on the theoretical underpinnings of uncertainty

measurement strategies and provides a comprehensive understanding.

Section 5.2.2 details the implementation of how to integrate it into the

3D point-label generation pipeline.

5.2.1 Query Strategy Preliminary

The approach in this section is to take inspiration from active learning.

The main idea of active learning is to obtain more valuable labelled data

at a lower cost and further improve the effect of the algorithm. The

active learning model can be represented by the following formula:

A = (C,Q, S, L, U), (5.1)

where C is a group or a classifier that predicts labels for the unlabeled

samples and L is the samples that have already been labelled and are used

for training the classifier; U denotes the pool of samples that have not

yet been labelled; Q is a mechanism or strategy that the active learning

system uses to identify and select the most informative samples from U .

The active learning strategy aims to select the most informative samples

from this pool for labelling; S is an expert who provides the correct labels

for the samples selected by the query function from the unlabeled pool

U (Goudjil et al. 2018).
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Active learning operates by initiating the training process with a mod-

estly sized set of labelled samples, L. In each iteration, the system iden-

tifies the most informative samples from the pool of unlabeled data, U ,

using a specifically designed query function, Q. These selected samples

are then presented to a supervisor, S, who provides the necessary labels.

With these new labels, the classifier, C, is updated, enhancing its per-

formance for the subsequent iteration. Active learning is a cyclic process

until a certain stopping criterion is reached (Rubens et al. 2015). For

every round, the value of a possible instance is assessed via a scoring

metric, and the instance achieving the top rank is subject to question-

ing (Nguyen et al. 2022). The query function Q is used to estimate the

uncertainty score of one or a batch of samples.

Generally speaking, the use of information entropy is the main ba-

sis for measuring uncertainty. The greater the information entropy,

the greater the uncertainty and the richer the amount of information

contained. In fact, some uncertainty-based active learning query func-

tions are designed using information entropy, such as Entropy query-by-

bagging (Copa et al. 2010). Therefore, the uncertainty strategy is to

try to find samples with high uncertainty, because the rich amount of

information contained in these samples is useful for optimizing model

parameters.

The main idea of the proposed approach is to filter low-quality point

clouds and unqualified corresponding labels through query strategy func-

tions, precisely committee-based queries. Query-By-Committee (QBC)

is one of the most common strategies of query function (Vandoni et al.

2019). The main idea behind QBC is to maintain a committee of differ-

ent models, all trained on the same labelled dataset (Yao et al. 2020).

The models are used to make predictions on unlabeled data, and the

examples with the greatest disagreement among committee members are

considered the most informative and selected for querying. The ratio-

nale behind QBC is that if different models in the committee disagree on
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an example, that example is likely to be difficult or ambiguous, and ob-

taining its true label will provide valuable information for improving the

model. In practice, QBC needs a metric to measure the inconsistency

of predictions between models. Commonly used metrics include Vote

Entropy (Settles 2009) (the proportion of different classes predicted by

the model), Kullback–Leibler (KL) divergence (Muslea et al. 2000) and

information entropy (the entropy based on the probability of the model’s

predictions) (Chen et al. 2017, Kuo et al. 2018), etc.

An intuitive solution for implementation is to employ a committee

of pre-trained few-shot semantic segmentation networks as members of

QBC. In cases like our application, where the generated point clouds may

not exhibit unique shapes and no single baseline stands out as superior

within the few-shot annotated setup, it could be more advantageous to

duplicate feature interpreters instead of designing new ones. Moreover,

a duplicate of the feature interpreter, in this case, provides the requisite

information, facilitating the seamless integration of an adapted fusion

into the overall process.

5.2.2 Applying Query-By-Committee in Point-Label
Pairs Filter

This section builds upon the methodology I developed in the earlier work

(Li et al. 2022b). The last section establishes the merits of the Query-By-

Committee approach in the previous section, this section further details

how this strategy can be applied to the point-label pairs filtering.

Following Zhang et al. (2021b), Gadelha et al. (2020), the Jensen-

Shannon (JS) divergence (Kuo et al. 2018) is employed to compute the

uncertainty measure for each point-label pair. Specifically, a committee

of Feature Interpreters are trained in the same way separately. Then,

the label likelihood LS ∈ RN×b for the point cloud X ∈ RN×3 can be

obtained and used as the uncertainty score. Here, b represents the num-

ber of classification categories for each type of point cloud. For instance,
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Figure 5.1: The illustration of point-label pairs generation with filter
mechanism.

b = 4 when segmenting airplane, corresponds to the 4 semantic parts in

airplane point cloud. The pipeline of point-label pairs generation with

filter mechanism can be represented in Figure 5.1.

Formally, the uncertainty measurement is denoted by JS ∈ RN . The

computation can be formulated as:

JS = H(
1

M

M∑
i

LSi)−
1

M
H(LSi), (5.2)

where M denotes the number of Feature Interpreters in one committee;

LSi denotes the label likelihood of the i-th Feature Interpreter for point

cloud; H denotes the entropy function. We use the score of the lowest-

rated 200 points of point cloud JS as the uncertainty score for each

point cloud in the implementation. The uncertainty score can be used to

filter unqualified point clouds.
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5.3 Implementation Process and Experiment
Evaluation

In this section, the implementation of a process of validation and assess-

ment and the experimental results of the proposed method are further

delineated. This section has been developed from concepts and design

from my publication (Li et al. 2022b).

Section 5.3.1 clarifies the experimental setup, including the evaluation

metrics, primarily mean Accuracy (mAcc) and mean Intersection over

Union (mIoU).

To verify the validation of the generated datasets and the effectiveness

of the proposed method, two experiments with different setup conditions

are conducted and examined:

• The first experiment, detailed in Section 5.3.2, evaluates that the

dataset generated along with the filtering mechanism is close to the

real dataset and thus can be used reliably.

• The second experiment aims to verify that the proposed method

can effectively enhance existing semantic segmentation tasks, espe-

cially in a few-shot scenario. Section 5.3.4 details the experimental

details and analyses experimental results.

Finally, Section 5.3.3 presents a comparative analysis with GAN-

based generation methods, showcasing the superior performance of the

proposed approach.

5.3.1 Experimental Setup

For 3D semantic segmentation, mean class Accuracy (mAcc) and mean

class Intersection over Union (mIoU) are the most frequently used metrics

to measure the accuracy of segmentation methods. mAcc is the mean ac-

curacy encompassing all classifications (OAcc), which is per-class OAcc.
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Figure 5.2: Diagram of inference phase.

and then averaging over the total number of classes K. It is a compre-

hensive definition of the total performance across different categories. It

can be formally represented as:

mAcc =
1

K

K−1∑
i=0

TPi

TPi + FNi

, (5.3)

where K denotes the total number of classes. Besides, because exper-

iments in this section are also related to semantic segmentation, the

training dataset is the same as in the last section.

5.3.2 Validation of Generated Datasets

Figure 5.2 shows the overview of the inference phase. Figure 5.3 are

visualized results of the generated point-label pairs. The content in this

section has been derived from my previously published paper (Li et al.

2022b).

To demonstrate the generation of point-label pairs can be used in an-

other part segmentation network, and improve the performance of part
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Figure 5.3: Examples of generated point-label pairs. The feature inter-
preter is trained with the full ground-truth dataset.

segmentation methods, this section first demonstrates the validation of

the datasets generated by the feature interpreter. This experiment is

conducted with two setups: one with the feature interpreter trained on

a full-set dataset, and another with the feature interpreter trained on a

few-shot dataset. Figure 5.4 shows some visualized examples of the gen-

erated point-label pairs produced by the few-shot trained dataset. Both

experiments use the generated point-label pairs generated by the feature

interpreter that trained with full-set or few-shot dataset and filtered by

the proposed method. The network (Qi et al. (2017b)) is trained for

semantic segmentation using a training set of ground truth data. Af-

ter training, this network is used to validate the generated point-label

pairs and the ground truth test set, respectively. When producing the

generated dataset, this approach first generated 10,000 point clouds for

each category and filtered samples based on their uncertainty scores.

Figure 5.5 shows the quantitative comparison of the generated dataset

produced by our method.

The generated dataset shows competitive results for most categories

compared to the GT dataset. The performance of our generated dataset

is much lower than the GT dataset in the category of Lamp. However,

the visualized results of the Lamps are plausible. We attribute this re-
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Figure 5.4: Examples of generated point-label pairs (from left to right
are airplane, chair, table, guitar, car, lamp, bag). The feature interpreter
is trained with the few-shot sample of the ground-truth dataset.

sult to the fact that because the Lamps in the GT dataset are few, the

segmentation network has not fully learned the accurate features of the

Lamps.

5.3.3 Comparison with GAN-based Method

The work most closely related to the proposed point-label generation

method is CPCGAN (Yang et al. (2021)). CPCGAN proposed a two-

stage GAN to generate point clouds in a controllable structure manner

and is trained on the ShapeNet-Partseg dataset as well. The first stage

generator generates the key structural points and corresponding labels.

The second stage generator generates the point cloud by expanding the

key structural points into a complete point cloud. The semantic labels of

the final point cloud are bred from the key structural points of the first
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Figure 5.5: Comparison between the generated datasets and ground-
truth ones. Different colours denote different filter ratios.

Class Model mIoU%(↑) mAcc%(↑)

Chair
CPCGAN 57.1 83.6

Ours 72.0 86.3

Airplane
CPCGAN 67.8 82.6

Ours 74.2 89.2

Table 5.1: Comparison of point cloud and label generation performance.

stage. Because it is hard to annotate ground truth labels for generated

point clouds, following their experimental setting, a PointNet++ model

Qi et al. (2017b) is trained for the semantic segmentation task. Same

with the last experimental setup, this pre-trained segmentation network

is employed to evaluate the generated point-label pairs. The quantitative

comparison is shown in Table 5.1. From the results shown in the table, we

can see that our generated point cloud (airplane and chair) outperforms

their method consistently on the two evaluation metrics for both mIoU

and mAcc by a large margin.

Moreover, the visualized comparison results are shown in Figure 5.6.

During the visualised experiment, some point-label pairs generated by

both methods are randomly picked and the semantic labels are by colour,

using the same colour for the same label across models. From these

results, we can see that the point clouds with semantic labels generated

by our method exhibit more accurate labels, whereas Shu et al. (2019a)
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Figure 5.6: Visualized results of Shu et al. (2019b), Yang et al. (2021)
and ours.

and Yang et al. (2021) tend to generate noisy semantic labels. This

section is adapted from our published paper (Li et al. 2022b).

5.3.4 Application in a Few-shot Scenario

We further conduct an experiment to simulate a few-shot sample scenario.

The following section extends the discussion from my published work Li

et al. (2022b). First, we sample a small set of GT point-label pairs to

train on our method. Then we concatenate the GT samples with the

generated point-label pairs as an augmented train set. Then we use the

small set of GT point-label pairs and the augment train set to train

a segmentation network, respectively. The segmentation results of the

mIoU metric are shown in Table 5.2. In this experiment, We generated

2000 point-label pairs and set the filter as 30%. We used a PointNet (Qi

et al. 2017a) as the segmentation network.

The segmentation results indicate that the augmented dataset can

drastically improve the performance of the segmentation network. More-

over, it is worth noting that the improvement is more significant when
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Samples 128 256

Category w/o w/ w/o w/

Chair 60.87 79.36 74.54 80.59
Airplane 36.71 69.74 41.91 64.80
Guitar 49.98 83.90 69.01 86.82
Table 51.50 72.74 57.95 72.76
Lamp 44.35 65.03 61.15 67.71
Car 22.94 44.90 24.15 47.81

Table 5.2: Comparative Analysis of mIoU Scores for Segmentation Tasks
Using a Small Set of Ground Truth (GT) Samples and an Augmented
Dataset. ’Samples’ indicates the total number of the point cloud in the
GT set. ’w/’ denotes training results when including the augmented
dataset; ’w/o’ reflects training exclusively on the GT set.

the sample scale is small, particularly for the Chair and Car. Experi-

mental results suggest that our work can provide a practical solution for

annotated point cloud generation.

5.4 Summary

This chapter elaborates on a filter mechanism for generated point cloud

point-label pairs. It end-to-end filters unqualified point-label pairs by

estimating the uncertainty score via a committee of feature interpreters.

These scores are then used to filter out samples deemed unqualified, aim-

ing to improve the dataset quality without extensive manual intervention.

Experimental results demonstrate the effectiveness of this filtering mech-

anism in enhancing the usability of generated datasets and contributing

to the reliability and efficiency of point cloud dataset generation. Fur-

ther improvements are needed, including enhancing the granularity of

segmentation for a border application.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The demand for more advanced methods to generate and annotate point

cloud data is increasing due to the growth of 3D computer vision, espe-

cially when powered by deep neural networks. This thesis developed a

series of approaches to solve the challenges of the generation and annota-

tion of point cloud data. This work takes a step towards a more efficient

and effective approach in the domain of point cloud dataset generation

by addressing the time-consuming and labour-intensive nature of manual

annotation, as well as overcoming the limitations of existing automated

annotation techniques. Specifically, this research reduces the manual ef-

fort involved in the point cloud annotation process. Traditionally, this

process has been known for its time-consuming and labour-intensive de-

mands. Additionally, it overcomes the limitations of current automated

annotation techniques, which include inadequate accuracy, poor gener-

ation quality, and difficulty in capturing the geometrical and semantic

intertwined relationship of 3D objects.

To achieve this target, this thesis first proposed a point cloud gen-

eration method. Then a point-label pairs generation approach is built

upon the point cloud generation model, and an evaluation approach is

designed which can integrate with the entire process. The summary of

this thesis is as follows:
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In this thesis, the point cloud synthesised based on the stochastic

differential equations (SDE) technique is proposed to improve the per-

formance of point cloud generation, which is particularly suitable for

large-scale applications. This method proposed to model point cloud

generation as the transition between noise with prior distribution and

a distinguished shape, which can be simulated by a stochastic process.

The training objective can be solved by stochastic differential equations.

Specifically, the solution for combining point cloud generation with dif-

ferential stochastic equations is investigated, and a deep neural network

framework is developed for the point cloud generative network. Com-

pared to previous methods, which are based on the VAE or GAN training

paradigm, point cloud generation based on stochastic differential equa-

tions provides an efficient and straightforward definition of point cloud

generation. Then, this frame is coupled with the time encoding and

Markov chain Monte Carlo to carry out a flexible sampling approach. As

a result, the training scheme of the point cloud generative model is sta-

ble, and the generation quality of the point cloud can be improved. This

thesis implements a series of experiments, such as point cloud generation,

point cloud reconstruction, and point cloud completion, to demonstrate

the advantages of the proposed point cloud diffusion-based generation

method.

Then, based on the proposed point cloud diffusion generative method,

a point-label pairs generation method is proposed to reduce the cost of

large-scale point cloud annotation. First of all, the characteristics of the

point cloud diffusion generative model are investigated, and an assump-

tion is formed. The intermediate feature of the point cloud diffusion-

based generative model has discriminability and is explicable at the se-

mantic level, thereby being used to help annotate the point cloud. To

verify the assumption, a feature interpreter is employed to transform the

intermediate feature into a point-wise semantic label. The feature inter-

preter is a parallel branch of the point cloud generation model; therefore,
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the generation of end-to-end point-label pairs is viable. As a result,

the proposed approach resolves the point-label pairs generation and pre-

serves the quality of the point cloud yielded by the point cloud generation

model. To verify the effectiveness of the proposed approach, the exper-

iment implements semantic segmentation in a few-shot setup. In this

experiment, the feature interpreter based on the point cloud diffusion-

based model can effectively generate point-label pairs. Moreover, the

experiments affirm that the discriminability of the intermediate repre-

sentation of point cloud generation does not naturally exist, whereas the

point cloud diffusion-based generation model is essential to achieve the

proposed approach.

To further enhance the quality of generated point-label pairs and

ensure their effective application in segmentation tasks, this thesis in-

troduced a filtering approach for point-label pair generation. Inspired

by the query strategy of active learning and its uncertainty measure-

ment, the filtering approach utilises an uncertainty score, estimated by

a committee of feature interpreters, to filter generated point-label pairs.

This approach seamlessly integrates with the point-label pairs generation

pipeline without impacting the quality of the generated point cloud. To

verify the validation of the generated dataset and the usefulness of the

proposed method, experiments with two different settings are conducted.

In the first experiment, a segmentation network was trained on the train-

ing set of the ground truth (GT) dataset and subsequently tested on both

the generated dataset and the test set of the real dataset. The results of

this experiment confirmed the close resemblance of our dataset to the real

one, indicating its reliability. In the second experiment, a scenario with

only a few-shot labels was simulated. A few-shot dataset was used to

generate a dataset, which was then utilised as an enhanced set for train-

ing a segmentation network. For comparison, a segmentation network

was trained independently on the few-shot datasets, and the results were

verified using the real test set. The results from both settings affirm
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that our method is feasible and that the generated datasets are effec-

tive. Additionally, a comparison experiment was conducted against the

GAN-based point-label generation method. The results quantitatively

demonstrate the superior performance of the proposed method.

6.2 Limitations and Future Work

Despite this thesis having made contributions in advancing the point

cloud dataset generation based on the point cloud diffusion generative

model, it is important to note that this field is rapidly evolving, and

there are numerous promising technologies and avenues worthy of fur-

ther research. The work in this thesis opens up the following potential

pathways for future exploration:

Conditional Generation and Multi-modal Generation. While

the proposed point cloud generative model has successfully applied diffusion-

based 3D generative models for generating and annotating point cloud

data, it has primarily focused on exploiting point cloud data alone. Un-

derstanding and transferring the intention of the user to create is also

important for 3D content generation. Incorporating multimodal fusion

could potentially enhance the performance of the model, which presents a

promising future direction. 3D conditional generative model-based mul-

tiple modalities have been developed over the past year. Following this

trend, AutoSDF (Mittal et al. 2022), DreamFusion (Poole et al. 2022),

and GET3D (Gao et al. 2022) have begun exploring 3D conditional gen-

erative models based on multi-modal inputs. These additional modal-

ities could potentially provide more context and enhance the richness

and versatility of the output of the 3D generative model, thus increasing

its usefulness for various downstream tasks. Their method stays at the

phase of how to align conditional input and the generated 3D shape, so

the accuracy of the generated shape is limited. Besides, these methods
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have not explored how to use the pre-trained model to assist other 3D

tasks.

Contextual Understanding. The current methodology could ben-

efit from integrating contextual understanding by utilizing auxiliary data

types fusion. The generation ability and representation of the model

could be limited when subtle context-specific details are required, par-

ticularly in articulated shapes, such as recognizing the relationships and

structures between different parts of the shape. Contextual understand-

ing can play a crucial role in generating more accurate and nuanced 3D

objects and their annotations.

Fine-grained understanding of 3D point cloud objects. In

certain applications, more detailed comprehension of object components

in 3D point clouds is necessary. For example, when a robot navigates

through an indoor environment, it must be able to precisely identify

which shelf of a cabinet to grasp. To achieve this level of precision, it

is necessary to perform semantic segmentation of 3D point cloud object

parts, followed by instance segmentation at a finer semantic level. In

follow-up research, the segmentation task of 3D object refinement still

needs more research, including instance-level automatic annotation. In

addition, because point cloud data is sparse and unstructured, perform-

ing instance segmentation with few samples directly on the point cloud

is extremely challenging. One possible solution is to tackle the prob-

lem of fine-grained understanding of 3D point cloud objects from the

perspective of point cloud generation models.

Transfer learning in point cloud understanding. The research

presented in this thesis primarily emphasises the use of point cloud gener-

ative models’ intermediate features for semantic label transformation in

few-shot scenarios. Yet, the challenges in obtaining point cloud datasets

extend beyond the high costs of acquiring labelled data. In addition to

this, although the proposed methodology is capable of securing a point

cloud generative model with substantial expressive power, the model’s
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training robustness against noise remains a concern. Therefore, the trans-

ferability of the proposed model to open-world scenarios requires further

exploration. Moreover, enhancing the model’s capacity to generate di-

verse, new shapes in open-world contexts with few training examples

could significantly mitigate the demand for task-specific labelled data.

This represents another potential future research direction that this the-

sis will explore. Thus, it is expected that developing the transfer learning

ability will further improve the performance of the point cloud dataset

generation.

Weakly supervised point cloud end-to-end annotation. The

proposed method focuses on the challenge of how to transform the inter-

mediate feature of the point cloud generative model to the semantic label

in a few-shot. However, it remains a question of how to handle scenarios

where only partial or noisy annotations are available or if the annotation

clues are indirect cues. For example, a cue might indicate that the point

cloud represents a "four-legged object" or a "curved structure" without

specifying the exact type of object or structure. This approach could be

useful in situations where obtaining detailed annotations for every point

in the point cloud would be challenging or time-consuming.
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