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s u m m a r y

Objective: The ArmeD SerVices TrAuma RehabilitatioN OutComE (ADVANCE) study is investigating long- 
term combat-injury outcomes; this sub-study aims to understand the association of osteoarthritis (OA) 
biomarkers with knee radiographic OA (rOA), pain and function in this high-risk population for post- 
traumatic OA.
Design: ADVANCE compares combat-injured participants with age, rank, deployment and job-role 
frequency-matched uninjured participants. Post-injury immunoassay-measured serum biomarkers, knee 
radiographs, Knee Injury and Osteoarthritis Outcome Scale, and six-minute walk tests are reported. The 
primary analysis, adjusted for age, body mass, socioeconomic status, and ethnicity, was to determine any 
differences in biomarkers between those with/without combat injury, rOA and pain. Secondary analyses 
were performed to compare post-traumatic/idiopathic OA, painful/painfree rOA and injury patterns.
Results: A total of 1145 male participants were recruited, aged 34.1  ±  5.4, 8.9  ±  2.2 years post-injury 
(n = 579 trauma-exposed, of which, traumatic-amputation n = 161) or deployment (n = 566 matched). 
Cartilage oligomeric matrix protein (COMP) was significantly higher in the combat-injured group compared 
to uninjured (p = 0.01). Notably, COMP was significantly lower in the traumatic-amputation group com
pared to non-amputees (p  <  0.001), decreasing relative to number of amputations (p  <  0.001). Leptin was 
higher (p = 0.005) and adiponectin lower (p = 0.017) in those with v without knee pain, associated with an 
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increased risk of 22% and 17% for pain, and 46% and 34% for painful rOA, respectively. There were no 
significant differences between trauma-exposed and unexposed participants with rOA.
Conclusions: The most notable findings of this large, unique study are the similarities between those with 
rOA regardless of trauma-exposure, the injury-pattern and traumatic-amputation-associated differences in 
COMP, and the relationship between adipokines and pain.

Crown Copyright © 2024 Published by Elsevier Ltd on behalf of Osteoarthritis Research Society 
International. This is an open access article under the CC BY license (http://creativecommons.org/licenses/ 

by/4.0/).

Introduction

Osteoarthritis (OA) is a progressive deterioration of articular 
cartilage and subchondral bone, associated with low-grade in
flammation, altered biomechanics, and other factors, leading to a 
clinical syndrome of pain, stiffness, loss of function, and increased 
mortality.1,2 The estimated annual medical cost of OA in the US is 
$72billion,3 with an OA-related two-fold indirect cost of lost work
place productivity,4 and rising incidence; the approximate 600 
million global cases of OA in 2020 are expected to double by 2050.5

Identifying pre-clinical OA enables appropriate interventions and 
guides drug discovery, with molecular and imaging biomarkers em
ployed as proxy measures to identify pathophysiological mechanisms 
related to extracellular matrix (ECM), inflammation or metabolic dysre
gulation.6–8 Cartilage-derived biomarkers, such as cartilage oligomeric 
protein (COMP) and C-terminal cross-linked telopeptide of type II col
lagen (CTX-II), are associated with OA progression and cartilage loss.9 In 
addition, cytokines such as interleukins (ILs) or tumour necrosis factor- 
alpha (TNF-α) suggest ongoing inflammatory processes, with adipokines 
contributing to this and indicating concurrent aberrant metabolism and 
systemic processes.10 A key research challenge is population hetero
geneity, with biomarkers offering an opportunity for phenotyping, thus 
enabling personalised treatment and improved drug trial recruitment.11,12

Post-traumatic OA (PTOA) is a widely used paradigm for biomarkers 
studies as it commonly presents in younger individuals with fewer co- 
morbidities after a clear initiating event.13,14 In addition, certain po
pulations, including tactical and professional athletes, are at higher risk 
of OA due to occupational factors, including trauma.11,15–18 The pro
spective ArmeD SerVices TrAuma RehabilitatioN OutComE (ADVANCE) 
cohort study was initiated to investigate the long-term outcomes of 
combat injury in British service personnel following the Afghanistan 
conflict (2003–2014).19 Earlier work in this cohort has demonstrated 
that the amputee sub-population is a distant population from a me
tabolic, musculoskeletal, and psychological perspective,20–22 with an 
amputation conferring a 4x increased risk of OA, as did sustaining a 
local knee injury during the traumatic episode.22 The ADVANCE cohort 
offers the opportunity to develop tools for identifying those at higher 
risk of sequelae, such as PTOA, perhaps due to injury pattern, severity 
or individual predisposition, which can be translated into clinical 
practice. Therefore, the nested sub-study, Biomarkers and Joint Pain in 
Military Osteoarthritis (BioMilOA) was established to investigate the 
predictive value of a panel of candidate serum biomarkers associated 
with cartilage and ECM turnover, inflammation, and metabolism in this 
high-risk population for PTOA. The BioMilOA hypothesis is three-fold: 
there will be significant differences between those exposed and not 
exposed to combat trauma, those with and without radiological fea
tures of OA, and those with and without knee pain.

Methods

Study population

Eligibility criteria included male British service personnel (≥18 
years), deployed between March 2016 and August 2020 and 

sustaining any combat-related traumatic injury (defined as requiring 
aeromedical evacuation), were recruited (n = 579), with an unin
jured comparison population frequency-matched for age, rank, ser
vice, deployment period, and job-role (n = 566). Due to very small 
numbers of female UK military combat casualties and physiological 
sex differences, which might confound the study hypothesis, only 
male participants were recruited. Further details on participant 
identification and recruitment are found here.19,20

Ethical approval

Favourable opinion for ADVANCE was granted by the MOD 
Research Ethics Committee (MODREC:357PPE12), with subsequent 
approval for BioMilOA from the University of Nottingham Faculty of 
Medicine and Health Sciences REC (FMHS 170–1122). Study partici
pation was voluntary, and each participant provided written in
formed consent.

Public and patient involvement

Public and patient involvement (PPI) is regularly performed via 
thrice-yearly focus groups, feedback questionnaires at each visit, 
quarterly newsletters, participant-focussed study outcome impact 
reports and the ADVANCE website (www.advancestudydmrc.org.uk). 
It has helped shape study design, further research questions, out
come measure recording and study logistics.

Study visits

Study visits occurred at the Defence Medical Rehabilitation Centre 
Headley Court (2015–2018) or Stanford Hall (2018–2020). A trained re
search nurse collected a range of assessments, including demographic 
data, medical history and traumatic injury, anthropometric data (height, 
weight, waist circumference), patient-reported outcome measures, 
radiographic assessment, serum sampling and functional tests. All par
ticipants were fasted and absent from caffeine and alcohol for at least 8 h 
before the visit. Body mass was corrected using an appropriate formula 
for missing limbs.23 The functional six-minute walk tests (6MWT) were 
performed on a linear, flat 20 m course, with verbal instructions before 
and during, asking them to walk as far as they could between two cones, 
but not run, for six minutes, with regular time updates. Participants 
could use aids and stop to rest if required, with distance recorded to the 
nearest 0.5 m – further details on protocols used can be found here.24

The Knee injury and OA Outcome Score (KOOS) were recorded with 5 
subscales scored from 0 (very severe) to 100 (no problem), which has 
divergent and convergent construct validity and high test-retest relia
bility.25,26 Due to an error during data entry, only the KOOS Pain and 
KOOS Symptoms sub-scores were correctly recorded. The KOOS Pain 
subscale was used to determine the presence of pain in the index knee, 
with participants categorised as Pain+ or Pain−. Participants were di
chotomised using a cut-off of 86.1, a threshold developed by consensus 
in a cohort of 155 participants aged 54  ±  12, 16 years post-me
niscectomy, and validated in a prospective cohort of 1761 aged 23 
(17–35) years old with an anterior cruciate ligament reconstruction.27,28

O. O’Sullivan et al. / Osteoarthritis and Cartilage 32 (2024) 1636–1646 1637

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.advancestudydmrc.org.uk


Self-reported, contemporaneous combat-injury and electronic health 
records (EHR) were used to classify injury patterns, including amputa
tion (presence and number of) and local knee injury. Injured participants 
were coded as injured non-amputation (Inj-NA), injured amputation 
(Inj-A), knee injury (K-I) (when both Inj-A and K-I were present, they 
were coded as K-I, inline with previous analysis22). Study data were 
collected and managed using REDCap, hosted at Imperial College 
London, a web-based platform enabling secure and auditable data 
capture, export and integration into statistical and analytical software.29

Radiographic scoring

Semi-flexed (7–10°) posterior-anterior views of all possible parti
cipant knees were taken using a Synaflexer X-ray positioning frame 
(Synarc Inc, San Francisco, California). The tibiofemoral joint was scored 
using the Kellgren-Lawrence (KL) method, graded 0 (‘none’), 1 
(‘doubtful’), 2 (‘minimal’), 3 (‘moderate’) and 4 (‘severe’)30 The US Food 
& Drugs Agency approved Knee OA Labelling Assistant (KOALA, Image 
Biopsy Lab, Vienna, Austria) was utilised, with manual checking, which 
offers an accuracy of 82%, the sensitivity of 78% and specificity of 88% 
for KL grades ≥1.31 When participants had two variables for KL grade 
(from both knees), the index knee score signifying more advanced 
radiographic OA (rOA) was selected (higher KL grade). For those with 
an above-knee amputation, the single variable was used. Radiological 
OA was categorised as a KL score of ≥1, with participants classified as 
rOA+ or rOA−. This would not be expected in a population of this age 
and is the strongest predictor of confirmed OA.12

Biomarker assessment

Fasted blood was taken and centrifuged at 3500 rpm for 10 min, with 
serum aliquoted and stored in cryovials in monitored freezers at −80°. 
Sera underwent analysis for selected cartilage turnover biomarkers 
(COMP, CTX-II, N-propeptide of collagen IIA (PIIANP)), pro-inflammatory 
cytokines (IL-1β, IL-17α, TNF-α) and metabolic markers (leptin and adi
ponectin) using enzyme-linked immunosorbent assay (ELISA) or Meso 
Scale Discovery (MSD) by Affinity Biomarkers Lab (London, UK). This 
panel was selected to offer insights into some of the different patholo
gical mechanisms underlying OA, including aberrant inflammation, tissue 
turnover and metabolism. Each plate included two kit controls and three 
internally identified quality control samples. The worst reported intra- or 
inter-variability coefficient of variation for each biomarker was; MSD: IL- 
17α CV < 9.5%, IL-1β < 7%, TNF-α < 15%; ELISA: COMP < 12%, Leptin < 7%, 
Adiponectin < 8%, CTX-II < 11%, PIIANP < 6%. For biomarker concentrations 
below the lower limit of quantification (LLOQ), a value halfway between 
zero and LLOQ threshold was selected, and for those above the upper 
LOQ (ULOQ), it was ULOQ threshold + 1. This was performed for IL-17α 
(< 0.54 = 0.27, n = 24), PIIANP (< 5.9 = 2.95 n = 23, > 1000 = 1001, n = 9), 
CTX-II (< 0.1 = 0.05, n = 421), and IL-1β (< 0.043 = 0.0215, n = 713).

Statistical analysis

Data were screened for normality visually using histograms, with 
parametric and non-parametric testing used accordingly. Univariate 
analysis was performed, depending on normality and groups (Mann- 
Whitney-U and Student’s t, or Kruskal-Wallis and analysis of variance, 
ANOVA). Parametric data are presented as mean ± standard deviation 
(SD) and non-parametric data as median (interquartile range, IQR).

Unadjusted analyses were initially performed, followed by adjusted, 
with the confounders age, body mass, time from injury/deployment, 
rank (proxy for socio-economic status, SES32) and ethnicity adjusted for. 
This was performed by transforming the biomarkers using their natural 
logarithm and adjusting for the confounders using a regression model, 
with studentised residuals created and taken forward for analysis.33

Trauma-exposure status was additionally controlled for in the pain 

analysis. Within an athletic population, the body mass index (BMI) can 
‘overscore’ individuals with a high muscle mass; therefore, a body shape 
index (ABSI), calculated with BMI and waist circumference, was uti
lised.34 Time from injury/deployment was measured from the partici
pant’s index deployment. Patient-reported and EHR were reviewed to 
identify those with knee pathology prior to index injury/deployment, of 
which there were 93 participants, 37 of whom had a specific injury 
associated with increased risk of OA (meniscal, cruciate, fracture), and 
the remainder reported persistent knee pain. Using the more con
servative measure, the chi-squared test showed there were no differ
ences between the two exposure groups, with correlation analysis 
showing no notable association with biomarkers; therefore, other con
founders were prioritised in the model.

Primary analysis: Do serum biomarker concentrations differ be
tween those with/without trauma exposure, knee rOA or pain? 

− Two-group unadjusted and adjusted univariate analysis (Mann- 
Whitney-U/Student’s t) of biomarkers, dichotomised by the pre
sence of Exp, rOA or Pain. Specifically;

− Differences between those with and without trauma-exposure 
(Exp+/Exp-), knee rOA (rOA+/rOA-) and knee pain (Pain+/Pain-)

Secondary analyses: Do serum biomarker concentrations differ be
tween those with idiopathic v PTOA, painful v painfree OA, or with 
different injury patterns?

− Four-, three- or two-group unadjusted and adjusted univariate 
analysis (Mann-Whitney-U/Student’s t or Kruskal-Wallis/ANOVA) 
of biomarkers, dichotomised by the presence of Exp and rOA, 
Pain and rOA, traumatic-amputation, or the pattern of traumatic- 
injury, specifically;

− OA aetiology: Trauma- v non-trauma-associated OA (Exp-/rOA-, 
Exp-/rOA+, Exp+/rOA-, Exp+/rOA+)

− Painful OA: Painful v pain-free rOA (Pain-/rOA-, Pain+/rOA-, 
Pain-/rOA+, Pain+/rOA+)

− Injury pattern, amputation status: traumatic amputation vs non- 
traumatic amputation, stratified by number of amputations(0-3);

− Injury pattern, local knee injury: Inj-NA vs Inj-A vs K-I

When the adjusted analyses were significant, odds ratios (OR) were 
calculated using binary or multinominal logistic regression models 
containing the same confounders, using standardised biomarkers units 
(mean = 0, SD = 1), reported with 95% confidence intervals (95% CI). 
Finally, correlation analysis (using Spearman’s or Pearson’s, accord
ingly) was undertaken between the adjusted biomarkers and the rOA, 
pain, and 6MWT distance (6MWD). As all hypothesis and statistical 
tests were pre-planned, adjustment for multiple testing was not re
quired.35 Significance was set at 0.05. Analyses were performed in Stata 
18 (StataCorp LLC, Texas) and GraphPad Prism 10 (Dotmatics, Boston).

Results

1145 male participants were recruited, aged 26.1  ±  5.2 years at 
the time of injury (cases) or deployment (comparison) and 
34.1  ±  5.4 years old at baseline assessment. The mean average time 
from deployment or injury was 8.9  ±  2.2 years. Within the cohort, 
579 suffered combat trauma (Exp+) and 566 were recruited as 
comparison participants (Exp-). 161 sustained a traumatic amputa
tion (28% of Exp+); number of amputations 1 n = 85, 2 n = 65 and 3 
n = 12, respectively. Demographic data for all participants can be 
found in Table I (additional data on ethnicity and injury type can be 
found in Supplementary Table 1 and 2). Complete biomarker data 
were available for 1118 participants, and radiographic data for 1074, 
which are presented, alongside KOOS Pain and 6MWD, in Table II. 
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Participant refusal, sampling or analysis errors, and individuals with 
amputations account for all missing values.

Exposure status

Exposed participants have higher rates and more severe grades of 
rOA, with worse KOOS Pain scores and shorter 6MWD (all 
p  <  0.0001). Unadjusted analysis showed that COMP was 

significantly higher in combat-trauma exposure (p = 0.03) (Fig. 1A), 
remaining after adjustment for age, SES, ethnicity and time from 
injury (p = 0.02). No other biomarkers were different.

Radiographic OA change

955 participants had paired radiographic and serum data (rOA+ 
n = 210, rOA- n = 745). Those with rOA were older, had a higher BMI, 

Total Unexposed Exposed (Exp+)

(Exp-) All No Amputation Amputation

N = 1145 N = 566 N = 579 N = 418 N = 161
Age, Mean (SD) 34.1 (5.4) 34.2 (5.4) 34.0 (5.3) 34.4 (5.6) 33.0 (4.6)
Body Mass Index, Mean (SD) 27.8 (3.7) 27.4 (3.4) 28.1 (3.9) 27.9 (3.7) 28.8 (4.4)
Abdo. Circum.(cm), Median (IQR) 93.5 (88.0−101.0) 92.0 (87.0−100.0) 94.0 (88.0−102.0) 94.0 (88.0−102.0) 95.0 (89.0−104.0)
Caucasian, N (%) 1008 (88%) 494 (87%) 514 (89%) 370 (89%) 144 (89%)
Rank, N (%)
Junior NCO 754 (66%) 340 (60%) 414 (72%) 286 (68%) 128 (80%)
Senior NCO 253 (22%) 147 (26%) 106 (18%) 86 (21%) 20 (12%)
Officer 138 (12%) 79 (14%) 59 (10%) 46 (11%) 13 (8%)
NISS, Median (IQR) 12 (5−22) - 12 (5−22) 9 (4−17) 25 (17−24)
Time from injury/deployment, Mean (SD) 8.9 (2.2) 8.8 (2.2) 8.9 (2.2) 9.2 (2.2) 8.1 (2.1)

SD – standard deviation, IQR – interquartile range, Abdo. – abdominal, circum. – circumference, cms – centimetres, NCO – non-commissioned officer, NISS – New Injury 
Severity Scale.

Table I                                                                                                       

Demographic data for all participants, stratified by exposure (Exp-/Exp+) and amputation status. 

Total Unexposed (Exp-) Exposed (Exp+) p-value
No Amputation Amputation Unadj./Adj.

N = 1118 N = 553 N = 409 N = 156

IL-1β (ng/l) Median (IQR) 0.0 (0.0−0.1) 0.0 0.0−0.1) 0.0 0.0−0.1) 0.0 0.0−0.1) 0.592∼ 0.528∼
TNF-α (ng/l) Mean (SD) 1.9 ( ± 0.6) 1.9 ( ± 0.6) 1.9 ( ± 0.5) 1.9 ( ± 0.4) 0.818^ 0.736^
IL-17α (ng/l) Median (IQR) 1.3 (1.0−1.8) 1.3 (1.0−1.8) 1.3 (1.0−1.8) 1.3 (1.0−1.9) 0.756∼ 0.945∼
CTX-II (ug/l) Median (IQR) 0.2 (0.1−0.6) 0.2 (0.1−0.7) 0.2 (0.1−0.6) 0.1 (0.1−0.7) 0.661∼ 0.771∼
Leptin (ug/l) Median (IQR) 5.7 (3.0−9.3) 5.5 (3.0−8.8) 5.7 (3.2−9.6) 6.3 (3.2−11.8) 0.070∼ 0.361∼
COMP (ug/l) Mean (SD) 263.6 ( ± 88.6) 267.1 ( ± 88.8) 279.5 ( ± 85.6) 209.3 ( ± 74.3) < 0.001^  < 0.001^
Adipo (mg/l) Mean (SD) 6.3 ( ± 4.5) 6.2 ( ± 4.0) 6.6 ( ± 5.1) 6.1 ( ± 4.2) 0.350^ 0.731^
PIIANP (ug/l) Median (IQR) 109.1 (73.9−160.1) 109.2 (74.6−157.3) 110.5 (73.8−168.3) 105.8 (71.5−151.1) 0.333∼ 0.364∼
KL ≥1, N (%) 250 (23.8) 96 (17.4) 114 (28.3) 40 (42.6) < 0.001∼
Index knee KL Grade, N (%) < 0.001∼

0 799 (71) 456 (82) 289 (71) 55 (35)
1 147 (13) 59 (11) 65 (16) 23 (15)
2 74 (7) 26 (5) 35 (9) 13 (8)
3 26 (2) 9 (2) 13 (3) 4 (3)
4 3 (0) 2 (0) 1 (0) 0 (0)
Missing 69 (6) 1 (0) 6 (1) 62 (40)

Index knee KOOS Pain Median (IQR) 92 (78−100) 94 (83−100) 89 (72−100) 92 (78−100) < 0.001∼
KOOS Pain  < 86.1, N (%) 405 (38) 179 (33) 185 (46) 41 (39) < 0.001∼
6MWD Mean (SD) 599 ( ± 117) 631 ( ± 96) 593 ( ± 118) 488 ( ± 121) < 0.001^

IL – Interleukin, TNF – Tumour Necrosis Factor, CTX-II – C-terminal cross-linked telopeptide of type II collagen, COMP – cartilage oligomeric protein, PIIANP – N-propeptide of 
collagen IIA, Adipo – Adiponectin, KL – Kellgren-Lawrence, KOOS – Knee Injury and Osteoarthritis Outcome Score, 6MWT – Six-minute walk-test distance, 95% CI – 95% 
confidence interval, Unadj. – unadjusted, Adj. – Adjusted.
^threegroup oneway analysis of variance ∼three group Kruskal-Wallis, dichotomised by exposure and amputation status.

Table II                                                                                                      

Biomarker, radiographic, patient-reported and functional outcomes for all participants, stratified by exposure (Exp-/Exp+) and amputation 

status. 
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and had worse KOOS Pain than those without (all p  <  0.001). Those 
with rOA had significantly higher levels of leptin (p  <  0.001) and 
COMP (p = 0.005) and significantly lower levels of PIIANP (p = 0.001) 
than those without (Table III). After adjustment for age, body mass, 
ethnicity, SES and time from injury, no biomarker remained sig
nificant.

Exposure and radiographic OA change

Four groups were created, dichotomised by exposure and rOA 
status: 

1. Exp-/rOA− (n = 456, reference group)
2. Exp-/rOA+ (n = 96)
3. Exp+/rOA− (n = 289)
4. Exp+/rOA+ (n = 114)

Unadjusted analysis revealed significant between-group differ
ences in leptin (p = 0.003), COMP (p = 0.009) and PIIANP (p = 0.01). 
Specifically, leptin was significantly higher in Exp−/rOA+ (p = 0.05) 
and Exp+/rOA+ (p  <  0.001) v reference, and between Exp+/rOA− and 
Exp+/rOA+ (p = 0.001); PIIANP was significantly lower in Exp−/rOA+ 
(p = 0.01) and Exp+/rOA+ (p = 0.027) v reference, and between Exp−/ 
rOA+ (p = 0.003) and Exp+/rOA+ (p = 0.009) v Exp+/rOA−; and COMP 
significantly higher in Exp+/rOA+ (p = 0.031) v reference.

After adjustment for age, body mass, SES, ethnicity and time from 
injury, no biomarker remained significant.

Knee pain status

Participants with pain were older, had increased and more severe 
OA, and shorter 6MWD than those without (all p  <  0.001).

Unadjusted analysis demonstrated significantly higher leptin 
(p  <  0.0001) and significantly lower adiponectin (p = 0.01) in those 
with pain compared to those without (Table IV, Fig. 2). Both re
mained significant after adjustment for age, body mass, SES, ethni
city, time from injury and exposure status, leptin (p = 0.001) with an 

OR of 1.22 (95% CI: 1.06,1.41) and adiponectin (p = 0.004), OR 0.83 
(95% CI: 0.71,0.98).

Painful knee radiographic osteoarthritis

Four groups were formed, dichotomised by rOA and pain: 

1. Pain−/rOA− (n = 483, reference group)
2. Pain+/rOA− (n = 258)
3. Pain−/rOA+ (n = 103)
4. Pain+/rOA+ (n = 104)

Those with Pain+/rOA+ had higher BMI and reduced 6MWD (both 
p  <  0.001) (Table IV). Unadjusted analysis demonstrated significant 
between-group differences for COMP (p = 0.05), adiponectin (p = 0.01) 
and leptin (p  <  0.001). Specifically, there were non-significant differ
ences for COMP; significantly lower adiponectin in Pain+/rOA+ v re
ference (p = 0.03) and Pain−/rOA+ (p = 0.02); and significantly higher 
leptin in Pain+/rOA− (p = 0.001) and in Pain+/rOA+ v all groups (re
ference p  <  0.001, Pain+/rOA− and Pain−/rOA+ both p = 0.006).

After adjustment for age, body mass, SES, ethnicity, time from 
injury and exposure status, adiponectin (p = 0.017) and leptin 
(p = 0.006) remained significant, with significantly lower adipo
nectin in Pain+/rOA+ (p = 0.028), and significantly higher leptin in 
Pain+/rOA− (p = 0.007) and Pain+/rOA+ (v reference p = 0.001, and 
Pain−/rOA+ p = 0.05). Leptin and adiponectin ORs for Pain+/rOA+ 
from the reference group were 1.46 (95% CI: 1.19,1.79) and 0.66 (95% 
CI: 0.45,0.98), respectively.

Associations between the biomarkers and radiographic change, pain 
and function

There were statistically significant correlations between four bio
markers (adjusted for age, body mass, SES, ethnicity, and time from in
jury), and rOA, pain and/or 6MWD. Leptin had a correlation coefficient of 
0.12 (p  <  0.001) with knee pain and −0.11 (p  <  0.001) with 6MWD, 
adiponectin of −0.08 (p = 0.01) with pain, TNF-α of −0.08 (p = 0.01) with 
6MWD, and PIIANP −0.06 (p = 0.05) with rOA (Fig. 3).

Fig. 1                                                                                                         

Differences in concentrations of cartilage oligomeric matrix protein (COMP) between those unexposed and exposed to combat trauma (a) and 
within those exposed to combat trauma, those without and with a traumatic amputation (b). Values in (ug/l), shown with median (IQR), test used: 
Student’s t test.
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Amputation status

Within the exposed group, data were available for those with 
(n = 156) and without (n = 409) traumatic amputation. Those with a 
traumatic amputation achieved a lower 6MWD (p  <  0.001).

Unadjusted analysis revealed significantly lower COMP in trau
matic amputation (p  <  0.001), which remained significant after ad
justment for age, body mass, SES, ethnicity and time from injury 
(p  <  0.001), compared to those without a traumatic amputation 
(Fig. 1b).

The levels of COMP reduced relative to the number of amputa
tions; none (n = 409) 264.2 (217.6–322.8), one (n = 81) 232.8 
(180.4–280.4), two (n = 63) 167.4 (137.9–206.9), three (n = 12) 132.9 
(118.6–184.2), p  <  0.001 (Fig. 4).

In those with an amputation who had radiographs (n = 94), those 
with rOA (n = 40) showed significantly higher CTX-II (p = 0.009) and 
significantly lower IL-17α (p = 0.03) than without (n = 54) in un
adjusted analysis (Supplementary Table 3). Only IL-17α remained 
significant after adjustment for age, body mass, SES, ethnicity and 
time from injury (p = 0.02).

In those with an amputation, serum and KOOS Pain scores 
(n = 105) showed no differences between those with (Pain+, n = 41) 
or without pain (Pain-, n = 64).

Specific knee injury

Within the exposed group with serum (n = 565), three groups 
were formed: 

1. Inj-NA (n = 389, reference group)
2. Inj-A (n = 141)
3. K-I (n = 35)

Two biomarkers were significant on unadjusted analysis (COMP, 
p  <  0.001 and leptin, p = 0.02) (Supplementary Table 4). COMP was 
significantly lower in Inj-A (209.0  ±  76.1 ug/l, p  <  0.001) and K-I 
(243.3  ±  69.0 ug/l, p = 0.03) v reference (280.3  ±  86.2 ug/l), which 
remained significant after adjustment (Inj-A p  <  0.001, K-I p = 0.05). 
Those with K-I had significantly higher leptin (8.68 ug/l, IQR: 
4.57–12.86) than reference (5.68 ug/l, IQR: 3.16–9.37, p = 0.003) and 
Inj-A (6.1 ug/l, IQR: 3.26–11.67, p = 0.02), which after adjustment, 
remained significant for K-I v reference (p = 0.003) and Inj-A 
(p = 0.009). COMP had a non-significant OR, and leptin had an OR of 
1.33 (95% CI: 1.09,1.63) for rOA after K-I.

Discussion

This is the largest study investigating candidate biomarkers of 
early OA in a young, physically active, homogenous male population 
at high risk for PTOA. It has several key findings. COMP was sig
nificantly higher following combat injury compared to non-injured 
participants, but significantly lower in those with a traumatic am
putation compared to non-amputees, proportional to the number of 
amputations. To the author’s knowledge, this is the first description 
of such a finding. Remarkably, there were no differences between 
those with trauma-exposed rOA v non-trauma-exposed rOA. 
Increased leptin and decreased adiponectin were associated with an 
increased risk of knee pain of 22% and 17%, and painful rOA 46% and 

Total rOA- rOA+ p-value 
Unadj./Adj.

Exp-/rOA- Exp-/rOA+ Exp+ /rOA- Exp+ /rOA+ p-value 
Unadj./Adj.

N = 955 N = 745 N = 210 N = 456 N = 96 N = 289 N = 114

Age Mean (SD) 34.3 (± 5.5) 33.7 (± 5.2) 36.5 (± 5.9) < 0.001# 33.7 (± 5.2) 36.7 (± 6.0) 33.6 (± 5.3) 36.3 (± 5.8) < 0.001^
BMI Mean (SD) 27.6 (± 3.5) 27.3 (± 3.3) 28.7 (± 3.8) < 0.001# 27.2 (± 3.3) 28.3 (± 3.5) 27.4 (± 3.4) 29.0 (± 3.9) < 0.001^
IL-1β (ng/l) Median (IQR) 0.0 (0.0−0.1) 0.0 (0.0−0.1) 0.0 (0.0−0.1) 0.469” 0.405 0.0 (0.0−0.1) 0.0 (0.0−0.1) 0.0 (0.0−0.1) 0.0 (0.0−0.1) 0.788∼ 

0.735∼
TNF-α (ng/l) Mean (SD) 1.9 (± 0.6) 1.9 (± 0.6) 1.9 (± 0.5) 0.686# 0.798 2.0 (± 0.7) 1.9 (± 0.4) 1.9 (± 0.6) 2.0 (± 0.5) 0.784^ 

0.863^
IL-17α (ng/l) Median (IQR) 1.3 (1.0−1.8) 1.3 (1.0−1.8) 1.3 (1.0−2.0) 0.071” 0.172 1.3 (0.9−1.8) 1.3 (1.0−1.9) 1.3 (1.0−1.7) 1.4 (1.0−2.1) 0.331∼ 

0.535∼
CTX-II (ug/l) Median (IQR) 0.2 (0.1−0.6) 0.2 (0.1−0.6) 0.2 (0.1−0.7) 0.186” 0.709 0.2 (0.1−0.7) 0.4 (0.1−0.8) 0.2 (0.1−0.6) 0.2 (0.1−0.6) 0.412∼ 

0.819∼
Leptin (ug/l) Median (IQR) 5.6 (3.0−9.1) 5.3 (2.9−8.7) 6.6 (4.0−10.1) < 0.001” 0.075 5.3 (2.8−8.7) 6.1 (3.5−9.1) 5.3 (2.9−8.7) 7.0 (4.2−11.6) 0.003∼ 

0.227∼
COMP (ug/l) Mean (SD) 272.5 (± 87.8) 268.2 (± 86.3) 287.4 (± 91.6) 0.005# 0.789 263.4 (± 86.8) 285.6 (± 96.0) 275.9 (± 85.0) 289.0 (± 88.1) 0.009^ 

0.116^
Adipo (mg/l) Mean (SD) 6.4 (± 4.5) 6.4 (± 4.4) 6.1 (± 5.0) 0.289# 0.151 6.3 (± 4.2) 5.8 (± 3.1) 6.7 (± 4.7) 6.3 (± 6.2) 0.386^ 

0.353^
PIIANP (ug/l) Median (IQR) 109.9  

(73.9−162.5)
115.0  
(77.0−168.5)

96.0  
(70.2−144.2)

0.001” 0.045 114.7  
(75.8−163.9)

95.5  
(71.0−141.1)

115.6  
(81.8−178.3)

96.8  
(68.7−150.1)

0.010∼ 
0.579∼

Index knee KOOS Pain 
Median (IQR)

94 (81−100) 94 (81−100) 86 (69−100) < 0.001” 97 (83−100) 89 (75−100) 92 (75−100) 86 (67−100) < 0.001∼

6MWD Mean (SD) 615 (± 106) 617 (± 106) 609 (± 106) 0.35# 629 (± 95) 637 (± 100) 597 (± 119) 585 (± 106) < 0.001^

IL – Interleukin, TNF – Tumour Necrosis Factor, CTX-II - C-terminal cross-linked telopeptide of type II collagen, COMP - cartilage oligomeric protein, PIIANP - N-propeptide of 
collagen IIA, KL - Kellgren-Lawrence, KOOS – Knee Injury and Osteoarthritis Outcome Score, 6MWD – Six-minute walk test distance, rOA – radiographic osteoarthritis, Unadj. 
– unadjusted, Adj. - adjusted.
#Two-group Student’s t ”two-group Mann-Whitney-U, dichotomised by presence of radiographic osteoarthritis.
^Four-group oneway analysis of variance ∼four-group Kruskal-Wallis, dichotomised by presence of radiographic osteoarthritis and exposure status.

Table III                                                                                                     

Demographic and outcome differences between those with and without knee radiographic osteoarthritis changes (rOA-/rOA+), further stratified 

by exposure status (Exp-/Exp+). 
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34%, respectively. There were weak correlations between PIIANP 
with rOA, leptin and adiponectin with pain, and leptin and TNF-α 
with 6MWD. An initial local knee injury influenced outcomes, with 
those sustaining a traumatic knee injury having higher levels of 
leptin compared to other trauma-exposed participants, associated 
with a 33% risk of rOA, and lower levels of COMP compared to 
trauma-exposed non-amputees.

Understanding the molecular picture following trauma is im
portant, which, given the frequency and severity similarities of 
polytrauma following road traffic accidents, is a generalisable re
search question.36 Only one biomarker, COMP, was significantly 
different, suggesting that COMP may play a role in the body’s re
sponse to injury and maintenance of cartilage integrity. COMP, a 
collagen-network stabiliser binding type I and type II collagen fibres 

Total Pain- Pain+ p-value 
Unadj./Adj.

Pain-/rOA- Pain+/rOA- Pain-/rOA+ Pain+/rOA+ p-value 
Unadj./Adj.

N = 949 N = 587 N = 362 N = 483 N = 258 N = 103 N = 104

Age Mean (SD) 34.3 (± 5.5) 34.1 (± 5.3) 34.6 (± 5.7) 0.268# 33.7 (± 5.1) 33.7 (± 5.4) 36.0 (± 5.9) 36.8 (± 5.8) < 0.001^
BMI Mean (SD) 27.6 (± 3.5) 27.2 (± 3.3) 28.3 (± 3.7) < 0.001# 27.1 (± 3.3) 27.8 (± 3.5) 27.7 (± 3.4) 29.6 (± 3.8) < 0.001^
IL-1β (ng/l) 

Median (IQR)
0.0 (0.0−0.1) 0.0 (0.0−0.1) 0.0 (0.0−0.1) 0.195” 

0.910”
0.0 (0.0−0.1) 0.0 (0.0−0.1) 0.0 (0.0−0.1) 0.0 (0.0−0.1) 0.458∼ 

0.418∼
TNF-α (ng/l) 

Mean (SD)
1.9 (± 0.6) 1.9 (± 0.6) 1.9 (± 0.7) 0.887# 

0.790#
1.9 (± 0.6) 2.0 (± 0.7) 1.9 (± 0.4) 1.9 (± 0.5) 0.955^ 

0.987^
IL-17α (ng/l) 

Median (IQR)
1.3 (1.0−1.8) 1.3 (1.0−1.8) 1.3 (1.0−1.9) 0.802” 

0.995”
1.3 (1.0−1.7) 1.3 (1.0−1.8) 1.3 (1.0−2.1) 1.4 (1.0−2.0) 0.758∼ 

0.533∼
CTX-II (ug/l) 

Median (IQR)
0.2 (0.1−0.6) 0.2 (0.1−0.6) 0.2 (0.1−0.7) 0.739” 

0.407”
0.2 (0.1−0.6) 0.2 (0.1−0.6) 0.2 (0.1−0.6) 0.2 (0.1−0.8) 0.574∼ 

0.816∼
Leptin (ug/l) 

Median (IQR)
5.6 (3.1−9.0) 5.2 (2.5−8.3) 6.0 (3.8−10.0) < 0.001” 

0.001”
5.1 (2.5−8.3) 5.7 (3.5−9.4) 5.8 (3.2−8.5) 7.4 (4.8−11.2) < 0.001∼ 

0.008∼
COMP (ug/l) 

Mean (SD)
272.6 (± 87.8) 270.6 (± 85.4) 275.9 (± 91.7) 0.367# 

0.615#
267.7 (± 85.2) 269.8 (± 88.2) 284.0 (± 85.2) 290.9 (± 98.8) 0.045^ 

0.904^
Adipo (mg/l) 

Mean (SD)
6.4 (± 4.6) 6.7 (± 4.9) 5.9 (± 3.8) < 0.010# 

0.004#
6.6 (± 4.5) 6.2 (± 4.2) 7.0 (± 6.4) 5.2 (± 2.8) 0.012^ 

0.019^
PIIANP (ug/l) 

Median (IQR)
110.2  
(74.3−162.5)

113.2  
(76.3−163.9)

106.8  
(72.9−160.2)

0.115” 
0.192”

118.3  
(77.3−169.6)

110.5  
(76.3−166.9)

97.2  
(71.6−144.2)

90.8  
(65.2−146.1)

0.206∼ 
0.122∼

6MWD 
Mean (SD)

615 (± 106) 629 (± 99) 593 (± 113) < 0.001# 629 (± 99) 595 (± 114) 631 (± 98) 587 (± 111) < 0.001^

IL – Interleukin, TNF – Tumour Necrosis Factor, CTX-II - C-terminal cross-linked telopeptide of type II collagen, COMP - cartilage oligomeric protein, PIIANP - N-propeptide of 
collagen IIA, rOA – radiographic osteoarthritis, KL - Kellgren-Lawrence, 6MWD – Six-minute walk test distance, Unadj. – unadjusted, Adj. – adjusted.
#Two-group Student’s t ”two-group Mann-Whitney-U, dichotomised by presence of pain.
^Four-group one-way analysis of variance ∼four-group Kruskal-Wallis, dichotomised by the presence of pain and radiographic osteoarthritis.

Table IV                                                                                                     

Demographic and outcome in whole population data stratified by the self-reporting of knee pain (Pain-/Pain+), further stratified by the presence 

of radiographic osteoarthritis (rOA-/rOA+). 

Fig. 2                                                                                                         

Differences in leptin (a) and adiponectin (b) between those not reporting and reporting knee pain. Leptin values in ug/l, adiponectin mg/l, shown  
with median (IQR), test used: Student’s t and Mann-Whitney-U. 
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mainly expressed by cartilage,37 is associated with OA9and other 
conditions including liver, lung, and skin fibrosis.37,38 It is possible, 
therefore, that the increase in COMP is representative of fibrosis 
following trauma, which might have implications for future joint 
and cardiovascular health.20 While a traumatic amputation is likely 
to lead to significant fibrosis, it will also reduce the cartilage volume 
to synthesise it. This study reports, for the first time, significantly 
lower COMP following traumatic amputation, quantified by the 
number of amputated limbs. This is a notable finding, providing 
evidence of cartilage volume in COMP synthesis, which, by exten
sion, also includes cartilage health, and this is supported by those 
with a local knee injury having lower COMP levels. The lack of sig
nificant difference between those who sustained two and three 
amputated limbs is likely due to upper-limb involvement, with re
sultant reduced cartilage loss volume. COMP levels seen in traumatic 

amputations are lower than a US military combat amputee popu
lation, although this could be due to their far smaller numbers 
(n = 31 v n = 161 in this study).39

One of this study’s most striking results comes from the analysis 
stratified by exposure and rOA. The pre-specified hypothesis was 
that there would be a difference between those developing OA fol
lowing trauma exposure compared to the unexposed, predicated on 
the traumatic-dominant mechanism displaying a significantly dif
ferent molecular pattern to an idiopathic-dominant (albeit ac
celerated) pattern. This was not what was found. However, these 
surprising results were in keeping with genetic studies that have yet 
to find differences between idiopathic and PTOA40,41 and animal 
models postulating idiopathic and PTOA share a common ‘mechan
oinflammation’ mechanism.42 This finding, if validated in other po
pulations, would enable results from PTOA studies to be 
extrapolated across all OA research fields.

The next area was the differences in serum biomarkers between 
those with and without rOA. KL ≥1 was selected purposefully as the 
criteria as the strongest predictor of diagnosed OA,12 especially in 
this young population where rOA should not be present. Although 
leptin, COMP and PIIANP were significantly different in unadjusted 
analysis, no biomarkers remained significant after adjustment for 
age, body mass, SES and ethnicity (all independent risk factors for 
OA development and progression1,11,43). The lack of significant re
sults might reflect their fluid type or be related to the time from 
injury, as the evidence is poor regarding the utility of serum bio
markers over a year from injury.6 A recent review by the study au
thors synthesised all biomarkers measured a year or more from 
injury, reporting eight studies with 879 participants.6 38 serum 
biomarkers were measured, and only three (cleavage of type II col
lagen, hyaluronic acid, N-telopeptide of type I collagen) had a re
lationship to rOA, and one (TNF) to pain (also, like this study, 
measured by KOOS).6 This suggests that biomarkers acknowledged 
to have value in the early stage following injury might not have the 
same value later in the disease course, and further evidence is re
quired to understand this.6,8,44 In addition, CTX-II, selected by the 
Foundation for the National Institutes of Health (FNIH) OA Bio
markers Consortium (BC) as a candidate marker8 was measured 
using the serum, not the urinary form, which might explain the 
results.

Early identification of individuals with painful OA is essential, 
given pain is the primary symptom, the leading cause of medical 
consultation and very complex to manage.45,46 In this study, both 
leptin and adiponectin were associated with an increased risk of 
developing knee pain and painful knee rOA. Leptin is believed to 
have a role in cartilage degeneration through cytokine mediation 
and synthesis of cartilage proteoglycan,40 with animal studies de
monstrating that deletion of the leptin gene prevents OA develop
ment.47 Adiponectin has been seen to have an anti-inflammatory 
effect and, in addition, analgesic properties through inhibition of p- 
p38 MAPK signalling.48 These findings are consistent with the un
derstanding that adipokines can influence pain via serotonin, in
flammatory and metabolic pathways48,49; therefore, potentially, they 
could be used to identify and categorise a painful OA phenotype. The 
increased leptin levels in those with a local knee injury suggest that 
this biomarker may offer some increased value for the knee joint 
specifically. It is important to note that these differences, whilst 
statistically significant, are small and therefore of uncertain clinical 
significance but do generate hypotheses for further analysis.

Ultimately, the value of any biomarker is the ability to detect 
predetermined outcomes and quantify the pathophysiological pro
cess in question. Correlation analyses between all biomarkers and 
key outcome measures, rOA, knee pain, and 6MWD, showed limited 
cross-sectional value. Only PIIANP correlated with rOA, leptin and 
adiponectin to pain, and leptin and TNF-α to function, with all 

Fig. 3                        

Heatmap demonstrating the correlations between the panel of fully 
adjusted biomarkers and the presence of early radiographic os
teoarthritis change, the presence of knee pain and the distance 
achieved on the six-minute walk test. Spearman or Pearson’s cor
relation, depending on normality.

Fig. 4                        

Differences in levels of cartilage oligomeric protein stratified by 
quantity of traumatic limb amputations. Values in (ug/l), shown with 
median (IQR), test used: oneway analysis of variance.

O. O’Sullivan et al. / Osteoarthritis and Cartilage 32 (2024) 1636–1646 1643



correlations weak (r = −0.11–0.12). As described above, these findings 
could be partly explained by both time from injury and biomarker 
type, with further work required to understand their value and po
tential roles.6,44

The key strength of this study is its design; large numbers 
(n = 1145), and frequency-matched comparison population. 
Additionally, the median time from injury is beyond the five-year 
period suggested by UK BioBank as highest risk for PTOA.40 The 
study’s key limitation is that all participants are young and male. 
This population is relatively under-researched in OA research with 
many studies involving postmenopausal females, and therefore fills 
an unmet need, however, validation of findings might be challen
ging. Outside of the amputee groups, populations drawn from re
creational or elite sports or other military populations, including the 
US39 are comparable and potentially able to validate findings. Fur
ther weaknesses are the ELISA floor and ceiling effect, particularly 
CTX-II and IL-1β, which had 37% and 60% of values below the LLOQ, 
and the single radiographic view of the knee, which may under
score rOA.

This study reports the differences between those exposed and 
not exposed to combat trauma, rOA, and pain in a young, physically 
active population at high risk for PTOA. Significant findings include, 
contrary to the predetermined hypothesis, a lack of difference be
tween those with early-onset idiopathic OA and a PTOA presenta
tion, a quantification of the relationship between traumatic 
amputation (and therefore cartilage synthesis) to COMP, and the 
potential value of adipokines for both painful OA phenotyping and 
identification of pain and functional outcomes.
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