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ABSTRACT

The estimation of 3D motion fields, known as scene flow esti-
mation, is an essential task in autonomous driving and robotic
navigation. Existing learning-based methods either predict
scene flow through flow-embedding layers or rely on local
search methods to establish soft correspondences. However,
these methods often neglect distant points which, in fact, rep-
resent the true matching elements. To address this challenge,
we introduce GAMAFlow, a point-voxel architecture that
models local motion and global motion to predict scene flow
iteratively. In particular, GAMAFlow integrates the advan-
tages of (i) the point Transformer with Grouped Attention
and (ii) global Motion Aggregation to boost the efficacy of
point-voxel correlation. Such an approach facilitates learning
long-distance dependencies between current frame and next
frame. Experiments illustrate the performance gains achieved
by GAMAFlow compared to existing works on both FlyingTh-
ings3D and KITTI benchmarks.

Index Terms— Scene Flow Estimation, Attention Model,
Point-Voxel Correlation, 3D Perception

1. INTRODUCTION

As an analog of optical flow [1], 3D scene flow has attracted
increasing research attention in recent years [2]. It is a cru-
cial primitive to various visual perception and understanding
tasks like motion segmentation [3], object tracking [4], and
trajectory prediction [5]. With point cloud data being widely
applied in robotics and autonomous driving, many scene flow
estimation methods [6, 7, 8, 9, 10] have been proposed to pre-
dict 3D displacements between two consecutive point cloud
frames directly through deep neural networks.

Given the current state-of-the-art in scene flow estima-
tion, we found that prediction errors primarily stemmed from
occlusions and invisible long-distance agents, which poses
great challenges in discriminating multi-scaled motion fields.
From prior work, we have the following observations: (1)
Voxel-based representations can efficiently encode multi-scale
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features of 3D point clouds, which are then used for object
detection or segmentation. However, the downside of voxel-
based representation is that it degrades localization quality
due to the coarse voxelization. (2) Point-based representation
could preserve accurate point positions with flexible receptive
fields, which benefits flow estimation without heavy compu-
tation overhead. In light of these, the recent work PV-RAFT
[9] integrates the voxel-based and point-based feature learning
strategy. Meanwhile, SCTN [11] combines the point feature
extracted through Transformers with voxel feature extracted
via sparse 3D convolution. Despite yielding promising results,
this integration of voxel-based and point-based feature repre-
sentations poses two problems. The voxel-to-point encoding
through voxel set abstraction operations introduces significant
computational overhead, which is further exacerbated by the
multi-stage point feature abstraction. On the other hand, the
pooling operation in the voxel branch fails to fully harness the
valuable dense points, resulting in little performance improve-
ment for faraway or small objects with sparse points.

To handle these problems, we present a Transformer-based
scene flow estimation paradigm with point-voxel correlations.
First, we propose to augment point features via point Trans-
former layer. Specifically, we employ grouped vector attention
to propagate point-wise features and guide the learning of dis-
criminative patterns at voxel level. Secondly, we enhance the
local motion feature through a context-based global motion ag-
gregation (GMA) module. Extensive visualizations showcase
the superiority of GAMAFlow on both datasets.

2. METHODS

Overview: The whole pipeline of our method is depicted in
Fig. 1. It takes two consecutive point clouds X ∈ RN×3 and
Y ∈ RM×3 as the input. GAMAFlow aims to predicting a set
of flow vectors

{
vi ∈ R3

}N
i=1

that describe the motion field,
which means the source point cloud X is expected to move to
yi = (xi + vi) ∈ Y. The model first proceeds by extracting
point features FX , FY from X and Y (Sec 2.1). Next, as
introduced in Sec 2.2, a global motion aggregator is applied to
enhance the motion features, followed by a Gated Recurrent
Unit (GRU) to iteratively generate the flow vector. Finally, the
flow vectors are progressively updated between the translated
point cloud Qt = X +Vt and the target point cloud Y . After T
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Fig. 1: The pipeline of GAMAFlow: The input of GAMAFlow consists of two point clouds with only 3D coordinate information.
The correlation field is constructed from point-level features computed by feature net and voxel-level features. GMA is performed
on the context feature FM and the local motion feature E . The concatenation of the local motion feature, context feature, and
global motion feature from GMA is fed into GRU to update the hidden state iteratively. The output of GRU is passed through a
flow head to produce the residual flow Vt−1 and the translated point cloud Qt−1 for the next iteration.

iterations, the final scene flow is obtained by a flow refinement
module. These steps are detailed below.

2.1. Point Feature Extraction via Grouped Attention

Previous attention-based approaches [11, 6] compute features
directly on the whole point cloud, ignoring the existence of
multi-scale motion fields in the scene. Considering this issue,
we build our feature net and context net upon PointTrans-
formerV2 [12] to learn point feature at multiple scales. The
core purpose of the feature net is to produce 128-dimensional
point-wise features for the input point clouds, denoted as
FX ∈ RN×D, FY ∈ RM×D in Fig.1. Our feature net consists
of point Transformer blocks employed at four different resolu-
tions. Each block begins with a downsampling layer, followed
by grouped attention for feature aggregation. Next, we decode
the features and scale them up to match the original point set.

To do this, we use partition-based pooling to divide the
point cloud into L subsets. For instance, an individual point set
is denoted as Si = (Pi,Fi), where xi = (pi, fi) belongs to
Si. Feature fi is updated via maxpooling operation and point
position pi is updated via meanpooling. The updated subset
S ′ = (p′

i,f
′
i)

n′

i=1 are leveraged in the next stage. The channel
dimension of each feature encoding layer follows: 3 → 48 →
96 → 192 → 384. We then pass the fused point set S ′ through
a decoding layer for feature propagation via inverse distance
weighted averaging with the 3 nearest neighbors.

Grouped vector attention allows efficient learning of spatial
features as well as context features across different regions of
the point clouds, which is given by

Aij = β(γ(qi,kj)), f
a
i =

S(pi)∑
xj

g∑
l=1

c/g∑
m=1

Softmax (Ai)jl v
lc/g+m
j ,

(1)

where γ is a relation function and β(·) is an encoding func-
tion to produce grouped weight. The output feature fai is
aggregated by dividing the channels of the value vector into g
groups, thereby reducing the number of parameters.
Context Net: We encode a context feature FM ∈ RN×D to
enrich context information during the flow estimation process.
The context net shares the same structure with the feature net.

2.2. Global Motion Aggregation Module

We notice that the flow estimation is significantly degraded or
even fails when dealing with large motions, which frequently
occurs in non-local regions. To mitigate this issue, we intro-
duce an enhanced global motion aggregation module, which
reduces the number of isolated points and the need for mask-
ing operation [16]. We posit that temporal coherence exists
between two consecutive point clouds, which can be utilized
to build long-distance correlations among two point clouds.

To this end, we encode motion feature E ∈ RN×Dm using
the previously estimated flow vector Vt−1 and the correlation
feature Cf generated by the point-voxel correlation field. Let
θ, ϵ, σ denote the projection functions to calculate query, key,
and value vector. The aggregated motion feature is denoted as

Êi = Ei + λ

N∑
j=1

h (θ(FM ), ϵ(FM ))σ (Ej) , (2)

where λ is a hyperparameter initialized to zero. The attention
matrix calculated by h(·) is utilized for aggregating the value
vector that represents temporal coherence.

h (qi,kj) =
exp

(
q⊤
i kj/

√
D
)

∑N
j=1 exp

(
q⊤
i kj/

√
D
) . (3)



Method FlyingThings3D KITTI
EPE3D ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓ EPE3D ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓

PointPWC-Net [13] 0.059 0.738 0.928 0.342 0.069 0.728 0.888 0.265
FLOT [14] 0.052 0.732 0.927 0.357 0.056 0.755 0.908 0.242
FlowStep3D [8] 0.046 0.816 0.961 0.217 0.055 0.805 0.925 0.149
SCTN [11] 0.038 0.847 0.968 0.268 0.037 0.873 0.959 0.179
PV-RAFT [9] 0.046 0.817 0.957 0.292 0.056 0.823 0.937 0.216
PT-FlowNet [15] 0.031 0.914 0.981 0.175 0.023 0.958 0.979 0.121
Ours 0.027 0.935 0.986 0.162 0.022 0.963 0.983 0.122

Table 1: Quantitative evaluation on Flyingthings3D and KITTI datasets. Lower values are better for the error metrics including
EPE3D and Outliers. Higher values are better for the accuracy metrics including Acc3DS and Acc3DR.

The final output is the concatenation [E , Ê ]. Intuitively, con-
catenation allows the network to flexibly merge motion vectors
influenced by contextual attributes, possibly introducing an
element of uncertainty in its encoding process before decoding
the combined motion vector.

2.3. Network Architecture

We adopt PV-RAFT [9] as our backbone, equip it with our
proposed module. After feature extraction via Grouped Atten-
tion, we constructs two correlation volumes based on feature
similarities. The correlation volume integrates features at
point-level and voxel-level. Let Nk = N (Y)k represents the
top-k nearest neighbors of Qt in Y . Point-level correlation
feature between Qt and Y is defined as

Cp (Qt,Y) = γ (MLP(concat(CM (Nk),Nk −Qt))). (4)

Voxel-level correlation feature is defined as

Cv (Qt,Y) = MLP

(
concat

i

(
1

ni

∑
ni

CM

(
N (i)

r

)))
,

(5)
where ni denotes the number of points in Y that located in
a sub-cube of Qt and N (i)

r indexes all neighbor points of a
sub-cube in Qt. In formulation 4 and 5, CM (Nk) represents
the corresponding truncated correlation values, which is com-
puted through the pairwise dot-product between feature vectors
CM = Ft

q ·Fy . The combination of Cv and Cp is denoted as
Cf . In the current paradigm, a correlation volume serves as
the fundamental module for consecutive frame point match-
ing. Conceptually, the correlation volume at the point-level
focus on local regions while correlation volume at voxel-level
compensates for large displacements.
Iterative Update: With the integration of voxel features and
point features, we follow PV-RAFT [9] to update scene flow
estimation based on a GRU cell. The input to the GRU cell con-
sists of three components: the contextual feature FM , global
motion features [Ê , E ], and previously predicted scene flow
vector Vt−2. Then, we use the updated flow Vt−1 to warp a
new translated point cloud Qt−1 for the next iteration.

Refinement Step: In pursuit of enhanced performance in
scene flow estimation networks [15], a subsequent refinement
step is implemented to produce the final refined flow predic-
tion Vref . Unlike the pre-training stage, the refinement mod-
ule only utilizes the final predicted flow vector from iterative
update stage and the point feature FY . This refinement step
promotes the smoothness and consistency of flow estimation.

2.4. Loss Terms

We trained our model in a supervised manner, where flow
vectors are updated iteratively. The loss is formed as:

Liter =

T∑
t=1

wt ∥(Vt −Vgt)∥1 , (6)

where Vt is the predicted flow vector from the tth iteration
in the first updating stage. Vgt denotes the ground-truth flow
vector. T is the total number of iterations and the weight for
tth iteration is wt. The loss of the refinement module is

Lref =
∥∥∥(V̂ref −Vgt

)∥∥∥
1
. (7)

3. EXPERIMENTS

3.1. Datasets and Performance Metrics

FlyingThings3D [17] collects rendered stereo and RGB-D
images from ShapeNet [18], which is the first synthetic bench-
mark to estimate scene flow. We follow [9] to pre-process and
separate FlyingThings3D into a training set (19, 640 pairs) and
a test set (3, 824 pairs). To evaluate the effectiveness of our
model in a real dataset, we choose KITTI scene flow dataset
[19, 20] and leverage the trained model on FlyingThings3D.
Implementation details. We implemented GAMAFlow in
Pytorch. We set the number N,M of the input point clouds
to 8192. The while network is first trained for 50 epochs,
with another 10 epochs for the refinement step. Experiments
were conducted on a machine equipped with four NVIDIA
A100-SXM4-80GB GPUs.
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Fig. 2: Visual comparison between PV-RAFT [9], PT-FlowNet [15], and our method on FlyingThings3D and KITTI dataset.

Evaluation Metrics. We use several metrics for comprehen-
sive comparison. 3D end-point-error (EPE3D) is the mean L2
distance between the ground truth scene flow and predicted
result. Strict accuracy (Acc3DS) is the percentage of points
whose EPE3D < 0.05m or relative error < 5%. Relaxed ac-
curacy (Acc3DR) is the percentage of points whose EPE3D
< 0.1m or relative error < 10%. Outliers is the percentage of
points whose EPE3D > 0.3m or relative error > 10%.

3.2. Quantitative Analysis

Table.1 demonstrates that our model, which was trained using
a synthetic dataset, exhibits strong generalization capabilities
when applied to real KITTI scans. Specifically, GAMAFlow
reduces EPE3D to 0.027m, achieved a 12% drop from PT-
FlowNet [15] on FlyingThings3D. Our method also presents
superior performance on KITTI in terms of Acc3DS and
Acc3DR. Moreover, in Fig. 2, we visually compare the scene
flow estimation results for scenes from both datasets. Colors
indicate the EPE3D error distribution, with red means high
error and purple means low error. It is noticeable that our
method shows the minimum error.

3.3. Ablation Study

The effectiveness of key components. We conduct ablation
experiments to verify the rationality of our method. Variant
I is trained on PT-FlowNet [15] without the refinement step.
Then we replace the core components with grouped attention
for feature extraction (II) and global motion aggregation (III).
Thirdly, we add the flow refinement module in our model,

ID GA GMA FR EPE3D

I 0.037
II ✓ 0.032
III ✓ ✓ 0.029
IV ✓ ✓ ✓ 0.027

Table 2: Ablation study results on grouped attention module
and global motion aggregation module. These experiments are
conducted on FlyingThings3D.

forming the last variant (IV). As shown in Table.2, the grouped
attention module brings an improvement of 13.5% and variant
III brings an improvement of 21.6% compared to variant I.

4. DISCUSSIONS AND CONCLUSION

In this paper, we propose GAMAFlow for motion analysis
between two point clouds. The core insight of our method
is the integration of local motion feature and long-distance
global information. Experimental results of GAMAFlow on
the FlyingThings3D and KITTI datasets demonstrate its ef-
fectiveness. A limitation of our model is its relatively large
parameter size compared to other attention-based methods,
even though GAMAFlow brings a 41% drop on the EPE3D
metric. This suggests that, utilizing lightweight model in the
learning of visual representation of point could data could ease
the computational bottleneck, which is an important avenue
for future research. We will consider improving the overall
efficiency through model compression techniques in the future.
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