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Abstract: Single-image super-resolution (SISR) techniques have become a vital tool for improving
image quality and clarity in the rapidly evolving field of digital imaging. Convolutional neural
network (CNN) and transformer-based SISR techniques are very popular. However, CNN-based tech-
niques are not suitable when capturing long-range dependencies, and transformer-based techniques
suffer from computational complexity. To tackle these problems, this paper proposes a novel method
called dilated attention-based single-image super-resolution (DAIR). It comprises three components:
low-level feature extraction, multi-scale dilated transformer block (MDTB), and high-quality image
reconstruction. A convolutional layer is used to extract the base features from low-resolution images,
which lays the foundation for subsequent processing. Dilated attention is introduced to MDTB to
enhance its ability to capture image features at different scales and ensure superior image details and
structure recovery. After that, MDTB refines these features to extract multi-scale global attributes
and effectively grasps images’ long-distance relationships and features across multiple scales. Finally,
low-level features obtained from feature extraction and multi-scale global features obtained from
MDTB are aggregated to reconstruct high-resolution images. The comparison with existing methods
validates the efficacy of the proposed method and demonstrates its advantage in improving image
resolution and quality.

Keywords: single-image super-resolution; dilated attention; feature extraction; multi-scale dilated
transformer block; image reconstruction

1. Introduction

Super-resolution imaging techniques have long been a pivotal research area in digital
image processing. They can be divided into single-image super-resolution (SISR) [1] and
multi-image super-resolution (MISR) [2]. Multi-image super-resolution recovers a high-
resolution image from multiple low-resolution images of the same object or scene. In
contrast, single-image super-resolution reconstructs a high-resolution image from a single
low-resolution image. Although multi-image super-resolution is more accurate and robust
to noise and other artefacts than single-image super-resolution, it is only applicable to
scenarios where two or more low-resolution images of the same object or scene are available.
However, there are many situations where only one single low-resolution image is available.
For such situations, single-image super-resolution is essential. It is used to enhance image
quality, enrich visual experiences, and support advanced analytics in many applications,
such as medical imaging, satellite image analysis, video enhancement, security monitoring,
communication transmission, virtual production, and the digital multimedia industry. Like
most existing research activities that investigate SISR, this paper deals with single-image
super-resolution.

Many methods [1,3–7] have been developed for single-image super-resolution. These
methods include interpolation-based, reconstruction-based, convolutional neural network-
based, and transformer-based ones.
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Interpolation-based methods use image interpolation to estimate new pixels with
known pixel information. They include nearest-neighbor [8], bilinear [9], and bicubic [10]
interpolation. Interpolation-based methods are the simplest and fastest, with low computa-
tional cost and real-time performance. However, the images obtained with interpolation-
based methods are too smooth and lack high-frequency information. Therefore, they are
not applicable to complicated scenes that contain high-frequency details [4,6].

Reconstruction-based methods are also known as regularization-based methods. They
reconstruct high-resolution images by inverting the process of down-sampling original high-
resolution images, which involves multiple degradation components, such as blurring and
warping. Reconstruction-based methods include iterative back-projection [11], projection
onto convex sets [12], and maximum a posteriori [13]. They produce better high-resolution
images than interpolation-based methods. The disadvantages of reconstruction-based
methods include unwanted edges and more sharpness, etc. [14].

Compared to interpolation-based and reconstruction-based methods, learning-based
methods significantly improve the performance of SISR. Various learning-based methods
have been developed. Among them, convolutional neural network-based and transformer-
based methods are the most popular.

Convolutional neural network (CNN)-based methods are capable of handling con-
textual information efficiently, leading to clearer image reconstruction. For example, IDN
gradually extracts abundant and efficient features with distillation blocks [15], and IMDN
proposes a distillation module to extract hierarchical features step by step and a fusion
module to aggregate the extracted features according to their importance [16]. VDSR uses
a very deep convolutional network with 20 weight layers to achieve accuracy improve-
ment [17]. SMSR learns sparse masks and prunes redundant computation to improve
efficiency [18]. However, they and other CNNs, such as SRCNN [19], ESPCN [20], and
EDSR [21], exhibit limitations in capturing long-range dependencies within an image. Since
these methods mainly focus on local features due to their convolutional nature, their ability
to integrate contextual information across wider spatial extents is restricted. This can lead
to the less effective recovery of detailed and structural information in images, especially
when dealing with complex textures or patterns that require understanding broader areas
for accurate reconstruction.

Transformer-based methods have been proposed for single-image super-resolution
to tackle the incapability of CNNs in capturing long-range dependencies [22]. Trans-
formers [23] were originally proposed for natural language processing [24] and later ex-
tended to computer vision [25], including single-image super-resolution [22]. Unlike CNNs,
transformer-based methods are capable of modeling long-range dependency. The short-
coming of transformer-based methods is that their computational complexity increases
quadratically with increasing spatial resolution, which makes them infeasible in image
restoration tasks involving high-resolution images [26].

The above problem can be effectively addressed with dilated attention by using a
dilated window with gaps of dilation to increase the receptive field of attention without
increasing computational complexity [23]. Talking of this advantage, dilated attention has
been introduced to transformers to raise text-processing capacity to one billion tokens [27]
and to CNNs to reduce their layers and parameters for image denoising [28].

In this paper, we will introduce dilated attention into transformer-based single-image
super-resolution to develop a novel method. It fuses CNN-based low-level feature ex-
traction, dilated attention transformer-based capture and interaction with image features
from broader areas and different scales, and high-resolution reconstruction by integrat-
ing both low-level and multi-scale global features to achieve more detailed and accurate
high-resolution image reconstruction from a single low-resolution image.

Unlike CNNs, our proposed DAIR is built on the dilated attention-based transformer,
which significantly expands the model’s receptive field without adding computational
complexity. In addition, it addresses the transformer’s issue of computational complexity,
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enabling the transformer to capture long-range dependencies and intricate details across
different scales effectively.

The main contributions of this work are summarized below:

• We apply a dilated attention mechanism to SISR tasks to effectively capture image
features at different scales and significantly improve detail and structure recovery of
images. To the best of our knowledge, single-image super-resolution using a dilated
attention-based transformer has not been investigated.

• We fuse low-level features and multi-scale global features to reconstruct images, which
ensures high resolution and good quality in terms of the reconstructed images.

• We make a comparison with existing SISR methods to demonstrate the effectiveness
and superiority of our proposed DAIR in enhancing image resolution and quality.

• We evaluate the applicability of the proposed method in real-world scenarios, using
images with diverse conditions to ensure the method’s robustness and generaliza-
tion capabilities.

• The remaining parts of this paper are organized as follows. Related works are reviewed
in Section 2. Our proposed method is introduced in Section 3. The implementation
details and experiments are described in Section 4. Conclusions and outlooks are
presented in Section 5.

2. Related Works

The work carried out in this paper proposes a new single-image super-resolution
method based on a dilated attention-based transformer. In this section, we briefly review
the existing work on convolutional neural network-based methods, transformer-based
methods, and dilated attention, which are very relevant to the proposed work.

2.1. Convolutional Neural Network-Based Methods

Many convolutional neural network-based methods have been proposed. These
methods can be divided into linear network learning, recursive learning, residual learning,
dense connection-based learning, progressive learning, multi-scale learning, and attention-
based learning.

Linear network learning: With linear networks, multiple convolutional layers are
stacked on top of each other to make the input flow sequentially. Linear network learning
was pioneered by SRCNN [15], where a convolutional neural network architecture was
used to map low-resolution (LR) images to high-resolution (HR) images. Its performance
was improved by [29] through a sparse coding-based network (SCN). With SRCNN, the
receptive field can be increased by using more convolutional layers to improve the results;
however, gradient vanishing/exploding and degradation occur.

Residual learning: Since LR images and HR images mostly share the same informa-
tion, modeling the residual image between LR and HR is easy. Unlike SRCNN, which
learns the desired output directly, residual learning methods, such as [30] AWSRN m [31]
and CARN [32], learn the difference between the desired output (HR) and input (LR)
to achieve better results but avoid SRCNN’s problems of gradient vanishing/exploding
and degradation.

Recursive learning: With recursive learning, the same sub-modules (recursive blocks)
sharing the same parameters are used repetitively to increase the receptive field without
increasing the network parameters. For example, DRCN [33] uses the same convolution
as the layer 16 times to obtain a 41 × 41-sized receptive field. Since too many stacked
layers will still cause the gradient vanishing/exploding problem, DRRN [34] bases recur-
sive blocks on residual learning to mitigate the difficulty of training very deep networks.
MemNet [35] introduces a memory block, which uses a recursive unit to learn multi-level
representations and a gate unit to control the stored amount of previous and current states.

Dense connection-based learning: Not sending the features to the final reconstruction
layer, the dense connection-based learning called DenseNet [36] enables each layer to
obtain features from all preceding layers, thus creating short paths between most layers to
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alleviate the gradient vanishing/exploding problem. SRDenseNet [37] improves DenseNet
by using both a dense layer-level connection and a block-level connection. The global-local
adjusting dense super-resolution network (GLADSR) links a global-local adjusting module
with nested dense connections to use global–local adjusted features more efficiently [38].

Progressive learning: With progressive learning, complicated problems are decom-
posed into multiple simple tasks to enable a gradual increase in learning difficulty to
improve performance and reduce training time. For instance, the sub-band residuals of
high-resolution images are gradually reconstructed in LapSRN [39], and the strategy of
ordering different difficulties is used to tackle complicated degradation tasks in SRFBN [40].

Multi-scale learning: With multi-scale learning, different features are adaptively ex-
tracted at different scales to improve performance through a multi-scale residual block
(MSRB) [41]. It is further improved through a multi-scale dense cross block (MDCN) [42]
to extract both multi-scale and local features. MADNet enhances multi-scale feature expres-
sion through a residual multi-scale module with an attention mechanism [43].

Attention-based learning: The attention mechanism is widely used to improve the
performance of SR. Very deep residual channel attention networks (RCANs) introduce a
channel-attention-based CNN method to solve SISR [44]. The residual attention module
(RAM) combines spatial and channel attention [45]. The residual non-local attention
network (RNAN) uses local and global feature attention to create an image restoration
network [46]. Residual feature aggregation (RFANet) is proposed to improve spatial
attention [47]. The progressive feature fusion network (PFFN) is based on a progressive
attention block [48]. The densely residual Laplacian network (DRLN) proposes Laplacian
attention [49].

Convolutional neural network-based methods ignore the contextual information out-
side the local receptive field where convolution is conducted. Thus, they are incapable of
extracting such contextual information where a local receptive field is used in convolution
and capturing long-range dependencies. This problem can be addressed through the use of
transformer-based methods.

2.2. Transformer-Based Methods

Transformers are based on the idea of a self-attention mechanism. They were initially
proposed in [50] for English constituency parsing. Since 2020, more and more transformer-
based methods have been proposed for SISR.

The texture transformer network for image super-resolution (TTSR) formulates LR
images and HR images as transformer queries and keys for SISR [51]. Swin Transformer
uses shifted-window-based self-attention to achieve higher efficiency [22]. The linearly
assembled pixel-adaptive regression network (LAPAR-A) regresses pixel-adaptive filters,
assembles them, and applies them to the bicubic up-sampled image [52]. The lightweight
bimodal network integrates a symmetric CNN and a recursive transformer to reduce
computational cost and memory consumption [53]. SRFormer builds transformer blocks
and layers to capture both global and local features and aggregates the features at different
stages [54].

Computational complexity is the main limitation of transformer-based methods. Al-
though various transformer-based methods have been developed, reducing the computa-
tional complexity of transformer-based methods is still an important topic.

2.3. Dilated Attention

Dilated attention can be used to increase the receptive field without raising computa-
tional complexity. It has been applied in different fields to tackle various problems. In the
following, we review some work on dilated attention in computer vision, including SISR.

The dilation networks proposed in [55] introduce dilation to connect elements of
a convolution kernel to nonadjacent positions of the previous layer for dense semantic
labeling of high-resolution aerial imagery. Dilation is also introduced into deep CNNs
to increase the receptive field of SISR but without increasing trainable parameters [56].
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The advantages of fewer parameters, less execution time, and better HR results obtained
from introducing dilation into deep convolutional neural networks to expand the recep-
tive fields are investigated in [57]. The dilated residual networks with symmetric skip
connection (DSNet) combine dilated convolution with symmetric skip connection for im-
age denoising [28]. Dilated-CBAM integrates dilated convolution and a residual network
for image classification [58]. The pyramid dilated attention network (PDAN) built on a
dilated attention layer addresses the incapability of existing action detection methods in
selecting the key temporal information of long videos [59]. The dilated neighborhood
attention transformer (DiNAT) [60] incorporates both a localized attention mechanism and
dilated neighborhood attention to capture the global context and expand receptive fields
for semantic segmentation, etc.

Although various dilated attention-based methods have been developed, we have not
found a report on SISR using a dilated attention-based transformer. In this paper, we will
investigate it.

3. Proposed Method

Our proposed DAIR is composed of three primary modules: low-level feature extrac-
tion, multi-scale global feature extraction, and high-quality image reconstruction. Initially,
low-level features are extracted from low-resolution images through a convolutional layer.
Subsequently, a dilated transformer block (DTB) is introduced. Equipped with multi-scale
null attention and an integrated feed-forward network that includes convolutions, DTB
enables the DAIR model to effectively capture and interact with image features across
various scales. This design enhances the model’s ability to discern and reconstruct image
details more accurately. After that, DAIR integrates both low-level and multi-scale global
features. Finally, the integrated features are fed into the reconstruction network to achieve
good image resolution and quality.

The network architecture of our proposed DAIR is shown in Figure 1. It presents an
efficient transformer model with null attention for single-image super-resolution tasks. The
flowchart of our proposed DAIR is shown in Figure 2. It can be divided into the following
three modules and eight stages.
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The first module is low-level feature extraction from the input image. It includes the
following two stages.

Stage 1: The input low-resolution image is preprocessed through image normalization.
Stage 2: Low-level features are extracted from the normalized image with a 3 × 3 con-

volutional layer. More details about low-level feature extraction are given in Section 3.1.
The second module is multi-scale global feature extraction. This task is carried out in

a multiple-dilated transformer block (MDTB). It includes the following four stages.
Stage 3: Four dilated transformer blocks (DTBs) are used to model feature long-range

dependencies and interact with information at multiple scales. Details of the dilated
transformer block are provided in Section 3.2.

Stage 4: The features from the encoder and decoder of the transformer are concatenated
in a concatenate layer.

Stage 5: A 1 × 1 convolution (Conv) layer is used to reduce feature channels.
Stage 6: The low-level features obtained from the first module and the multi-scale

global features obtained from Stage 5 are aggregated in an Add layer.
The third module involves high-resolution image reconstruction. It includes the

following two stages.
Stage 7: A convolution layer is applied to the aggregated features to reconstruct the

high-resolution image.
Stage 8: The reconstructed high-resolution image is post-processed via image denois-

ing, sharpening, and format conversion, and the post-processed high-resolution image
is output.

In the following, we first discuss feature extraction in Section 3.1. Then, we elaborate
our proposed dilated transformer block (DTB) in Section 3.2. Following that, we introduce
high-resolution image reconstruction in Section 3.3. Finally, we provide details of the loss
function used in this paper in Section 3.4.

3.1. Feature Extraction

In this subsection, we investigate feature extraction. It includes low-level feature
extraction and multi-scale global feature extraction. Given a low-resolution input image
IlϵRC×H×W , where RC×H×W is a three-dimensional real space of number of channels,
height, and width: C, H, and W correspond to the number of channels, the height, and
the width of the input image, respectively, and we first use a convolutional layer FFE(·) of
3 × 3 to extract the low-level features of the image, which can be mathematically written
as follows:

Fl = FFE(Il) (1)

where FlϵRC×H×W represents the low-level features containing the rich detail information
of the input image.

After that, we extract multi-scale global features FdϵRC×H×W from the low-level
features Fl with our proposed multi-dilated transformer block, defined as

Fd = FMDTB(Fl) (2)

where FMDTB(·) indicates a multiple stacked dilated transformer block that includes four
transformer blocks with null attention.

The above treatment has the following advantages. On the one hand, the global
self-attention in the dilated transformer block can model the long-range contextual depen-
dencies of the features, which compensates for the drawbacks of the limited sensory field of
the convolutional coding block. On the other hand, the introduction of cavity convolution
in computing attention captures multi-scale features and allows local and sparse feature
block interactions in a small range.
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3.2. Dilated Transformer Block

Features at different scales contain information about different details in an image. To
model feature long-range dependencies and interact with information at multiple scales,
we design a dilated transformer block (DTB) shown in Figure 3. It includes a multi-scale
dilated attention (MSDA) and a feed-forward network (FFN). The flowchart of DTB is
shown in Figure 4 and consists of the following three modules.
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Figure 4. Flowchart of Dilated Transformer Block.

The first module is embeddings, which is used to divide an image into smaller regions
denoted as tokens and convert the tokens into vectors.

The second module contains multi-scale dilated attention (MSDA). Its mathematical
operation is given in Section 3.2.1, and the process steps are as follows:

Step 1: normalize the vectors obtained from embeddings through a norm layer.
Step 2: generate the query matrix Qr, key matrix Kr, and value matrix Vr from the

normalized vectors, which is achieved by applying the three 1 × 1 point-wise convolutions
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to aggregate pixel-wise cross-channel context followed by the three 3 × 3 depth-wise
convolutions to encode channel-wise spatial context.

Step 3: apply the dilation operation through a dilated attention layer with dilation
rates of 1, 2, and 3.

Step 4: concatenate the features obtained from the dilated attention layer.
Step 5: reduce channels with a 1 × 1 convolution layer.
Step 6: carry out the element-wise addition, which adds the original features before

MSDA and the features obtained from Step 5.
The third module is a feed-forward network (FFN). Its mathematical operation is

given in Section 3.2.2, and the process steps are as follows:
Step 1: normalize the aggregated features obtained from Step 6.
Step 2: expand the feature channels with the first 1 × 1 convolution.
Step 3: apply non-linearity via a GELU layer.
Step 4: reduce the feature channels back to the original input dimension with the

second 1 × 1 convolution.
Step 5: conduct the element-wise addition, which adds the features before FFN and

the features obtained from Step 4.

3.2.1. Multi-Scale Dilation Attention (MSDA)

Given the input feature FlϵRC×H×W , we first perform layer normalization. Then, three
different matrices Qr = WQWQ

r Fl , Kr = WKWK
r Fl , and Vr = WVWV

r Fl are generated where
Qr, Kr, VrϵRC×H×W are the query, key, and value matrices, WQ, WK, and WV represent the
convolutions with kernel size 1 × 1, WQ

r , WK
r , and WV

r are the depth-separable convolutions
with kernel size 3 × 3, and r = i, where i ∈ {1, 2, 3} denotes the different null rates. After

that, we reshape matrix Qr, Kr, and Vr into smaller shapes:
∼
QlϵRC×H×W ,

∼
KlϵRC×H×W , and

∼
V lϵRC×H×W . The entire computation of attention is defined as follows:

Fr
attention

(∼
Qr,

∼
Kr,

∼
Vr

)
=

∼
Vr · s f

(∼
Kr ·

∼
Qr/a

)
(3)

where Fr
attention(·) indicates the entire attention computation, s f (·) represents the SoftMax

operation, and a is a section learning variable that controls the size of the dot product of
∼
Kr

and
∼
Qr.
Finally, we fuse the features at different scales and sum them with the original input

features, defined as follows:

Fattn = F1×1(Fr
attention) + Fl (4)

In the above equation, F1×1(·) indicates 1 × 1 convolution computation, and Fl and
Fattn are the input and output feature maps, respectively. Similar to traditional multi-head
attention in transformer, we divide the channels into 8 “heads”.

3.2.2. Feed-Forward Network (FFN)

To perform feature transformation, we use a feed-forward network for pixel-by-pixel
operation. Unlike the conventional multilayer perceptron in transformer, the feed-forward
network in this paper consists of two 1 × 1 convolutions and a GELU activation function,
where the first 1 × 1 convolution is used to extend the number of channels and the second
1 × 1 convolution is used to reduce the number of channels to the original number of
channels. The whole process is defined as follows:

Fd = F2(©F1(LN(Fattn))) + Fattn (5)

where LN(·) is the layer normalization operation, © stands for the GELU operation, and
F1(·) and F2(·) are the 1 × 1 convolutions.
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3.3. Image Reconstruction

To perform the image super-resolution task, we aggregate low-level features Fl and
multi-scale global features Fd and reconstruct the high-resolution image Ih, defined as follows:

Ih = FREC(Fl + Fd) (6)

where FREC(·) indicates an image reconstruction module, which consists of sub-pixel
convolution.

High-quality images are recovered by up-sampling. Since low-level features typically
encompass low-frequency details in an image and the multi-scale global features capture
its high-frequency nuances, both low- and high-frequency information is provided to the
reconstruction network by utilizing skip connections, which improves the performance
and efficiency of our proposed network.

3.4. Loss Function

Mean absolute error is a widely used loss function [43]. In this paper, we use it to
optimize the parameters of the network through minimizing the L1 norm, which is defined
as follows:

L1 = ∥Ih − Irh∥1 (7)

where ∥·∥1 is the L1 norm operation, Ih is the high-resolution image output from the DAIR
network, and Irh is the corresponding real high-resolution image.

4. Experiments

In this section, we first introduce the datasets and evaluation metrics. Then, we
give the implementation details and compare reconstructed HR results obtained with
our proposed method and existing SISR methods. After that, we present the ablation
experiments and our discussion about the experimental results.

4.1. Datasets

We use the DIV2K dataset [61] for training and another five datasets for testing.
To choose suitable datasets for evaluating the performance of our proposed model, five
datasets, Manga109 [62], BSDS100 [63], Set14 [64], Urban100 [65], and Set5 [66] were selected.

The DIV2K dataset [61] is a high-quality dataset commonly used for single-image
super-resolution (SISR) studies. It contains 1000 high-resolution images and provides
different low-resolution versions obtained using different down-sampling methods.

The selected five datasets are also widely used in super-resolution studies due to their
wide coverage of different scenarios and features. They are very popular for comprehensive
evaluations. Manga109 [62] comprises 109 Japanese manga collections. The images in
Manga109 possess distinct lines and textures, setting them apart from typical natural
images. BSDS100 [63] is part of the Berkeley Segmentation Dataset and contains 100 images.
It provides a rich collection of images of natural scenes with various textures and structures.
Set14 [64] is a medium-sized benchmark dataset with 14 images. It contains a wide range
of scenes, such as buildings, plants, and people. Urban100 [65] is a dataset dedicated to
evaluating the performance of super-resolution algorithms in urban scenes. It provides
100 images of buildings, vehicles, road signs, etc. Set5 [66] is a small benchmark dataset
consisting of 5 images. It can be used to quickly evaluate the performance of a model.

4.2. Evaluation Metrics

In the field of super-resolution, evaluation metrics are crucial for assessing the per-
formance of a super-resolution model. Two evaluation metrics, PSNR and SSIM, are most
widely used in the field of super-resolution. They provide a comprehensive performance
evaluation for SISR. Each of them has its own merits.
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PSNR is the abbreviation of the Peak Signal-to-Noise Ratio. It is defined by the
maximum possible pixel value MAX and the mean squared error MSE between the ground-
truth image and the reconstructed image through the following equation:

PSNR = 10 · log10

(
MAX2

MSE

)
(8)

where MSE is calculated by

MSE =
1

HWC ∑H−1
i=0 ∑W−1

j=0 ∑C−1
k=0

[
Igt(i, j, k)− Ire(i, j, k)

]2 (9)

where Igt(i, j, k) is the ground-truth image and Ire(i, j, k) is the reconstructed image.
Due to its simplicity and objectivity, PSNR is a prevalent metric in the realm of image

processing and computer vision. By reducing the mean absolute error during the training
phase, one can directly enhance the PSNR value.

SSIM is the abbreviation of Structural Similarity Index Measure. It is used to measure
the similarity between two images on a perceptual basis and defined by distortion scores
on three image features, luminance, contrast, and structure, using the following equation:

SSIM = l
(

Igt, Ire
)ξ · c

(
Igt, Ire

)λ · s
(

Igt, Ire
)η (10)

where l, c, and s, respectively, stand for luminance, contrast, and structure between the
ground-truth image Igt and the reconstructed image Ire, and ξ > 0, λ > 0, and η > 0 are
parameters used to adjust the importance of luminance, contrast, and structure.

In the above equation, l
(

Igt, Ire
)
, c
(

Igt, Ire
)
, and s

(
Igt, Ire

)
are defined with the follow-

ing mathematical equations:

l
(

Igt, Ire
)
=

2µIgt µIre+C1

µ2
Igt

+µ2
Ire+C1

c
(

Igt, Ire
)
=

2σIgt σIre+C2

σ2
Igt

+σ2
Ire+C2

s
(

Igt, Ire
)
=

σIgt Ire+C3

σIgt σIre+C3

(11)

Substituting Equation (11) into (10) and setting ξ = λ = η = 1 and C3 = C2/2,
Equation (10) changes to

SSIM =

(
2µIgt µIre + C1

)(
2σIgt Ire + C2

)
(

µ2
Igt

+ µ2
Ire
+ C1

)(
σ2

Igt
+ σ2

Ire
+ C2

) (12)

Unlike PSNR, SSIM considers all three aspects of an image: luminance, contrast, and
structure, making it capable of capturing a wide range of image characteristics that are
closer to human visual perception. In some cases, an image with a high SSIM value is more
visually pleasing than one with a high PSNR value.

4.3. Implementation Details

All experiments were performed on 2 Nvidia RTX 4090 GPUs using the PyTorch
(version 1.9) framework. For data enhancement, we used horizontal and vertical flipping.
To obtain low-resolution (LR) images, we down-sampled the high-resolution (HR) images
using double cubic interpolation. We followed most previous methods in image reconstruc-
tion and used Pixel Shuffle to enhance the final rough features into detailed ones. In the
training and fine-tuning phases from scratch, we set {patch size, batch size} to {48 × 48, 32}
and {64 × 64, 16}, respectively. The training pairs were further enhanced by horizontal
flips and random rotations of 90◦, 180◦, and 270◦. We started training with a patch size
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of 128 × 128 and a batch size of 64. We introduced 300 K iterations using the AdamW
optimizer (β1 = 0.9, β2 = 0.999, weight decay 10−4) and L1 loss, with an initial learning rate
of 3 × 10−4 and a gradual decrease to 10−6 through cosine annealing [67]. The refinement
phase consists of 4 blocks. Our DAIR implements a 4-level encoder–decoder with the
number of DTB blocks from level-1 to level-4 as [4, 6, 6, 8], the number of attention heads
in MDTA as [1, 2, 4, 8], and the number of channels as [48, 96, 192, 384].

4.4. Comparisons with Existing SISR Methods

Table 1 shows the results comparing DAIR with 12 existing SISR methods, where red
indicates the best and blue stands for the second best. Although many of these methods
demonstrate excellent performance in the above experiments, DAIR stands out from them.

Table 1. Quantitative comparisons (average PSNR/SSIM) between ours (DAIR) and existing methods
across benchmark datasets. Higher PSNR/SSIM number means better quality.

Method Scale Params
Set5 BSD100 Set14 Manga109 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

IDN [17] ×3 553 K 34.11/0.9253 28.95/0.8013 29.99/0.8354 32.71/0.9381 27.42/0.8359

IMDN [18] ×3 703 K 34.36/0.9270 29.09/0.8046 30.32/0.8417 33.61/0.9445 28.17/0.8519

VDSR [19] ×3 665 K 33.66/0.9213 28.82/0.7976 29.77/0.8314 32.01/0.9310 27.14/0.8279

SMSR [20] ×3 993 K 34.40/0.9270 29.10/0.8050 30.33/0.8412 33.68/0.9445 28.25/0.8536

AWSRN m [31] ×3 1143 K 34.42/0.9275 29.13/0.8059 30.32/0.8419 33.64/0.9450 28.26/0.8545

CARN [32] ×3 1592 K 34.29/0.9255 29.06/0.8034 30.29/0.8407 33.43/0.9427 28.06/0.8493

DRCN [33] ×3 1774 K 33.82/0.9226 28.80/0.7963 29.76/0.8311 32.31/0.9328 27.15/0.8276

DRRN [34] ×3 297 K 34.03/0.9244 28.95/0.8004 29.96/0.8349 32.74/0.9390 27.53/0.8378

MemNet [35] ×3 678 K 34.09/0.9248 28.96/0.8001 30.00/0.8350 32.51/0.9369 27.56/0.8376

GLADSR [38] ×3 821 K 34.41/0.9272 29.08/0.8050 30.37/0.8418 - 28.24/0.8537

MADNet [43] ×3 930 K 34.16/0.9253 28.98/0.8023 30.21/0.8398 - 27.77/0.8439

LAPAR-A [52] ×3 594 K 34.36/0.9267 29.11/0.8054 30.34/0.8421 33.51/0.9441 28.15/0.8523

DAIR ×3 875 K 34.71/0.9297 29.18/0.8084 30.68/0.8490 33.95/0.9465 28.36/0.8544

IDN [17] ×4 553 K 31.82/0.8903 27.41/0.7297 28.25/0.7730 29.41/0.8942 25.41/0.7632

IMDN [18] ×4 703 K 32.21/0.8948 27.56/0.7353 28.58/0.7811 30.45/0.9075 26.04/0.7838

VDSR [19] ×4 665 K 23.13/0.8838 27.29/0.7251 28.01/0.7674 28.83/0.8809 25.18/0.7524

SMSR [20] ×4 993 K 32.15/0.8944 27.61/0.7366 28.61/0.7818 30.42/0.9074 26.14/0.7871

AWSRN m [31] ×4 1143 K 32.21/0.8954 27.60/0.7368 28.65/0.7832 30.56/0.9093 26.15/0.7884

CARN [32] ×4 1592 K 32.13/0.8937 27.58/0.7349 28.60/0.7806 30.42/0.9070 26.07/0.7837

DRCN [33] ×4 1774 K 31.53/0.8854 27.23/0.7233 28.02/0.7670 28.98/0.8816 25.14/0.7510

DRRN [34] ×4 297 K 31.68/0.8888 27.38/0.7284 28.21/0.7720 29.46/0.8960 25.44/0.7638

MemNet [35] ×4 678 K 31.74/0.8893 27.4/0.7281 28.26/0.7723 29.42/0.8942 25.50/0.7630

GLADSR [38] ×4 821 K 32.14/0.8940 27.59/0.7361 28.62/0.7813 - 26.12/0.7851

MADNet [43] ×4 930 K 31.95/0.8917 27.47/0.7327 28.44/0.7780 - 25.76/0.7746

LAPAR-A [52] ×4 594 K 32.12/0.8932 27.55/0.7351 28.55/0.7808 30.54/0.9085 26.11/0.7868

DAIR ×4 875 K 32.62/0.9007 27.64/0.7358 28.96/0.7904 30.77/0.9117 26.25/0.7875

Figure 5 illustrates the visual differences between DAIR and existing SISR methods.
The super-resolution images generated by DAIR are superior in texture and detail and
visually more appealing.

The quantitative and visual comparisons demonstrate the efficacy of our proposed
method and its advantage in improving image resolution and quality. In the following
subsection, we further investigate the impacts of FFN and MSDA.
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4.5. Ablation Experiments

Ablation experiments are a commonly used method to evaluate the impact on overall
performance by removing or replacing specific components in the model. To further
ascertain the significance and efficiency of distinct elements within our model, we carried
out ablation studies on (1) the DTB block and (2) low-level feature extraction (LFE) and
multi-scale feature extraction (MDTB). The first experiment investigated the impacts of
multi-scale dilation attention (MSDA) and a feed-forward network (FFN), and the second
experiment examined the influences of LFE and MDTB.

4.5.1. Impacts of MSDA and FFN

For the ablation experiment on MSDA and FFN, we first introduced the experimental
setup. Then, we presented the experimental results.

Experimental setup: Three different model variants were designed for the ablation
experiment. First, the original model is the complete DAIR model that we have proposed,
containing MSDA and FFN. The second variant (w/o FFN) replaced FFN with the standard
multilayer perceptrons (MLPs) and kept all other parts the same. The third variant (w/o
MSDA) replaced MSDA with the traditional attention mechanism without changing any
of the other parts. Every model variant underwent training and testing under identical
datasets and conditions to ensure an equitable comparison.

Experimental results: From the experimental results given in Table 2, we can observe
the following trends: First, on the Set5 dataset, the original model obtains PSNR 32.62
and SSIM 0.9007. While removing FFN, the performance decreases to PSNR 32.59 and
SSIM 0.9004. When MSDA is removed, the performance decreases more significantly to
PSNR 32.51 and SSIM 0.8998. Second, on the Set14 dataset, the original model achieves
a performance of PSNR 28.96 and SSIM 0.7904. After removing FFN, the performance
reduces to PSNR 28.94 and SSIM 0.7900. After removing MSDA, the performance decreases
more to PSNR 28.90 and SSIM 0.7899.

Table 2. Ablation experiments for the DTB block where MSDA is replaced with conventional attention
and FFN is replaced with MLP.

Methods Scale
Set5 Set14

PSNR SSIM PSNR SSIM

Original model ×4 32.62 0.9007 28.96 0.7904

w/o FFN ×4 32.59 0.9004 28.94 0.7900

w/o MSDA ×4 32.51 0.8998 28.90 0.7899
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4.5.2. Influences of LFE and MDTB

For the ablation experiment on LFE and MDTB, we also first discuss the experimental
setup. Then, we give the experimental results.

Experimental setup: We designed three different model variants for the ablation
experiment. First, the original model is our proposed full DAIR model containing MDTB
and LFE. The second variant (w/o LFE) uses MDTB without the initial convolutional layer
used for low-level feature extraction. The third variant (w/o MDTB) uses LFE but replaces
MDTB with a standard transformer block. All other parts in the second and third variants
are kept unchanged. Same as the above, each of the model variants was trained and tested
under the same conditions as the benchmark dataset. Their performance was evaluated
using the standard metrics PSNR and SSIM.

Experimental results. Table 3 shows the experimental results. For the Set5 dataset, the
original model that included LFE and MDTB achieved PSNR 32.62 and SSIM 0.9007. When
deleting LFE, the performance decreases to PSNR 32.58 and SSIM 0.9002. When MDTB is
replaced with a standard transformer block, the performance reduces much more to PSNR
32.41 and SSIM 0.8990. For the Set14 dataset, the original model obtained PSNR 28.96 and
SSIM 0.7904. After removing LFE, they dropped to PSNR 28.95 and SSIM 0.7901. With
MDTB replaced by a standard transformer block, they greatly decreased to PSNR 28.83 and
SSMI 0.7891.

Table 3. Ablation experiments for LFE and MDTB where LFE is deleted and MDTB is replaced with a
standard transformer block.

Methods
Set5 Set14

PSNR SSIM PSNR SSIM

Original model 32.62 0.9007 28.96 0.7904

w/o LFE 32.58 0.9002 28.95 0.7901

w/o MDTB 32.41 0.8990 28.83 0.7891

4.6. Discussion

Table 2 shows that both FFN and MSDA contribute to performance improvement.
Between them, MSDA made a bigger performance improvement than FFN. This suggests
that capturing multi-scale features and long-range contextual information in SISR tasks is
more important than feature transformation and fusion. Among the three model variants,
the original model achieves the best results, suggesting that including both MSDA and
FFN in the DTB block can lead to better performance than including one of them.

Table 3 indicates that both LFE and MDTB improved model performance. Between
them, the performance improvement made by MDTB is larger than the performance
improvement made by LFE. This justifies the introduction of multi-scale global feature
extraction. The original model obtains the best performance among the three model
variants. This demonstrates the importance of both low-level feature extraction and multi-
scale global feature extraction.

The above ablation experiments validate the effectiveness and importance of DTB,
LEF, and MDTB in the DAIR model. MSDA, which plays a vital role in SISR tasks, helps
the model capture more abundant and accurate image features. This provides valuable
insights for SISR, i.e., more attention should be paid to the extraction and fusion of multi-
scale features. Introducing FFN into the DTB block also increases PSNR and SSIM values.
Therefore, integrating both MSDA and FFN in the DTB block can maximize the impacts of
the DTB block in terms of improving SISR performance.

Compared to the DTB block, the MDTB block has a bigger impact on the model’s
performance. This is understandable since the DTB block is only a subblock of the MDTB
block. Removing LFE results in performance degradation, highlighting the role of low-
level feature extraction. The bigger performance improvement of the MDTB block than
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LEF shows the importance of multi-scale features and validates the MDTB block in terms
of extracting multi-scale features and capturing long-range dependencies. The original
model has the highest PSNR and SSIM values. It indicates that low-level feature extraction
and multi-scale feature extraction with the MDTB block are essential for achieving high-
performance super-resolution.

4.7. Real-World Scenario Evaluation

While the DAIR model has shown promising results on the datasets used in this
paper, its performance in real-world scenarios with diverse and unpredictable image
conditions remains to be tested. To evaluate the applicability of the proposed method
under real-world conditions, we conducted additional experiments using images taken
from different environments and under different lighting conditions. Figure 6 shows
the results where HR indicates the images from the photos taken, BICUBIC stands for
the images reconstructed using bicubic interpolation, and OURS indicates the images
reconstructed with our proposed method. The images in Figure 6 highlight the DAIR
model’s effectiveness in real-world scenarios, confirming its robustness and applicability
for practical image enhancement tasks.
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5. Conclusions and Outlooks

In this paper, we developed a new dilated attention-based single-image super-resolution
method called DAIR to tackle the incapacity of CNN-based methods in capturing long-
range dependencies and the computational complexity of transformer-based methods. It
integrates low-level feature extraction, multi-scale global feature extraction across various
scales, and high-quality image reconstruction. A specialized convolutional layer extracts
low-level image features at the feature extraction stage, which lays the groundwork for sub-
sequent processing. MDTB is the core component of DAIR and consists of four transformer
blocks equipped with magnification attention to extract multi-scale global features. The
extracted low-level features and multi-scale global features are aggregated to reconstruct
high-resolution images. We have compared our proposed method with existing methods
to demonstrate its efficacy and advantages in terms of improving image resolution and
quality. We also undertook ablation experiments to evaluate the impacts of multi-scale
dilation attention and a feed-forward network on network performance.

Despite the fact that the DAIR model has shown promising results on the datasets
used in this paper and some real-world applications, in subsequent work, we will further
evaluate the performance of our proposed DAIR model in more real-world applications
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with diverse and unpredictable image conditions. The aim is to train the model with a more
diverse dataset, possibly incorporating images from various sources with different lighting
conditions and resolutions. This would make the model more robust and adaptable to real-
world scenarios. Computational efficiency can be improved too. Optimization techniques
include model pruning and quantization. Pruning removes redundant or less essential
weights from a neural network, reducing model size and computational requirements
without significantly affecting performance. Quantization reduces the precision of weights
and activations from floating-point representations to lower bit-width representations (e.g.,
8-bit integers), thus reducing the model size and speeding up the computation.
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