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Abstract—Random Simple Recurrent Network (RSRN) is a
forecasting model based on the Random Neural Network (RaNN)
and Recurrent Neural Network (RNN). RSRN has demonstrated
energy-efficient and effective forecasting capabilities in offline
mode, making it suitable for various applications. However,
offline training faces challenges, such as limited storage capacity,
computational power, and evolving datasets. To address these
limitations, this paper introduces an online learning approach to
the RSRN model. We present adaptations of two online learning
algorithms, Projected Online Gradient Descent (POGD) and
Follow-The-Proximally-Regularized-Leader (FTRL-Proximal),
for training RSRN in real-time. POGD leverages Back
Propagation Through Time (BPTT) for handling dependencies
with a sliding window, while FTRL-Proximal offers a balance
between adaptability and stability, especially for sparse data.
Our approach is the first to introduce RSRN’s forecasting
capabilities in a dynamic environment, demonstrating its
potential in real-world applications where data availability is
not guaranteed. The effectiveness of the online RSRN with both
approaches is demonstrated through experimental results on
benchmark datasets, showcasing competitive performance that
surpasses offline mode computation and result.

Keywords: Random Simple Recurrent Network, Online Learn-
ing, Forecasting problems, Projected Online Gradient Descent,
Follow-The-Proximally-Regularized-Leader.

I. INTRODUCTION

Random Neural Network (RaNN) [1] is a mathematical
model inspired by the biological behaviour of neurons in
the brain cortex. It mimics the exchange of excitatory and
inhibitory (positive and negative) signals between neurons.
Since its inception by Gelenbe [1], RaNNs have been widely
used for various applications such as network traffic mon-
itoring [2], DDoS attack detection [3, 4, 5, 6], epileptic
seizure classification [7], IoT network security assessment [8],
class-incremental learning [9]. Several extensions of RaNN
have been proposed such as multiple signals RaNN [10],
recurrent RaNN [11] and synchronized interactions RaNN
[12]. Recently, Yin [13] proposed several deep learning models
based on RaNN such as CNN-based RaNN [14], auto-encoder-
based RaNN [15], and Generative Adversarial Network-based
(GAN) RaNN [16]. One of the recent variants of RaNN is
the Random Simple Recurrent Network. RSRN [17] has been
proposed as a forecasting model based on RaNN and recurrent
NN.
RSRN achieved a comparable performance against state-of-art

recurrent models regarding forecasting multi-variate sequential
data with less training time and computational cost. This
model proved to be energy-efficient making it suitable for
power-limited environments or restricted data usage. RSRN
was tested with various real-world applications such as temper-
ature forecasting, oil price prediction, and energy consumption
projection.
RSRN was developed in offline mode, which required the
whole dataset to be available at the beginning of training.
However, sometimes during offline training phase this is
not possible due to various constraints, including insufficient
storage capacity for data preservation, restricted computa-
tional power for training extensive datasets, limitations in
energy resources or their costly usage, and potentially evolving
datasets. Furthermore, time-series data often exhibits changing
patterns and trends over time, non-stationary behaviour and
long range dependencies. A viable resolution to the problems
at hand is online learning. It is particularly advantageous
for recurrent models including RSRN, which are designed to
capture temporal dependencies and patterns in sequential data.
Recurrent models, by nature, are well-suited for sequential
data. Online learning allows these models to continuously
adapt to new information as it arrives in real time. Also,
It enables them to efficiently handle streaming data, where
observations are received sequentially. Furthermore, Recur-
rent models, especially those dealing with long sequences,
can benefit from memory-efficient online learning algorithms.
These algorithms allow the model to update its internal state
incrementally, avoiding the need to store and process the entire
sequence at once.

Online Learning refers to the paradigm where a model is up-
dated iteratively and adaptively over time as new data becomes
available in a sequential manner. Unlike traditional batch
learning, where the model is trained on the entire dataset at
once, online learning processes data sequentially, updating the
model parameters after each new observation. This continuous
learning approach is particularly well-suited for dynamic and
evolving datasets, enabling the model to adjust its predictions
in real-time and efficiently handle streaming or changing data
streams. Online learning algorithms aim to strike a balance
between exploiting newly acquired information and retaining
knowledge from past observations, making them suitable for
applications in scenarios with non-stationary data distributions



and the need for real-time responsiveness.
Several approaches are commonly used in an online learning

setting. Projected Online Gradient Descent POGD is a famous
approach generalized from the standard GD to accommodate
online requirements. Forward-Backward Splitting [18] is also
another algorithm for online learning. This approach adjusts
the model parameters and applies a sparsity-inducing penalty
to encourage some model parameters to be exactly zero.
The Regularized Dual Averaging [19] method adapts the
model parameters gradually while incorporating a regular-
ization term to induce sparsity in the model. Follow-The-
Leader [20, 21] and its extension (Follow-The-Regularized-
Leader FTRL) [22] is widely used for online approaches
with sparse and non-stationary data. FTRL combines the idea
of following the leader (learning from a leading example)
in adjusting model parameters with regularization techniques
to prevent overfitting. Follow-The-Proximally-Regularized-
Leader (FTRL-Proximal) is yet a recent extension of the
FTRL based on proximal term that controls the learning rate.
Online learning techniques are tailored to handle the evolving,
sequential, and real-time nature of time-series data, providing
a flexible and adaptive approach to process dynamic temporal
patterns.
Our approach introduces the online setting to RSRN forecast-
ing model. We adapted POGD and FTRL-Proximal to train
RSRN adaptively. POGD will adapt the Back Propagation
approach used by RSRN for training. However, it will not
hold any dependencies. For this reason, we can use Back
Propagation Through Time (BPTT) to handle those depen-
dencies. This approach will require a data history, thus, we
will add a sliding window that holds some temporal data.
Another strategy called FTRL-Proximal designed for sparse
data. Its process consist of accumulating the gradient of
previous observation, which resemble the concept of BPTT.
This approach stores past dependencies with less memory than
BPTT, this make it appropriate for recurrent model such as
RSRN. FTRL-Proximal uses per-coordinate learning rate as
proximal term to offer a balance between adaptability and
stability during training.

A. Related Works

Online learning for forecasting applications has a signif-
icant importance regarding predicting evolving patterns and
behaviours in sequential data. Generally, Most of these works
build upon recurrent models to capture temporal dependencies
with various adaptation and techniques. Fekri et al. [23] uses
an online adaptive RNN (LSTM) model for load forecasting
in addition to preprocessing, buffering, and tuning modules.
Guo et al. [24] uses the weighted gradient learning approach
on RNN model by leveraging local features to adapt to
changes and resist outliers. Yang et al. [25] adapts Robust
Adam to update LSTMs parameters and adaptively tunes the
learning rate. Zucchet et al. [26] adapts Linear Recurrent Units
as a learner to reduce complexity of RNNs. Despite using
RNNs and mostly LSTM for online forecasting applications
which yield formidable performance, they are computationally

expensive which will impact their energy footprint.
Random NN is used for various applications for more than
two decades for its energy-efficient architecture [27]. However,
its utilization in the online setting is very limited and only
focuses on cybersecurity and intrusion detection as far as we
know. Nakip et al. [28] uses auto encoder RaNN as a base
model for decentralized and online federated learning intrusion
detection. The work of [29] is based on online self-supervised
RaNN for intrusion detection in IoT environment. Also, [30]
utilizes deep RaNN model for real-time cyberattack detection
with online and offline setting. Mostly, all the adaptive RaNN
models works for classification problems. Meanwhile, as far
as we know, there is not any works regarding online RaNN
for forecasting problems. Our work is the first to introduce the
online setting to the RaNN (and by extension RSRN) regarding
forecasting problems.
The next section II will provide a background description of
the RSRN model architecture and properties, Then it will give
the adapted online approaches and its algorithms in detail. In
section III, we validate our approach with different algorithms
and setting. Lastly in section IV, we conclude our results and
discuss further directions.

II. ONLINE RSRN

A. Random Simple Recurrent Network (RSRN): overview

Random Simple Recurrent Network (RSRN) is a recur-
rent model based on mixture of Random Neural Network’s
(RaNN)[1] behaviour and neural architecture with Recurrent
Neural Network’s (RNN) [31, 32, 33] recurrency. RSRN
proved its effectiveness regarding forecasting sequential multi-
variate data even with long range dependencies. This model
achieved a comparable performance against state-of-art recur-
rent models with low computational cost and less training
time. Figure 1 represents a 3-layer RSRN network, where
the hidden layer in the model has a context layer that saves
the temporal dependencies of previous data and passes it
at the next iteration. RSRN is an extension of the RaNN
model, hence it has the same properties and characteristics
with some modification to accommodate the recurrent topol-
ogy of RNN. RSRN basically contains Random Neurons
(RN) which is a type of neurons that receives positive and
negative signals from previous neurons and the environment.
The positive/negative signals could be expressed as positive
weights (W+/W− ≥ 0). A RN i from a layer I may receive
signals from previous neurons j in layer J as ϱj or from
the environment Λ (positive signals) and λ (negative signals).
The output of neuron i is called the stationary probability
distribution (could be considered as an activation function)
ϱi expressed as follows

ϱi =
T+
i

ri + T−
i

=
Λi +

∑J
j=1 ϱjw

+
j,i +

∑C
c=1 ϱcw

+
c,i

ri + λi +
∑J

j=1 ϱjw
−
j,i +

∑C
c=1 ϱcw

−
c,i

(1)
where T+

i and T−
i are the total arrival of positive and negative

signals from the environment and the previous neurons J and
context layers C. ri is the firing rate calculated as the total of



Fig. 1. RSRN architecture, where the connection between neurons
simulate positive/negative signals and the context layer saves temporal
dependencies[17]

the outgoing weights from neuron i to other neurons S, ri =∑S
s (W+

i,s +W−
i,s). Λi and λi are the excitatory and inhibitory

signal from the environment, also they are considered as the
input data associated with neurons in the input layer. For each
data input xi:

Λi =

{
xi ifxi > 0

0 otherwise
(2) λi =

{
|xi| ifxi < 0

0 otherwise
(3)

w+
j,i and w−

j,i are the positive and negative connection
weights between neuron j in layer J and i in layer I . w+

c,i and
w−

c,i are the positive and negative connection weights between
nodes c in the context layer C and other nodes i in layer I . If
the neurons keep firing positive signals, the next neurons will
saturate. To prevent such a saturation, a limit of firing is set
as [34]:

ϱi ← min(ϱi, 1) (4)

where min(a, b) produces the smallest number between a and
b.
In a forecasting setting, the model will try to map an input
data xt to its output xt+1, hence, f(xt) = xt+1. At each
round t ∈ [1 . . . T ], we have an input data (vector) xt and the
model will try to predict ŷ which represent an approximation
of y = xt+1.
Throughout this paper we will use the MSE as a loss function
and an evaluation metric. MSE is defined as follow:

E(ϱo, y) =
1

2O

O∑
o

(ϱo − yo)
2 (5)

where ϱo is the output of the network and y is the desired
value. O in the number of neurons in the output layer.
Khennour et al. [17] proposed three approaches to train RSRN;
Back Propagation BP, Back Propagation Through Time BPTT
and Truncated Back Propagation Through Time TBPTT. The
problem with the proposed approaches is that they work
in offline manner, which mean they require the availability
of dataset at that beginning of training. Given that RSRN
operates as a forecasting model, acquiring time-series data
is not consistently feasible, and such data may be presented
in a streaming manner. Consequently, the nature of this data
necessitates an adaptable model capable of accommodating its
dynamic conditions. Online learning approaches offer a fitting
environment tailored to these particular requirements.

B. Online Learning for RSRN

RSRN is an energy-efficient recurrent model could benefit
from online adaptability and non-stationarity. The adaptation
will consist of redefining the process of updating the model
parameters. Meanwhile its architecture and internal properties
will remain the same. In the following two sections, we will
provide two strategies to adapt RSRN as an online model.

C. Adapted Projected Online Gradient Descent with a sliding
window K and training approach

Projected Online Gradient Descent (POGD) is an online
optimization algorithm used to adapt to incoming data points
one at a time and iteratively update model parameters based on
the gradient of a loss function. The usual update rule is defined
as wt = wt−1 − η ∂E

∂wt−1
, where η is the learning rate and

∂E
∂wt−1

is the gradient of the loss function E w.r.t the weight
w. In addition, POGD includes a projection step that ensures
the updated parameters remain within the feasible set, where a
function ΠX(w) will project the parameter w into the feasible
set X after each update. To adapt POGD to RSRN, we have to
define the feasible set. RSRN’s weight must be positive, thus
our feasible set is R+. BP is the training approach suitable
for this case, but for longer sequences, it may lose some
dependencies. Hence, we propose a sliding window that saves
K−last input data. This window will work as associative
memory to help the model guard some temporal dependencies.
The usage of this window will enable the RSRN model to use
BPTT approach for training to enhance performance. At each
step, the model will consider the gradient from current sample
t to t−K. This will help the model to become insensitive to
outliers and capable of capturing temporal dependencies.
For a multi layer RSRN network like in Fig. 1, we have a
model with M−layer. The Adapted POGD with a sliding
window K training algorithm is summarized in the Algo. 1
below. At each round t, we receive an input vector xt and pass
through the network. Then calculate the error and gradient
and update the weights. lastly, we project our weight into our
feasible set. ΠR+(·) is the projection of the weights in R+,
we will define it as ΠR+(W ) = max(0,W ). The parameter
Max_Trunc K represent the size of temporal dependencies
considered in the update as sliding window. In this approach,



we select a decreasing learning rate to offer a stability in the
training process and to be resistant against outliers.
For the BPTT approach, we will use average of the gradient
instead of the sum to prevent gradient explosion. Equation
6 gives the formula to calculate the average gradient over
K−last gradient, where K is the size of the sliding window

Algorithm 1 Adapted POGD with sliding window K
Require: RSRN layers m ∈ [1 . . .M ], Input data xt, t ∈
[1 . . . T ], Max_Trunc K

Ensure: Initialize Weights W+/W− ≥ 0
for t = 1 . . . T do

Receive input vector xt

Calculate firing rates ri
Λ← max(0, xt)
λ← |min(0, xt)|
y ← xt+1

Calculate ϱi,m, i ∈ m,m ∈ [1 . . .M ] using Eqs. 1
Calculate Error Et(ϱM , y) using Eqs. 5
Calculate Derivatives ∂Et

∂W
+/−
t−K

using the Average of

BPTT using Eqs. 6
update learning rate η ← 1√

t

W
+/−
t+1 ← ΠR+(W

+/−
t − η ∂Et

∂W
+/−
t−K

)

end for

∂Et

∂Wt−K
=

1

K

t−K∑
s=t

∂Et

∂Ws
(6)

According to Algo. 1, the size of the window K has an
important factor regarding the performance of the model com-
putationally and empirically. To study this effect, we consider
3 cases of K. When K = 1, this is the usual online mode,
where at each round t, we receive one sample xt and consider
just that sample for model update. In this case, we can only
use BP approach to update the model since we do not have
temporal dependencies to consider.
When K = constant > 1, at each round t, we receive one
sample xt and consider the last K−samples to update the
model. In this case, we could use BP or BPTT approaches
to update it. This scenario could be expressed as sliding
window K, where it preserves the temporal dependencies of
size K allowing the model to access the history of data. We
could further discuss the effect of different sizes of K in the
experiment (see section III-B).
When K = t, where t is the number of samples presented until
the current round. In this case, the model will have access to
full history of data from the first sample x1 to the current
sample xt. This scenario could be viewed as the offline mode
with incremental manner, where the size of the data increases
at each round. This scenario might not be considered as online
learning but it is of paramount to study this case.

D. Adapted Follow The Proximally Regularized Leader

Follow The Proximally Regularized Leader (FTRL-
Proximal) [22] is a variant of the FTRL algorithm family. It

Algorithm 2 FTRL-Proximal with L1 and L2 regularization
using per-coordinate learning rate for RSRN
Require: RSRN layers m ∈ [1 . . .M ], Parameters
α, β, L1, L2

Ensure: Initialize Weights W+
i /W−

i ≥ 0, zi = 0, ni =
0;∀i ∈ m,m ∈ [1 . . .M ]
for t = 1 . . . T do

for all i ∈ m,m ∈ [1 . . .M ] do
w

+/−
t,i ={
0 if |zi| ≤ L1

−(β+
√
ni

α + L2)
−1(zi − sgn(zi)L1) otherwise

end for
Receive input vector xt

Calculate firing rates ri,∀i ∈ m,m ∈ [1 . . .M ]
Λt ← max(0, xt)
λt ← |min(0, xt)|
yt ← xt+1

Calculate ϱi, i ∈ m,m ∈ [1 . . .M ] using Eqs. 1
Calculate Error Et(ϱM , y) using Eqs. 5
for all i ∈ m,m ∈ [1 . . .M ] do

gi =
∂Et,i

∂w
+/−
t,i

# gradient of the loss w.r.t w+/−
t,i

σi =
1
α (

√
ni + g2i −

√
ni)

zi ← zi + gi − σiwt,i # Cumulative gradient
ni ← ni + g2i

end for
end for

is a popular algorithm and widely used for the online setting
including ad click prediction [35], product demands prediction
[36] and online malware detection [37]. FTRL is similar to the
POGD but with addition to L1 and L2 regularization terms
and proximal term in the objective function. The usage of
these regularizations induces sparsity, so it is beneficial in
large-scale and sparse datasets. The proximal term in FTRL-
Proximal helps to control the step size in the parameter
updates by preventing the algorithm from making excessively
large updates. It adds a form of stability to the learning
process, particularly in scenarios where the data distribution
may change over time or when dealing with sparse features.
McMahan et al. [35] uses per-coordinate learning rate schedule
as proximal term, where each coefficient has its own non-
increasing learning rate. The objective function for the FTRL-
Proximal algorithm is to minimize the following:

wt+1 = argmin
w

(

t∑
s=1

gs · w+
1

2

t∑
s=1

σs||w− ws||22 + L1||w||1)

(7)
where gt is the gradient of the loss function at step t. L1

is the strength of the L1-regularization. σt is a scaling term
defined by the learning rate schedule σt =

1
ηt
− 1

ηt−1
, hence∑t

s=1 σs = 1
ηt

. Since we are using per-coordinate learning
rate, ηt,i is the learning rate of the ith parameter at step t



defined as follow:

ηt,i =
α

β +
√∑t

s=1 g
2
s,i

(8)

where α and β are hyper-parameters that controls the step size
during parameters update.
A quick analysis for Eqs. 7 indicates that the gradient of
previous steps has to be stored, but a reformulation of Eqs. 7
can help us optimize the process by storing just a variable per
coefficient. The reformulation goes as follow:

wt+1 = argmin
w

(
(

t∑
s=1

gs−
t∑

s=1

σsws)·w+
1

ηt
||w||22+L1||w||1

+ (const)
)

(9)

In this particular case, we can use zi to store the accumulated
gradient at each step. This is slightly similar to the BPTT
process (Eqs.6), since both have to store previous gradients.
However, in this case, the gradient is accumulated only once
and not revisited at each update like BPTT do. The use of
FTRL-Proximal in time-series forecasting with long range
dependencies will yield formidable results.
Algorithm 2 describes the FTRL-Proximal process with per-
coordinate learning rate schedule. This algorithm is inspired
from McMahan et al. [35] work and adapted for the RSRN
network with time-series forecasting setting. In this scenario,
we will have an RSRN multi layer network with M−layer.
The Algo. 2 will have α, β, L1 and L2 as hyper-parameters.
At each step t, it will update its coefficients (weights) and
receive an input vector xt. After passing through the RSRN
network, we calculate the error and the gradient of the current
step. For each coefficient i, we will update its learning rate σi

and accumulate the gradient into zi and its square into ni.

III. EXPERIMENT & RESULTS

In this section, we will validate the model presented in the
previous section and experiment with different scenarios of
training. The code was implemented from scratch using python
and was simulated in a laptop with i5 8th Gen, 16GB of RAM
and 4GB NVIDIA GTX 1050. According to the empirical
results, we selected a 3-layer RSRN network with 5 nodes
in the hidden layer (input and output layer is equal to the
feature size of the dataset) to validate throughout the following
experiments. The MSE is used as loss function and we monitor
it as the training proceed.
To evaluate our model and approaches, we used three forecast-
ing datasets. Fuel dataset [38] has 10 features with 880 sample.
It show the weekly fuel prices and their changes since 2013.
Temperature dataset [39] has 8 features with 3180 sample.
It measures the Global Land/Ocean Temperature from 1750
to 2015. GridWatch dataset [40] has 8 feature with nearly
796K sample. It describes the Britain’s power grid sources.
Throughout the following experiments, we use 75% of each
dataset as training set in online manner and 25% of them as
testing set.

A. Validating different learning scenarios of Adapted POGD

In this experiment, we used Adapted POGD to train the
RSRN model using different training scenarios and approaches
against each other and offline RSRN model. Table I represent a
summary of the results. We used in this experiment 3 scenarios
(K ∈ {1,100,t}) and the offline mode. The training approaches
we used are BP and BPTT to update the model. Notice that
BPTT can not be used where K=1 since there is no temporal
dependencies to back propagate across.
A general observation indicate that the best performance
was obtained when using K=t and BP approach even better
than BPTT and offline mode’s best result. For the case of
K=100, BP performed better than BPTT even computationally.
Throughout all cases, the BP performed better than BPTT this
is due to the reason that temporal dependencies was guarded
through the incremental inference of the model not by learning
approach (BPTT).

B. Validating the FTRL-Proximal approach

In this experiment, we used the FTRL-Proximal method
described in algo. 2 to train RSRN model. FTRL-Proximal
is usually used for large scale sparse dataset, we introduces
two types of data. The normal datasets and the sparse one.
The sparse datasets are the same with normal one but we
induced sparsity with factor of 35% (randomly multiply 35%
of data content with 0). The following experiment investigate
the result of FTRL-Proximal approach with RSRN model and
the effect of sparse data with accuracy. Table II shows the MSE
result of the FTRL-Proximal approach for the RSRN model
using normal and sparse datasets. As we can see from table II,
for fuel and temperature dataset the sparse data has slightly
better result than normal one. However, for the GridWatch
dataset the normal data exceeds the sparse one regarding
accuracy. The FTRL-Proximal seems that it performs great for
relatively small scale sparse data. Meanwhile, for large-scale
data, it tend to favour accuracy over sparsity.

The second row shows the result of POGD with normal
and sparse data. Overall, the normal data’s performance is
better than sparse one. Comparing the result of POGD against
FTRL-Proximal, we see that the POGD surpasses the FTRL-
Proximal generally in a massive scale data (GridWatch). The
POGD’s performance regarding sparse data is less than normal
one. This indicate than POGD does not perform well under
sparse data. Generally, both algorithms tend to achieve optimal
performance when dealing with large-scale data, POGD for
normal data and FTRL-Proximal for sparse one.

IV. CONCLUSION

In this paper, we proposed an online adaptation for RSRN
model in time-series forecasting problems. The algorithms are
based on an adaptation of the POGD and FTRL-proximal
with the recurrent topology of the model. These algorithms
proved its effectiveness regarding forecasting problems. POGD
was developed with a sliding window of size K that saves K
previous temporal dependencies. The role of this window is
to guard some history to prevent the model from straying too



TABLE I
MSE COMPARISON RESULT OF DIFFERENT TRAINING SCENARIOS AND APPROACHES

Dataset Fuel Temperature GridWatch (10K)
Training Scenario BP BPTT BP BPTT BP BPTT
K = 1 0.85268 0.28219 0.03727
K = 100 0.02497 1.6801 0.03366 0.817405 0.00423 0.0756
K = t 0.00695 1.70452 0.03391 1.31379 0.00154 0.79788
Offline mode 0.087 0.036 0.114 0.059 0.103 0.029

TABLE II
FTRL-PROXIMAL & POGD PERFORMANCE WITH NORMAL AND SPARSE

DATA

Method Dataset Fuel Temperature GridWatch

FTRL-Proximal Normal 0.8542 0.5783 0.0003
Sparse 0.549 0.4174 0.0066

POGD Normal 0.0444 0.1111 4.01e-5
Sparse 0.4305 0.3744 0.0055

far when dealing with outliers or non-stationary data. FTRL-
Proximal algorithm was used with per-coordinate learning that
that governs the learning step of each coefficient. The acquired
result shows that POGD for RSRN achieves better result when
we increase the size of window K. However, this comes with
an increase in the computational cost. On the other side,
FTRL-Proximal achieved an acceptable performance when
dealing with small data. Meanwhile, its performance increases
for sparse data or large scale datasets. Sometimes these algo-
rithms reach a performance even better than offline approach.
The RSRN model proved to be an energy-efficient model
better than competitor models, which make it appropriate for
environment with limited computational capability or energy
constraint.
These algorithms reach their optimal performance when deal-
ing with massive-scale data. FTRL-Proximal is preferred for
sparse data while POGD is suitable for non-zero data. RSRN
as before has the same downside where it performs poorly on
classification problems.
In our next literature, we aim to apply RSRN for task-specific
application such as proactive models and solve the time-
series classification problems. Also, we want to investigate
its capabilities regarding continual learning approaches.
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[9] M. Zając, T. Tuytelaars, and G. M. van de Ven, “Pre-
diction error-based classification for class-incremental
learning,” arXiv preprint arXiv:2305.18806, 2023.

[10] E. Gelenbe and J.-M. Fourneau, “Random neural net-
works with multiple classes of signals,” Neural compu-
tation, vol. 11, no. 4, pp. 953–963, 1999.

[11] E. Gelenbe, “Learning in the recurrent random neural
network,” Neural computation, vol. 5, no. 1, pp. 154–
164, 1993.

[12] E. Gelenbe and S. Timotheou, “Random neural networks
with synchronized interactions,” Neural Computation,
vol. 20, no. 9, pp. 2308–2324, 2008.

[13] Y. Yin, “Deep learning with the random neural network
and its applications,” arXiv preprint arXiv:1810.08653,
2018.

[14] Y. Yin and E. Gelenbe, “Single-cell based random neural
network for deep learning,” in 2017 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2017,
pp. 86–93.

[15] ——, “Non-negative autoencoder with simplified random
neural network,” in 2019 International Joint Conference
on Neural Networks (IJCNN). IEEE, 2019, pp. 1–6.

[16] W. Serrano, “The deep learning generative adversarial

https://www.mdpi.com/2076-3417/14/2/599


random neural network in data marketplaces: The digital
creative,” Neural Networks, 2023.

[17] M. E. Khennour, A. Bouchachia, M. L. Kherfi, and
K. Bouanane, “Randomising the simple recurrent net-
work: a lightweight, energy-efficient rnn model with
application to forecasting problems,” Neural Computing
and Applications, vol. 35, no. 27, pp. 19 707–19 718,
2023.

[18] Y. Singer and J. C. Duchi, “Efficient learning using
forward-backward splitting,” Advances in Neural Infor-
mation Processing Systems, vol. 22, 2009.

[19] L. Xiao, “Dual averaging method for regularized stochas-
tic learning and online optimization,” Advances in Neural
Information Processing Systems, vol. 22, 2009.

[20] J. Hannan, “Approximation to bayes risk in repeated
play,” Contributions to the Theory of Games, vol. 3, pp.
97–139, 1957.

[21] A. Kalai and S. Vempala, “Efficient algorithms for online
decision problems,” Journal of Computer and System
Sciences, vol. 71, no. 3, pp. 291–307, 2005.

[22] B. McMahan, “Follow-the-regularized-leader and mirror
descent: Equivalence theorems and l1 regularization,” in
Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics. JMLR Workshop
and Conference Proceedings, 2011, pp. 525–533.

[23] M. N. Fekri, H. Patel, K. Grolinger, and V. Sharma,
“Deep learning for load forecasting with smart
meter data: Online adaptive recurrent neural network,”
Applied Energy, vol. 282, p. 116177, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S0306261920315804

[24] T. Guo, Z. Xu, X. Yao, H. Chen, K. Aberer, and K. Fu-
naya, “Robust online time series prediction with recurrent
neural networks,” in 2016 IEEE international conference
on data science and advanced analytics (DSAA). Ieee,
2016, pp. 816–825.

[25] H. Yang, Z. Pan, Q. Tao et al., “Robust and adaptive on-
line time series prediction with long short-term memory,”
Computational intelligence and neuroscience, vol. 2017,
2017.

[26] N. Zucchet, R. Meier, S. Schug, A. Mujika, and J. Sacra-
mento, “Online learning of long range dependencies,”
arXiv preprint arXiv:2305.15947, 2023.

[27] S. Timotheou, “The random neural network: a survey,”
The computer journal, vol. 53, no. 3, pp. 251–267, 2010.

[28] M. Nakip, B. C. Gül, and E. Gelenbe, “Decentralized
online federated g-network learning for lightweight in-
trusion detection,” in 2023 31st International Symposium
on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE, 2023,
pp. 1–8.

[29] M. Nakıp and E. Gelenbe, “Online self-supervised learn-
ing in machine learning intrusion detection for the inter-
net of things,” arXiv preprint arXiv:2306.13030, 2023.

[30] E. Gelenbe and M. Nakip, “Real-time cyberattack de-
tection with offline and online learning,” in 2023 IEEE

29th International Symposium on Local and Metropolitan
Area Networks (LANMAN). IEEE, 2023, pp. 1–6.

[31] J. L. Elman, “Finding structure in time,” Cognitive sci-
ence, vol. 14, no. 2, pp. 179–211, 1990.

[32] S. Sotirov, “Modelling the backpropagation algorithm
of the elman neural network by a generalized net,”
in Proceedings of the 13th International Workshop on
Generalized Nets, 2012, pp. 49–55.

[33] G. Ren, Y. Cao, S. Wen, T. Huang, and Z. Zeng, “A
modified elman neural network with a new learning rate
scheme,” Neurocomputing, vol. 286, pp. 11–18, 2018.

[34] E. Gelenbe, “Stability of the random neural network
model,” Neural computation, vol. 2, no. 2, pp. 239–247,
1990.

[35] H. B. McMahan, G. Holt, D. Sculley, M. Young,
D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov,
D. Golovin et al., “Ad click prediction: a view from
the trenches,” in Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and
data mining, 2013, pp. 1222–1230.

[36] H. Do Kim, “Predicting product demands for large-scale
chain stores with ftrl-proximal linear regression,” JOUR-
NAL OF ADVANCED INFORMATION TECHNOLOGY
AND CONVERGENCE, vol. 7, no. 2, pp. 35–42, 2017.

[37] N. A. Huynh, W. K. Ng, and K. Ariyapala, “A new
adaptive learning algorithm and its application to online
malware detection,” in Discovery Science: 20th Interna-
tional Conference, DS 2017, Kyoto, Japan, October 15–
17, 2017, Proceedings 20. Springer, 2017, pp. 18–32.

[38] E. Department for Business and I. Strat-
egy. (2021) Weekly road fuel prices. [On-
line]. Available: https://data.world/makeovermonday/
2020w17-weekly-road-fuel-prices

[39] berkeleyearth.org. (2021) Global climate change
data. [Online]. Available: https://data.world/data-society/
global-climate-change-data

[40] N. Kommenda. (2021) Britain’s power sources. [Online].
Available: https://data.world/makeovermonday/2019w32

https://www.sciencedirect.com/science/article/pii/S0306261920315804
https://www.sciencedirect.com/science/article/pii/S0306261920315804
https://data.world/makeovermonday/2020w17-weekly-road-fuel-prices
https://data.world/makeovermonday/2020w17-weekly-road-fuel-prices
https://data.world/data-society/global-climate-change-data
https://data.world/data-society/global-climate-change-data
https://data.world/makeovermonday/2019w32

	Introduction
	Related Works

	Online RSRN
	Random Simple Recurrent Network (RSRN): overview
	Online Learning for RSRN
	Adapted Projected Online Gradient Descent with a sliding window K and training approach
	Adapted Follow The Proximally Regularized Leader

	Experiment & Results
	Validating different learning scenarios of Adapted POGD
	Validating the FTRL-Proximal approach

	Conclusion

