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Abstract
Recent works attempt to extend Graph Convolution Networks
(GCNs) to point clouds for classification and segmentation
tasks. These works tend to sample and group points to cre-
ate smaller point sets locally and mainly focus on extract-
ing local features through GCNs, while ignoring the relation-
ship between point sets. In this paper, we propose the Dy-
namic Hop Graph Convolution Network (DHGCN) for ex-
plicitly learning the contextual relationships between the vox-
elized point parts, which are treated as graph nodes. Mo-
tivated by the intuition that the contextual information be-
tween point parts lies in the pairwise adjacent relationship,
which can be depicted by the hop distance of the graph quan-
titatively, we devise a novel self-supervised part-level hop
distance reconstruction task and design a novel loss func-
tion accordingly to facilitate training. In addition, we propose
the Hop Graph Attention (HGA), which takes the learned
hop distance as input for producing attention weights to al-
low edge features to contribute distinctively in aggregation.
Eventually, the proposed DHGCN is a plug-and-play mod-
ule that is compatible with point-based backbone networks.
Comprehensive experiments on different backbones and tasks
demonstrate that our self-supervised method achieves state-
of-the-art performance. Our source code is available at:
https://github.com/Jinec98/DHGCN.

Introduction
A point cloud is an unordered collection of scattered points
representing geometric information in the 3D space. Point
cloud processing and understanding are crucial in many ar-
eas, such as autonomous driving, virtual reality, etc. Unlike
regular 2D pixels on the images, point clouds typically have
irregular point distributions, making it difficult to directly
apply traditional Convolution Neural Networks (CNNs) to
point clouds for extracting features (Shi and Rajkumar 2020;
de Silva Edirimuni et al. 2023; Zhang et al. 2020).

In addition, the complex geometric structures of the point
cloud can be well-structured with graphs by encoding the
representations of pairwise relationships of points (Def-
ferrard, Bresson, and Vandergheynst 2016; Chung 1997).
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Figure 1: First row: Constructing the ground truth graph
for our self-supervised hop distance reconstruction task. (a):
Voxelizing the point cloud into parts, taking each part as a
graph node. (b): The topology of the ground truth graph.
Two nodes are adjacent if their scaled bounding boxes are
intersected. (c): The shortest path between a node (enlarged
red point) and other nodes. The number on each node de-
notes the hop distance which motivates our self-supervised
task. Second row: Sampling and grouping based strategy
(Wang et al. 2019b,a). (d): Sampling center points and
grouping local point sets. (e): Constructing a local graph
for each point set. We explore the contextual relationships
between parts, while previous strategies focus on extracting
local features of point sets.

Therefore, researchers have made efforts to generalize
Graph Convolution Networks (GCNs) to point clouds for
classification and segmentation, achieving encouraging re-
sults (Qi et al. 2017c; Landrieu and Simonovsky 2018; Bi
et al. 2019; Yi et al. 2023). DGCNN (Wang et al. 2019b)
constructs a k-Nearest Neighbor (kNN) graph for each cen-
ter point, and captures graph structure by propagating and
aggregating the offset relationships between a center point
and its neighbors. Wang et al. (2019a) assigns attention
weights to different neighboring points and feature channels.
These works tend to sample and group points to create point
sets locally, and construct a graph for each set (Figure 1 (d)-
(e)). They usually focus on extracting graph representations
for local point sets through GCNs, while ignoring the ex-



plicit contextual relationships between them.
In this paper, we attempt to embed the distance in geomet-

ric space between point sets explicitly to learn their contex-
tual relationships (e.g., topology, adjacency, etc). Our intu-
ition is that the geometric distance of point sets lies in the
pairwise adjacent relationship between them. In addition,
with considering point sets as nodes and representing the
point cloud as a graph, the hop distance concept in graph
theory can depict the degree of adjacency quantitatively.

Motivated by this intuition, we propose a novel self-
supervised part-level hop distance reconstruction task. We
design the Dynamic Hop Graph Convolution Network
(DHGCN) for extracting and embedding the low-level ge-
ometric distance to learn the high-level contextual relation-
ships between voxelized point parts. In the pre-processing
stage, we first split the entire point cloud into voxel parts,
and construct a ground truth graph with each part serving
as a graph node to compute the distance matrix, which can
imply the degree of adjacency between two nodes quanti-
tatively (Figure 1 (a)-(c)). Next, given an input point cloud,
we construct a complete graph with randomly initialized dis-
tance matrix (i.e., no contextual information) and attempt to
predict the hop distance matrix to learn the part-level contex-
tual relationship. We devise a hop distance loss to supervise
the predicted distance matrix that is dynamically updated in
each layer. Further, we design Hop Graph Attention (HGA)
that takes the learned distance matrix as input for assigning
more attention to edge features between neighboring parts
(i.e., parts with short distances) and less attention to distant
parts, allowing edge features to contribute distinctively in
aggregation. Finally, we make our DHGCN compatible with
point-based backbone networks through pooling and repeat-
ing, making it a plug-and-play module.

The main contributions of this paper are as follows.
• We propose a novel self-supervised hop distance recon-

struction task and a hop distance loss for learning the
contextual relationships between point parts, by consid-
ering the hop distance as the proxy to depict the degree
of adjacency quantitatively.

• We propose Hop Graph Attention, a module that takes
the dynamically learned hop distance as input to produce
attention weights, allowing edge features to contribute
distinctively in aggregation.

• We make our DHGCN a plug-and-play module that can
be easily embedded in point-based backbone networks.
Extensive experiments show that our self-supervised
DHGCN achieves state-of-the-art performance on differ-
ent downstream tasks.

Related Work
Self-supervised Point Cloud Learning
Point-based methods are pioneered by PointNet (Qi et al.
2017a), which consumes raw point cloud as input us-
ing shared multi-layer perceptions (MLPs). PointNet++ (Qi
et al. 2017b) further devises a hierarchical architecture that
recursively samples point sets to capture multi-scale local
geometric information. As the cornerstone of point-based
methods, PointNet++ has inspired numerous modern works.

Self-supervised learning (SSL) methods for point clouds
aim to learn point cloud intrinsic representations through
well-designed pretext tasks without labeled data. Recent
works can be roughly summarized as contrastive and recon-
structive methods (Wu et al. 2021). The contrastive methods
contrast the latent representations of different point cloud
transformation views (e.g., rotation, jitter, scale, etc.) and
design pretext tasks based on inter-data information such as
similarity (Xie et al. 2020; Chen, Nießner, and Dai 2021;
Gao, Hu, and Qi 2020). CrossPoint (Afham et al. 2022)
enforces the correspondence between a point cloud and its
rendered 2D image while preserving the model’s invari-
ance to spatial transformations. The reconstructive meth-
ods typically aim to reconstruct intra-data information from
low-quality (e.g., mask, noise, etc.) input, which exploits
the point cloud intrinsic structure as self-supervised sig-
nals (Yang et al. 2018; Yu et al. 2022; Pang et al. 2022).
OcCo (Wang et al. 2021) generates occluded point clouds
from randomly sampled camera views and trains an encoder-
decoder model to complete the original point clouds.

Graph-based Learning Methods
Graphs are the universal representations of heterogeneous
pairwise relationships of non-Euclidean data, such as point
clouds (Defferrard, Bresson, and Vandergheynst 2016). Pre-
vious works extend convolution from 2D CNNs to graphs
by processing the graph spectral representation (Deffer-
rard, Bresson, and Vandergheynst 2016; Kipf and Welling
2016). DGCNN (Wang et al. 2019b) constructs kNN graphs
for investigating correlated relationships among neighbor-
ing points with the EdgeConv operation, which encodes the
graph local geometric information by propagating and ag-
gregating edge features. 3D-GCN (Lin, Huang, and Wang
2020) proposes the deformable GCN kernel with learnable
shapes and weights. AdaptConv (Zhou et al. 2021) gen-
erates adaptive kernels for convolution on mutually corre-
lated point pairs according to their edge features. More re-
cently, Li et al. (2021) transfers residual/dense connections
and dilated convolutions to GCNs to train very deep GCNs,
avoiding vanishing gradients. These works usually partition
a point cloud into point sets by the kNN or radius ball query
method, and design sophisticated local feature extractors for
learning point sets features.

Attention Mechanism
Attention mechanism exhibits the ability to extract relation-
ships between representations by focusing on the most rel-
evant parts of inputs to make decisions (Ma et al. 2022).
Vaswani et al. (2017) proposes Transformer, a model archi-
tecture relying solely on a self-attention (SA) mechanism,
pioneering follow-up SA based works. Graph attention net-
work (GAT) (Veličković et al. 2017) computes the hidden
representations of each graph node by attending to its neigh-
bors’ features with assigned attention weights. Wang et al.
(2019a) proposes Graph attention convolution, implicitly as-
signing different attention importance to neighboring nodes
and feature channels. Guo et al. (2021) proposes PCT, which
applies the offset-attention Transformer to learn the local
context of the point cloud.



Figure 2: DHGCN architecture: We feed the input point cloud to PointFeatureConv for extracting point-wise representations,
which are then taken as input by Hop Graph Convolution (HopGraphConv), to extract more accurate local geometric represen-
tations. Hop Graph Convolution: The HopGraphConv layer takes the point features as input, and achieves part features through
part-level pooling. We construct a complete graph by taking parts as nodes and connecting each pair of them, and use PartConv
and HGA to extract graph edge features. We propose the self-supervised hop distance reconstruction task to predict the distance
matrix of the complete graph from edge features. λ controls whether the HGA embeds hop distance. Finally, edge features are
aggregated and repeated at the part-level, providing additional representations for the point-based backbone network.

Unlike previous works that focus on designing sophisti-
cated encoders for learning local features of grouped point
sets, we propose the HGA to learn the contextual relation-
ship between point sets, explicitly providing geometric in-
formation. This is driven by the fact that the inherent graph
structure depicts the adjacent relationship between parts.

Method
The overall architecture of the DHGCN is shown in Figure
2. DHGCN aims to learn the high-level contextual infor-
mation from the pairwise neighboring relationship between
point parts. We first voxelize the entire point cloud into parts
and construct a graph by considering each part as a node. We
define a distance matrix on the graph as the self-supervised
signal, implying the degree of adjacency between nodes. Our
DHGCN extracts parts features while also predicting the hop
distance matrix, which is taken as input by the Hop Graph
Attention (HGA) to embed the learned geometric informa-
tion into point features.

Volumetric Partition
This section discusses the details of point cloud volumetric
partition and part-level graph construction. Given an input
point cloud X = {xi | i = 1, 2, . . . , N} ∈ RN×3 with N
points, we voxelize it by mapping each point to a voxel part.
As a result, the volumetric partition splits X into V = s3

parts: P = {pi | i = 1, 2, . . . , V }, where s is the split num-
ber, V is the number of parts, and pi is a list containing the
indices of points inside the i-th part. For each part, we com-
pute its up-scaled axis-aligned bounding box with the scale
factor set to 1.2 for calculating the adjacency between parts
in the geometric space. For parts with no points inside, we
simply set its bounding box volume to 0.

We can now construct a ground truth graph G = (V, E)
with each part serving as a graph node. We define two nodes
are connected by an edge if their bounding boxes are inter-
sected. We also introduce self-loops, connecting each node
with itself. The distance between two nodes is defined as the
number of edges (i.e., hops) in their shortest path. There-
fore, G’s distance matrix D ∈ R|V|×|V| implies the pairwise
degree of adjacency between nodes quantitatively. The max-
imum distance δ is truncated to s+ 1 hops and the self-loop
distance is defined as 0 hop.

Part Feature Extraction
Point-based networks such as PointNet (Qi et al. 2017a),
DGCNN (Wang et al. 2019b) and AdaptConv (Zhou et al.
2021) usually extract point-wise representations in each
layer by using a point feature convolution (PointFeature-
Conv) function gp with learnable parameters to map the
input point cloud representations to a new set of C-
dimensional point features H = {hi | i = 1, 2, . . . , N} ∈
RN×C . Then the point cloud’s global features fg ∈ RC are
usually derived by applying the permutation-invariant max
pooling to aggregate point-wise features globally:

fg = max
j∈{1,2,...,N}

hj . (1)

In our DHGCN framework, we expect to achieve part-
level features from the input point-wise features H. Simi-
larly, we pool the point-wise features in part-level to obtain
part features F = {fi | i = 1, 2, . . . , V } ∈ RV×C , where

fi = max
j∈pi

hj (2)

and pi contains the indices of points in the i-th part.



Hop Graph Convolution Module
Part Convolution Given the input parts P with its cor-
responding part features F , we initialize a complete graph
G̃ = (Ṽ, Ẽ) whose topology implies no specific contex-
tual information, with parts serving as graph nodes for ap-
plying part-level graph convolution (PartConv). Inspired by
DGCNN (Wang et al. 2019b), we define the edge feature
between the i-th and j-th node as:

eij = [fi, fj − fi] ∈ R2C , (3)

where [·, ·] is the concatenation operation. eij explicitly
combines shape information with neighborhood information
encoded by the feature differences (Wang et al. 2019b). Our
PartConv projects eij to a new set of edge features e′ij , at-
tempting to extract more accurate local geometric represen-
tations (Zhou et al. 2021) as follows:

e′ij = gm (eij) , (4)

where j ∈ N (i) = {j : (i, j) ∈ Ẽ}, N (i) is node indices
connected with the i-th node. gm(·) : RCin → RC is a MLP
with learnable parameters.

Hop Distance Reconstruction Since the low-level geo-
metric distance can be represented by the degree of adja-
cent relationship between parts, we extract it by reconstruct-
ing the hop distance matrix of G̃ with the proposed self-
supervised task. We denote the predicted hop distance of the
i-th and j-th nodes of G̃ as D̃ij and consider predicting D̃ij

as a classification problem of δ + 1 categories (including
self-loops), where δ is the maximum distance. In this sense,
we predict D̃ij by applying the MLP gh to edge features e′ij :

D̃ij = gh(e
′
ij). (5)

As shown in Figure 3, the predicted distance matrix D̃ is
updated in each layer supervised by the ground truth dis-
tance matrix D. Concretely, we propose the hop distance
loss Lh to measure the discrepancy between D̃ and D in
each layer:

Lh =

V∑
i

V∑
j

CE(D̃ij , Dij), (6)

where CE is a cross-entropy function.

Hop Graph Attention The Hop Graph Attention aims
to embed the learned geometric structure information into
high-level point cloud contextual features by assigning more
attention weights to edge features between neighboring parts
in the geometric space (i.e., parts with low hops). Therefore,
we compute the hop attention coefficient of e′ij as follows:

tij = ga

(
λ ·G(D̃ij)e

′
ij + (1− λ)e′ij

)
, (7)

where j ∈ N (i), and ga : RC → R is a shared attention
MLP. G(x) = 1√

2π
exp

(
− 1

2σ2x
2
)

represents Gaussian ker-
nel. λ ∈ {0, 1} is a switch factor that controls whether to
embed the hop distance. When λ = 0, the HGA equals to
general SA to extract preliminary features.

Figure 3: Given the input point cloud, we first voxelize it
into parts. For each part, we compute its scaled axis-aligned
bounding box to calculate the adjacent relation between
parts. We construct a ground truth graph along with its dis-
tance matrix for supervision in each layer.

The hop attention coefficient tij indicates the learned im-
portance of part pj to pi, which is inferred from the predicted
hop distance D̃ij . Since the hop distance depicts the adja-
cent relationship between parts, explicitly multiplying D̃ij

by the edge features e′ij embeds the low-level geometric dis-
tance into the high-level contextual features, producing more
expressive attention weights.

We normalize coefficients using softmax function to make
it comparable across all connected neighbors as follows:

αij = softmaxj (tij) =
exp (tij)∑

k∈N (i) exp (tik)
(8)

We can now calculate the learned part features f̃i by ag-
gregating edge features between the i-th node and all other
connected nodes distinctively:

f̃i = max
j∈N (i)

αij · e′ij . (9)

Revising Point-wise Features For each part-level feature
f̃i, we repeat it |pi| times to align it with corresponding
points, constructing the revised point-wise features H̃ =
{h̃i | i = 1, 2, ..., N} by fusing with the original point-
wise features H through element-wise addition for pro-
viding more expressive representations for our point-based
backbone network:

h̃j = f̃i + hj , j ∈ pi. (10)

Figure 4 visualizes our attention maps and the comparison
of feature distance between our method and the DGCNN
backbone. The attention maps (row 1) depict that the pre-
dicted hop distance is consistent with the geometric relation-
ship of each part, which enables our learned features H̃ (row
2) to be more distinctive than DGCNN (row 3), and more
related to both geometric distance and shape information.



attention maps
(Ours)

feature distance
(Ours)

feature distance
(DGCNN)

Figure 4: Attention maps (row 1) for different query parts and feature distance from the query point (indicated by star, row 2
(ours) and row 3 (DGCNN)) to all other points, with yellow to red indicating increasing attention weight or closer distance.

Dynamic Hop Distance Previous point learning works
(Wang et al. 2019b; Qi et al. 2017b; Guo et al. 2021) tend to
construct a local graph for each selected center point through
kNN in feature space, and update center points and corre-
sponding graphs dynamically in each layer. Since their edge
features contribute equally in aggregation, these methods
can be viewed as learning local features from local point
sets using a GCN with a local receptive field.

Different from these works, we construct a complete
global graph G̃ rather than a local graph, allowing every
node to attend to every other node, making the receptive
field cover the entire point cloud globally. With the aid of
the distance reconstruction task, G̃’s hop distance matrix is
dynamically updated in each layer, which is enabled by the
Gaussian kernel for providing more attention to neighbor-
ing parts and less attention to distant parts, allowing edge
features to contribute distinctively in aggregation.

We calculate the proposed hop distance loss L(l)
h in each

layer to provide strong supervision for updating the distance
matrix. Finally, the self-supervised loss of our DHGCN for
the hop distance prediction task is defined as:

L =

L∑
l

L(l)
h , (11)

where L denotes the number of HopGraphConv layers.

Experimental Results
Experimental Setting
We implement our method in PyTorch. The SGD optimizer
is used for all experiments. We use one TITAN RTX GPU
for training. The training batch size is set to 32. Following
DGCNN, we set the dropout rate to 0.5 and the random seed
to 1. The learning rate is set to 0.1 under the cosine learn-
ing scheduler with the 0.9 momentum and the 0.0005 weight
decay. For classification, we set the split number s = 3 by
default, i.e., the point cloud is split into 33 = 27 parts, and
the max distance δ = 4, i.e., the hop distance will be classi-
fied into 5 categories (including hop = 0), and we set s = 5
for segmentation tasks for a more fine-grained splitting. We

use 4 heads for multi-head attention in the Hop Graph At-
tention module. σ in Gaussian kernel is set to 1 by default.

Pretraining
Pretrained datasets. Our DHGCN uses ShapeNet (Chang
et al. 2015) for pretraining. The dataset has 57, 448 mod-
els with 55 categories, and all models will be used for our
self-supervised pretraining task. Following previous work,
we use 2, 048 points as input. Note that some methods are
pretrained on ModelNet40 (Wu et al. 2015). We also follow
this setting, and use the train set (9, 840 training models)
of ModelNet40 for pretraining. As for ModelNet40, we use
1, 024 points as input which is the same with GraphTER.

Training details. The DHGCN is a part-level plug-and-
play module that is compatible with point-based back-
bone networks, by implementing the PointFeatureConv with
backbone modules. We use several different point-based
backbone networks under the linear protocol of unsuper-
vised representation learning to verify the effectiveness of
our self-supervised reconstruction task. This training strat-
egy is a two-stage paradigm. The first stage is to pretrain
the network with only the proposed self-supervised task, and
the second stage is to freeze the pretrained model and train
a linear classifier only for downstream tasks, i.e., 3D object
classification and shape part segmentation.

Downstream Tasks
3D object classification on ModelNet40. We use Model-
Net40 for 3D point cloud classification. Data split protocols
following PointNet. The dataset contains 9, 840 models for
training and 2, 468 models for testing, involving a total of 40
categories. The sampling strategy in PointNet is adopted to
sample each point cloud into 1, 024 points. We only use nor-
malized coordinates as input without considering normals.

Table 1 shows the comparison results of our method
and the SOTA unsupervised methods. We divide the re-
sults based on two pretrained datasets. As we can see,
our DHGCN notably outperforms recent works, achieving
SOTA performance on both pretrained datasets (93.2% for
ShapeNet and 93.3% for ModelNet40), exceeding SSC by



Methods Pretrained
dataset # Points Acc. Methods Pretrained

dataset # Points Acc.

LatentGAN (2018) SN 2k 85.7 FoldingNet (2018) MN 2k 84.4
FoldingNet (2018) SN 2k 88.4 LatentGAN (2018) MN 2k 87.3
PointCapsNet (2019) SN 2k 88.9 PointCapsNet (2019) MN 1k 87.5
VIPGAN (2019a) SN 2k 90.2 Multi-task (2019) MN 2k 89.1
STRL (2021) SN 2k 90.9 MAP-VAE (2019b) MN 2k 90.2
SSC (RSCNN) (2021) SN 2k 92.4 GraphTER (2020) MN 1k 92.0
CrossPoint (2022) SN 2k 91.2 GLR (RSCNN) (2020) MN 1k 92.2
DHGCN (DGCNN) SN 2k 93.2 DHGCN (DGCNN) MN 1k 93.0
DHGCN (AdaptConv) SN 2k 93.2 DHGCN (AdaptConv) MN 1k 93.3

Table 1: Classification results of unsupervised methods (including ours) on ModelNet40. ‘SN/MN’ denotes ‘ShapeNet/Model-
Net40’ and ‘# Points’ indicates the point number in pretraining.

Methods Limited training data ratios
1% 2% 5% 10% 20%

FoldingNet (2018) 56.4 66.9 75.6 81.2 83.6
MAE3D (2023b) 61.7 69.2 80.8 84.7 88.3
DHGCN 62.7 72.2 81.3 86.1 89.1

Table 2: Comparison results of 3D object classification
with limited training data (different ratios) on ModelNet40.
DGCNN is taken as the backbone.

0.8% with pretraining on ShapeNet and surpassing Graph-
TER by 1.3% with pretraining on ModelNet40.

Classification with limited data. Following previous
works (Yang et al. 2018), we further train a linear classifier
with only limited sampled training data of ModelNet40 to
evaluate the pretrained model’s generalizability on all test
data. As shown in Table 2, our method with DGCNN as
backbone can achieve 89.1% with 20% data used for train-
ing and 86.1% with 10% data. In the extreme case of using
only 1% data, our DHGCN achieves 62.7% accuracy, ex-
ceeding that of MAE3D by 1% and FoldingNet by 6.3%.
Our DHGCN achieves SOTA results in all 5 training data
ratios, demonstrating that the features learned by our self-
supervised task can be easily generalized to the point cloud
classification task even with limited training data.

Classification on real-world dataset ScanObjectNN.
We also conduct the classification experiment on the real-
world scanning dataset ScanObjectNN (Uy et al. 2019),
which poses great challenges for point cloud classifica-
tion methods due to the involved cluttered background,
noisy perturbations and occluded incomplete data. This
dataset contains 15 categories, totally 2, 902 unique ob-
ject instances. Here we follow the official data split strat-
egy on three dataset variants: OBJ ONLY, OBJ BG and
PB T50 RS, and conduct pertaining on ShapeNet.

As shown in Table 3, DHGCN achieves the best results of
85.9% on OBJ BG variant, exceeding all compared SOTA
unsupervised methods by at least 4.2%. Our DHGCN even
achieves comparable results with supervised methods, e.g.,
surpassing the DGCNN backbone by 3.1% on OBJ BG. As
for the PB T50 RS variant, our method achieves an accu-

Methods Sup. OBJ ONLY OBJ BG PB T50 RS
PointNet (2017a) ✓ 79.2 73.3 68.2
PointNet++ (2017b) ✓ 84.3 82.3 77.9
PointCNN (2018) ✓ 85.5 86.1 78.5
DGCNN (2019b) ✓ 86.2 82.8 78.1
Point-BERT (2022) ✓ 88.1 87.4 83.1
Point-MAE (2022) ✓ 88.3 90.0 85.2
Jigsaw (2019) ✗ - 59.5 -
OcCo (2021) ✗ - 78.3 -
STRL (2021) ✗ - 77.9 -
CrossPoint (2022) ✗ - 81.7 -
DHGCN ✗ 85.0 85.9 81.9

Table 3: Classification results of our method and state-of-
the-art methods on ScanObjectNN. DGCNN is used as back-
bone. ‘Sup.’ denotes the method is supervised (✓) or unsu-
pervised (✗). Results of Jigsaw, OcCo, and STRL are from
CrossPoint, and “-” indicates no previous results.

racy of 81.9%, slightly lower than the other two variants. We
suspect that the perturbation noise in PB T50 RS disturbs
the adjacency relationship between parts (i.e., some points
are incorrectly split into adjacent parts during voxelization),
thus degrading the power of the learned hop distance in de-
picting point cloud intrinsic geometric structure.

Furthermore, despite being pretrained on the ShapeNet
dataset (synthetic data), our downstream classification re-
sults on the real-world ScanObjectNN reveal that the learned
geometric information is useful in mitigating the domain gap
between synthetic and real-world data.

Part segmentation on ShapeNet Part. We evaluate
DHGCN for the shape part segmentation task on ShapeNet
Part dataset (Yi et al. 2016), which contains 16, 881 models
from 16 categories. Each model involves 2 to 6 parts, with a
total number of 50 distinct part labels. Following PointNet,
we sample or interpolate each model to 2, 048 points and
only use point coordinates as input.

We use mean Intersection-over-Union (mIoU) as the eval-
uation metric, and two types of mIoU are reported in Table
4. Our self-supervised method achieves SOTA performance,
which exceeds all recent unsupervised methods.

Part segmentation with limited data. We freeze the pre-



Methods Sup. Class mIOU Instance mIOU
PointNet (2017a) ✓ 80.4 83.7
PointNet++ (2017b) ✓ 81.9 85.1
DGCNN (2019b) ✓ 82.3 85.2
KPConv (2019) ✓ 85.1 86.4
PAConv (2021) ✓ 84.2 86.0
Point-BERT (2022) ✓ 84.1 85.6
LatentGAN (2018) ✗ 57.0 -
MAP-VAE (2019b) ✗ 68.0 -
GrpahTER (2020) ✗ 78.1 81.9
CTNet (2023a) ✗ 75.5 79.2
DHGCN ✗ 82.9 84.9

Table 4: Shape part segmentation results of our method and
state-of-the-art techniques on ShapeNet Part dataset. PA-
Conv is used as backbone. ‘Sup.’ denotes the method is su-
pervised learning (✓) or unsupervised learning (✗).

Methods Limited training data ratios
1% 5%

SO-Net (2018) 64.0 69.0
PointCapsNet (2019) 67.0 70.0
Multi-task (2019) 68.2 77.7
PointContrast (2020) 74.0 79.9
SSC (RSCNN) (2021) 74.1 80.1
DHGCN 76.9 81.9

Table 5: Comparison results of shape part segmentation with
limited training data (different ratios) on ShapeNet Part. PA-
Conv is taken as the backbone.

trained model and randomly sample 1% and 5% of the train
set of ShapeNet Part to train several MLPs for evaluating
the segmentation task with the unsupervised paradigm. Re-
sults shown in Table 5 demonstrate that our DHGCN us-
ing PAConv as backbone achieves SOTA performance, i.e.,
76.9% with 1% training data and 81.9% with 5% training
data for instance mIoU, which exceeds recent unsupervised
methods. These results reveal that the features learned by our
self-supervised hop distance reconstruction task are more
expressive than other unsupervised methods in terms of part
segmentation, under extremely limited training data.

Please refer to supplementary for more results.

Ablation Studies
Attention mechanism. We conduct an ablation study for
several model settings to verify the HGA’s effectiveness,
which embeds the learned hop distance matrix into edge
weights. We denote the SA option as our baseline, whose
switch factor λ is set to 0 in both HGA layers. HGA will
degrade to general SA in this case, and the hop distance loss
is disabled. Note that we train this baseline in a supervised
manner. We compare the effect of whether the hop distance
loss is calculated in each layer or only the last layer. Ac-
curacy results of point cloud classification and hop distance
prediction are reported in Table 6.

With the aid of HGA, the classification accuracy sig-

Attention Sup. Loss Distance Acc. Acc.
SA ✓ L = Lc - 92.8
HGA ✗ L = L(−1)

h 93.3 93.1
HGA ✗ L =

∑L
l L(l)

h 94.6 93.3

Table 6: Different attention mechanisms. Experiments are
conducted on ModelNet40 with AdaptConv as the back-
bone. SA denotes self-attention, and HGA denotes Hop
Graph Attention. Accuracy results of hop distance predic-
tion and point cloud classification are reported.

Gaussian kernel
σ2 0.2 0.5 1.0 2.0 5.0

Acc. 92.6 93.2 93.3 93.0 92.9

Table 7: Ablation results on different σ2 in the Gaussian ker-
nel. Experiments are conducted on ModelNet40 for classifi-
cation with AdaptConv as the backbone.

nificantly exceeds that of SA baseline by 0.5%. In addi-
tion, calculating the hop distance loss in each layer leads to
both higher hop distance prediction accuracy (94.6% versus
93.3%) and point cloud classification accuracy (93.3% ver-
sus 93.1%). The strong supervision of our hop distance loss
leads to a more accurate learned hop distance matrix, thus
producing better performance.

Gaussian kernel. The predicted hop distance will be pro-
cessed by the Gaussian kernel G to provide more atten-
tion to neighboring parts (i.e., smaller distances yield higher
weights and vice versa). The parameter σ2 of G controls
the decay rate between distance and edge weight. A small
σ2 causes the edge weights between remote parts to de-
cay rapidly. For example, when σ2 = 0.2, the weights of
parts over 1-hop distance converge to 0. At this point, the
receptive field degrades to 1-hop (i.e., local neighbors), re-
sulting in a lower accuracy of 92.6%, as shown in Table 7.
On the contrary, with a larger σ2, the weights decay gen-
tly as the distance increases, enabling nodes to contribute
more equally. However, this leads to a reduction in distinc-
tion due to distance, achieving only 93.0% (σ2 = 2.0) and
92.9% (σ2 = 5.0). The model achieves the highest accuracy
of 93.3% when σ2 = 1.0.

Conclusion
This paper proposes a novel self-supervised part-level hop
distance reconstruction task and a novel hop distance loss to
learn contextual relationships between point parts. The dy-
namically updated hop distances are embedded as attention
weights by the proposed HGA for determining point parts’
importance in feature aggregation. Our DHGCN can be eas-
ily incorporated into point-based backbones. We outperform
SOTA unsupervised methods on both downstream classifica-
tion and part segmentation tasks. Our model is less effective
for data with large perturbations as noise leads to less ac-
curate splitting of parts, which tends to produce misleading
adjacent relationships. This will be explored in future.
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