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Abstract 

Balancing the force between compartments in the knee joint during a Total Knee 

Replacement (TKR) is a vital parameter for surgeons to achieve successful outcomes for 

patients due to the complexity of the joint, articulating surfaces, tendons, and ligaments. 

These structures are all impacted by the forces created in the joint following a TKR. A 

lack in equilibrium can cause an asymmetric gait, pain, a decrease in range of motion 

(ROM), loosening of the implant, and premature wear resulting in early revision 

surgeries. Load balancing involves the use of implants and tools to ensure the forces on 

the joint are evenly distributed across the articulating surfaces of the medial and lateral 

compartments. Surgeons typically rely on haptic feedback and experience to determine 

if the joint is balanced; however, the use of an objective device would help to quantify 

this objectively and ensure positive postoperative outcomes as opposed to traditional 

subjective methods.  

Current literature implies that such systems, which measure the load in the knee 

intraoperatively, require improvements to the accuracy and design before the impact can 

be further investigated. The design and validation of an objective tool to be used 

intraoperatively to balance the load in the knee was the subject of this research. The 

novelty of this system is in the gap in accuracy and sensitivity amongst existing systems 

on the market combined with design features which integrate well with the surgical 

workflow. Additionally, the compatibility of prior sensors with a variety of implant 

systems is a limitation of their use.  

Through this research the design of two sensors were fabricated and 

investigated. The design of these sensors included features to increase the sensitivity 

and accuracy for determining the magnitude of the load and its location. Finite Element 

Analysis (FEA) aided in design optimisation including strain gauge placement and 

material selection. Additionally, the development and use of Artificial Intelligence (AI) 

in this system was paramount. This was due to the complex geometry of the sensors 

meaning there was no closed form solution to determine the load and location of the 

femur’s articulation with the sensor in each compartment. Based on this nature of this 

problem an Artificial Neural Network (ANN) was used and was optimised based on 

physically collected training data. This research also aided in increasing the overall 

confidence of AI in the medical field which will aid regulatory bodies in their decision 

to allow for the clinical use of such devices to improve patient outcomes. 

A mixed method approach was used that included both quantitative and 

qualitative assessments of the design and the in-service use of the sensors. This included 

laboratory testing to investigate the performance of the AI in predicting the load and 

location of the contact force. Accuracy testing uncovered an average accuracy of about 

90% for the Zimmer Specific sensor and about 88% for the Ring sensor when predicting 

the load. When predicting the centre of pressure, the average distance of the predictions 

from the actual location was 5.30 mm and 4.39 mm for the Zimmer Specific and Ring 

sensors respectively. Moreover, cadaveric testing improved the design of the sensor 

from the perspective of an experienced orthopaedic surgeon as well as confirmed the 

usability and proper function by comparing results to expected kinematic and kinetic 

behaviours of the knee.   
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1.1 Introduction 

The knee joint is one of the largest, most complex joints in the human body, the 

most susceptible to injury, and the most affected by arthritis (Felson et al. 1987). 

Replacement of the joint, either totally or partially, is the best treatment for end-stage 

arthritis by relieving pain and restoring function for the patient. When the surgery is 

unsuccessful, the patient can have a limited range of motion (ROM), instability, 

improper gait kinematics, and/or severe pain resulting in a premature revision surgery. 

Providing patients with a functional and pain free knee is challenging as it depends on 

numerous factors including gap balancing, load balancing, surgical methods/materials 

used, patient specific anatomy, and surgeon experience to name a few. This research 

focuses on quantifying the load balancing in the knee by validating the design of a novel 

and robust intraoperative sensor. 

The development of the Total Knee Replacement (TKR) procedure over the 

years includes the development of technology and improved surgical techniques. A 

comprehensive literature review of balancing techniques, typical knee kinetics and 

kinematics both in the normal knee and intraoperatively, and other sensors on the 

market will aid in the development and validation of a new sensor. 

The aim of this research is to optimise the design of a new intraoperative joint 

transducer, test it in a laboratory setting, observe the useability of this device in 

cadavers, and begin to understand more about the kinematics and kinetics in the knee. 

The development of this novel device will aid surgeons during the TKR to optimally 

balance the knee in accordance with the ideal joint kinematics. The success of sensors in 

aiding surgeons with joint balancing and tensioning would be quantified by a reduction 

in the number of early revision surgeries needed. This chapter explains the general 

background information that will highlight the importance of this research and give 

context to the later sections.  

1.2 Biomechanics Terms   

Understanding the anatomical terms is important to provide clarity. Proper 

anatomical terminology is in reference to a human body that is oriented with the person 

standing upright, arms by the side, palms forward and thumbs pointing away from the 

body. The legs are shoulder width apart with the toes facing forward. 
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There are three main anatomical planes that split the body: sagittal, coronal, and 

transverse planes (Figure 1.1). The sagittal plane creates a vertical line that splits the 

body into a left and right side, this plane is relevant when discussing TKRs. 

There are several directional terms that help describe the position of certain 

structures in relation to one another. Along the sagittal plane, anterior refers to the front 

while posterior refers to the backwards direction. Along the coronal plane, the term 

lateral refers to the side or the direction away from the midline and medial refers to the 

orientation closer to the midline. Distal refers to the positioning farther away from the 

origin and proximal is nearer or closer to the origin. These terms are important when 

discussing the knee (Figure 1.1).  

There are different movements of body parts around a certain axis which are 

described by different terms. Flexion refers to the decreasing of the angle between two 

structures, where extension is the opposite, increasing the angle between two structures 

(Figure 1.2). For the knee specifically the main movement is flexion and extension. In 

reference to the lower limb and the knee it is important to understand the varus and 

valgus orientations. Varus deformity of the knee is when the distal part of the leg is 

deviated inward in relation to the femur giving a bow-legged appearance to the limb. A 

valgus deformity occurs when the distal part of the leg below the knee deviates outward 

giving a knock-kneed appearance (Figure 1.3). 

Figure 1.1: Body Planes and Directional Terms 
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1.3 Knee Joint  

 The knee joint complex consists of two joints: the patellofemoral joint, where 

the patella and femur articulate, and the tibiofemoral joint, where the tibia and femur 

articulate. The main biomechanical roles of the knee joint complex are to allow motion 

of the legs with minimal energy from the muscles and to provide maximum stability to 

the body over various terrains. Additionally, the knee joint complex should transmit, 

absorb, and redistribute forces to the knee during daily activities. The knee joint is a 

synovial, hinge joint. A synovial joint, or diarthrosis joint, contains synovial fluid 

enabling the joint to move smoothly. A hinge joint operates like the hinge of a door, 

moving in one direction along one plane. 

The knee joint complex consists of several structures that provide stability to the 

joint through different motions and loading conditions. There are three bones that make 

up the knee joint, the femur, patella, and tibia. The femur and the tibia are long bones, 

and the patella is a sesamoid bone. The femur meets, articulates, with the top of the tibia 

and the patella moves along a groove at the anterior distal end of the femur. The soft 

tissue in the knee joint provides stability to the joint by resisting excessive 

displacements between bony segments and controlling the joint's path of motion. 

Articular cartilage covers the surfaces of the distal femur, proximal tibia, and posterior 

patella allowing the bones to glide over one another during flexion and extension of the 

knee as well as absorb the forces sustained to the knee during locomotion. The soft 

tissue stretches and develops tensile force to resist excessive elongation when external 

Figure 1.3: Varus and Valgus Movements Figure 1.2: Knee Flexion Angles 
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loads are applied to the joint. The knee meniscus is a thick pad of cartilage between the 

femur and tibia, where there are two menisci per knee: the medial and lateral meniscus. 

The menisci help to distribute weight bearing forces, absorb shock, stabilise the knee, 

and allow the surfaces of the knee to move smoothly when the knee is moving and 

bearing weight. Another component of the knee are the ligaments, which help prevent 

excess knee motion, varus and valgus stresses on the knee, anterior and posterior 

movement of the tibia under the femur, medial and lateral rotation of the tibia under the 

femur and stabilise the rotations of the tibia. The muscles around the knee load the joint 

according to the required movement and provide stability.  

These structures within the knee joint complex work to provide smooth 

movement of the knee while providing stability and efficiency in movement (Abulhasan 

and Grey 2017). 

1.3.1 Common Knee Problems 

The complex and intense load bearing of the knee can create several problems. 

The knee accounts for more pain and disability than any other joint and is one of the 

most common sites for Osteoarthritis (OA) (Felson et al. 1987). When there is a loss of 

healthy articular cartilage knee arthritis can arise. A factor that can contribute to the 

wear of the articular cartilage is injury which can lead to instability causing knee 

arthritis. There are more than 100 distinct types of arthritis. However, the most common 

affecting the knee is OA or degenerative arthritis, which occurs when the cartilage in 

the knee deteriorates with use and age, and rheumatoid arthritis (RA), a chronic, 

autoimmune condition. 

When the muscles of the quadriceps, hamstring and calf, gastrocnemius, are 

weak they cannot provide adequate support and stability to the knee which can 

accelerate OA or cause some common knee injuries including: 

• ACL injuries: the Anterior Cruciate Ligament (ACL) tears. Common in athletes 

of sports that require sudden changes in direction. 

• Fractures: Fractures of the bone, including the patella.  

• Torn meniscus: The meniscus can be torn with a sudden twist of the knee while 

bearing weight. 
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• Knee Bursitis: The bursa of the knee, a small sac of fluid that cushions the 

outside of the knee joint, becomes inflamed known as bursitis. Bursitis of the 

knee happens often when there is an injury to the patella. 

1.3.2 Knee Replacement Surgeries 

A TKR is necessary for patient’s experiencing debilitating pain and/or loss in 

function and is executed by removing the weight bearing surfaces from the knee (Rönn 

et al. 2011). A TKR is the best option for pain relief and restoring function to the knee 

joint in patients with arthritis. There are several factors that contribute to the increase in 

knee replacement surgeries in the United Kingdom (UK) including the ageing 

population, longer life expectancy, and an increase in BMI. The only treatment for end-

stage OA is a knee replacement. Knee replacement surgery is needed when the knee 

joint is so worn or damaged that there is reduced mobility and increased pain. Over 

three years in the UK (2020-2023), 232,550 primary TKRs were performed mostly for 

end-stage OA where OA was listed as the reason for surgery in 98% of all primary knee 

procedures in 2022 (Achakri et al. 2023) 

There are two main types of knee replacement surgeries: a TKR where both 

sides of the knee joint are replaced and a partial knee replacement (PKR) where only 

one side of the knee joint is replaced. The latter is a smaller operation with a shorter 

recovery period. For a TKR, the surgeon will bend the knee to expose the surfaces of 

the joint to remove the damaged femur and tibia and replace it with an implant. There 

are usually three components that make up the traditional TKR implants: the femoral 

component, tibial component, and sometimes a patellar implant. The femoral 

component is usually made from metal alloys most commonly a cobalt-chromium alloy 

and is made up of two symmetric arc-shaped condylar surfaces (Pande and Dhatrak 

2021). The tibial component consists of two parts: the tibial insert which is mostly made 

of ultra-high molecular weight polyethylene (PE), and typically a titanium alloy for the 

tibial tray, used to reduce the friction in the joint (Pande and Dhatrak 2021). If a patellar 

implant is needed during a replacement surgery, usually a dome-shaped implant made 

of PE is attached to the remaining original patella bone (Roussot and Haddad 

2019). After the implants are fitted, the surgeon will bend and rotate the knee to test for 

proper tension and alignment using haptic feedback. 
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Knee replacement surgeries have been performed in the UK since the 1970s and 

knee revision surgeries introduce a difficult challenge due to the soft tissue (Achakri et 

al. 2023). According to Sharkey et al. (2014) a review on 212 revision knee 

replacements uncovered that the top three reasons for revisions were PE wear (25%), 

aseptic loosening (24.1%), and instability (21.2%). All three of these reasons can be 

attributed to improper tension in the joint, where a balanced knee would theoretically be 

defined as the forces between compartments being equal. Revision TKRs are 

complicated procedures and carry greater risks to the patients with higher costs for the 

NHS than primary TKRs. The costs of knee revision surgeries can vary depending on 

complexity and geographical region; however, on average the cost to the hospital is 

about 20,000 pound sterling (GBP) per patient (Kallala et al. 2015; Alexiadis et al. 

2024). Moreover, the number of total revision knee operations and their average costs 

can be calculated from this amount (Table 1.1) where it can be observed that over 18 

years, revision knee surgeries have cost the NHS over 1.9 billion GBP. 

Table 1.1: Cost of revision surgeries for the NHS over 18 years  

Year of Revision Total Revision Knee Operations Average Cost (GBP) 

2004 1,248 24,960,000 

2005 2,002 40,040,000 

2006 2,585 51,700,000 

2007 3,518 70,360,000 

2008 4,394 87,880,000 

2009 4,872 97,440,000 

2010 5,425 108,500,000 

2011 5,608 112,160,000 

2012 6,380 127,600,000 

2013 5,999 119,980,000 

2014 6,514 130,280,000 

2015 6,771 135,420,000 

2016 6,903 138,060,000 

2017 7,033 140,660,000 

2018 6,817 136,340,000 

2019 7,005 140,100,000 

2020 3,851 77,020,000 

2021 5,411 108,220,000 

2022 5,464 109,280,000 

Total 85,677 1,956,000,000 

Moreover, early revision surgeries can unnecessarily add to these costs. A 

retrospective study of 548 patients found that 179 (32.7%) needed early revisions and 
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369 (67.3%) had late revisions where the most common reasons for the early revisions 

were infection (31.3%), loosening (27.4%), and instability (10.1%) while the most 

common causes for late revisions were loosening (29.5%), infection (22.2%), and PE 

wear (20.3%) (Holbert et al. 2023). With an objective tool, this procedure can be done 

properly the first time, which would significantly reduce costs to hospitals and the NHS 

while reducing the risks associated with surgery to patients.  
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2 Chapter 2: Background  
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2.1 Introduction 

The need to produce a more stable knee reflects directly on the patient’s 

postoperative outcomes.  To produce a more balanced joint intraoperative sensors can 

be used to aid surgeons during a TKR which is the focus of this research. To be able to 

understand the research questions, the background information must be understood to 

establish an in depth understanding of the subject. This includes understanding the 

anatomy of the knee and the structures that impact the stability of the knee both in 

normal knees and TKR knees. Additionally, gaining an understanding of the forces in 

the knee, the load path and intensity, and how they are commonly found helps to 

understand the design of intraoperative sensors since the function of such sensors are to 

set the initial tension of the knee during surgery.  

2.2 Knee Joint Geometry   

The tibiofemoral joint’s primary motion is flexion and extension in the sagittal 

plane. However, the knee also rotates, pivots, and glides. These movements are 

controlled by three structures in the knee: the articular geometry, ligamentous balance, 

and muscular tension. 

The ROM for translations is restricted by the fibrous capsule, ligaments, and 

muscles. The femur and tibia slide over one another with 6 degrees of freedom 

characterised by three rotations and three translations in all three planes. The greatest 

ROM is around the sagittal plane through flexion and extension. Moreover, 

abduction/adduction and the intra/extra rotation occur around the frontal and transverse 

planes where the motion is more restricted.  

The articular geometry of the knee joint consists of the femur and tibia. The 

femur consists of the medial femoral condyle (MFC) and the lateral femoral condyle 

(LFC) that create the proximal articular surface with the two concave medial and lateral 

plateaus of the tibia (Figure 2.1). The MFC is larger with a more uniform radius of 

curvature, while the LFC is smaller and consists of two condyles with nonuniform radii 

(Abulhasan and Grey 2017).  
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The MFC remains mostly stationary during knee flexion, while the LFC travels 

posteriorly on the tibia, known as posterior rollback. During posterior rollback (Figure 

2.2), the geometry of the MFC and LFC forces the distal femur to rotate externally. 

Posterior rollback of the LFC is important because it determines the point of terminal 

flexion, which is relevant for TKRs as it determines the terminal flexion point that 

allows for full deep flexion to occur. Without posterior rollback, the back of the femur 

would hit the tibia at 90º, but because the distal femur moves posteriorly to the tibia its 

clearance is increased to allows for deeper flexion. Eventually terminal flexion does 

occur where the lateral tibia and the posterior femur impinge.  

 

 

 

 

 

 

Figure 2.2: Posterior femoral rollback 

 

Anterior  

Posterior  

Frontal View 

ACL: Anterior Cruciate Ligament  

PCL: Posterior Cruciate Ligament  

Figure 2.1: Medial and lateral femoral condyles (Right knee) 
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The medial and lateral tibial plateau have different geometries so posterior 

rollback can occur during knee flexion. The lateral tibial plateau is flatter than the 

medial which prevents MFC rollback allowing for a pivot motion where the LFC rotates 

around the stable MFC.   

As implied from the above descriptions, changes in the natural geometry of the 

articular surfaces will change the kinematics in the knee, thus creating different forces 

that wear on the knee differently (Bull et al. 2008).  

2.3 Stabilisers for the Knee 

The stability of the tibiofemoral joint comes from static and dynamic structures 

working together to balance the joint from excessive movement and instability which 

both can lead to knee injuries. 

The knee is not an inherently stable joint and receives its stability from primary 

and secondary stabilisers. The ligaments in the knee are what provide the knee with 

primary stabilisation and the secondary stabilisation is provided by the muscles 

surrounding the knee.  

2.3.1 Ligaments and Tendons 

A ligament is a short band of fibrous connective tissue connecting bone to bone. 

In the knee, ligaments connect the femur and tibia together to hold the joint in place. 

The ligaments of the knee are tough and flexible. A tendon is a cord of strong fibrous 

collagen tissue that is flexible but inelastic, connecting muscle to bone. 

The static stabilisers of the tibiofemoral joint are the anterior cruciate ligament 

(ACL) and posterior cruciate ligament (PCL), known in combination as the cruciate 

ligaments and the medial collateral ligament (MCL) and lateral collateral ligament 

(LCL) known together as the collateral ligaments. These four ligaments in the knee 

connect the femur to the tibia.  

The cruciate ligaments, the ACL and PCL, are two ligaments that provide 

stability to the joint in the sagittal plane. The ACL is made of the three strands and 

provides the knee with 85% of its stability allowing for smooth and stable flexion and 

rotation of the knee (Ellison and Berg 1985). However, it is one of the most injured 

structures in the knee joint (Gianotti et al. 2009; Zlotnicki et al. 2016). When the ACL is 
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removed from the knee, full extension makes the femur shift posteriorly since the 

anterior pull of the tibia is unresisted. The presence of the ACL also impacts the wear 

patterns on the knee. When the ACL is intact the wear is on the anterior-medial aspect 

of the tibia, however, with no ACL the tibia moves forward, and the wear then occurs of 

the posterior medial aspect of the tibia. The PCL has two bundles: the anteromedial 

which is tight in flexion and the posterolateral which is tight in extension. The PCL is 

larger and stronger than the ACL and its orientation prevents posterior tibial translation 

to allow for the proper posterior rollback of the femur. Together with the ACL, the PCL 

works to control the anterior-posterior rolling and sliding kinematics of the tibiofemoral 

joint during flexion and extension. During TKR surgeries today, the ACL and/or the 

PCL are discarded, and the anterior/posterior constraint is dependent on the stability of 

the prosthetic.  

The collateral ligaments, MCL and LCL, provide stability in the coronal plane. 

The MCL is a flat and broad ligament that sits inside of the knee and is partially 

attached to the medial meniscus. The MCL provides greater stability in flexion, 60% of 

the knee’s stability in 5º of flexion and 80% of the stability in 25º of flexion (Parcells 

2017). The LCL is a cordlike ligament located on the outside of the knee providing the 

knee with lateral stability. The LCL is loose when the knee is flexed reducing its 

restraining capability.  

 

 

 

 

 

 

Figure 2.3: Ligaments of the tibiofemoral joint 

The patella acts as a shield and due to its position, prevents excessive friction 

between the quadriceps tendon and the femoral condyles (Hungerford and Barry 1979; 

Steinkamp et al. 1993). The patella also aids in knee extension and allows for a wider 

ACL: Anterior Cruciate Ligament  

PCL: Posterior Cruciate Ligament  
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distribution of compressive stress on the femur by increasing the area of contact 

between the patellar tendon and the femur. The patellar tendon begins at the quadricep 

muscle and attaches the patella to the front of the tibia.  

2.3.2 Muscles 

Most of the muscles around the knee are monoarticular, crossing one joint, and 

work to primarily provide mobilisation and secondly to stabilise the knee. The 

quadriceps sits anteriorly on the thigh and consists of four different muscles: the rectus 

femoris, vastus lateralis, vastus medialis, and vastus intermedius. In general, the 

quadriceps provides the main muscle force for knee extension, and its weakness affects 

the patella tracking.  The largest extensional moment occurs between 15º and 30º of 

knee flexion due to the posterior movement of the tibiofemoral contact point 

(Andriacchi et al. 1986). The extensional moment of the knee is defined as the torque 

produced by the knee extensors, the quadriceps, in response to the flexion of the knee 

(Andriacchi and Mikosz 1991). The quadriceps are also dynamic stabilisers for the 

patella, where the patella acts as a biomechanical lever. Near full extension, the 

quadriceps transfer the maximum amount of force to the patella and is reduced to 60% 

at 90º of flexion (Ellis et al. 1980; Huberti et al. 1984). The hamstring, a group of three 

muscles: biceps femoris, semimembranosus, and semitendinosus muscle, works 

antagonistically to quadriceps providing the main muscle force in the flexion of the 

knee.  

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Muscles of the quadriceps 
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2.4 Normal Alignment  

When considering the alignment of the normal knee there are two main axes to 

consider: the mechanical axis and the anatomic axis (Figure 2.5). The mechanical axis is 

created from a line drawn from the centre of the hip to the centre of the ankle. When 

this line passes through the centre of the knee the leg is in neutral mechanical alignment. 

The anatomic axis is created from lines drawn through the centre of the bones making 

up the leg. The anatomic axis of the femur is 6º from the mechanical axis while the 

anatomic axis of the tibia is in line with mechanical. This means that the knee angle, or 

femoral-tibial angle (FTA), is 6º valgus, inward, relative to the mechanical axis 

(Parcells 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Axes of the lower limb and joint line 

In a TKR these angles are simpler than the native knee since the tibia is cut 

perpendicular to the mechanical/anatomical alignment, making the angle 0º. Then, the 

femoral cuts are adjusted to be in line with the tibial cut. 

2.5 Range of Motion (ROM) 

The ROM helps determine the function of the knee and is often a functional 

patient outcome measure for TKRs. In a TKR, the passive motion of the knee joint is 
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especially important since during the surgery the patients are anaesthetised and to 

determine if the joint is balanced the surgeons will carry the leg through a ROM to 

“feel” if the joint is balanced.  

The highest ROM in the knee joint comes from the flexion and extension 

movement. However, other movements contribute to the function of the knee including 

the anterior/posterior displacement, rotation, and varus/valgus motions. 

The normal active ROM from full extension to full flexion ranges from 0º to 

140º and changes with activity (Nordin et al. 1989; Traina et al. 2013). After a TKR, a 

normal ROM for knee flexion is accepted at 120º since this is sufficient for most daily 

activities with minimal risk to the patellofemoral joint (Rowe et al. 2000; Lee 2014). 

The endpoint in normal knee flexion is about 140º, which is caused by the 

posterior tibia impinging on the femur (Parcells 2017). The ROM is a factor of the 

surgical procedure that greatly impacts postoperative patient satisfaction. Figure 2.6  

depicts how the ROM in the knee changes preoperatively, intraoperatively, and 

postoperatively in flexion and extension (Mutsuzaki et al. 2017).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: ROM throughout TKRs (Preoperatively, Intraoperatively, and Postoperatively) (Mutsuzaki et 

al. 2017) 

2.6 Forces in the Knee  

The largest force on the knee is the tibiofemoral force that is spread across the 

medial and lateral compartments. The passive tibiofemoral joint contact forces that act 

on the tibia consist of the joint reaction force, and lateral/medial forces that come from 
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the ligaments. However, as previously mentioned the centre of rotation is not fixed 

during the flexion/extension movement. During flexion, the femur pivots on the tibia 

causing a small degree of internal rotation, towards the midline, while during full knee 

extension there is a slight external rotation, away from the midline (Traina et al. 2013).  

2.6.1 External vs. Internal Forces 

The forces acting on the knee can be divided into external and internal forces. 

External forces are caused by body weight (BW), ground reaction forces on the foot, 

and acceleration and deceleration of the limb segments (Andriacchi et al. 1986). On the 

other hand, internal forces work to balance the external forces and are generated by 

muscle contractions, ligament forces, and joint contact forces. While the external forces 

can be generated in laboratory simulations the internal forces require more complex 

measuring techniques (Draganich et al. 1984; D’Lima et al. 2012).   

2.6.2 Joint Contact Forces 

Joint contact forces are one of the internal forces affecting the knee joint. The 

tibiofemoral joint contact force is the force on the articulating surface between the tibia 

and femur. The forces include the net joint reaction force and forces exerted by the 

muscles surrounding the knee. Contact stresses in the knee have the potential to exceed 

the acceptable load intensity and yield strength of the PE component in TKRs, which 

would lead to failure of the component (Hood et al. 1983; Bartel et al. 1986; Szivek et 

al. 1996; Kuster et al. 1997). Increasing the thickness of the PE insert during a TKR can 

also increase the forces in the knee throughout a ROM. In a study of cruciate retaining 

(CR) TKRs, the MCL and LCL forces increased by 38 N and 74 N, respectively, as PE 

insert thickness changed from 9 mm to 11 mm using a previously validated 

musculoskeletal model of a TKR patient (Figure 2.7) (Tzanetis et al. 2021).   

 

 

 

 

 

 



   

 

  18 

 

 

Contact forces during TKRs are important for soft tissue balancing and implant 

alignment. In a model of the lower extremity during a TKR, validated from cadaveric 

studies, the tibial contact forces have been observed based on the flexion angle. In this 

model the forces are measured perpendicularly to the surface of the tibia (Figure 2.8), 

where the red arrow represents the shear force (Hashemi et al. 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 demonstrates that contact forces decrease as the flexion angle 

increases for a CR TKR (blue) and PCL resection TKR (red) with a slight increase past 

45° for the CR TKR (Kebbach et al. 2019).   

 

Figure 2.7: Change in Force on Ligaments with Increasing PE Thickness (Tzanetis et al. 2021) 

Figure 2.8: Location of Joint Contact Force (JCF) Based on Knee Angle a) 

Full Extension b) Moderate Flexion. QPF: Quadriceps patellar tendon 

force; HF: Hamstring force (Hashemi et al. 2011) 

(A) (B) 
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Figure 2.9: Tibial contact forces versus flexion angle in Cruciate Retaining and PCL Resection TKRs 

(Kebbach et al. 2019) 

Moreover, similar observations were made in Figure 2.10, where BG 

represented a TKR with a balanced gap. Forces, in this study using cadaver knees, 

decreased until around 45° and then increased through the rest of the flexion arc 

(Jeffcote et al. 2007).   

 

 

 

 

 

 

 

 

Figure 2.10: Tibiofemoral Forces through the Flexion Arc (Jeffcote et al. 2007) 

Additionally, during cadaveric testing of different methods to flex the knee 

(Figure 2.11),  a heel push (HP) test and thigh pull (TP) test, compartmental forces in 

the knee were recorded (Figure 2.12). It can be noted that the load behaves similarly 

through the flexion arc as the previous research and that medial loads were higher 

through the flexion arc for both tests (Verstraete et al. 2017).  

Balanced Gap 

Extension Gap 

Flexion Gap 
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Figure 2.11: Forces Applied During HP and TP (Verstraete et al. 2017) 

 

 

 

 

 

 

 

 

 

Figure 2.12: Compartmental Loads during Heel Push and Thigh Pull (Verstraete et al. 2017) 

Furthermore, the distribution of the force on the bone in the knee can be 

discussed more thoroughly. From the results of deformation, stress, and contact pressure 

testing, it is evident that the medial compartment is more loaded than the lateral through 

the flexion arc. This conclusion was also confirmed in clinical practice observing the 

gait cycle (Dungl 2005), where it was found that the contact load was mainly distributed 

medially. Simulated models of the knee based on computer tomography (CT) data, and 

FEA revealed that again during the gait cycle the load is more medially distributed 

(Kubíček and Florian 2009). However, theoretically having the medial compartment 

loaded more heavily than the lateral can be detrimental as there would be increased 

wear on the medial compartment of the joint. This questions whether balancing the load, 
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which kinematically would be beneficial, is preferred over having a higher load 

medially which is what is observed in the natural knee.  

2.7 Joint Contact Points  

As mentioned previously, the femur articulates with the tibia and through the 

flexion arc the contact points change to allow for deep flexion by femoral rollback. 

Figure 2.13 depicts the contact points in the normal knee where through flexion angles 

10º-90º the contact points in the lateral compartment move posteriorly compared to the 

medial compartment (Pinskerova and Vavrik 2020). 
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A study using fluoroscopic surveillance on the gait cycle post TKR also noted 

the contact point shifting posteriorly through the flexion arc of the left knee (flip to 

compare to the right knee) for both the normal knee and a TKR knee (Figure 2.14) 

(Dennis et al. 2003).  

Figure 2.13: Contact Points in the Normal Knee through the Flexion Arc (Right Knee) 

(Pinskerova and Vavrik 2020)  

Figure 2.14: Contact Points after a TKR through the Flexion Arc a) Normal Knee b) TKR Knee (Dennis 

et al. 2003) 

Posterior 

Anterior 
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A similar behaviour was observed through a retrospective study of TKRs (Deckard 

et al. 2022). The image below, Figure 2.15, is of the left knee and backwards facing 

posteriorly instead of anteriorly, so the image can be rotated and flipped to be compared 

to Figure 2.13. It can be observed that the contact points during and after a TKR 

through the flexion arc are similar to what has been observed in other research. 

 

 

The current literature surrounding the contact points in the tibiofemoral joint show a 

shift posteriorly through the flexion arc (Iwaki et al. 2000; Dennis et al. 2003; Moonot 

et al. 2009; Meneghini et al. 2017; Pinskerova and Vavrik 2020; Deckard et al. 2022; 

Hashimoto et al. 2022) which provides context to intraoperative contact point readings 

seen later in this research.   

2.8 Conclusion  

In conclusion, accurate measurement and tracking of the joint contact forces in 

the knee can be directly linked to the joint in-service performance and durability. 

However, computational predications are inherently inaccurate. Experimental in vivo 

research using tibial force sensors have been used to shed light on intraoperative forces. 

However, the technology and research in general could be expanded upon to improve 

accuracy and validity of the results.  

Moreover, combining a joint force sensor with the use of other systems like 

fluoroscopy and robotics can validate the hypothetical assumptions of the load and 

contact point results. Additionally, comparing kinematic results from the patient’s good 

knee can ensure symmetry between the legs using validated methods.  

 

Figure 2.15: Contact Points during TKR through the Flexion Arc (Deckard et al. 2022) 
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3 Chapter 3: Balancing a TKR Knee  
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3.1 Introduction  

The goal of a TKR is to restore the original function of the knee as closely as 

possible. The success of this surgery can be defined clinically by symmetric and 

balanced gaps in flexion and extension, symmetric gait, implant positing, and soft tissue 

balancing. When these are not achieved, it can lead to premature implant failure and the 

need for an early revision surgery (Parratte and Pagnano 2008; Bozic et al. 2010; 

Rodriguez-Merchan 2011; Lombardi Jr et al. 2014). 

After a TKR, the contact stresses at the surface contribute to wear and loosening 

of the implant and when there is a high congruency at the contact surface, the contact 

stress is low. To increase the longevity of the implanted knee it is important to 

understand what is involved in balancing the knee during a TKR, how to redistribute or 

reduce the load intensity at the contact points, and how this impacts postoperative 

success.  

3.2 Soft Tissue Tension 

The soft tissue, namely ligaments, surrounding the knee are responsible for the 

passive stability of the joint (Blankevoort et al. 1991; Halewood and Amis 2015) and is 

a principal factor for success after a TKR. When the ligaments surrounding the knee 

have improper tension, stability can be compromised leading to problems performing 

daily functions. Ligament tension can be indirectly measured by the contact loads in the 

tibiofemoral joint during a TKR. Postoperatively, active forces from muscles, and 

dynamic loads from movements like walking, running, and stair climbing are added to 

the knee which means the materials of the implant can fatigue rapidly under these high 

loads if not properly balanced during the operation.   

Functional improvements of the knee have been observed when soft tissue is 

balanced. Ample research supports this idea where postoperative instability was 

reported as a major cause for early TKR revisions (Ghirardelli et al. 2019). 

Additionally, research observed that 50% of early revision TKRs were related to 

instability, malalignment, or fixation problems, confirming imbalance as a significant 

cause for revision (Sharkey et al. 2014); another study found that unbalanced ligaments 

accounted for 35% of early TKR revisions (Gustke (c) et al. 2014). Several more studies 

have reported that proper balancing can improve outcomes of a TKR by decreasing 
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postoperative instability, improving flexion and functional results, and increasing the 

survival of the implants (Winemaker 2002; Matsuda et al. 2005; Unitt et al. 2008; 

Babazadeh et al. 2009; Anastasiadis et al. 2010; Del Gaizo and Della Valle 2011; 

Watanabe et al. 2013; Gustke (c) et al. 2014; Elmallah et al. 2016; Meneghini et al. 

2016; Nodzo et al. 2017; Golladay et al. 2019; Shalhoub et al. 2019). A study 

comparing the revision rates from TKRs, observed 1,634 TKRs from 2007 - 2012 and 

found the average revision surgery was performed about 4 years postoperatively where 

the shortest revision was 8 days. Moreover, it was found that the most common 

mechanical failures included loosening of the femoral, tibial, or both components, and 

instability. The conclusion of this research was that a theoretical advantage of a well-

balanced knee would be an improvement to the implant’s longevity (Moussa et al. 

2017).  Early revisions in these cases can be easily avoided with proper joint balancing 

intraoperatively, which is of benefit to the surgeons, hospitals, NHS, patients, 

biomedical companies, and for global sustainability by reducing the unnecessary 

overconsumption of the materials used for implants and the surgical procedure.  

As well as functional improvements, patient reported outcomes were also 

studied to confirm their improvement when the knee was balanced. Notably, patients 

with balanced knees were more likely to have decreased pain (Babazadeh et al. 2009). 

Gustke (a) et al. (2014) reported that balanced knees have better pain, functional and 

activity scores than unbalanced knees after a one year follow up. Patient satisfaction 

from a balanced knee was also confirmed with later research, where 96.7% of patients 

were satisfied when the was knee balanced and 82.1% when the knee was unbalanced 

(Gustke (a) et al. 2014; Gustke (b) et al. 2014). In addition, clinical scores were found to 

be significantly higher after TKRs balanced with a sensor compared to manually 

balanced TKRs (Chow and Breslauer 2017). 

However, some disagreement is present surrouding the correlation between 

balanced knees and postoperative improvements. Livermore et al. (2020) reported no 

improvement to short-term patient-reported outcome measures (PROMs), radiological 

outcomes, or ROM when compared to conventional TKR techniques. Similar research 

noted no significant difference in 6-month or 1-year postoperative flexion or patient 

satisfaction rates (Wood et al. 2021). Additionally, Song et al. (2019) found that the 

outcomes of the sensor assisted TKR were not better than those manually balanced 
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when the patients were matched for both demographics and preoperative knee 

condition.  

Despite this, there is still an argument for the accuracy of the sensors used in 

those studies. Additionally, the state of unbalanced, slightly or severally unbalanced, 

can dramatically change these results and therefore, the use of a sensor for load 

balancing by inexperienced surgeons is a must to avoid associated complications. 

Although still debated in literature, the ability to measure the load and track it would 

still improve surgical outcome by determining optimal loads intraoperatively to improve 

mechanical outcomes especially for inexperienced surgeons who are less likely to 

achieve a balanced or close to a balanced knee.  

3.3 Creating a Balanced Knee 

Setting the correct tension in the knee remains a challenging task for surgeons. 

Over-tensioning and insufficient tensioning both lead to improper load distribution 

which causes the need for an early revision knee surgery. Excessive ligament tension 

can result in painful and stiff knees and deficient tension can result in instability 

(Delanois et al. 2016; Gustke et al. 2017; Kwon et al. 2017; Verstraete et al. 2017; 

Kappel et al. 2018; Walker et al. 2018; Watanabe et al. 2020). Having a tool to aid in 

proper soft tissue tensioning could eliminate these postoperative complications by 

providing proper tension and stability to the knee. Research found the proportion of 

balanced knees after TKRs were higher in sensor-guided TKRs done by inexperienced 

surgeons than surgeon-guided TKRs performed by experienced surgeons (72% vs. 60%)  

(Golladay et al. 2019). Research by MacDessi et al. (2021) demonstrated that surgeons 

struggled to identify a balanced knee where in an analysis of 322 TKRs expert surgeons 

were only able to accurately determine a balanced knee 63% of the time at 10° of 

flexion, 57.5% at 45°, and 63.7% at 90°. Additionally, Golladay et al. (2019) confirmed 

the success of intraoperative sensors by reporting that more balanced knees were 

achieved when TKRs were performed with a sensor versus without (84.0% vs. 50.6%), 

where patients were more satisfied with the balanced knees. Moreover, researchers 

found that when identifying and correcting overstuffing in TKRs, tibial forces were 

more useful than varus-valgus laxities (Roth et al. 2021).  

This literature demonstrates that surgeon experience alone can be inadequate 

when balancing the joint, compared to intraoperative sensors. Therefore, through the 
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introduction of an intraoperative sensor, a surgeons' ability to balance the knee can 

improve. 

3.4 Defining a Balanced Knee 

There have been various debates on what defines a balanced knee. According to 

the developers of VERASENSE, a commercial intraoperative load sensor, a balanced 

knee is achieved when the following two points are satisfied. 

1.  The joint is stable in the sagittal plane  

2. The compressive loads are below 244.7 N for the medial compartment and 

200.2 N for the lateral compartments, and the intercompartmental load 

difference is below or equal to 66.7 N (LaPrade et al. 2008; Gustke (a) et al. 

2014; Gustke (b) et al. 2014; Gustke (c) et al. 2014) 

The first definition of a balanced knee was confirmed after a study in which 

surgeons performed a TKR according to his or her standard balancing procedure. Then 

the VERASENSE sensor was used, and the mediolateral loading values were recorded 

at 10º, 45º and 90º of flexion. Patients' reports were taken before and after the operation 

(6 weeks, 6 months and annually for 3 years). The 6-month and 1-year outcomes found 

that the patients within the 66.7 N difference exhibited higher function, less pain, 

increased satisfaction, and greater activity levels within an acceptable ROM compared 

to those outside of that range of force (Gustke (a) et al. 2014; Gustke (b) et al. 2014; 

Gustke (c) et al. 2014; Gustke (d) 2014). Elmallah et al. (2016) later used previous 

research to form their definition of a balanced knee according to the following points on 

intraoperative load: 

1. Mediolateral load differential of 66.7 N through a ROM (10º, 45º, and 90º 

of flexion)  

2. An absolute load between 44.5 N and 177.9 N 

These definitions of the load desired to create a balanced knee are widely used 

and informed by biomechanical research and previous literature (Gustke (c) et al. 2014; 

Walker et al. 2014; Elmallah et al. 2016; Amundsen et al. 2017; Risitano et al. 2017). 

This includes evidence from biomechanical research clarifying contact loads from the 

joint in a passive state (Walker et al. 2014), intraoperative observations made by 

surgeons quantifying varus/valgus stresses and load changes with orientation (Walker et 

al. 2014), and a decrease in postoperative outcome scores in patients with an 
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intercompartmental load difference greater than 89.0 N (Gustke (a) et al. 2014; Gustke 

(b) et al. 2014; Gustke (c) et al. 2014) 

The definitions of a balanced knee still need support from more research to 

confirm their validity, but they do provide a frame of reference for comparing research 

done in this field.    

3.5 Load Distribution 

The optimal load distribution for TKRs is debated as there are different theories 

when balancing the knee: should the load be evenly distributed to avoid early wear of 

the components, or should the load distribution more closely mimic the natural knee? 

These questions mean that it is difficult to provide a validated target load through 

literature to define a balanced knee. However, the working definition mentioned 

previously, and the ideal loads discussed below are what most literature use to classify a 

balanced knee.  

When balancing the knee during TKRs, the maximum acceptable load has been 

studied and argued. While using VERASENSE, Gustke (c) et al. (2014) concluded that 

the maximum load should be 177.9 N, Risitano et al. (2017) found that 311.4 N should 

not be exceeded, and Song et al. (2019) determined 244.7 N to be the maximum 

acceptable load on either compartment. However, studies all agreed that the 

VERASENSE developer’s recommendation of a maximum mediolateral difference of 

66.7 N and a maximum medial or lateral load of 311.4 N should not be exceeded 

because of an increased risk of postoperative stiffness and early PE wear (Gustke (c) et 

al. 2014; Meere et al. 2016; Risitano et al. 2017; Song et al. 2019).  Maintaining 

compartmental load values between 89.0 N and 177.9 N with a constant magnitude 

through flexion and extension has also been recommended (Asano et al. 2004). Risitano 

et al. (2017) classified kinematically stable knees as those with a mean force of 222.4 N 

± 89.0 N on the medial compartment, with a mediolateral intercompartmental difference 

within 44.5 to 89.0 N. 

Some research has indicated that the intercompartmental load differential should 

ideally not be exactly equal because of the load distribution in the normal knee. In a 

study using eLibra, a lower differential of mediolateral forces in extension were 

associated with a greater risk of patient dissatisfaction (Jacobs et al. 2016). This 

research was not the first to suggest that imbalances in the load might be beneficial 
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compared to a truly balanced load. Research supports that some patients prefer mild to 

moderate mediolateral laxity (Edwards, Miller and Chan, 1988). This was confirmed by 

more research observing higher average loads in the medial compartments during sensor 

assisted TKRs (Song et al. 2019).  

These unequal compartmental forces are not always associated with poor patient 

reported and functional outcomes. Having greater compressive forces on the medial 

compartment through the ROM can reproduce the medial pivot and lateral femoral 

rollback seen in the natural knee (Iwaki et al. 2000; Okazaki et al. 2006; Gustke (c) et 

al. 2014). More research also confirmed that slightly greater pressures on the medial 

compartment are more consistent with natural knee kinematics and as a result, may be 

more optimal in TKRs (Matsumoto et al. 2011).  

According to the literature it can be understood that although perfectly balancing 

the load may be optimal theoretically, in practice mimicking the original kinematics of 

the knee may lead to greater success. This was demonstrated by understanding that the 

load between the medial and lateral compartments does not necessarily need to be 

exactly equal, but some success has been seen when the difference in loads between the 

medial and lateral compartment is about 66.7 N and the loads on each side are below 

311.4 N.  

Table 3.1: Ideal target loads for TKRs according to literature 

Force (Gustke 2012) (Risitano et al. 2017) (Song et al. 2019) VERASENSE 

Maximum 177.9 N 311.4 N 244.7 N 311.4 N 

Medial ≤ 177.9 N 222.4± 89.0 N ≤ 244.7 N ≤ 244.7 N 

Lateral  ≤ 177.9 N 155.7 ± 89.0 N ≤177.9 N ≤ 200.2 N 

Difference ≤ 66.7 N 66.7±22.2 N ≤ 66.7 N ≤ 66.7 N 

 

Table 3.1 describes what various studies have determine was the optimal load 

values in the compartments. The maximum load in either compartment varied amongst 

different researchers along with the compartmental loads and the intercompartmental 

load difference. These varying optimal load distributions can be more accurately 

investigated with a more robust sensor which can more accurately record the load 

intraoperatively and correlate this with patient reported and functional outcomes both 

short and long term.  

3.6 History of Load Sensors 



   

 

  30 

 

Since the 1960s, strain gauges have been the standard electrical component used 

in smart implants (Ledet et al. 2018). The first measurement of a TKR knee was 

documented in 1975 where Perry et al. (1975) used a tibial plate to measure forces in 

the knee. Four strain gauges were later used in the tibial tray to measure forces in the 

knee (Kaufman et al. 1996). Improvements to the technology used radiofrequency 

transmission of tibiofemoral compressive forces and locations (D’Lima et al. 2005). The 

first computerised tibial sensor was reported by Wasielewski et al. (2004) to detect 

unequal compartment loads intraoperatively. This device was developed by modifying a 

pressure-sensing matrix array and incorporating it into a PE insert of the same size as 

the tibial tray. This sensor was not proposed for soft tissue balancing particularly, rather 

for understanding the forces in the knee intraoperatively. Later, the tibial tray was 

improved to use postoperatively to determine that peak axial contact forces during 

walking increased substantially over the first three weeks postoperatively, peaking at 

2.8BW (Heinlein et al. 2009).  

A 9-channel telemetry system was created for in-vivo load measurements in the 

knee by Graichen et al. (2007) and used in research by Kutzner et al. (2010) to measure 

intraoperative load measurements in the knee following a TKR. It was deduced that the 

resultant contact forces during dynamic activities were much lower than what was 

predicted by mathematical models like the one created by Wismans et al. (1980) and 

suggested that axial compression represents the primary loading direction on the tibia 

with a 60-40 medial-lateral load distribution respectively (Kutzner et al. 2010).  

More recent advancements have allowed microelectronic sensors to be 

embedded in a tibial insert which can be connected wirelessly to a monitor (Roche et al. 

2014). This type of pressure sensor allows the surgeon to receive visual feedback 

specific to the patient which provides a quantitative assessment for balancing the soft 

tissue for each surgery. Modern intraoperative sensors have been reported to 

significantly improve patient reported outcome scores and functional postoperative 

outcomes (Roche et al. 2014; Delanois et al. 2016). A common criticism for the use of a 

sensor guided tibial trial is that it provides passive forces rather than active because the 

knee is not loaded by contracted muscles and weight bearing intraoperatively. However, 

still (Wasielewski et al. 2004) reported that TKRs with uneven compartment pressures 

correlated with abnormal femoral condylar lift-off during postoperative fluoroscopic 



   

 

  31 

 

kinematic studies demonstrating that compartment pressure balance significantly 

impacted kinematic performance postoperatively.  

3.7 Modern Sensors 

Measuring the forces in the knee can provide surgeons with an accurate, 

quantifiable, and reproducible method for soft tissue balancing. Research has found that 

there is a significant correlation between the soft tissue tension and the 

intercompartmental contact forces where a linear relationship has been demonstrated 

using a validated mechanical knee model throughout the flexion arc (0°, 30°, 45°, 60°, 

90°, and 110°) (Figure 3.1) (Sanz-Pena et al. 2019).  Intraoperative sensors aim to 

accurately measure tibiofemoral contact forces in real time throughout a ROM (Crottet 

et al. 2005). The need for such device is apparent where at least 60% of TKRs needed 

additional balancing procedures in a study by Batailler et al. (2021), where having a 

quantitively balanced knee provided higher patient satisfaction scores.  

 

 

 

 

For intraoperative sensors to achieve proper results, according to Roth et al. 

(2017) the design of the device must meet the following criteria:   

• The sensor must be interchangeable with the tibial base tray 

• It must be able to identify the location and force of femorotibial peak contact 

points over the whole surface of the implant because of the contact points 

located at the edge of the tibial insert during flexion of the knee 

Figure 3.1: Correlation Between Total (medial + lateral) Ligament Force and 

Total Contact Force (Sanz-Pena et al. 2019) 
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• Must be able to identify the location and load in both the medial and lateral 

compartments.  

• Have a low error margin for the force at contact points (< 5 mm). 

• Have low error boundaries of locating femorotibial kinematics.  

• Must be able to withstand up to 450 N force at contact points to identify any 

imbalances after the TKR.   

In addition, the introduction of a sensor to the TKR procedure should not 

significantly increase the surgical time. Cochetti et al. (2020) confirmed that 

intraoperative sensors could satisfy this point by finding that the average surgical times 

increased by only 8 minutes for TKRs performed with sensors.  

Today, there are two intraoperative sensors which have been commercialised: 

VERASENSE and the eLibra system. These sensors quantify load data through laxity 

testing and flex-extension cycles to give orthopaedic surgeons data that supports a 

decision regarding balancing the soft tissue and positioning the implant. Moreover, 

independent load sensors have also been used to understand the kinematics and forces in 

the knee as well.  

3.8 Conclusion 

In conclusion, a TKR is necessary for patients experiencing debilitating pain 

from injuries such as end-stage arthritis, most commonly osteoarthritis. The progression 

of the surgery over time has introduced more advanced equipment including 

intraoperative load sensors.  This addition has shown to improve the surgeon’s ability to 

balance the knee. It is thought that insufficient soft tissue balancing can limit the ROM, 

cause malalignment, knee instability, improper tracking of the patella, premature 

mechanical failure, and pain (Fehring 2000; Matsuda et al. 2005). However, validation 

of what a balanced knee is and correlating the balanced knee to improved outcomes are 

topics that should be explored more deeply as well as the accuracy of such devices. 

The development of the TKR procedure, in general, aims to increase the success 

of the surgery by providing restored function and decreased pain in the joint. This can 

be measured through a patient satisfaction scoring system or a more quantitative 

approach, like a reduction in early revision surgeries. 
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4  Chapter 4: Current Intraoperative 

Load Sensors  
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4.1 Introduction 

Various companies and researchers have attempted to create intraoperative load 

sensors for TKRs. There were two commercial sensors on the market, VERASENSE by 

OrthoSensor and later bought by Stryker and eLibra by Zimmer Biomet. As of 2023, 

eLibra was no longer in use and there are plans for the removal of VERASENSE from 

the market. This leaves a gap in the market for a more robust tool to aid in TKRs.  

Moreover, independent knee joint sensors for measuring tibiofemoral joint 

forces have been created since 1996 with new sensors being created as of 2023. 

Understanding the previous sensors provides a foundation for creating a more robust 

intraoperative load sensor.  

4.2 VERASENSE 

VERASENSE, a single use tibial trial sensor, provides load data through a ROM 

about the tibiofemoral contact points in flexion and extension (Siddiqi et al. 2020). To 

balance the ligaments, VERASENSE has three load transducers in each compartment 

that predict the centre of pressure and location in each compartment. The location and 

magnitude of compartmental loads is displayed by triangulating the feedback from 3 

piezoresistive sensor (Park and Song 2021). Therefore, the sensing area only occupies 

22% of the area of each compartment (Gustke 2012; Park and Song 2021). It has been 

reported that the precision of both the force and location were greatly reduced when the 

load was outside the sensing area (Nicolet-Petersen et al. 2018), meaning increasing the 

sensing area of the sensor would increase the accuracy of the device. 

The exact values for defining a balanced knee and its impact on the outcome of a 

TKR has been debated through the literature. Clinical research on VERASENSE 

suggests that balancing is achieved when the intercompartmental load, the difference in 

load between the medial and lateral compartment, is less than or equal to 66.7 N (15 lbf) 

while the load in each compartment is within the range of 22.2 N to 177.9 N (5 lbf - 40 

lbf) through the passive ROM (10º, 45º, and 90º). 

The graphical user interface (GUI) of VERASENSE includes four calibration 

indicators represented by assorted colours to indicate which range the load sits in. Green 

indicates the load is between 22.2 N and 177.9 N (5 lbf and 40 lbf) which, according 



   

 

  35 

 

VERASENSE, is the advised measurements range. When the load is above 311.4 N (70 

lbf) the device is considered overloaded, and the results are not accurate.  

The developers of VERASENSE reported that the force measurements are 

accurate within ±8.9-13.3 N (±2-3 lbf) for each measurement; however, an independent 

study found that for a range of forces between 66.7 N – 133.3 N (15 lbf-30 lbf) the 

average bias was -23.6 N (-5.32 lbf) which is almost double what VERASENSE 

suggests (Nicolet-Petersen et al. 2018). This research demonstrates the need for a more 

robust and accurate sensor which is not only accurate within this range but can also 

track the load over the whole surface of the sensor.  

 

Figure 4.1: VERASENSE Display and Sensor (Anon. 2024a) 

4.2.1 Literature using VERASENSE 

To investigate and validate the design of a next generation of intraoperative load 

sensors, it was important to critically appraise the sensors on the market and the 

research which informed the determination of proper load balancing. This also aided in 

identifying gaps in knowledge surrounding ideal values for load balancing in the knee 

and the load sensor itself. 

Balancing with VERASENSE:  

The first use of the VERASENSE system found a balanced knee showed greater 

improvements compared to the unbalanced knee. Specifically finding that well-balanced 

TKRs were 2.5 times more likely to have significant improvements in patient-reported 

outcomes 6-months postoperatively and continued to have superior patient satisfaction 
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scores (p < 0.085) and Knee Society Scores (p < 0.001) after 1-year compared to TKRs 

which were not well balanced (Gustke (b) et al. 2014).  

Additionally, VERASENSE or other load sensors can aid surgeons of all levels 

in balancing the knee. Research investigated 84 TKRs and determined that only 35.7% 

of knees were balanced initially while using standard balancing procedures then those 

unbalanced knees were redone with VERASENSE 94% were able to be balanced with 

an intercompartmental load difference of less than 66.7 N (15 lbf) (Cho et al. 2018). 

Another study observed that patients with TKRs balanced by VERASENSE had 

significantly lower compartmental loads at 10°, 45° and 90° of flexion, compared to 

TKRs with traditional manual balancing techniques, concluding that sensors provide 

objective feedback for soft tissue balancing and can potentially improve knee balancing 

and rotational alignment (Elmallah et al. 2016). A study by Geller et al. (2017) 

compared sensor assisted TKRs to manually balanced TKRs and found that the sensor 

assisted group had improved ligament balancing with a significant reduction in 

manipulation under anaesthesia required after the TKR. Another study compared 75 

intraoperative sensor-guided TKRs with a control group where classic instruments were 

used for balancing. This research found that the sensor group had a substantially lower 

unexpected usage of constrained inserts (5.3%) when compared to the control group 

(13.8%) (Amundsen et al. 2017). Constrained inserts limit movement of the knee 

(Konopka et al. 2018) and lead to increased PE wear which leads to component 

loosening (Green et al. 2000; DeHeer et al. 2001; Fisher et al. 2004; Naudie et al. 2007). 

A cadaveric study found that in 5 out of 6 knees, additional soft tissue balancing was 

required when balanced without VERASENSE (Riis et al. 2019). This literature proves 

that surgeons alone are not always the best at balancing the joint properly, leading to 

reduced patient outcomes and increased revision surgeries, this also proves the 

advantage of using such devices even for experienced surgeons. 

According to research surrounding VERASENSE it seems there was more 

emphasis on the balancing the loads within a certain range versus achieving a singular 

value. However, validation of the clinical outcomes from balancing the 

intercompartmental forces within the 66.7 N (15 lbf) cut-off was challenged. It was 

reported that having major differences in intercompartmental forces did not impact 

clinical outcomes, concluding that the 66.7 N (15 lbf) cut-off was arbitrary (Meneghini 

et al. 2016; Risitano et al. 2017). This finding contradicts the VERASENSE developer’s 
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implication that 66.7 N (15 lbf) was crucial in TKR satisfaction; however, it does 

highlight the need for additional research on quantifying the loads in the knee and/or the 

need for a more accurate sensor. 

Several studies have aimed to provide insight on these passive loads by using 

VERASENSE to observe the medial and lateral loads throughout the ROM. During a 

TKR, the highest loads were observed in full extension with most of the load 

transmitted through the medial compartment. This was confirmed by research stating 

that VERASENSE balanced TKRs had greater forces medially compared to traditional 

TKRs where the forces were higher laterally (Meere et al. 2015; Manning et al. 2019; 

Sabatini et al. 2021). This was the load distribution more commonly seen in the natural 

knee (Becker et al. 2013), which could explain why patients tend to prefer it. Similarly, 

a review of 189 TKRs balanced with VERASENSE found that mean medial forces 

(314.5 N (70.7 lbf)) were higher than the lateral forces (195.7 N (44.0 lbf)) at 0º, 45º, 

and 90º of flexion; they also noted that PROM outcomes were not related to the medial 

and lateral compartment loads being balanced (Meneghini et al. 2016). Additionally 

separate studies found that with increased flexion the pressure decreased in both 

compartments (Schnaser et al. 2015; Manning et al. 2019; Sabatini et al. 2021; Shah et 

al. 2021). From this research it can be understood that a more accurate load sensor could 

provide researchers with a deeper understanding of the optimal load distributions in the 

knee and what values are ideal for implant longevity and patient satisfaction. 

Specifically, having a sensor which is able to track posterior femoral rollback which is 

not visible using VERASENSE due to its limited sensing area.  

4.3 eLibra  

The eLibra system was another sensor developed to balance the knee during a 

TKR. The sensor, unlike VERASENSE, is placed beneath the tibial spacer and has 

force transducers on the medial and lateral sides that display its values on a screen, from 

a scale of 0 to 20 units, where each unit represents about 15 N (3.4 lbf). 

Using eLibra, a study balanced the knee’s flexion gap for 50 patients where they 

all showed significant improvements in terms of reliance on assistive devices for 

movement and significant decreases in pain (Nevins and Leffers 2009). A study by 

Jacobs et al. (2016) observed 50 TKRs intraoperatively with eLibra and determined that 

having greater forces medially may result in improved patient reported outcomes, 
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increased patient satisfaction, and may have the greatest effect on more demanding 

activities like using stairs. Additionally, a study reviewing eLibra found the device 

simple to use, highly accurate, and reproducible (Camarata 2014).  

 

 

 

 

 

 

 

 

Figure 4.2: eLibra Sensor (Anon. 2024b) 

4.4 Limitations of VERASENSE and eLibra 

Despite the advances in the technology surrounding intraoperative sensors, there 

were still limitations to such devices. These limitations can impact the accuracy and 

reliability of the research surrounding the forces, kinematics, and balancing of the knee 

that use these sensors. 

First, for both VERASENSE and eLibra the sensors are arranged triangularly in 

the medial and lateral compartments, creating a relatively limited sensing area. As a 

result, when contact points were outside of this area the accuracy of the device was 

greatly compromised. A study on VERASENSE’s accuracy confirmed this by finding 

that the biases for the loads outside of the sensing area were more than two (outer 

anterior) and three (outer posterior) times greater than that of the loads within the 

sensing area (Nicolet- Petersen et al. 2018). This does not fulfil the design criteria 

determined by Roth et al. (2017), namely by its inability to determine the location and 

force over the full articular surface. This point is especially necessary in deep flexion 

where contact points are near the posterior edge because of femoral rollback.   

Additionally, VERASENSE was only calibrated to withstand passive forces, up 

to 310 N (69.7 lbf) and eLibra 300 N (67.4 lbf) in each compartment and therefore with 

higher loads, the devices were no longer reliable (Shah et al. 2021). Moreover, the 

criteria mentioned by Roth et al. (2017) was not satisfied in this case since 450 N was 

determined as the upper limit required for a tibiofemoral sensor.  
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Additionally, the physical design of the sensors was of concern for different 

reasons. eLibra’s tibial sensor was flat and as a result this system does not mimic the in-

service environment for which the tibial spacer exists.  Furthermore, eLibra is not able 

to determine the location of the applied load over its surface, Although VERASENSE 

uses a curved tibial sensor and is able to determine the location of the load, the 

compatibility was of concern since the new generation of VERASENSE was compatible 

with only three prosthetics none of which included the Persona Knee System (PKS) 

which was provided by the sponsors of this research.  

Moreover, the cost of these sensor may outweigh the benefits. The cost of the 

VERASENSE sensor was about 400 GBP (Park and Song 2021). The benefit of this 

system may be questioned where some studies have found no improvements in clinical 

outcomes or patient satisfaction (Song et al. 2019; Wood et al. 2021). Whether this is 

because the ideal tension has not been found, or the system is inaccurate in defining the 

load is unknown. This observation makes the benefit of the system debatable as these 

sensors were single-use, costly additions to the surgical procedures. Research agrees 

that the cost-benefit ratio of the sensor needs to be studied further (Song et al. 2019; 

Wood et al. 2021). 

Lastly, there were debates over ideal loads for balancing the compartments 

which was a limitation of these sensors. Although the developers recommend the values 

mentioned previously there has also been success with more medially loaded knees 

suggesting that the developers’ recommendations were arbitrary. Therefore, more 

research on the ideal loads using these sensors could improve physiological outcomes 

and reduce revision rates. 

After discussions with an eLibra representative it was uncovered that eLibra has 

been discontinued. The reasons stated were the cost of the disposable device, not 

knowing what the target was for the load, the units not being specific, and insensitivity 

especially with posterior stabilized (PS) implants where it did not work at all or a 

thicker insert than intended was needed to register any load. 

Although research has shown some success in using both systems there were 

still significant limitations that may be improved upon. This research aims to address 

some of these limitations by validating the design of a new intraoperative sensor and 

adding to the existing literature surrounding the forces in the knee. 



   

 

  40 

 

4.5 Independent Load Sensors 

Moreover, independent researchers have dedicated time and effort developing 

their own joint force sensors various methodologies. This section aims to review those 

sensors to inform the development of the sensor used in this research. Table 4.1 displays 

the different load sensors used in joint force measuring applications and their working 

principles for analysis.  

 

Figure 4.3: Independent Knee Sensor by Crottet et al. (2005) 
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Table 4.1: Independent Joint Load Sensors 

Reference Sensor Type Num of 

Sensors 

Housing Unit  Load Range  Error Testing 

Shape Material 

(Kaufman et 

al. 1996) 

240 Ω strain 

gauges 

4 -Flat 

-6 mm thicker than standard 

insert 

Stainless Steel 

 

Up to 667N 

-Assumes linear 

behaviour 

-0.3-3.2% 

-0.58-0.79 mm 

Lab testing 

(Skrinskas et 

al. 2003) 

Strain gauge 4 Flat rectangular  Modified tensioning device Maximum: 200N   

 

-2.7 N 

-Does not measure 

location 

Cadaveric testing 

(Wasielewski 

et al. 2004) 

Pressure 

sensor  

2 matrix arrays Curved to fit over femur PE Max: 130N/cm2  - Clinical trials  

(Crottet et al. 

2005) 

 

Figure 4.3 

Thick-film 

piezoresistive  

 

6 - Flat 

-Slits for load concentration 

-Separate medial and lateral 

compartments 

-No adjustable height 

-  0N-500N 2.6 N 

 0.8 mm 

Knee simulator 

and cadaveric 

testing 

(Nicholls et al. 

2007) 

Strain gauges 6 -Flat 

 

Brass 10N-285N -10% within 

triangular sensing 

area 

-Neglected shear 

component 

- No mention of 

location 

measurement 

Cadaveric testing 

(Nolten et al. 

2009) 

Piezoresistive  6 Curved and cut in half   PE (tibial trial from 

Columbus implant from 

Aesculap AG) 

Up to 100N -No temperature 

compensation 

-No location 

measurement  

Lab testing  

(Wu et al. 

2009) 

Piezoresistive  6 -Flat  

-27.3-38.3 mm thick 

Unspecified rigid material 0-15 N - 0.098 N 

- Does not measure 

location 

Cadaveric testing 

(5 knees) 

(Anastasiadis 

et al. 2010) 

Load cell 4 Flat Surgical grade stainless steel 

316L 

- Each load cell: 

0-200 N 

-Small rectangular 

sensing area  

Lab and cadaveric 

testing  
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- Testing range: 

100 N-400 N 

(Hasenkamp 

et al. 2013) 

3.2kΩ strain 

gauge 

2 Flat surface Polyimide (PI) 

 

200 N-3100 N 

Non-linear 

-38% error after 10 

seconds  

- 85% after 100 

seconds 

FEA and Lab 

testing 

(Forchelet et 

al. 2014) 

3.2kΩ  

strain gauge 

2 -Flat 

-Sits under tibial spacer 

- Long term implantation 

PE 

 

0 N-900 N --No mention of 

location 

measurements 

Mechanical knee 

simulator  

(Verstraete et 

al. 2017) 

Tekscan type 

4011 pressure 

sensor 

2 

 

- Flat  

- Small sensing area (12.7 mm 

x 25.4 mm) 

3D printed Polylactic acid 

(PLA) filament 

50 N-300 N - ±13.1% 

-No mention of 

location 

measurements 

Cadaveric testing  

(Jiang et al. 

2019) 

Piezoresistive  6 Curved surface 

 

Medical-level polycarbonate 0 N-45 N ±5 N Mechanical knee 

simulator 

(Safaei et al. 

2019) 

Piezoelectric  6  -Flat 

-Rectangular (75 mm x 45 mm 

x 8 mm) 

 

 3D printed PLA 50 N – 1500 N  -6% for force (6 

sensors)  

-1 mm for contact 

points 

Lab testing  

(Jain et al. 

2021) 

Triboelectric 

harvesters 

- - PE 

 

450-650 N 

-Aimed to detect 

unsafe loads 

Max error: 3.48%  

-No mention of 

location 

measurements  

Rig for cyclic 

loading 

(Ives et al. 

2022) 

Electrode 

capacitive 

microfluidic 

force sensor   

6 - Hip sensor 

-Ball and socket 

3D printed Resin 

 

Up to 400 N - FEA and 

mechanical hip 

simulator  

(Wang et al. 

2022) 

Piezoelectric 6 Curved  Flexible polyethylene 

terephthalate (PET) substrate 

Range: 0-50 N 0.08-0.14N (<2%) Knee joint 

simulation 

(Kuriyama et 

al. 2023) 

- 6 -Curved 

-Small sensing area 

- Minimum- 22 N 

 

-Does not measure 

location 

- Resolution -4.45 

N 

Cadaveric 
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(Ge et al. 

2023) 

Pressure 

sensitive 

electrode 

197 measuring 

points 

-Flat 

-Unicompartmental 

- 45 x 35 mm2  

 

 

Pressure sensitive material 

with insulating layer 

Maximum 500 

N/cm2 

< 1 % (unclear how 

they measured this) 

-Does not measure 

location 

-Cadaveric testing 

60 knees 

-Clinical trials 

122 knees 

(Yin et al. 

2023) 

Piezoresistive 12 -Curved 

-Thick  

-Small sensing area 

-Carbon nanotube (CNT) 

layer 

-Polydimethylsiloxane 

(PDMS) composite  

0 -200 N -Axial: good 

sensitivity from 50 

– 100 N 

- Shear: Max is 80 

N 

-Lab testing 
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The sensors in Table 4.1 include a wide variety of materials, electronics, design 

shapes, and testing methodologies. Overall, there were 19 joint sensors included from 

1996-2023 where 18 were knee joint sensors and 1 was a hip sensor. Of the 18 knee 

sensors, 6 used strain gauges, 5 used piezoresistive sensors, 4 used pressure sensors, and 

2 used piezoelectric sensors. Moreover, most of the sensors used 6 sensors within the 

device; others used either 12, 4, 2, or matrix arrays which were unspecified.   

The main criticisms of most devices were that the sensing range was not 

inclusive of the loads required for intraoperative balancing during a TKR and that the 

geometry of the housing unit was flat/not curved to match the femoral implant. This 

meant that sensor was prone to sliding on the tibia during use and that the sensor did not 

replace the tibial spacer used in final implantation which creates inconsistencies in its 

use. Some of the flat tibial sensors specify having a curved PE insert placed on top of 

the sensor to maintain congruency between the femoral implant, the tibial spacer, and 

sensor. However, this will decrease the sensitivity, not register a load, or require a 

thicker PE insert to register a load as what was observed when using eLibra (Yapp et al. 

2021). Moreover, for many of the sensors, the load is shared through the supports, 

without passing through the sensors first. This means that there is no way to know how 

much of the total load is recorded by the tibial sensor.  

The sensor area was also limited based on the placements of the electronics. For 

example, a sensor made by using a pressure sensor only had an area of 322.58 mm2 

which compared to the size of the sensor is small, especially considering the sensor was 

flat (Verstraete et al. 2017). Figure 4.4 depicts the sensing area in comparison to the size 

of the sensor.  

 

 

 

 

 

 

 

Figure 4.4: Sensing Area from an Independent Knee Sensor by Verstraete et al. (2017) 
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Another sensor made by Anastasiadis et al. (2010) claimed to have good 

accuracy for measuring the load and location intraoperatively however, only tested 

points within their sensing region which had an area of 800 mm2 compared to the 

sensor’s area of 3,500 mm2 (Figure 4.5). This neglected the outer contours and included 

space between the two compartments which do not have contact points with the femur 

intraoperatively.  

 

 

 

 

 

 

 

 

 

 

Furthermore, the sensors which claim to have good accuracy and or sensitivity 

fail to include an acceptable sensing range. For example, research by Wu et al. (2009) 

which claims to have an accuracy of 0.098 N, but only measures within the range of 0 N 

– 15 N. Moreover, most the curved sensors fail to mention accounting for the shear 

forces in their calculations where during full extension there is a larger shear component 

from the joint contact forces (JCF) (Hashemi et al. 2011). Many of the sensors also 

failed to mention having a method of identifying the centre of pressure which is a 

disadvantage to such systems.  

Additionally, most sensors either did not include or failed to mention if there 

was a method for increasing the thickness of the sensor. This would mean that if a 

thicker PE insert was required, the sensor would have to be entirely changed. Without 

the use of a method of increasing the height, which is underneath the sensors, the 

thicker sensors would suffer from a reduction in sensitivity requiring more deflection to 

receive readings which would also compromise the integrity of the sensor. Of the 

sensors mentioned only 2 separated the medial and lateral compartments to avoid 

mechanical crosstalk (Crottet et al. 2005; Nolten et al. 2009) and only one of those used 

Figure 4.5: Anastasiadis et al. (2010) Sensor and Sensing Area 
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slits in the sensors surface to concentrate the load to the sensors (Crottet et al. 2005). 

This sensor had a good sensing range and was tested using a knee simulator and in 

cadavers. However, the drawback was that the surface of the sensor was flat, the sensing 

area was limited by triangulation, and there was no mention of ability to adjust the 

thickness of the sensor.  

Moreover, the structural integrity of the sensor is not to be overlooked, where 

the sensitivity and the flexibility have a good trade-off with the strength. Polymers were 

most used where 11 sensors were made using a variety of polymers using various 

fabrication methods (Wasielewski et al. 2004; Nolten et al. 2009; Hasenkamp et al. 

2013; Forchelet et al. 2014; Yin et al. 2015; Verstraete et al. 2017; Jiang et al. 2019; 

Safaei et al. 2019; Ives et al. 2022; Wang et al. 2022; Ge et al. 2023) , while 4 

mentioned using metals (Kaufman et al. 1996; Skrinskas et al. 2003; Nicholls et al. 

2007; Anastasiadis et al. 2010). 3D printed plastics may suffer from decreased strength 

as demonstrated by one sensor which used a 3D printed PLA filament and broke during 

testing (Verstraete et al. 2017).  

4.6 Conclusion 

In conclusion, the two main sensors which are/were on the market are eLibra 

and VERASENSE. eLibra is no longer on the market and there are plans to remove 

VERASENSE. They both operate using triangulation to calculate the load and track the 

location and have decreased accuracy outside the sensing area. However, research has 

shown success in using both systems as well as some limitations that may be improved 

upon. Moreover, independent researchers have attempted to create intraoperative joint 

force measurement tools which have been reviewed in this section also with their own 

advantages and disadvantages. This research aims to address some of the limitations of 

joint force measurement devices by validating the design of a new intraoperative sensor.  

4.7 Aims, Objectives, and Outline  

This research aims to develop and validate the design of a new intraoperative 

load sensor to improve the outcomes of TKRs by using cadaveric and laboratory 

accuracy testing to investigate the effectiveness, accuracy, and repeatability of the 

sensor in measuring the load intraoperatively. Currently the VERASENSE system by 
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OrthoSensor and the eLibra system by Zimmer Biomet were the two sensors which 

made it to market. However, the literature identifies some key limitations, as well as the 

limitations of independently made knee joint sensors.  

The sensor in this research aims to find accurate and instantaneous 

measurements of JCF throughout a ROM in the knee over the entire surface of the tibial 

insert. This will in turn increase the understanding of the forces in the knee 

intraoperatively that are relevant for balancing the load and increasing the success of a 

TKR surgery while allowing the orthopaedic surgeons to adjust the soft tissue in real 

time. With the increased accuracy and expanded sensing surfaces, the orthopaedic 

surgeon can accurately track and measure the JCF, and the centre of pressure can be 

identified in various positions and orientations across the whole contact surface of the 

sensor.  

The use of the sensor in TKR surgeries can provide a more balanced knee 

resulting in an easier and shorter recovery time as well as a better quality of life in terms 

of decreased pain, increased mobility, and longer durability of the joint. Additionally, 

the sensor could reduce the need for early revision surgeries which would decrease the 

economic burden endured by the NHS. 

For this research a parallel mixed method approach was employed which uses a 

combination of quantitative and qualitative research methods to develop, investigate, 

and validate this sensor (Figure 4.6). To design and validate an accurate intraoperative 

load sensor for use in TKRs, the following objectives have been set to accomplish this.  

1. Integration of design features to increase the accuracy and sensitivity of the 

sensor.  

2. Fabrication of a new and novel load sensor that can be adopted to different 

joints in the body.  

3. Use of AI to link electronics and the applied load and location on the 

surface of the sensor.  

4. Evaluation of the accuracy and performance of the sensor in real time.  

5. Understanding of the useability of the device in the clinical setting along 

with determining the success of the sensor based on expected kinetic and 

kinematic patterns intraoperatively.  
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Figure 4.6: Aims and Objective 

 

The following chapters describe the research that occurred and are as follows:  

Chapter 5: details the design and fabrication of the sensor. 

Chapter 6: describes the design and use of the artificial intelligence (AI) used  

Chapter 7: details the laboratory accuracy testing of the sensors. 

Chapter 8: describes the cadaveric testing of the Zimmer specific sensor. 

Chapter 9: discusses and critically appraises the thesis by chapter and concludes this 

research.  
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5 Chapter 5: Sensor Design and 

Fabrication  
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5.1 Physical Sensor Design  

When designing and fabricating the physical sensor there were several elements 

to consider. This included having the design be compatible with the Persona Knee 

System (PKS) and maintaining the adjustable thicknesses of the system called shims. 

Moreover, the design should be made while including the following: increasing 

sensitivity, reducing mechanical crosstalk, avoiding load sharing between the 

compartments, and having enough strength to withstand the load during training of the 

AI and intraoperative use. Therefore, when designing the sensor several stages ensued 

including the Computer Aided Design (CAD) drawing of the physical sensor using the 

PKS, design optimisation, stress raises for sensor placement, material selection, and 

fabrication which are described in the subsequent sections.   

5.1.1 Sensor Designs  

The design of the physical sensor was an iterative process with the aim of 

maximising the space for the electronics while maintaining the structural integrity of the 

sensor. Moreover, the design features aimed to increase to the quality of the readings at 

the sensor locations for the AI to be able to make accurate predictions. To start, CAD 

drawings, in SolidWorks, of the PKS provided by Zimmer Biomet were used to create a 

tibial insert that would be compatible with the femoral insert and replace the tibial 

spacer (Figure 5.1). The goals of these designs were to be compatible with the PKS, 

including a method for adjusting the thickness, not to overcomplicate the design by 

increasing the number of parts necessary, to raise the stress at the locations of the 

sensors, have enough strength to withstand the loads, and to isolate the loads between 

the compartments.   
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From these goals the three designs were created. One was a general design 

which could fit any implant system titled ‘Ring Design’ and used spacers/rings of 

different thicknesses to replace the shim system of the PKS. The second was a design 

that used the Persona’s shim system to adjust the height and was called ‘Zimmer 

Specific Design’. The last design was the first prototype used to develop various design 

features. The three designs used the tibial spacer from the PKS to maintain consistency 

between the curvature of the femoral implant and the sensor and were modelled for the 

right knee in the medium size (size E/F in PKS sizing).  

 

 

 

Tibial Base Plate 

Femoral 

Implant 

Tibial 

Spacer/Sensor 

Figure 5.1: Location of Sensor Relative to the Implant System 
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Figure 5.2: Persona Knee System (PKS) (Anon. 2024a) 

 

The Ring design can be seen in Figure 5.3, the third angle projection drawings 

can be seen in the Appendix (A.II). The dovetail kept the medial and lateral 

compartments together in the X and Y-axis while avoiding load sharing by allowing 

movement in the Z-axis. The slits through the surface of the sensor transferred the load 

to the tabs formed by the space between slits where the sensors were attached beneath. 

The aim of this feature was to reduce mechanical crosstalk and increase the sensitivity 

in these areas. The rings clipped into the bottom perimeter of the sensor to allow for 

varying thicknesses, to adjust the tension in the joint (Figure 5.4). The calibrated rings 

ranged from 1mm-6 mm in 1 mm increments which was standard for knee implant 

systems including Persona’s Shim System.  

Figure 5.3: CAD drawing for Ring design a) Top View b) Bottom View (according to X, 

Y, and Z Coordinates in Figure) 

(A) 
(B) 

Shim 

Tibial 

Articular 

Surface  

Tibial Base 

Plate  

Femoral 

Implant 
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The Zimmer Specific design, Figure 5.5 and Appendix A.II, maintained the use 

of the shims which allowed for the variable thickness and smooth integration of the 

existing elements of the PKS. The slits were carried forward from the Ring design with 

the same aim.  

 

 

 

 

 

The Zimmer Specific sensor in configuration with the rest of the PKS can be 

seen in Figure 5.6. 

  

Figure 5.4: Ring Design a) 1 mm Ring Attached (Bottom View) b) 1 mm Ring Attached (Front View) c) 

6mm Ring Attached (Front View) 

Figure 5.5: Zimmer Specific Design a) Top View b) Bottom View 

(A) (B) 

(C) 

(A) (B) 
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The third design (Figure 5.7) was a design used for the first iteration of 

prototyping. This design included the division of the medial and lateral compartments 

by splitting the compartments, but without the dovetail to limit movement in the X-axis 

and Y-axis. The use of the variable thickness trays instead of Persona’s shim system or 

rings can be seen, however there was no system to clip in the trays.  

 

  

 

 

 

 

 

 

 

5.1.2 Materials 

Figure 5.7: Third Design a) Top View b) Bottom View c) Front View 

0 mm 

Shim 

Tibial 

Articular 

Surface 

Provisional 

(TASP) 

Bottom 

Tibial Base 

Plate  

Tibial 

Sensor  

Figure 5.6: Zimmer Specific Sensor Configuration with PKS a) Exploded View b) Front 

View  

(A) 

(B) 

(B) (A) 

(C) 
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The materials for the sensor required some investigation. Metals and plastics 

were both explored since stress is not defined by the material used. Metal was used to 

provide strength while plastic and was lighter and cheaper to fabricate for initial proof 

of concept. The metals considered in this research were steel, aluminium, and titanium. 

Steel and titanium have high strength and hardness making it a good choice; however, 

they are more expensive. An added benefit to titanium is its biocompatibility. 

Aluminium, on the other hand, is not as strong, but it is lighter and cheaper to 

manufacture. Aluminium alloys would also increase the yield strength enough for the 

temporary implantation and use of this sensor. Aluminium, steel, and titanium are 

heavier than plastics; however, this is not a problem since the relatively high point loads 

needed for training the device with AI meant the adequate material strength is 

necessary.  

In this research the two plastics investigated were polyurethane resin (PU) and 

polypropylene (PP). PP was durable with high toughness and resistance to impact, 

relatively inexpensive, and was also used in certain biomedical applications which was 

ideal for prototyping and mass production. PU resin had a smooth finish and high 

impact strength.  However, plastics, especially 3D printed, have the potential for 

cracking because of the high residual stress concentrations caused by the printing and 

cooling process, which can be problematic with high stresses. Despite this, it was 

hypothesized at this stage that the AI could be trained with lower point loads as stress is 

material independent and AI is used to generate a transfer function between input and 

output. The table below, Table 5.1, shows the materials in order from lowest yield 

strength to highest.  
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Table 5.1: Advantages and Disadvantages of Different Materials 

Material  Advantages Disadvantages 

Polyurethane (PU) 

resin 

Smooth finish 

High impact strength 

Lowest yield strength 

Thermoset  

Polypropylene (PP) High tensile strength 

Lightweight (low density)  

Low water absorption  

Biocompatible  

Can be recycled (relatively low 

environmental impact) 

Thermoplastic 

Granular finish 

Aluminium Cheapest of the metals  

Lowest density of the metals 

Stronger than plastics 

Easy to machine 

Alloys can make stronger 

Lowest yield strength of the 

metals 

Steel Good strength  Most dense of the metals used 

Titanium Great strength to weight ratio 

Biocompatible  

Difficult to machine  

Expensive  

 

In summation, when choosing the proper material there were a few 

considerations. Firstly, the first design iteration of the sensor required a good trade-off 

between the cost, strength, machinability, durability. While titanium was a good choice 

in terms of strength and biocompatibility, it was expensive and difficult to machine 

making it ideal for the final design, but not for prototyping.  

5.2 Sensor Design Validation  

Finite Element Analysis (FEA) was a useful tool to investigate the maximum 

allowable load, sensor placement by confirming stress raises at tabs, the minimisation of 

load sharing, and the ability to collect training data for the AI.  

The two designs created in the previous section, the Ring design and the Zimmer 

Specific design, were analysed using FEA in SolidWorks. Homogeneity and linear 

elasticity were assumed. The metals and plastics discussed in the previous section were 

investigated as well including PU resin, PP, steel, titanium, and an aluminium alloy, 

Table 5.2.  

Table 5.2: Material Specifications from SolidWorks 

 

 

 

 

Material Elastic Modulus  Poisson’s Ratio Yield Strength 

Polyurethane (PU) Resin 0.920 GPa 0.320 0.370 MPa 

Polypropylene (PP) Copolymer 0.896 GPa 0.410 13.400 MPa 

Aluminium 6063 Alloy 69.000 GPa 0.330 240.000 MPa 

316L Stainless Steel 200.000 GPa 0.265 170.000 MPa 

Titanium CP-Ti  105.000 GPa 0.370 500.000 MPa 
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Additionally, the parts were constrained in the way they fit together with the rest 

of the implant parts (rings/shims and tibial tray) seen in Figure 5.8 and based on the 

PKS. For the Ring design, the dovetail was set as contact between the compartments. 

Moreover, the sensor locations were added to both designs with a size of 1.8 mm x 1.0 

mm where the average strain can be used as a means of validation. Overall, the 

boundary conditions were selected due to trial and error.  

5.2.1 Mesh Convergence 

 To ensure best result, a detailed mesh converge study was performed. A 

converged mesh model offers a good trade-off between accuracy and computational 

load/time to execute. This allows the results to be easily validated with the actual 

system, so the results simulated are mimicked in the real use of the system. Without 

this, the simulated results are useless. On the other hand, due to the iterative nature of 

this process, the time and computational load to execute should be limited.  

Ring Design:  

Each compartment was meshed independently where they both used a blended-

curvature mesh with tetrahedral elements (Table 5.3). For each compartment, a total of 

7 different mesh sizes were used.  

 

 

 

 

 

Figure 5.8: Fixtures and Connections and Strain Gauge Locations a) Ring b) Zimmer 

Specific 

(A) (B) 
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Side Gauge 
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Table 5.3: Mesh Number with Total Number of Elements for Each Compartment (Ring Sensor) 

 Medial Compartment Lateral Compartment 

Mesh Number Total Number of Elements Total Number of Elements  

1 4677 3721 

2 16573 23445 

3 69098 59211 

4 98067 70736 

5 111388 91865 

6 143888 126407 

7 182771 144160 

 

A point force of 200 N was applied in the centre of the compartment (Figure 

5.9) and the average von Mises stress taken from the area of the top sensor was 

recorded. The von Mises stress was used since is provides a single value to represent the 

combined effect of the stresses at one location, which simplifies analysis especially with 

complicated geometry and converges quicker with mesh refinement.  

The results of the medial compartment indicated that the Mesh 3 (69,098 total 

elements) provided sufficient mesh density for repeatable stresses (Figure 5.10 (a)) 

since the percent difference of stress results from Mesh 3 and 4 was only 0.65%, while 

the percent difference between Mesh 1 and 3 was 12.12%.  

For the lateral compartment the Mesh 3 was also a sufficient density (Figure 

5.10 (b)) where the percent difference between Mesh 3 and 4,5,6, and 7 were all less 

than 1.00% while the percent difference between Mesh 1 and 3 was 4.09%. The 

differences in the results between the compartments can be due to the size difference, 

sensor location, and slit location between the compartments.  

(

A) 

(

B) 

Figure 5.9: Location of Applied Load (200 N) a) Medial Load b) Lateral Load 

(B) 
(A) 
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The final mesh for the Ring design was used for subsequent FEA (Figure 5.13 

(a)), where the total number of elements was 128,309. 

Zimmer Specific Design:  

For the Zimmer Specific design, a similar process was followed for determining 

the proper mesh density; however, since this design was one part it was meshed together 

using 7 different meshes with a varying number of elements (Table 5.4).  
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Figure 5.10: Ring Design Mesh Convergence a) Medial Compartment b) Lateral Compartment 
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Table 5.4: Mesh Number with Total Number of Elements for Both Compartments (Zimmer Specific) 

 Both Compartments 

Mesh Number Total Number of Elements 

1 9639 

2 20754 

3 28382 

4 41471 

5 75033 

6 119280 

7 173052 

A point force (200 N) was applied to each compartment concurrently and the 

average von Mises stress over the area of the top sensor was recorded for each 

compartment (Figure 5.11). 

 

 

The results of the mesh convergence investigations indicated that the Mesh 5 

had converged with 75,033 elements, providing enough mesh density for both 

compartments. For the medial compartment, the percent difference between Mesh 1 and 

5 was 88.12% while Mesh 5 and 7 had the same stress results (Figure 5.12(a)). For the 

lateral compartment, the percent difference of the stress results between Mesh 1 and 5 

was 20.57% where the difference between Mesh 5 and 7 was 0.60% (Figure 5.12(b)).  

 

Figure 5.11: Location of Applied Load (200 N) on both Medial and Lateral Compartments 
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Figure 5.12: Zimmer Specific Mesh Convergence a) Medial Compartment b) Lateral Compartment  

Both compartments were investigated because although the medial compartment 

had stabilised at Mesh 3, the lateral compartment required a finer mesh to converge 

(Figure 5.12). As a result, a finer mesh size (Mesh 5) was required for the whole part.  

The final converged meshes can be seen in Figure 5.13. 
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5.2.2 Defining External Load 

In theory, the slits transfer the force to the tabs and therefore, the method of 

applying the load will be independent of the readings at the tabs. To confirm this, the 

effect of different definitions of a point load were investigated by applying five different 

external loads to the same location on the surface of the sensors.  

The same mesh densities and constraints were used for each design. To mimic 

the use of a ball bearing, two spherical areas (radius 1 mm and 2 mm) were created on 

the surface of the tibial sensor’s FEA models (Figure 5.14). 

 To apply 200 N as pressure, the surface areas were measured and divided by the 

200 N force. For the Zimmer Specific and Ring sensors, the pressures applied were 

15.88 and 15.91 MPa for the 4 mm diameter circle and 63.55 and 63.69 MPa for the 2 

Figure 5.13: Final Mesh a) Ring Design b) Zimmer Specific Design 

(B) 

Figure 5.14: Location of Applied Load a) Zimmer Specific (Medial) b) Ring (Lateral) 

(A) (B) 
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mm diameter circle respectively. For comparison, force was applied to the same areas 

and to a point in the centre. A list of the 5 forces applied are in Figure 5.15. 

 

Figure 5.15: Types of Loads Applied a) Ring Specific Values b) Zimmer Values 

The medial compartment of the Zimmer Specific design was used, and the 

average stress was taken from the location of the three sensors: Top, Side, and Bottom 

for each compartment. The local and contact stresses are not relevant to this 

investigation since the strain gauge measurements are what will be recorded by the 

sensor and by the time the stress reaches the gauges it has averaged to the nominal 

stress/strain. The results for all loading methods yielded very similar results in terms of 

the von Mises stress at the sensors (Figure 5.16) where the maximum percent difference 

between for each gauge was less than 3.50%.  

 

 

 

 

 

 

 

 

 

 

Figure 5.16: Effects of Different Types of Loads on the Stress at the Sensors (Zimmer Specific) 
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The same procedure was repeated for the Ring design, where the same loads 

were applied to the lateral compartment and the maximum percent difference of the 

measured stress between the gauges was less than 2.00% (Figure 5.17). 

 

This exercise proved that the method of applying the load for FEA was 

immaterial to the investigation into the Factor of Safety (FOS) and stress investigations 

at the tabs for both designs due to the distance between the load applied and gauge area. 

As a result, the point load was chosen for the subsequent analyses since the applied load 

could be closer together without overlapping and was less time consuming to simulate.  

Moreover, the validation of these sensors was done by comparing the strain 

values to the FEA principal strain values to confirm its accuracy (Al-Nasser et al. 2024). 

5.2.3 Maximum Load 

According to the literature, a robust sensor should be able to withstand 450 N. 

To determine the appropriate material and any design flaws impacting the structural 

integrity of the sensors, it was necessary to establish a FOS.  To collect training data for 

the Artificial Intelligence (AI), point loads must be applied over the surface of the 

sensor so two points were investigated for each compartment, one in the centre and the 

other near the edge (4 mm from the slit) (Figure 5.18).  The method of applying the 

load, point load, and the boundary conditions, mesh size and constraint, were used as 

determined in the previous sections.  

 

 

Figure 5.17: Effects of Different Types of Loads on the Stress at the Gauges (Ring) 
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The minimum acceptable FOS was set to 1.5 for this application since these 

loads would only be applied momentarily and during intraoperative use of the sensor the 

load would be distributed across the surface. Table 5.5 summarised the FOS for each 

material with 450 N applied to each compartment at both the centre and the edge. 
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Lateral 
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Centre 

Lateral 

Edge 
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Figure 5.18: Locations of Applied Loads for Maximum Load Investigation a) Zimmer Specific b) Ring  
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Table 5.5: FOS for Different Materials when 450N Applied to Centre and Edge 

Material 

Minimum FOS 

Ring Medial Ring Lateral 
Zimmer 

Medial 

Zimmer 

Lateral 

Centre Edge Centre Edge Centre Edge Centre Edge 

Polyurethane (PU) Resin 0.005 0.002 0.003 0.001 0.003 0.002 0.003 0.001 

Polypropylene (PP) 

Copolymer 
0.200 0.090 0.090 0.050 0.100 0.060 0.100 0.050 

Aluminium 6063 Alloy 3.000 1.600 1.700 0.800 1.800 1.000 1.900 0.800 

316L Stainless Steel 2.200 1.100 1.200 0.500 1.200 0.700 1.300 0.600 

Titanium CP-Ti 6.100 3.400 3.500 1.700 3.800 2.200 4.100 1.700 

 

In conclusion, the FOS was acceptable for all cases in both sensors while using 

Titanium which would be the optimal material for the final version of this sensor to 

ensure the sensor can withstand higher loads for training and repeated use. For the 

aluminium alloy, the edges resulted in a lower FOS due to the overhang created by the 

slits. Since this was the first prototype the aluminium alloy was chosen where training 

loads could be lowered.  

It is also important to note that if this system is single use or reusable will have 

an impact on the FOS. With the repeated use of the sensor, the maximum allowable 

stress and cyclic loads use will have to be investigated. 

5.2.4 Load Transfer 

The next exercise was to create stress raises to improve signal to noise ratios. 

For that purpose, the slits were created through the surface of the sensor to increase the 

sensitivity and reduce the occurrence of mechanical crosstalk.  To prove this was 

occurring, a 450 N force was applied to the centre of both compartments, like the 

previous section, and the von Mises stress was recorded for 6 equidistant points leading 

up to the centre of the strain gauge for both designs. For the Zimmer Specific design, 

the side gauge was used and for the Ring design the top gauge was used to provide a 

variation in investigated location (Figure 5.19 (a and b)).  
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The results in Figure 5.20 depicted how the stress increased on the path towards 

the centre of the strain gauges. This proved the impact of adding the slits, where the 

stress distributions can be seen in Figure 5.21.  
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Figure 5.19: Points on Sensor Leading to Centre of the Gauge to Observe Load Transfer a) Zimmer Specific b) Ring  

(A) 
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Figure 5.20: Load Transferring to Tabs a) Zimmer Specific b) Ring 
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5.2.5 Load Sharing 

 The goal of the sensor is to provide the surgeon with the visuals of the 

compartmental load and its centre of pressure to ensure balanced loads between 

compartments. For accurate representation of intercompartmental results there should be 

no load sharing between the compartments as this would impact the perceive state of 

balance in the knee. To investigate this, a 700 N point load was applied to the centre of 

one compartment and the average stress at the strain gauges in the opposite 

compartment was recorded. Then, the same was repeated on the other compartment. 

The same boundary conditions from the previous sections were used, including the 

interaction between the dovetail on the Ring design being in contact.  

Figure 5.21: Stress Distributions (Stress Raises at Tabs) a) Zimmer Specific b) Ring 

(B) 

(A) 
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Table 5.6: Average Von Mises Stress at Strain Gauges from Unloaded Compartment 

 

Von Mises 

Stress 

(N/m2) 

Medial Compartment Lateral Compartment 

Top 

Gauge  

Side 

Gauge 

Bottom 

Gauge 

Top 

Gauge 

Side 

Gauge 

Bottom 

Gauge 

Ring  2.65E-03 1.72E-03 1.87E-03 1.53E-03 1.24E-02 1.66E-02 

Zimmer 

Specific 
69.21 16.71 2.14 45.69 12.66 35.47 

 

 The stress at the gauges (the opposite compartment to the applied load) was 

relatively low, Table 5.6. Since the dovetail physically separated the compartments in 

the Ring design, the stress was much lower in the opposite compartment compared to 

the Zimmer Specific design. But when comparing the stresses measured in the same 

compartment as the applied loads it was still insignificant which proved there was 

minimal load sharing between compartments even under high loads.  

5.2.6 Conclusion 

In conclusion, FEA was a useful tool to ensure that the material selected would 

be able to withstand a high enough load for training, the design features were causing 

the stresses to be transferred to the strain gauges, and there was minimal load sharing 

between compartments. The aluminium alloy was chosen as the ideal material for both 

designs since there was a good trade-off between weight, strength, and cost. While 

using the aluminium alloy, the edges of both designs were not able to withstand a 450 N 

point load, which was the maximum load determined by Roth et al. (2017). As a result, 

when training the AI, a lower maximum load was to be used. 

5.3 Fabrication  

The aluminium alloy was predicted to be the best option during the design 

iteration and sensor development for prototyping through FEA. A wide variety of 

materials were fabricated to investigate different fabrication techniques for the 

materials. The two types of fabrication methods considered were 3D printing and 

Computer Numerical Control (CNC) machining. 3D printing provided greater design 

freedom and complexity with faster prototyping. However, there was lower precision 

and accuracy compared to CNC machining with limited material property options. For 

one off printing 3D printing is typically cheaper, however, for mass producing the per 
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unit cost is typically higher than with CNC machining. However, CNC machining 

provides less design freedom compared to 3D printing. Therefore, both CNC machining 

and 3D printing were used to investigate the product and the viability of using such 

methods. Table 5.7 included the different materials, fabrication methods, and tolerances 

given by the manufacturers used for each.  

Table 5.7: Fabrication of Sensor using Different Methods and Materials 

 

5.3.1 3D Printing  

The first design was 3D printed stainless steel to investigate the quality of 3D 

printed metals and the use of 3D printing in general. However, the surface finish was 

rough and required smoothing to attach the strain gauges (Figure 5.22) and the data 

from the strain gauges was unstable which could be from the non-uniform, 

inhomogeneous, anisotropic properties caused by 3D printing fabrication techniques 

resulting in the formation of residual stresses in the finished parts (Malekjafarian et al. 

2017; Somireddy and Czekanski 2020). 

 

 

 

 

 

 

 

 

Plastics were also explored including 3D printed polypropylene (PP) which was 

manufactured using SLS 3D printing. These parts were rough and some moderate 

design flaws were identified. However, the fabrication of these parts provided insight 

into how the parts function and fit together after fabrication.  

Material Fabrication Method Tolerance 

Stainless Steel 

(SUS316L) 

Selective Laser Melting (SLM) 3D 

Printing 
± 200μm  

Polypropylene (PP) 

Glass-filled (PPGB) 

Selective Laser Sintering (SLS) 3D 

Printing 
± 300μm  

Polyurethane (PU) Rigid 

1000 Resin 
Stereolithography (SLA) ±100 µm 

Aluminium 6082 
Computer numerical control machining 

(CNC) 
±100 µm 

Smoothed 

surface 

Rough surface 

Figure 5.22: 3D Printed Stainless Steel (First Design) 
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Moreover, for the rings, the 1mm ring was distorted while manufacturing, which 

can be seen when comparing the 1 mm and 4 mm PP rings and the 1 mm PP and 

Polyurethane (PU) ring in Figure 5.24 (a&b). Geometrical accuracy is a significant 

problem for both PU and PP during additive manufacturing (AM) leading to the 

shrinking and warping of parts (Spoerk et al. 2020; Perera et al. 2023). From these 

findings it was thought that the use of a combination of metals and plastics may offer 

some benefits.  

 

 

 

 

 

 

 

 

 

 

 

Next, the PU resin was used, and the surface was much smoother than 3D 

printed PP or stainless steel (Figure 5.25). However, FEA determined that this material 

Figure 5.23: 3D Printed PP a) Zimmer Specific (top view) b) Zimmer Specific (front view) c) 

Ring (top view) d) Ring (front view) 

1 mm ring (PP) 4 mm ring (PP) 

1 mm ring (PU) 1 mm ring (PP) 

Figure 5.24: Rings (PP and PU) a) 1mm ring (PP) compared to 4mm ring (PP) b) 1mm ring (PU) 

compared to 1mm ring (PP)  

(A) 

(B) 

(A) (B) 

(C) 
(D) 
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would not be able to withstand a 50 N (5.10 kg) point load near the edges/slits; but did 

confirm the proper design of the sensor to include the shims (Figure 5.26).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additionally, the base the first design of the Ring sensor did not  

include attachments needed to secure the ring to the sensor. This was noticed when the 

PP design was fabricated and amended for the PU.  

 

 

 

 

5.3.2 Computer Numerical Control (CNC)  

To investigate the merit of a metal-based transducer, aluminium alloy parts were 

manufactured using CNC and investigated. Initially, it was found that while using CNC, 

some of the design details were harder to manufacture, namely the dovetail in the Ring 

design and the guide bars for the shims on the Zimmer Specific design. Therefore, it 

was decided that due to a limitation in tooling, the dovetail was omitted; however, it 

Figure 5.26: Zimmer Specific (PU) (front view) a) 1 mm Shim b) 4mm Shim 

(A) 

Figure 5.25: PU Sensor a) Zimmer Specific b) Ring (top view) c) Ring (front view) 

(A) 

(B) 

(B) (A) 

Figure 5.27: Ring Design (bottom view) a) PU b) PP 
Attachment 

for rings 

No 

attachments 

(C) (B) 
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was added in future designs. The guides for the shim were hand filed in the first 

prototype and later manufactured separately and attached (Figure 5.29). Additionally, 

the slits were larger and will be narrower in the final prototype (Figure 5.28).  

 

 

5.4 Electronics Design  

The design and configuration of the electronics were investigated including the 

type of sensors used, the circuit, and the PCB design.  

5.4.1 Circuit  

Transducer Type 

Choosing which transducer to use was based on previous literature surrounding 

knee force sensors, the sensor principles, and compatibility with the physical design of 

Figure 5.29: Re-design of Shim Inserts for Zimmer Specific design a) Bottom view without guides b) 

Guides c) Bottom view with guides attached d) Bottom view with guides and shim inserted 

Figure 5.28: Aluminium CNC Sensor (top view) a) Zimmer Specific b) Ring c) 

Ring with Dovetail   

(A) (B) 

(A) (B) 

(C) 
(D) 

(C) 
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the sensor. Based on previous literature surrounding knee force sensors a few 

transducers were considered for this application: metal-bonded strain gauges, 

piezoresistive strain gauges, and piezoelectric. Nolten et al. (2009) used piezoresistive 

pressure sensors for their intraoperative load sensor for knee replacements and another 

research used piezoelectric sensors (Wang et al. 2022), however, piezoelectric sensors 

were typically used for measuring dynamic pressure. Consequently, to have a good 

trade-off between sensitivity, robustness, size, and cost, metal-bonded strain gauges 

were used for this application.  

Since these gauges were small and flexible, they can be attached to the surfaces 

of the sensor where deformation on the surface of the device causes the strain gauges to 

change resistance. Other researchers measuring intraoperative load in the knee also 

utilised strain gauges  (Kaufman et al. 1996; Skrinskas et al. 2003; Hasenkamp et al. 

2013; Forchelet et al. 2014).  

For this sensor three 350 Ohm (SGT-1/350-TY11) precision strain gauge 

transducers were used in each compartment plus the same amount for temperature 

compensation. This totalled 12 gauges for each sensor. The use of three was necessary 

in providing the AI with enough data to develop a relationship between the location and 

magnitude of the load and the electronics based on the size and shape of the tibial insert 

surface. 

 

 

 

 

 

 

Figure 5.30: Metal-Bonded Strain Gauges a) Ring Design b) Zimmer Specific Design c) 

Temperature Compensation 

(A) 

(B) 
(C) 



   

 

  76 

 

Wheatstone bridge:  

A Wheatstone bridge was used for this application as it can measure small 

changes in resistance in electrical circuits from the load applied to the surface. When the 

load was applied to the device there was a change in resistance of the gauges which 

caused a change in voltage where the Wheatstone bridge became unbalanced. The half 

bridge configuration of the Wheatstone bridge was utilised since there was a need to 

compensate for change in temperature experienced by the strain gauges during training 

and use of the sensor.  

One bridge consists of four resistors arranged in a bridge configuration with a 

voltage source (5 V) applied. In this application two resistors were replaced with two 

strain gauges (350 Ω), one that was active and the other that was passive for 

temperature compensation. The other two resistors were 470 Ω and since they were 

equal, balanced each other. When referring to Figure 5.31 the unloaded sensor is 

balanced and the relationship between the resistances is:  

 

𝑅1

𝑅3
=

𝑅2

𝑅4
 

 

 

 

 

 

 

 

 

 

The Wheatstone bridge configuration was repeated three times for each side. To 

increase the amount of input data from the sensor there was an option to increase the 

amount of Wheatstone bridges to 4; however, this also would increase the cost and 

complexity of the sensor and without any indication that a fourth would be needed. 

The output of the Wheatstone bridge was amplified and converted from 

analogue to digital signal (Load Cell Amplifier (HX711 by SparkFun) and connected to 

a microcontroller (Teensy 4.1 Microcontroller) expressed by Figure 5.32.  

Figure 5.31: Wheatstone Bridge 
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5.4.2 Breadboard Prototype 

The first prototype was created on a prototyping breadboard with 8 Wheatstone 

bridge configuration, 2 added as a backup, or for the possible use of an Inertial 

Measurement Unit (IMU). This board had a lot of wires crossing over in the back which 

caused noise in the output readings. However, it was an easy and quick way to have a 

working prototype. The amplifiers chosen were SparkFun’s HX711 Load Cell 

amplifiers which were relatively cheap and had programmable gain options of 32, 64, or 

128, where the default gain of 128 remained. These amplifiers were connected to a 

Teensy 4.1 microcontroller, an opensource microcontroller, which had enough channels 

for all bridges. In total, these elements, including the strain gauges attached to the 

sensor, makeup this prototyping breadboard seen in Figure 5.33.  

 

 

 

 

 

 

 

 

 

 

5.4.3 Printed Circuit Board (PCB) 

The noise from the wires on the prototyping breadboard were eliminated by 

using a Printed Circuit Board (PCB). The first design iteration of the PCB used one 

Load Cell 

Amplifier 

HX711 ADC 
Teensy 4.1 microcontroller  

Figure 5.32: Electronics Configuration 

Figure 5.33: Breadboard Prototype 

470 Ω 

470 Ω 

350 Ω 

350 Ω 

5 V 
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Wheatstone bridge, (Figure 5.34) which simplified the circuit board and allowed for the 

investigation of different features. For example, the attachment of the strain gauges to 

the boards.  

The next version of the PCB was the complete 8 Wheatstone bridge 

configuration which was assembled and programmed (Figure 5.35). This PCB was 

created to reduce the noise from the wires and increase the compactness of the 

electronics. 

5.5 Full Prototypes 

Figure 5.34: PCB 1 a) Simulation b) Assembled PCB 

(A) (B) 

Figure 5.35: PCB 2 a) Simulation b) Assembled PCB 

(A) (B) 
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In summation, through CAD iterations, FEA, qualitative observations of 

fabrication methods, and electronics design, two working prototypes were finally made 

and trained in the following chapter. This consisted of 2 configurations of the tibial 

insert (the Ring and the Zimmer Specific) and 6 temperature compensations gauges 

attached to the same material (aluminium alloy) which could be connected and 

disconnected from the PCB based on the desired design. The configuration of the 

devices can be seen in Figure 5.36.  

 

 

 

 

 

 

 

 

(A) (B) 

(C) 

Figure 5.36: Full Prototype a) PCB b) Zimmer Specific Design Tibial Sensor c) Ring Design Tibial 

Sensor 
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6 Chapter 6: Artificial Intelligence 

(AI) 
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6.1 Introduction  

Machine learning and its subset, deep learning, are types of artificial intelligence 

(AI) that use computer science and data to enable problem solving in machines. 

Machine learning typically requires human correction; however, deep learning 

algorithms improve results through repetition. Deciding which type of AI to use for this 

application was based on the algorithm’s advantages and disadvantages outlined in 

Table 6.1. 

Table 6.1: Artificial Intelligence Algorithms 

 

6.1.1 Reason for AI 

This research employed a deep learning algorithm called an Artificial Neural 

Network (ANN) for its good prediction and generalisation ability with nonlinear data. 

This feature sets this sensor apart from VERASENSE, eLibra, and other independent 

load sensors since using AI circumvents the use of triangulation or other mathematical 

modelling techniques to determine the magnitude of the force and the centre of pressure 

on a highly non-linear, curved surface. Additionally, a closed form solution does not 

exist due to the complex geometry of the surface of the tibial sensor. This is an inverse 

problem with potentially infinite solutions, so to create a unique solution an ANN was 

adopted based on different introduced load intensities recorded at the tabs. Therefore, 

the ANN was able to provide a link between the sensor outputs and the applied load and 

its location which also increases the total sensing area of the surface depicted in Figure 

6.1. 

 

 

Type Use Advantage Disadvantage 

Machine Learning 

(ML) 

Classification Problems  Can identify trends 

or patterns  

Requires manual 

feature extraction  

Artificial Neural 

Network (ANN) 

Pattern classification, 

prediction, and control 

optimisation  

Good generalisation 

and success with 

nonlinear data 

Proper structure 

requires trial and error 

Convolution 

Neural Network 

(CNN) 

Image processing and 

object detection  

Efficient image 

processing  

High computational 

requirements 

Recurrent Neural 

Networks (RNN) 

Image captioning, time-

series analysis, and 

handwriting recognition  

Can process any 

length of input  

Training can be 

difficult  
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Figure 6.1: a) Strain Gauge Placement b) Sensing Area (Triangulation) c) Sensing Area (AI) 

Specifically, for the two designs, Zimmer Specific and Ring, the projected 

sensing area with and without AI were determined based on the placement of the strain 

gauges (Figure 6.2). The results indicated at least a 245% increase in sensing area in 

each compartment for both designs (Table 6.2) when using AI compared to 

triangulation.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.2: Sensing Area Increase with AI 

 Zimmer Specific Ring Design 

Medial Lateral Medial Lateral 

Sensing area without AI 218.18 mm2 175.85 mm2 222.89 mm2 245.68 mm2 

Training area with AI 541.25 mm2 475.05 mm2 593.76 mm2 625.99 mm2 

Percent Increase 248% 270% 266% 255% 

6.1.2 ANN Background 

An ANN operates in a similar manner to the neurons in the brain where ANNs 

contain nodes consisting of an input layer, hidden layer, and output layer.  

(A) (B) (C) 

(B) 

(C) (D) 

Figure 6.2: Sensing Area a) Zimmer Specific Sensing Area without AI b) Zimmer Specific 

Sensing Area with AI c) Ring Sensing Area without AI d) Ring Sensing Area with AI 

(A) 
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In general, the inputs are weighted and summed and then a bias is added to this 

sum and passed to the activation function to produce an output. In the absence of any 

closed form solution between the inputs and outputs, ANNs can be employed due to 

their ability to recognise and predict patterns from nonlinear data. In this application the 

ANN would be able to identify new loads and locations from weights and biases found 

during training. The ANN’s ability to predict using nonlinear data, from the strain 

gauges, meant that the sensor could predict the load and location outside of the sensing 

area which exhibits highly nonlinear behaviour. ANNs can also generalise well which 

allows the sensor to respond well to real time data. This means that while introducing 

new strain readings, the network can use patterns of strain to create a prediction based 

on what was learned from the training data (Han et al. 2018).  

Training the sensor for his application involved using the output from the 

circuitry of an unbalanced Wheatstone bridge to determine the magnitude of the load 

being applied and its location. Since this was a prediction problem, the best way to 

solve this was by using an ANN to predict the load and location based on inputs directly 

from the change in voltage caused by the load changing the resistance of the strain 

gauges. 

 For the first stage, the feedforward stage, of the ANN, weights and biases are 

chosen randomly initially (Han et al. 2018). The inputs are passed to the hidden layers 

where a weighted sum,  z𝑗 , is computed as follows:  

z𝑗 = ∑ w𝑖𝑗x𝑖 +
𝑚

𝑖=1
b𝑗; where w𝑖𝑗  is the weight between the input node and the 

hidden node, x𝑖 is the input from the previous layer, and b𝑗 is the bias of the hidden 

Figure 6.3: ANN Compared to Neuron in Brain 
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node; i and j are the node number of the input and hidden layer respectively, m is the 

number of input features.  

This weighted sum has an activation function, f, applied to each hidden layer 

node represented as: 

a𝑗 = f(𝑧𝑗); which becomes the input to the next layer.  

This process is repeated for all hidden layers until reaching the output layer, 

where the same process is repeated:  

z𝑘 = ∑ w𝑗𝑘a𝑗 +
𝑝

𝑗=1
b𝑘 and 𝑦𝑘 = f(𝑧𝑘); where p is the number of nodes in the 

last hidden layer, w𝑗𝑘  is the weight between the previous hidden node and the output 

node, a𝑗  is the output from the previous hidden node, and b𝑘 is the bias of the output 

node; j and k is the node number of the hidden and output layer respectively, f is the 

transfer function, and 𝑦𝑘 is the predicted output of the network.  

To calculate the error or loss in the system, the predicted output value is 

compared to the actual value. To increase the accuracy, backpropagation of the ANN 

was used which computes the error for each output and then backpropagates the error 

values through the network to adjust network weights according to the error (Munro 

2010).  

 

Figure 6.4: Forward Propagation and Backpropagation 

Implementing the ANN required many steps including collecting the training 

data, preprocessing the data, optimising the ANN to identify the optimal weights and 

biases, and implementing the ANN in real time.  

w1 
w2 

w3 

nodes 



   

 

  85 

 

6.1.3 Inputs and Outputs 

For this application the medial and lateral compartments of each sensor were 

trained separately. The inputs to each ANN were the 3 voltage readings from the 

unbalanced Wheatstone bridges. The outputs of each compartment were divided to two 

ANNs: the loads in kilograms of force (kgf) and the location described by (X,Y) 

coordinates. This process was repeated for both the medial and lateral compartments of 

the sensor and for both the Zimmer Specific and Ring designs. Figure 6.5 depicts the 

inputs and outputs of 2 ANNs for one compartment of one design.  

 

 

 

 

 

 

 

 

 

 

6.2 Collecting Training Data 

To train the ANN, known loads in increments were applied at known locations, 

causing strain at the tabs thus unbalancing the Wheatstone bridge. This change in 

voltage was recorded for locations which covered the surface of the sensor using a wide 

range of loads. This was done to train the ANN by uncovering the optimal weights and 

biases. To collect this data, the type of contact point, the method of applying the load, 

and how to create the training dataset were discussed. 

6.2.1 Contact Point  

The type of contact point used to apply the loads was debated. All variations of 

the flat tip point load were quickly eliminated because of the limited contact surface 

with the curvature of the sensor and the damage it would cause to the surface at higher 

ANN 1 

ANN 2 

V1 

V2 

V2 

Load (kgf) 

Location (X) 

Location (Y) 

Inputs Outputs 

Figure 6.5: Inputs and Outputs of the ANNs for One Compartment 
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loads. A small ball bearing with a 7.17 mm diameter was ultimately chosen to align 

with the grid size on the surface of the sensor. 

 

 

 

 

 

 

A ball bearing ensures a normal force was applied to each point in order to create 

the most realistic and practical loading condition possible which more closely mimics 

the joint contact forces. Using the ball bearing of this size for training allowed the force 

to be concentrated on each specific point of the cartesian coordinate grid while also 

eliminating the effect of contact force mechanics by increasing the distance of the 

applied load from the gauges so the local deformation remains away from the strain 

gauges (Figure 6.7).    

 

 

Figure 6.7: Impact of Contact Point on Contact Mechanics 

 To validate this theory, the same load (5 kgf) was applied to the centre of the 

Zimmer Specific sensor (Medial compartment (1,2) (Figure 6.12 (b))). This was done 

with small (5 mm diameter) and a large (10 mm diameter) ball bearing 10 times and 

then averaged. There was no significant difference (p>0.05) between the voltage 

Figure 6.6: Types of Contacts Points to Apply Load a) Rounded Tip b) Flat Point c) Elongated 

Flat Point d) Ball Bearing (7.17mm) 

(A)        (B)      (C)    (D) 

(A)                                                          (B) 
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readings while changing the contact point (Figure 6.9). The colours represent the gauge 

locations based on Figure 6.8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Impact of Ball Bearing Size on Output of Wheatstone Bridge 

6.2.2 Applying the Loads 

The method for applying the loads to the sensor was investigated. A training rig 

(Figure 6.10) to add known weights to the sensor was used initially. However, this 

meant only adding smaller loads between a range of 9.8 – 49.0 N (1 – 5 kgf) since 

higher loads, would cause the rig to slip on the surface of the sensor. However, the 

larger loads were determined to be necessary to accurately determine the behaviour of 

the system and improve the resolution.  

 

Figure 6.8: Gauge Colour Representations 
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Figure 6.11 was the result of increasing loads (0 – 196 N or 0 – 20 kgf) applied 

to the training point (1,3) on the lateral compartment of the Zimmer Specific sensor. It 

can be noted that one of the bridges (the blue line from the blue gauge) increased until 

about halfway, then decreases sharply. If the applied load range was 1 – 5 kgf (0 – 49 

N) this behaviour would not be included. 

 

 

 

 

 

 

 

 

 

 

 

A Universal Testing Machine (UTM) by Testometric Micro 350/719 was used 

instead of the testing rig to apply higher loads at different locations across the whole 

surface of the sensor. The loads applied were 49 N, 147 N, 244 N (5 kgf, 15 kgf, and 25 

kgf).  

To increase repeatability, a standardised Cartesian coordinate system was created 

on the surface of the sensor using a 5 mm grid. These points were used for training and 

included some points which were out of the triangular sensing area made by the strain 

Weights 

 

Sensor 

Figure 6.10: Training Rig 

Figure 6.11: Nonlinear behaviour with larger training ranges 
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gauges (Figure 6.12). To form to the curvature of the sensors and increase durability 

and to secure the grid to the sensor, clear tape was added to both sides. In total 27 points 

were loaded on the Ring design (14-Medial and 13-Lateral) and 29 on the Zimmer 

Specific design (14-Medial and 15-Lateral) for a total of 43 points on across both 

sensors.  

 

 

 

The UTM was set to compression mode to maintain the load for each desired 

force at each point while collecting data. The outputs from the applied loads were 3 

voltage readings (from each side) from the now unbalanced Wheatstone bridges. 

 

 

 

 

 

 

 

 

 

 

 

An app was created using MATLAB’s App Designer pictured in Figure 6.14 to 

collect training data. The (X,Y) coordinates were added by the user to the table along 

with the load applied. First, the device was connected by pressing the “Connect” button, 

(A)          (B) 

(A)          

(B)

)          

(C)

)          

Figure 6.13: Attachment for UTM a) Contact Point b) Ring Design with Load Applied (Top 

View) c) Ring Design with Load Applied (Font View) 

Figure 6.12: Grids Attached to Surface a) Ring b) Zimmer Specific 



   

 

  90 

 

upon the successful completion of this task a green LED appeared (Figure 6.15), if there 

was an error connecting the system, a red LED would appear. 

 

 

  

 

 

 

Then the values from the circuitry were plotted by pressing the “Plot” button 

where a figure would appear (Figure 6.16). Then the loads were incremented and 

applied to each point with the UTM. Once the load was applied, the user would wait 5 

seconds for the results to stabilise, and the “Store” button was pressed to collect the 

values from the plot (Figure 6.17) where the values were stored in the table in the app 

(Figure 6.18).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14: App Designed for Training 

Figure 6.15: SerialPort Connected 
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Following the collection of all the data at each point the table was exported to 

Excel by pressing the “EXCEL” button and the serial port was closed by pressing the 

Figure 6.17: Output of Wheatstone Bridge on Point (2,0) on the Medial Compartment of the 

Ring Design when 20 kgf was Applied 

Figure 6.16: App After Plot Button Pressed and Corresponding Plot 

Figure 6.18: Data Stored in Table in App 
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“Close” button, the success of these two operations were indicated with the green LEDs 

(Figure 6.19).  

 

 

 

 

 

 

 

6.2.3 Creating the Training Dataset 

 To increase the amount, range, and impact of data provided to the network and 

without having to manually apply the loads, more plots were extrapolated by plotting 

the behaviour of each point. To have a wide range of load values needed to train the 

ANN, load values started from 1 kgf (9.81 N) to 51 kgf (500.3 N) in increments of 2 kgf 

(19.6 N) and were added to the training dataset. Adding the loads in this increment 

provided the ANN with a lot of training information without greatly increasing the 

execution time. The change in voltages were taken from the equation of the best fit line 

of the collected data which can be seen in the example from the medial compartment of 

the Ring design at point (3,3) (Figure 6.20). Some of the points collected show non-

linear behaviour and therefore the best fit line was chosen, mostly a second order 

polynomial equation. This concluded the process of collecting training data for the 

device to accommodate for out of boundary load and location predictions.  

 

Figure 6.19: Data Exported to Excel and Port Closed 
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 Therefore, the training datasets used consisted of the following matrices.  

1. Zimmer Specific sensor (Medial Compartment):   

Input: [

𝑠𝑡𝑟𝑎𝑖𝑛1,1 ⋯ 𝑠𝑡𝑟𝑎𝑖𝑛1,3

⋮ ⋱ ⋮
𝑠𝑡𝑟𝑎𝑖𝑛364,1 ⋯ 𝑠𝑡𝑟𝑎𝑖𝑛364,3

]  

Output:  [

𝑙𝑜𝑎𝑑1,1

⋮
𝑙𝑜𝑎𝑑364,1

] [

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛1,1 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛1,2

⋮ ⋮
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛364,1 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛364,2

] 

2.   Zimmer Specific sensor (Lateral Compartment):   

Input: [

𝑠𝑡𝑟𝑎𝑖𝑛1,1 ⋯ 𝑠𝑡𝑟𝑎𝑖𝑛1,3

⋮ ⋱ ⋮
𝑠𝑡𝑟𝑎𝑖𝑛390,1 ⋯ 𝑠𝑡𝑟𝑎𝑖𝑛390,3

]  

Output:  [

𝑙𝑜𝑎𝑑1,1

⋮
𝑙𝑜𝑎𝑑390,1

] [

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛1,1 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛1,2

⋮ ⋮
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛390,1 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛390,2

] 

3.   Ring sensor (Medial Compartment):   

Input: [

𝑠𝑡𝑟𝑎𝑖𝑛1,1 ⋯ 𝑠𝑡𝑟𝑎𝑖𝑛1,3

⋮ ⋱ ⋮
𝑠𝑡𝑟𝑎𝑖𝑛364,1 ⋯ 𝑠𝑡𝑟𝑎𝑖𝑛364,3

]  

Output:  [

𝑙𝑜𝑎𝑑1,1

⋮
𝑙𝑜𝑎𝑑364,1

] [

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛1,1 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛1,2

⋮ ⋮
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛364,1 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛364,2

] 

4.   Ring sensor (Lateral Compartment):   

Input: [

𝑠𝑡𝑟𝑎𝑖𝑛1,1 ⋯ 𝑠𝑡𝑟𝑎𝑖𝑛1,3

⋮ ⋱ ⋮
𝑠𝑡𝑟𝑎𝑖𝑛338,1 ⋯ 𝑠𝑡𝑟𝑎𝑖𝑛338,3

]  

Output:  [

𝑙𝑜𝑎𝑑1,1

⋮
𝑙𝑜𝑎𝑑338,1

] [

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛1,1 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛1,2

⋮ ⋮
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛338,1 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛338,2

] 

Figure 6.20: Plotted Data at Point (3,3) on Medial Compartment of the Ring Design 
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6.3 Training the ANN 

After creating the training dataset, training the ANN involved uncovering the 

weights and biases to use the trained network with real time data. This process was 

again repeated for both the medial and lateral compartments of the two sensors: Zimmer 

Specific and Ring. The process involved preprocessing the data by normalisation and 

adding noise and then choosing parameters for the network like the transfer function, 

the number of hidden layers, the training function, and other hyperparameters. This was 

all done on MATLAB R2022a, using the Deep Learning Toolbox (Beale et al. 2020). 

Since neural networks are highly dependent on individual training data and the type of 

problem, the network parameters would need to be individually investigated.  

6.3.1 Performance Measurements 

The performance of the networks was evaluated by comparing the mean squared 

error (MSE) and studying the regression plot. The MSE and regression plot were 

indicators of how the network was performing which was the standard approach and the 

default method in MATLAB. It is commonly used as the term objective function which 

should minimised for neural networks (Fiorentini et al. 2022). The MSE is integrated in 

the backpropagation of neural networks to locate the global minimum and is found using 

the following formula: 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑒𝑖)

2𝑛
𝑖=1               (Abdul Nasir et al. 2011)       

𝑀𝑆𝐸 = 𝑚𝑒𝑎𝑛 𝑠𝑞𝑎𝑢𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 

𝑒𝑖 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑒𝑟𝑟𝑜𝑟 (𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑜𝑢𝑡𝑝𝑢𝑡) 

This is the standard training objective function and used with the following training 

algorithms: Levenberg-Marquardt backpropagation (LM), and BFGS quasi-Newton 

backpropagation (BFGS) (Fiorentini et al. 2022). 

The Baysian regularization (BR) backpropagation training algorithm uses the 

MSE as calculated by using the mean square weights (MSW) and the previously 

calculated MSE creating the following formula:  

𝑀𝑆𝑊 =  
1

𝑛
∑ (𝑤𝑗)2𝑛

𝑗=1             (Abdul Nasir et al. 2011)         

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 
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𝑤𝑗 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 

𝑀𝑆𝐸𝑏𝑟 =  MSE(β) + 𝑀𝑆𝑊(𝛼)                     

𝛽, 𝛼 = parameters to be optimsed in the Bayesian framework  

This calculation was used in the BR algorithm to optimise the network weights 

and prevent overfitting as a form of validation instead of partitioning a validation set 

(Lau et al. 2009; Yue et al. 2011). 

Having a low MSE and unacceptable accuracy in real time is an indication that 

overtraining had occurred. This means the networks learned to respond to the specific 

data used for training but was unable to predict when new data was introduced 

indicating the network had poor generalisation.  

Visualising the regression plot of the test dataset, which was a built-in function 

in the Deep Learning Toolbox, provided insight into the accuracy of the network 

(Figure 6.21). The spread of data along the Y-axis was of interest to indicate the success 

of the networks since the Y-axis represented the network’s prediction where the X-axis 

represented the actual value. It can be noted that for both the load and location 

networks, most of these points were concentrated on the dotted line which represents a 

correct prediction.  
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6.3.2 Normalisation  

Once the training data was imported as strain, load, and location they were then 

normalised between the range of [-1,+1] using the MATLAB function “mapminmax”. 

Figure 6.21: Test Dataset Regression Plot a) Load Network b) Location Network 

(A) 

(B) 

(B) 
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Normalisation transposes all the variables into the same range, which can improve 

performance and increase training stability (Godbole et al. 2023). The range of 

normalisation was chosen to match MATLAB’s default activation function which lies in 

the range of [-1,1] and because the data was normally disturbed with little to no outliers, 

Figure 6.22 of the Zimmer Specific readings, this range of normalisation was 

recommended (Godbole et al. 2023).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.22: Distribution of Data 

The original data versus the normalised data can be seen in  

Figure 6.23 while  

Figure 6.24 combined all the outputs to demonstrate the results on one scale [-

1,1].  
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Figure 6.23: Normalised Data versus Original Data a) Load b) Location c) Strain 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.24: All Datasets Normalised 

After the variables were normalised, noise was injected into the dataset to help 

generalise better. 

6.3.3 Noise Injection 
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Noise injection into the training dataset of deep learning algorithms has been a 

long-standing practice where its importance was demonstrated mathematically by 

Matsuoka (1992). The success of noise injection includes improved generalisation 

capabilities and encourages the optimal solution and network convergence with low 

computational expense (Sietsma and Dow 1988; Matsuoka 1992; Bishop 1995; An 

1996).  

There were two methods of adding noise which were explored deeper in this 

section: multiplicative and Gaussian noise, which was a type of additive noise (Figure 

6.25 and Table 6.3). Gaussian distributed noise led to a significant increase in accuracy 

of ANNs in several studies (Xiao et al. 2022; Jiang and Zhang 2023). Wang and 

Principe (1999) found that adding Gaussian noise moved the convergence of their 

neural network from the local minimum to the global minimum. Another study used 

multiplicative and gaussian noise methods at varying levels and found that even small 

levels of noise significantly reduced the error for both (Isaev and Dolenko 2018).  

Throughout the literature it was determined that the method of noise injection and the 

level of noise added was dependent on individual datasets and applications.  

Table 6.3: Summary of Noise Types Explored 

 Type of Noise 

Categories  Multiplicative  Additive (Gaussian) 

Common Distribution  Normal or Uniform Normal   

Application  Applied by element-wise 

multiplication  

Added to original data 

Frequency  Can change the frequency 

content, particularly impacting 

low-amplitude components  

Equal distribution of energy 

across all frequencies  

Characterisation of statistical 

properties  

Scaling factor Mean and standard deviation 

(SNR) 

 

 

 

 

 

 

 

Figure 6.25: Impact of Additive Noise and Multiplicative Noise on Signal 
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For this application both multiplicative and additive noise methods were chosen 

since they were most popular methods of adding noise for a variety of deep learning 

applications over time (Holmstrom and Koistinen 1992; Matsuoka 1992; An 1996; 

Wang and Principe 1999; Wright et al. 2000; Zur et al. 2009; Isaev and Dolenko 2016, 

2018; Xiao et al. 2022; Jiang and Zhang 2023). 

Finding the optimal noise for the best generalisation and performance outcomes 

was dependent on each network and application. Therefore, different methods of 

generating and applying noise were investigated. The maximum noise range was 20% 

for the multiplicative noise which was centred around zero (-10% - +10%) of the 

original data and a range of 10% (-5% - +5%) was also explored. The multiplicative 

noise was added by randomly generating a number within the selected range to a matrix 

the size of each dataset and multiplying each element in the dataset by the random noise 

dataset such that:  

[rows, columns] = size(dataset); 
randomvalues = -0.05 + (0.1*rand(rows, columns));  
%rand generates numbers randomly between 0 and 1 (-0.05 centres around 0) 
noise=dataset.*randomvalues; 

For the Gaussian Noise, literature suggests that an optimal signal-to-noise ratio 

(SNR) was specific to the dataset and different SNRs were compared visually to the 

multiplicative noise levels to add a similar level. As a result, the two SNRs chosen were 

20 decibels (dB) and 30 dB where a higher SNR (dB) indicates less added noise.  

The Gaussian noise was added using MATLAB’s “awgn” (additive white 

Gaussian noise) function which was described as:  

  Y = awgn(dataset,SNR)  
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The noise was added to all datasets including strain, load, and location which 

would then become the inputs and outputs for training the ANN. A histogram of both 

the multiplicative noise (10%) and Gaussian noise (30 dB) can be seen in in Figure 

6.26. 

 

 

 

Figure 6.26: Noise Distribution a) Multiplicative Noise (10%) b) Gaussian Noise (30 dB) 

(A)          

(B)          
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The noise was added to the original datasets which doubled the size of the 

training datasets. To visualize the noise added to the data the noisy data was 

superimposed to the original which can be seen in Figure 6.27 and Figure 6.28. 
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Figure 6.27: Multiplicative (10%) Noisy Data Superimposed onto Original Data a) Load b) Strain c) Location 
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Figure 6.28: Gaussian (30 dB) Noise Superimposed onto Original Data a) Load b) Strain c) Location 
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To investigate the impact of the noise on the training of the networks the various 

noises were added to the datasets and two networks were trained: one for the load 

predictions and another for the location predictions. The ANNs can be seen in Figure 

6.29.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To assess the impact of the added noises the network parameters were defaulted 

and left the same for each network. The parameters investigated were the linear 

regression of the testing dataset and the mean square error (MSE). The dataset was 

separated randomly each time where 85% of the data was used for training and 15% 

was used for testing. Each network was trained five times and the MSE and regression 

of the test dataset was recorded and averaged.  

In total, the best performing dataset was recorded when 10% Multiplicative 

Noise was added, although only significantly better than the 20 dB Gaussian Noise in 

terms of mean square error (MSE) and linear regression of the test dataset (Figure 6.30) 

(p<0.05).  

Figure 6.29: ANN Block Diagrams a) Load Network b) 

Location Network 

(B)

)          

(A)

)          
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Figure 6.30: Linear Regression Percent for Different Noises Added to the Load and Location Prediction 

Networks 

 

It was important to note that the linear regression and MSE do not necessarily 

imply good generalisation abilities and only imply such. However, from this 

investigation multiplicative noise of 10% was added to all datasets herein.   

Next was to design the ANN architecture. The parameters investigated included 

the number of hidden layers, training functions, division of data, maximum number of 

epochs, learning rate, performance function, and transfer functions. The proper design 

should consider the complexity of the problem and the size of the dataset. To determine 

the best parameters for the network some of these factors were explored here.  

6.3.4 Activation and Transfer Functions 

In this application, the default hyperbolic tangent sigmoid transfer function was 

used as activation function with a linear transfer function (Figure 6.31). This allowed 

the network to learn non-linear relationships between the data by deciding which signals 

to be passed on to the next layer in the forward propagation stage. The activation 

function was used between hidden layers while the transfer function was used for the 

output layer. 
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 In hidden layer multilayer networks like this, a tangent sigmoid activation 

function was typically used (Prasad et al. 2013). Other research using ANNs for contact 

force predictions found success using this while also using a linear transfer function for 

the output layer (Choi et al. 2018; Wu and Wang 2021).  

6.3.5 Training Algorithm  

In general, backpropagation training algorithm in neural networks aim to 

provide a link between inputs and outputs which are represented by weights and biases. 

First the training data is propagated through the hidden layers to the output layer. The 

predicted and actual values are compared, and the error is calculated. Then the error is 

propagated back through the network and the weight is then adjusted based on this error 

which is known as backpropagation. This process is repeated until convergence. The 

method of adjustments made to the weights and biases and calculations of the error 

function are dependent on the algorithm used.  

  The three algorithms, built into MATLAB’s Deep Learning Toolbox, with the 

best success in literature were the Levenberg-Marquardt (LM), Bayesian regularisation 

backpropagation (BR), and Broyden–Fletcher–Goldfarb–Shanno (BFGS) Algorithm. 

  In a wide variety of applications, including the calibration of a load cell, the 

LM algorithm was seen to outperform all other algorithms (Nouir et al. 2007; Vasquez 

2011; Narayan et al. 2022; Ayaz et al. 2023). The BFGS method was another popular 

algorithm which outperformed other methods and required fewer iterations to converge 

(Robitaille et al. 1996).  

Figure 6.31: a) Activation Function b) Transfer Functions (Hamidian et al. 2019) 
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1.  Levenberg-Marquardt backpropagation (LM) (trainlm)(Beale et al. 2020): 

The LM algorithm uses a combination of gradient descent and Newton’s 

methods. In gradient descent the gradient is calculated by finding the loss 

function/error, or the derivative of the curve, which contains the direction and the 

magnitude of the steepest increase in the loss function. Therefore, gradient descent 

updates the weights based on the negative gradient to reduce the loss as quick as 

possible. This can take a long time to reach a global minimum and for complicated 

problems, can get stuck local minima. Newton’s methods operate by using the second 

derivative of the loss function, called the Hessian matrix, to find a better training 

direction.  

The LM algorithm avoids computing the Hessian matrix by approximating it 

using the Jacobian matrix of the first derivates of the network errors with respect to the 

weights and biases. Then the LM algorithm uses a combination coefficient, µ, to 

determine whether the approximated Hessian matrix is used or gradient descent. The 

combination coefficient is decreased after each reduction in performance function and 

increased when it would result in an increase to the performance function (Gavin 2019). 

This makes the LM algorithm quick to reach the global minimum. According to 

research, the LM function was found to be successful when investigating a load 

prediction problem (Cooper and DiMaio 2018), and the time taken to converge was 

found to be much quicker when comparing other algorithms (Du and Swamy 2006; Rao 

and Kumar 2007). 

2. Bayesian regularization (BR) backpropagation (trainbf) (Beale et al. 2020)  

The BR training algorithm occurs within the Levenberg-Marquardt (LM) 

algorithm but minimises the squared errors and weights simultaneously to control the 

complexity to prevent overfitting and promote good generalisation qualities (MacKay 

1992; Foresee and Hagan 1997). Instead of using the MSE as the performance function, 

as done in the LM algorithm, the BR algorithm uses the mean square weights (MSW) 

plus the MSE as a new MSE value as explained in section 6.3.1. Computing the 

performance in this manner aims to improve generalisation abilities (Doan and Liong 

2004; Abu Osman and Wan Abas 2011).  

3. BFGS quasi-Newton backpropagation (BFGS) (trainbfg) (Beale et al. 2020):  

Another algorithm investigated was the BFGS algorithm, where the convergence 

of this method was generally fast, but it does require more computation in each iteration 
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and more storage (Rafati and Marica 2020). The basic weight update of this Newton’s 

method was found as a function of the Hessian matrix (second derivatives of the loss 

function).  

Each algorithm was trained and run 10 times from the data collected from the 

lateral compartment of the Zimmer Specific sensor. The regression of the test dataset was 

averaged, the results were depicted in  Figure 6.32. 

 

 

Figure 6.32: Training Algorithm Investigation 

There was no significant difference between the three algorithms investigated 

(p>0.05) which could be expected especially since there was little difference in the 

theory behind the LM and the BR algorithm. However, because of the good 

generalisation abilities of the BR algorithm, it was ultimately chosen.  

6.3.6 Hidden Layers 

Choosing the appropriate number of hidden layers was another parameter 

investigated since too few hidden layers can cause the network to fail to converge to a 

solution and too many hidden layers increase the training time with the risk of 

overfitting. Underfitting and overfitting limits a networks ability to perform 

appropriately with new data.  
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The number of hidden layers is roughly dependent on the size of the data; 

however, Mouloodi et al. (2020) found 5 hidden layers to be optimal and Le (2020) 

used 15. There was no real way to determine the optimal number of hidden layers 

except through trial and error. 

 For the datasets in this research, 3,5,10, and 15 hidden layers were investigated 

for both the location ANN and the load ANN for both sensors. Each hidden layer was 

run 10 times, and the average was recorded for the Zimmer Specific sensor.  

 
Figure 6.34: Hidden Layers Investigation 

The was no significant difference (p>0.05) for the MSE and regression plot 

between any of the hidden layers except 3 and 15 for both the load and location 

networks.  The regression percent for the different hidden layers can be seen in Figure 

6.34 and the MSE table can be seen in Table 6.4.  
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Table 6.4: MSE for Different Hidden Layers (Load and Location Networks) 

Hidden Layers Load (kgf) Location (mm) 

3 0.07 0.12 

5 0.04 0.08 

10 0.02 0.07 

15 0.02 0.07 

 

Since there was little difference in the results from the regression percent and 

MSE, of the hidden layer investigation, another method of evaluation was introduced. 

This involved manipulating the training data to create a new testing dataset which had 

not been introduced to the network during the training of the networks. With the trained 

networks, 18 different test points were input to the networks, and the bias was 

calculated as the difference between the actual value and predicted value.  

 

Table 6.5: Bias of Load Predictions (kgf) for Trials 1-18 for a Hidden Layer Investigation 

Test No 15 HL 10 HL 5 HL 3 HL 

Avg. of 

10 trials 

-0.01 -0.17 -0.56 -0.44 

Sum of 

10 trials 

-0.12 -3.05 -10.01 -7.92 

 

Table 6.6: Bias of Location Predictions (mm) for Trials 1-18 for a Hidden Layer Investigation 

Distance of All Predicted Points from Actual Points (mm) 

Test No 15 HL 10 HL 5 HL 3 HL  

Avg. of 

10 trials 1.65 1.87 2.98 3.42 

Sum of 10 

trials 29.75 33.75 53.70 61.63 

 

These results indicated that 15 hidden layers for the load network predicted load 

values closest to the actual load applied, although not statistically significant (p>0.05) 

when comparing to each of the other 3 hidden layer values. For the location network 15 

hidden layers predicted location values closest to the actual points, which was 

significantly better when comparing the results from 5 and 3 hidden layers (p<0.05) but 

not compared to 10 hidden layers (p>0.05). This exercise provided information about 

the networks ability to generalise with new loads and location, but not with different 

contact points.  

The last method of evaluating the hidden layer involved identifying the ability for 

the network to generalise with new contact points. Since different implant systems may 
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be used, even with the same femoral implant, the contact point could be different based 

on the orientation of the knee and size of the sensor. Therefore, it may be more optimal 

to have a network that can not only generalise well for new load data, but also with new 

contact points. As a result, a small ball bearing (7.17 mm diameter), a large ball bearing 

(19.08 mm diameter), and the inverse, convex shape of the tibial sensor (Figure 6.35) 

were used to apply a 5 kgf load to the point (2,1) on the lateral compartment of the 

Zimmer Specific design. This was done to provide an understanding of how the 

networks would generalise in the clinical setting.  

 

 

Figure 6.35: Contact Point to Apply Load (Convex Lateral Compartment Shape) 

Table 6.7 depicted the average load predictions for 10 trials of each contact point, 

where 5 hidden layers performed significantly better than any other hidden layer 

(p<0.05). Additionally, the average bias represented the difference between the 

predicted load value and the actual value in kgf.   

 

Table 6.7: Load Predictions (kgf) for Different Contact Points and Hidden Layer 

Contact Point 15HL  10HL  5HL  3HL  

Small 5.34 3.53 5.67 8.08 

Large 4.01 2.09 5.13 6.66 

Whole Surface 2.43 3.90 4.15 4.42 

Average Bias -1.05 -2.10 0.02 1.45 

 

The same process was completed with the location predictions; however, when 

the load was applied to the whole surface, as with the convex contact point, the exact 

location was unknown, so it was omitted from the analysis. Table 6.8 described the 

distance in mm of the predicted point from the actual point. The 5 hidden layers 
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location network predictions were significantly closer (p<0.05) to the actual location of 

the applied load compared to 10, 5 or 3 hidden layers.  

Table 6.8: Distance (mm) of Location Predictions from Actual Location with Different Contact Points 

mm Distance From Actual Point (1,2) 

Contact Points 15HL 10HL  5HL 3HL 

Small 2.39 2.97 1.50 4.49 

Large 4.09 2.13 1.84 4.77 

Average Distance 3.87 2.50 1.77 4.68 

 

As a result, the number of hidden layers chosen was 5 for both the load and the 

location networks. This was based on its ability to generalise well for different contact 

points, which also implied its ability to generalise in various conditions while avoiding 

overfitting. This process was repeated for each compartment for both the Ring design 

and the Zimmer Specific design, and similar results were found.  

6.3.7 Conclusion 

Once the load and location networks were properly trained, they underwent 

accuracy testing described in the next chapter.  

In summation, the training of the Ring design and the Zimmer Specific design 

used the following parameters and hyperparameters, some of which were the default 

settings in MATLAB’s Deep Learning Toolbox (Table 6.9).  

Table 6.9: Summary of Final Network Parameters for Both Sensors 

Training Algorithm  Bayesian regularisation backpropagation (BR) 

Hidden Layer Activation 

Function 

Hyperbolic Tangent Sigmoid 

𝑇𝑎𝑛𝑠𝑖𝑔(𝑛) =  
2

1 + 𝑒−2𝑛
− 1 

 

 

 

 

 

 

 

 

Output Layer Transfer 

Layer 

Linear 

 

 



   

 

  114 

 

Hidden Layers 5 

Learning Rate  0.1  

Max no of epoch 1,000 

Division of Data:  

 

Training - 85% 

 Testing -15% 

 

The BR algorithm did not use a validation set when it came to the division of 

data. This was because instead of using a validation set, the BR algorithm stopped based 

on how many times the dataset improved or not. The LM and BFGS algorithm did use a 

validation set so when investigating those algorithms, the division was set to 70% 

training, 15% validation, and 15% testing. The general process of training was 

summarised in Figure 6.36.  

 

Figure 6.36: Preprocessing and Training 

6.4 Graphical User Interface  

The next task was designing the graphical user interface (GUI) for the use of the 

sensor in real time. This involved visualising the load and location predictions in real 

time in each compartment in a clear and concise manner.  

6.4.1 Data acquisition and processing  

To start communication between the microcontroller and MATLAB, the serial 

port was opened. Then five seconds of data was collected and averaged from all 6 
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gauges (3 medial and 3 lateral). The average was then subtracted from the future real 

time readings to zero the results.  

After this, the zeroed readings were normalised using the parameters from the 

training dataset before being passed to the networks.  

Then, the data was input to the network to make predictions for load and 

location on each compartment. Since the load and location predictions in the network 

were normalised, they were then scaled to be understandable to the user. The block 

diagram depicts what happened to the data collected in real time for one of the sensors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4.2 Real time display  

Once the data was put through the network and scaled, it was displayed in real 

time for the surgeon to be able to make informed decisions on the balancing of the knee 

while in surgery.  

The display contained the medial and lateral compartments where the locations 

were plotted on the coordinate system with the drawing of the tibial insert aligned in the 

background. The points used for training were plotted on the figure and the actual 

predicted load was displayed with a larger point on top of the image. The load and 

Load network (medial) 
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Figure 6.37: Block Diagram of Data Processing 
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location predictions were written in the corners of each compartment to provide the 

surgeon with the quantifiable data in real time.  

Additionally, a button was added to the display to zero the readings whenever 

needed without having to stop and re-run the code (bottom left). This display can be 

seen in Figure 6.38.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.38: Display of Sensor in Real Time a) Zimmer Specific b) Ring Design 
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7 Chapter 7: Laboratory Accuracy 

Testing  
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7.1 Introduction  

The next stage was to test the accuracy and precision of the ANN in predicting 

the load and location of a variety of new loads at different locations. Across the two 

sensors and two compartments 15 points were tested.  

The aim of this chapter was to investigate the accuracy and precision of the 

networks in predicting the load and location of the points applied to the sensor. To 

evaluate the function of the sensor’s networks, the testing points aimed to cover the 

following points:   

Location: 

1. Points outside sensing area 

2. Points across the whole surface  

3.  Points not included in the training set 

4. Differences in medial/lateral compartments 

Load: 

1. Loads outside of the sensing area 

2. Loads not included in the training set 

3. Loads across the whole surface 

4. Difference in medial/lateral compartments 

Another aim of this chapter was to investigate the network’s ability to generalise 

with a new contact point and in real time with new data.  

7.2 Methodology  

For testing, the same UTM was used to apply a known load in newtons (N) to 

the sensor using a larger (19.08 mm) ball bearing (Figure 7.1). The loads used were 58 

N (6 kgf), 117 N (12 kgf) and 235 N (24 kgf) to provide a range of loads not previously 

introduced to the network as well as a larger ball bearing to increase the contact surface 

of the applied load. A larger ball bearing was used to more closely replicate the femoral 

implant which would be used intraoperatively.  
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The medial and lateral compartments of each load sensor were tested 

individually, where points were chosen to cover the surface of the sensor, including 

points outside of the triangular sensing area and points which were not included in the 

training dataset. These points can be seen in Figure 7.2, where a total of 15 points were 

tested (7- Zimmer Specific and 8-Ring). For both compartments, at each location and 

for each load applied, 10 trials were performed, and the predicted result values were 

analysed and displayed in the results section.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Contact Points a) Training b) Testing 
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Figure 7.2: Testing Points a) Zimmer Specific b) Ring  

7.3 Results  

To investigate the aims of this sensor, namely the ability to sense over the whole 

surface and outside of the sensing area, the testing points were separated based on 

Figure 7.3. The research questions were compared by finding the biases, the difference 

between predicted and actual loads (kgf), and the distance (mm) of the predicted points 

from the actual points to determine the accuracy. Moreover, the precision was 

represented as the standard deviation to measure random error while the significance 

level was set to 0.05. 
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For the Zimmer Specific sensor, the overall average accuracy was about 90% in 

predicting the applied load and the average distance of the location predictions from the 

actual location was 5.30 mm ± 1.12 mm for both compartments. For the Ring sensor, 

the average bias was about 88% in load predictions and the total average error of the 

location predictions was 4.39 mm ± 1.81 mm (Figure 7.4 and Table 7.1). The 

measurement of the accuracy aimed to provide insight into systematic errors and 

included the whole surface of the tibial insert with loads and locations which were not 

part of the training dataset for the networks.  

Table 7.1: Average Accuracy Across All Locations of Each Compartment of Both Sensors 

 Zimmer Specific Ring 

Applied Load Medial Lateral Medial Lateral 

6 kgf 95.17% 95.33% 96.00% 86.67% 

12 kgf 93.42% 91.67% 93.50% 99.58% 

24 kgf 88.42% 75.67% 80.13% 73.21% 

Average 92.33% 87.56% 89.88% 86.49% 

Total average 89.94% 88.18% 

 

 The increase in bias of the load predictions at 24 kgf; however, not significant 

(p>0.05), may be a result of difficulty in applying higher loads to the curved geometry 

as slight slipping might be occurring.  

Figure 7.3: Points in Relationship to Sensing Area and Region of Sensor a) Zimmer Specific Sensing Area 

b) Ring Sensing Area c) Zimmer Specific Region d) Ring Region 

Figure 7.4: Location Predictions vs. Actual Locations a) Zimmer Specific Sensor b) Ring Sensor 

(A) 

 

  

(

(B) 
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 Moreover, when comparing the accuracy of the load and location predictions 

between both sensors, Zimmer Specific and Ring, there was no significant difference 

(p>0.05).  

7.3.1 Sensing Area  

Through literature it was found that most of the knee sensors operated using 

triangulation where the sensing area only occupied a small percentage of the surface of 

the compartments. Investigating the load and location predictions inside and outside of 

the sensing area aimed to uncover the impacts of the training methodology for the AI 

and the use and implementation of the AI in general as compared to the sensors in 

literature without. To investigate this, the data points were divided based on Figure 7.3 

(a and b) and were combined across the two sensors. There was no significant 

difference between the biases overall for the load predictions (p>0.05) in relation to the 

sensing area; however, there was a significant difference in the location predictions 

(p<0.05). The average accuracy for the load predictions was 94.31% vs. 92.44% for 

loads inside the sensing area compared to those outside respectively (Figure 7.5). The 

average distance of the location predictions from the actual location were 3.52 mm vs. 

6.91 mm when comparing points inside vs. outside respectively (Figure 7.6).  
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Investigating Location Prediction Errors Specifically in Predictions Outside 

Sensing Area 

Understanding the errors of the predictions made outside of the sensing area 

could help improve training and predictions in future iterations. The errors of the 

predictions outside of the sensing area could be contributed to a few factors. First, 

human error could account for loss of accuracy since when applying the loads in both 

training and testing the points outside the sensor area were also points with higher 

curvatures. This increased the difficulty of applying these loads without slipping. The 

use of robotics in the application of these loads for training would increase the accuracy 

of the networks.  
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Moreover, further investigation into the loads applied outside of the sensing area 

uncovered that when loads were applied to points not included in the training dataset, 

the network predicted the location poorly. For example, on the medial compartment of 

the Ring sensor, Point 4 (2.5,3.5) and Point 2 (3,1) were both located outside of the 

sensing area. However, Point 2 was located on a point which was part of the training 

dataset and Point 4 was not. The results of the location predictions varied greatly where 

the average distance of the predicted points were 16.37 mm and 2.15 mm (Point 4 and 

Point 2 respectively) away from the actual points (Figure 7.7).  

Furthermore, when observing all points outside of the sensing area, although not 

statistically significant (p>0.05), the points which were included in the training dataset 

(Zimmer Specific: Point 1 (medial) and Point 3 (lateral) and Ring: Points 2 (medial and 

lateral)) made more accurate location predictions than points not included (Figure 7.8).  
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Figure 7.8: Accuracy of Location Predictions Outside the Sensing Area based on Inclusion in Training 

Dataset 

Furthermore, the points outside of the sensing area which were included in the 

training dataset were further divided based on if they were on top of a strain gauge 

because of an assumption that this could be impacting the accuracy. Points on the 

gauges were thought to be problematic since applying the loads directly on top of the 

gauges introduced randomness to the readings and therefore, the predictions. Points 

which were on the gauges because of the increased ball bearing size and were included 

in the training set were Point 1 (2,0) on the medial compartment of the Zimmer Specific 

sensor and Point 3 (0,5) on the lateral compartment of the same sensor. Comparing 

these points to the points which were also training points and not on gauges Ring 

design: (medial) Point 2 and (lateral) Point 2 to the points on gauges showed a 

significant (p<0.05) increase in distance of the location prediction from the actual 

locations when loads were away from the gauges (Table 7.2).  

Table 7.2: Location Predictions Outside Sensing Area (Part of Training Dataset) On Gauge vs. Away 

from Gauge 

Distance from Actual Point (mm) 

Load Applied 

(kgf) Not on Gauge On Gauge  

6 1.05 6.68 

12 1.78 7.02 

24 1.71 9.47 

Average 1.51 7.72 
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This investigation into the predictions outside of the sensing area uncovered 

possible methods for improving results in future iterations. This includes refining the 

gride size outside of the sensing area to include more training points to provide 

sufficient data for the network to learn due to the high nonlinearity in this area. 

Additionally, training points should not include points which lie on top of the gauges to 

decrease the introduction of this random error into the learning of the network.  

7.3.2 Whole Surface of the Sensor  

Another aim of this sensor was to be able to sense over the whole surface. To 

evaluate these sensor’s abilities in doing this, three regions were separated, forming the 

anterior, central, and posterior regions of the surface of the sensors, seen on Figure 7.3 

(c and d). There was no significant difference (p>0.05) between the load predictions 

and the actual loads applied in all three regions (Figure 7.9). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9: Load Predictions Based on Region 

The location predictions across the sensor were significantly different (p<0.05) 

based on the region. However, this was thought to be impacted mostly by the proximity 

of these points to the sensing area, uncovered in the previous section, since the central 

region provided more accurate location predictions while the anterior region had the 

least accurate results which, mentioned in the previous section, could be due to the 

proximity to the gauges, proximity to the sensing region, curvature of the geometry, or 

the inclusion of these points in the training dataset. 
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Figure 7.10: Location Predictions Distance from Actual Location Based on Region 

7.3.3 Comparison of Each Compartment 

Finally, since balancing occurs between the medial and lateral compartments 

intraoperatively, there should be no significant difference in predictions between the 

two which would result in balancing to be misrepresented. This was the case between 

the load predictions (p>0.05) in each compartment (Figure 7.11). For the location 

predictions (Figure 7.12), there was also no significant difference (p>0.05) in 

predictions when 6 kgf and 24 kgf was applied to each compartment and when the 

outlier of Point 4 on the Ring sensor (medial) was removed there was also no significant 

difference between the compartments when 12 kgf was applied (p>0.05).  

 

 

 

 

 

 

 

 

 

 

Figure 7.11: Load Predictions in Each Compartment 
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7.  

Figure 7.12: Distance of Predicted Location from Actual Location in Each Compartment 

7.4 Two-Contact Point Investigation  

In this section, using the training data, two contact points were applied 

simultaneously to the surface of the Zimmer Specific sensor on the lateral compartment. 

This was done to investigate the predictions based on more than one contact point being 

applied to the surface. To investigate this, three loading positions, with two different 

loading conditions, for a total of 6 predications were investigated based on Figure 7.13.  
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Figure 7.13: Zimmer Specific Lateral Two-Contacts Points Applied 
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The predicated locations based on the above applied loads can be seen in Figure 7.14. 

 

Overall, the accuracy for load predictions was 87.32% which proves the 

networks accuracy in handling more than one contact point being applied.  
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Table 7.3: Zimmer Specific Lateral Two-Contact Points Load Results 

 

 

 

 

 

 

The average distance of the predicted point from the actual point was 5.92 mm.  

Table 7.4: Zimmer Specific Lateral Two-Contact Point Location Results 

Actual Location (X,Y) Precited Location (X,Y) Distance from actual (mm) 

(1,3) (0.65, 1.66) 6.92 

(1,3) (0.53,0.71) 11.69 

(1,3) (0.69,3.00) 1.55 

(1,3) (0.32,3.96) 5.88 

(1,3) (1.56,3.09) 2.84 

(1,3) (0.29,4.12) 6.63 

 

These results indicted when two points were applied over the surface of the 

sensor the load and location results can be predicted accurately based on the results 

displayed in Table 7.3 and Table 7.4.  

7.5 Impact of Temperature 

The change in temperature from the training environment to the in-situ use of 

the sensor is not thought to impact the results of the ANN’s performance. To simulate 

this, the voltages from point (1,3) of the lateral compartment of the Zimmer Specific 

sensor were altered by 5% to represent a change in temperature. Following this, the 

predictions were analysed and compared to the results of the predictions without any 

impact from temperature.  

The results of this investigated indicated the impact of temperature was 

negligible. The change in voltage still provided the sensor with an accuracy of 99.73% 

when temperature changes were simulated compared to a 99.78% accuracy when there 

was no impact from temperature. Moreover, the average difference in measured centre 

of pressure was 3.17 mm from the actual applied load in comparison to 3.15 mm when 

there was no impact from temperature. The results of the temperature effected results 

Actual Load (kgf) Predicted Load (kgf) Accuracy  

10 8.15 81.50% 

10 8.06 80.60% 

10 10.74 92.60% 

20 18.17 90.85% 

20 16.15 80.75% 

20 20.48 97.60% 
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can be seen in Figure 7.15 (a,b, and c) while the impacted results can be seen in Figure 

7.15 (d,e and f). There was no significant difference (p>0.05) in the results of both the 

load and location predictions due to change in temperature. Additionally, it is worth 

nothing that for this application the operating theatre is a highly controlled environment 

due to the risk infection from changes in temperature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) 

(B) 

(C) 

Figure 7.15: Actual Load and Location vs. Predicted Load and Location with Simulated Change in 

Temperature a) Temperature Impact at 5 kgf b) Temperature Impact at 15 kgf c) Temperature 

Impact at 25 kgf d) No Temperature Impact at 5 kgf e) No Temperature Impact at 15 kgf  f) No 

Temperature Impact at 25 kgf 
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7.6 Summary of Results 

The results suggest that the accuracy of both sensors was acceptable for both 

load and location predictions and with minor improvements to the training data 

collection, more accuracy could be seen.  

Temperature of the operating theatre is highly controlled in order to minimise 

risk of infection. As a result, temperature compensation from the strain gauges in the 

Wheatstone bridge suffice due to the device being re-zeroed and measurements 

occurring before the any drift in the system can occur.  

 

7.7 Discussion 

The aim of this research was to investigate the accuracy of two sensors: Ring 

and Zimmer Specific sensors in predicting the location of the contact points and the 

magnitude of the loads. To investigate the robustness of the sensors, the two sensors and 

their two compartments, points inside and outside of the sensing area, and points across 

the whole surface of the sensor were compared.  

The main findings were that 1) there was no significant difference (p>0.05) in 

load predictions between sensors, compartments, region on the sensor, or sensing area 

2) there was a significant difference (p<0.05) in location predictions for all these 

comparisons 3) the errors of both the load and locations predictions were relatively low 

where minor improvements to the training process could significantly improve the 

results of both predictions especially outside of the sensing area.  

The first key finding from the testing of these sensors was that load predictions 

were not significantly different (p>0.05) between the two sensor designs, the sensing 

area, and the region, while also having a low bias. In total, the average accuracy across 

both sensors was about 89% for load predictions and the average location prediction 

was 4.85 mm ± 1.47 mm, where the surface areas of the medial and lateral 

compartments were 1099.72 mm2 and 1088.46 mm2 respectively. Compared to other 

sensors, Wang et al. (2022) had a maximum error of 2% for their load sensor with a 

testing range below 1kg (10 N). Additionally, some limitations to their sensor included 

an operation range between 0-5.1 kgf (0-50 N), not sensing over the whole surface, and 

not displaying the location. Another force sensor using piezoresistive sensors to 
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measure the load in the knee had an error of ±0.51 kgf (±5 N). However, the sensor only 

had a measurement range between 0-4.59 kgf (0-45 N) and did not measure the location 

(Jiang et al. 2019). Another paper by Crottet et al. (2005) had an error of 0.5% in 

location and load predictions in a laboratory setting; however, when using a bone 

model, the error jumped to 13% which the authors described as a result of cumulative 

errors in the device and experiment. This is an important finding since in order to set the 

correct tension in the joint intraoperatively, the surgeon needs to have similar accuracies 

in the load values between compartments. Moreover, the load values across the whole 

sensor should not be significantly different since the surgeon will be comparing the 

values at different orientations which moves the centre of pressure along different 

regions of the sensor. Moreover, when two contact points were applied to the surface of 

the sensor, the load was predicted with an average of 87.32% accuracy where there was 

no significant difference between applied and predicted loads (p>0.05).  

One of the main advantages of using AI was an increase in the sensing area. 

Although there was a significant difference (p<0.05) in location predictions outside 

compared to inside the sensing area, the load predictions were not significantly different 

(p>0.05). The testing of this sensor uncovered some proposed improvements to increase 

the accuracy of the location predictions outside of the sensing area. Location predictions 

outside of the sensing area were investigated and when the tested locations were 

between training points the accuracy significantly decreased (p<0.05). Furthermore, 

points which were on top of the strain gauges introduced random data and error in the 

networks ability to predict the location. Since the data outside the sensing area was 

highly nonlinear a simple solution to this error would be to create a finer grid outside of 

the sensor area during training which would provide the network with more information 

to converge, while avoiding points on top the strain gauges. Despite this, the average 

distance of the points outside of the sensing error was 6.91 mm ± 2.15 mm with one 

outlier of Point 4 on the Ring sensor. Once removed, the error was 5.24 mm ± 1.51 mm 

which compared to the overall size of the sensor was still a relatively small error. The 

point of this finding is to ensure the location of the centre of pressure is accurate for the 

surgeon to ensure the femur is articulating of the tibial properly. As a result, the 

decrease in accuracy compared to the load is acceptable for the surgeon to be able to 

make an informed decision on setting the joint. Also, the investigations into the results 

provide a clear methodology for improving these results.  
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The load predictions of the sensor made in this research had a lower bias 

compared to VERASENSE both inside and outside of the sensing area. A study of the 

accuracy of VERASENSE by Nicolet-Petersen et al. (2018) found that when observing 

points across the sensor through a range of loads, the bias of the load readings was -2.36 

kgf ± 1.18 kgf inside the sensing area and -6.12 kgf ± 2.13 kgf outside the sensing area. 

The sensor created in this research had an average bias of 0.61 kgf ± 1.43 kgf inside the 

sensing area and 0.98 kgf ± 1.70 kgf outside. This demonstrated the improvement AI 

made to abilities of the sensors which satisfies the criteria determined by Roth et al. 

(2017) for creating an accurate and robust measuring device to inform TKRs.  

In futures iterations of testing the accuracy of these networks, a bone model can 

be constructed using the prosthetic implants from the PKS to more closely mimic the 

intraoperative condition for which the sensor will be used. Moreover, to increase the 

accuracy, increasing the ceiling of load values to get the whole behaviour should be 

done in the next iteration.  

7.8 Conclusion  

Intraoperative load sensors aim to measure the intercompartmental loads and 

provide surgeons with a quantitative tool to balance the loads. This tool can be 

beneficial for surgeons, patients, hospitals, the National Health Services (NHS), 

stakeholders, and biomedical companies. Surgeons and patients can see a reduction in 

early revision surgeries and better postoperative outcomes. Hospitals, the NHS, and 

stakeholders can benefit from better patient outcomes, lower costs in revision surgeries, 

and shorter hospital stay postoperatively. Moreover, biomedical companies and 

stakeholders can use the data of load distributions intraoperatively to better design 

implant systems and inform regulatory agencies.  

In this research, one sensor was amended to fit Persona’s shim system and the 

other was adjusted to have a more general design to incorporate other implant systems. 

The benefits of these sensors were that its use of AI allowed it to identify loads and 

locations over the entire surface of the insert while also upholding high accuracy and 

precision over a wide range of loads. This research investigated the accuracy of the 

sensor by investigating the ability of AI to predict both the load and location of a known 

point load. The sensors both performed with good accuracy and precision in both load 

and location predictions across the whole of the sensors. The main findings were that 
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the load predictions were low and had no significant difference across sensor design, 

sensing area, or region of the surface. The main difference in location predictions arose 

from the proximity to sensing region, where a deeper investigation uncovered that a 

finer grid size outside the sensing area should increase the accuracy of the location 

predictions in this region, while avoiding locations on top of the strain gauges. An 

added benefit of using an AI was that retraining can be done quickly and simply as 

more research is done on the performance and training process, making the iterative 

process of optimisation cheaper and relatively quick.   

This accuracy testing of the sensors not only helped to understand the 

performance of the sensor but also to shed light on where errors may be originating in 

order to adjust the data collection or training accordingly.  

 This system, when combined with robotic technology can significantly improve 

the reliability and repeatability of the quantification of contact forces and locations 

during the operation. This would more allow for accurate tracking of the ideal loads and 

contacts points linked to patient specific data like size and gender. Identifying the ideal 

load intensity is the optimal goal that this device can help identify. Combined with the 

robot’s ability to produce identical cuts, the subjective nature of joint replacement 

surgeries can be eliminated.  
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8 Chapter 8: Cadaveric Testing 
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8.1 Introduction 

The Zimmer Specific sensor was tested in cadavers at the Clinical Anatomy 

Skills Centre, Glasgow University and the Royal College of Physicians and Surgeons of 

Glasgow (RCPS Glasgow), Scotland on June 27th, 2023. Zimmer Biomet was the 

sponsor of the research conducted at RCPS Glasgow and Zimmer Biomet confirmed 

that all regulatory requirements for the use of donor material in the research described 

were in place prior to the work being conducted. Under the sponsorship agreement 

between Zimmer Biomet and RCPS Glasgow, the latter confirmed to BU that 

permission was in place to use the data and publish the results in this thesis. Since the 

sensor created in this research was the only sensor compatible with the Persona Knee 

System (PKS), qualitative results were discussed based on expected outputs from trends 

in joint loading, and kinematic pivot patterns. The normal and TKR knee kinematic and 

kinetic patterns were described in Chapters 2 and 3, which provided context to the 

quantitative cadaveric results. Additionally, surgeon’s qualitative comments were 

discussed based on several factors including the useability of the device, compatibility 

with Persona’s Shim System, and integration with the standard surgical workflow.  

8.2 Surgical Procedure 

The surgical procedure was performed in conjunction with a surgical training 

session organised by Zimmer Biomet. This involved surgical trainees performing TKRs 

on cadavers under the supervision of experienced orthopaedic surgeons. The cadavers 

used in this research underwent a right knee cruciate retaining (CR) TKR using the 

PKS. This was compatible with the Zimmer Specific sensor and the Ring sensor created 

in this research. The Zimmer Specific sensor was used in two full body cadavers.  In 

accordance with Scotland’s ethical procedures surrounding human tissue (Human 

Tissue Act 2004), the identities were concealed, and no photographs of the cadavers 

were taken. The following research by Cho et al. (2018) depicts a cadaveric knee using 

VERASENSE which provided an idea of what the knee looked like with the sensor 

made in this research inserted.  
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To investigate the function of the Zimmer Specific sensor intraoperatively the 

sensor replaced the tibial spacer as seen in Figure 8.2. The PCB, the temperature 

compensation gauges, and laptop were placed on a trolly next to the cadaver during the 

use of this system.  
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Figure 8.1: Cadaver with sensor (Cho et al. 2018) 

Figure 8.2: Placement of Sensor and Electronics 
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During the intraoperative use of the Zimmer Specific sensor the thickness of the 

shims were increased (10 mm-13 mm) to observe the impacts of the tensioned soft 

tissue on intraoperative load. During a real TKR, surgeon’s trial different thicknesses to 

“feel” if the proper tension is achieved while the knee is moved through a ROM (0°/10°, 

45°, and 90°) and with varus and valgus stresses applied. The same process was done 

with this sensor to ensure that the values reflected what was expected at these 

orientations in the passive state. The two cadavers were tested with the 10 mm, 11 mm, 

12 mm and 13 mm shim inserted twice at different degrees of flexion (0°/10°, 45°, and 

90°). The load and location predications were averaged and recorded. When thicker 

shims were inserted, the knee does not reach full extension of 0° and therefore full 

extension is reached at 10° instead. Figure 8.3 depicts the Zimmer Specific sensor with 

the 13 mm thickness shim being inserted which was one of the 4 variable thicknesses 

used. 

 

 

 

 

 

 

 

 

 

 

 

8.3 Results and Discussion  

Since there is currently no verified system which is compatible with the PKS, 

characteristics of the general performance were described. Described below are the 

trends which should be observed, found in literature, and were compared to the load and 

locations values recorded in this study.  

8.3.1 Compartmental Loads 

Figure 8.3: Zimmer Specific Sensor with 13 mm Shim 
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Firstly, as the shim thickness increased the loads observed in both compartments 

should also increase. Figure 8.4 depicted the changes in load measurements in the 

medial and lateral compartments at 0°/10°, 45°, and 90° when the shim thickness was 

increased from 10-13 mm in increments of 1 mm for both cadavers. Increasing the 

thickness of the shim should increase the load in the compartments since the soft tissue 

was not released during this process. This finding was substantiated by research which 

found an increase in tibiofemoral forces when the PE insert thicknesses were increased 

(Tzanetis et al. 2021). 
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This was the case for almost all orientations in both compartments and both 

cadavers. Where the medial compartment of Cadaver 1 at 45° was the only case where 

the overall load greatly decreased as the thickness increased.  

Moreover, the average measurements from the cadavers in full extension with 

the increasing shim size can be compared to another research by Kuriyama et al. (2023) 

which used a knee sensor and thicknesses from 10-16 mm in 1 mm increments. The R2 

values for the linear relationship were 0.88 (lateral), 0.97 (medial) in the study by 

Kuriyama et al. (2023) (Figure 8.5) and 0.85 for both medial and lateral compartments 

in this study (Figure 8.6). This implied that the sensor was able to register the increase 

in compartmental loads that would be expected as the thickness of the insert increased. 

Figure 8.4: Compartmental Load with Increasing Thicknesses a) Full Extension (0°/10°) Cadaver 1 b) Full 

Extension (0°/10°) Cadaver 2 c) 45° Cadaver 1 d) 45° Cadaver 2 e) 90° Cadaver 1 f) 90° Cadaver 2 

R² = 0.85
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Figure 8.5: Results from Research by Kuriyama et al. (2023) at Full Extension with Increasing 

Thickness 
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Figure 8.6: Result of Zimmer Sensor at Full Extension with Increasing Thickness  

8.3.2 Loads through the Flexion Arc  

Secondly, following a TKR the contact forces should greatly decrease as the 

flexion angle increases to 45° then slightly increase to 90° (Jeffcote et al. 2007; 

Schnaser et al. 2015; Verstraete et al. 2017; Kebbach et al. 2019; Manning et al. 2019; 

Sabatini et al. 2021; Shah et al. 2021). Therefore, observing the total load difference 

between full extension and 90° should provide a good insight into the function of the 

sensor. Figure 8.7 depicts the average of each cadaver for all shim inserts, as well as the 

total average. These results follow the trend described above and depicted in Figure 2.9, 

Figure 2.10, Figure 2.11, and Figure 2.12. 

 

 

Moreover, since standard measuring tools were used to place the knee in varying 

degrees of flexion there may be some error, in the clinical use of the system an IMU can 

be combined with this system to ensure the proper angle is being achieved. 

Additionally, linking this system with robotic technology would provide a seamless 

integration of the technology with the surgical workflow.  

8.3.3 Intercompartmental Load Balancing 

Another kinematic observation was that the loads may be higher medially than 

laterally throughout the flexion arc, however this was based on the surgeon’s ability to 

Figure 8.7: Loads through the Flexion Arc 
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balance the knee. When averaging all flexion angles the loads were higher medially than 

laterally for both cadavers (Figure 8.8), which was observed in studies using both 

VERASENSE and independent load sensors (Meere et al. 2016; Verstraete et al. 2017; 

Manning et al. 2020; Song et al. 2020; Sabatini et al. 2021). 

 

Moreover, the intercompartmental load difference provides insight into the 

balancing of the knee joint. VERASENSE developers and literature surrounding joint 

balancing found that the intercompartmental load difference should be ≤ 6.80 kgf (66.70 

N or 15 lbf) (Gustke et al. 2017; Risitano et al. 2017; Song et al. 2020). The 

mediolateral compartmental difference was tabulated in Table 8.1. Since the cadavers 

underwent a TKR performed by surgical trainees using standard tools it was expected 

the joint would be unbalanced. The results in Table 8.1 were colour coordinated 

according to the state of balance labelled in the legend below.  

Table 8.1: Intercompartmental Loads 

Thickness Cad1 Cad2 

10 mm 9.00 kgf 3.35 kgf 

11 mm 23.00 kgf 7.25 kgf 

12 mm 20.10 kgf 12.25 kgf 

13 mm 26.90 kgf 7.25 kgf 

 

Legend 1 

 

 

8.3.4 Varus-Valgus Stress Tests 

 Balanced ≤ 6.80 kgf  

 6.80 kgf< moderately unbalanced ≤13.60kgf  

 13.60kgf ≤ severely unbalanced  

Figure 8.8: Compartmental Load Balancing Using Zimmer Sensor in Both Cadavers 
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Surgeons often perform varus-valgus stress tests to uncover the condition of the 

surrounding knee stabilisers, which is often performed at 30° (Al-Jabri et al. 2021).  

With the varus-valgus stress test the loads should be much greater in one compartment 

when the leg is pulled varus or valgus (to the medial or lateral compartment) 

respectively. This was observed when testing both cadavers by applying varus and 

valgus forces to the knee at 30° as seen in Table 8.2. Cadaver 1 was performed with the 

12 mm insert and Cadaver 2 with a 10 mm insert.  

Table 8.2: Varus-Valgus Testing 

 Varus Valgus 

Medial  Lateral  Medial Lateral 

Cadaver 1 24.10 kgf  3.00 kgf 0.80 kgf 42.20 kgf 

Cadaver 2 34.45 kgf 2.10 kgf 7.85 kgf 46.65 kgf 

 

It can be observed that the medial forces are slightly lower than the lateral when 

the varus/valgus forces were applied respectively. This can be attributed to the soft 

tissue (LCL) being tighter laterally, meaning more force was required by the surgeon to 

move the leg in varus direction, which was dependent on the surgeon’s bone cuts and 

gap balancing (Meloni et al. 2014). However, as expected the forces recorded by the 

sensor were significantly (p<0.05) higher in the direction which the knee was pulled. 

8.3.5 Location Predictions 

For the location predictions, it was difficult to discern what location predictions 

were accurate since it was dependent on how the surgeon was holding the leg (varying 

degrees of varus/valgus and flexion) and the overall laxity in the joint. The average of 

all location predictions were plotted to Figure 8.9 and compared with research 

conducted by Deckard et al. (2022) on VERASENSE. The orange dots represent the 

predictions found in this research where the blue dots were from the research conducted 

by Deckard et al. (2022) and transposed on to the Zimmer Specific sensor. Since the 

implants were not the same size the locations were estimated onto the Zimmer Specific 

sensor as accurately as possible. One similarity was that the lateral location predictions 

were more anterior compared to the medial compartment. This was consistent to what is 

known about the kinematic pivot patterns in the knee through the flexion arc (Iwaki et 

al. 2000; Dennis et al. 2003; Moonot et al. 2009; Meneghini et al. 2017; Pinskerova and 

Vavrik 2020; Deckard et al. 2022; Hashimoto et al. 2022). 
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Figure 8.9: Location Predications through the Flexion Arc: VERASENSE vs Zimmer Specific Sensor 

8.4 Qualitative Analysis 

The cadaveric testing provided valuable insight into the qualitative performance 

of the sensor with the unique perspective of an experienced orthopaedic surgeon. The 

graphical user interface (GUI) included CAD drawings of the surface of the tibial insert 

which was identical to the surface of the sensor. Moreover, the Cartesian-coordinate 

system was aligned with training points to increase the coherence between the sensor 

and what was depicted to the surgeon. During training and lab testing, the font size of 

the load values was acceptable for the user. However, during the surgery the surgeon 

stood farther away from the screen and as a result the load prediction font size needed to 

be increased. The other features like zeroing the device were easy to use by a technician 

during the surgery.  

Moreover, since this was a working prototype, the wires emerged from the front 

of the sensor while the skin and tissue covered the sensor including the wires during 

intraoperative use. The positioning of the wires from the front of the sensor can be seen 

in Figure 8.10. However, despite this the wires were durable and from the surgeon’s 

perspective did not interfere with his work. Additionally, the shims were easily 

exchangeable and there were no problems with the sensor throughout the cadaveric 

testing including with the electronics, GUI, or physical compatibility with the PKS. 
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In addition, the sensor was durable and robust demonstrated by being able to 

withstand the high loads from varus and valgus stresses, more than 391 N (40 kgf).  

Additionally, the sensor was not handled with extreme care and was able to withstand 

being pulled and pushed in and out of the knee without being damaged. The knee 

(femoral implant) was able to glide smoothly over the surface of the sensor throughout 

the ROM. For the final design, a plastic coating can be applied over the sensor to 

prevent tissue and liquid from entering the sensor. However, the sensor was water 

resistant, so it was able to be used for the duration of the cadaveric testing without 

problems. A coating would make the sensor easier and quicker to clean by removing the 

need to wipe down the grooves in the sensor when increasing the shim thickness. This 

would in turn decrease the already short addition of the sensor to the operation time. 

This system could also be reusable through sterilisation which would contribute to 

global and UK efforts towards sustainability.  

Moreover, in terms of the accuracy of the results it was noted that during the 

cadaveric testing the surgeon observed that the Cadaver 2 felt more balanced than 

Cadaver 1, without viewing the load values on the screen. This was reflected by the 

results in Table 8.2 where the literature suggests an intercompartmental load difference 

of ≤ 6.80 kgf (66.70 N or 15 lbf) (Gustke et al. 2017; Risitano et al. 2017; Song et al. 

2020). Table 8.3 reflects the distance of the load difference from the suggested load 

differential. Cadaver 2 was significantly more balanced than Cadaver 1 (p<0.05) and 

the total differences were +51.70 kgf and +2.90 kgf greater than the maximum 

suggested load difference of 6.80 kgf for Cadaver 1 and Cadaver 2 respectively.  

 

 

 

 

 

Figure 8.10: Wires from Front of Zimmer Specific Sensor 
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Table 8.3: Load Differential 

Thickness Cadaver 1 Cadaver 2 

10 mm +2.20 kgf -3.45 kgf 

11 mm +16.20 kgf +0.45 kgf 

12 mm +13.20 kgf +5.45 kgf 

13 mm +20.10 kgf +0.45 kgf 

Total +51.70 kgf +2.90 kgf 

 

8.5 Conclusion  

In conclusion, the cadaveric testing provided valuable insight into the 

performance of the sensor in real time. Despite not having another sensor to compare 

the results to, the literature surrounding kinematic and kinetic patterns of the knee and 

TKRs provided an argument for the successful use of the sensor intraoperatively. 

Moreover, an orthopaedic surgeon who has experience using VERASENSE was able to 

provide commentary on the useability and performance of the sensor. The cadaveric 

testing implied the success of the sensor for intraoperative use.  

Also, this highlighted the need for repeatability that can be reinforced over time 

by creating a database storing the patient specific data along with their recorded load 

and location values used to set the tension in the knee. Over time functional and patient 

reported outcome can be recorded to link the load intensities to the patient outcomes, 

thus determining ideal load values based on patient specific data. 

Following the integration of the improvements discovered in previous chapters, 

the Ring sensor can be retested in the next round of cadaveric testing.  
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9 Chapter 9: Discussion and 

Conclusion 
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9.1 Introduction  

An arthritic knee joint limits the quality of life of patients causing them to suffer 

from pain and limited ROM amongst other ailments. A TKR aims to replace the joint 

and provide patients with a better quality of life; however, improper tension leaves 

patients unsatisfied and requiring revision surgeries. Studies have reported pain and 

poor functional outcomes as the primary reasons for patient reported dissatisfaction 

(Halawi et al. 2019; Muertizha et al. 2022). The previous chapters described the 

literature review, prototyping and fabricating of different knee sensor designs, training 

the sensor for use of AI, implementing tracking and load prediction over the whole 

surface of the sensor with a GUI, testing the accuracy in a laboratory setting, and 

cadaveric testing of the sensor.  

 This knee balancing system proved its robustness and accuracy through lab and 

cadaveric testing along with improvements for the next iteration. The knee balancing 

system aims to overcome ambiguity from surgeons in balancing the load between 

compartments in the knee. The following chapter critically evaluates the previous 

chapters involved in creating and testing this system.  

9.2 Sensor Design and Fabrication  

The process of designing and fabricating these sensors was centred around two 

key design ideas: one design which was compatible with Zimmer’s PKS, and one which 

was a general design. Both sensors required a method to adjust the height to increase or 

decrease the tension in the joint. Moreover, the design features of the PKS like the 

curved surface of the sensor and the difference in compartment sizes aimed to maintain 

anatomical accuracy and increase congruency between components and were 

maintained when designing both sensors. Finally, features added to the design of the 

sensors allowed for the stress to be raised to the tabs where the strain gauges were 

placed, to reduce load sharing between compartments, and reduce the occurrence of 

mechanical crosstalk.  

For the electronics, a half bridge Wheatstone bridge with temperature 

compensation was used. The strain gauges had no upper limit meaning they are highly 

accurate within its linear range. The PCB and electronics chosen were acceptable for 

this prototype; however, for the future, miniaturisation of the electronics would allow it 
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to be enclosed in the sensor reducing the bulk of the system and reducing the number 

and length of the wires. Additionally, Bluetooth would allow for wireless 

communication between the sensor and the computer which would increase the 

compactness of the system by eliminating the wiring.   

The maximum allowable load for training was limited by the physical structural 

integrity of the sensor and not the strain gauges. As a result, in the future a stronger 

material like Titanium can be used for training higher point loads for increased accuracy 

of the AI, ideally a maximum point load of 450 N should be applied according to 

literature (Roth et al. 2017). Furthermore, 3D printed designs were investigated and 

ultimately not used for training or testing because of residual stresses decreasing the 

structural integrity of the design and the concerns regarding steralisation (Xie et al. 

2022).  As a result, CNC machining was used with an aluminium alloy. Moreover, 

casting could possibly be used since this process reduces the imperfections that are 

associated with additive manufacturing.    

9.3 Artificial Intelligence  

The optimisation of any AI system is based on the collected data and the 

application. Therefore, determining appropriate parameters and hyperparameters to 

yield the optimal weights and biases for the network was based on trial and error. Since 

this problem was a prediction problem, an ANN was used.  

9.3.1 Training Data Collection  

To train the neural network, a training dataset was created using physically 

collected data of the changes in voltage from the unbalanced Wheatstone bridge along 

with the corresponding load and location values of the applied loads. The use of the raw 

voltage data from the Wheatstone bridge instead of converting to strain, reduced the 

complexity of the system and the computational effort of the system. Although an 

iterative development of the training process ensued, there were still unexplored 

methods, like robotics, which could increase the accuracy and reduce the time and effort 

required to train this system. This will be especially important for the mass production 

of the devices. 
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First, to increase the repeatability a grid should be printed to the surface of the 

surface. In theory, if it is identical between sensors, then the same network could be 

used for mass production. Moreover, a material with a higher yield strength should be 

used to increase the training range inputted to the network. Finally, the grid size, mainly 

outside of the sensing area, should be finer. From the results of the accuracy testing, it 

was uncovered that due to the high nonlinearity outside of the sensing area, the network 

could benefit from more data to be able to converge.  

9.4 Accuracy Testing 

The accuracy testing of the sensor involved using a larger ball bearing to 

mimic the contact between the femoral implant and the sensor. However, in the future 

an additional test could be done by using the actual femoral implant at different 

orientations to replicate the flexion angle and simulate the real time intraoperative use 

of the sensor more accurately. Since with a larger uneven surface the centre of 

pressure is not easy to calculate, the use of AI in this system will allow for precise 

understanding of the location of the force through the knee. This is especially 

important since tools like gait analysis use ground reaction forces to approximate the 

direction of the force through the knee but does not take into account different limb 

alignments. Additionally, further testing could be split into one compartment loading 

and two compartment loading to investigate different loading conditions.  

9.5 Cadaveric Testing 

The quantitative results of the cadaveric testing were compared with literature 

on the expected kinematic and kinetic patterns of the joint, which mimicked the results 

from the Zimmer Specific sensor.  

Additionally, the cadaveric testing provided valuable insight into the 

qualitative use of the sensor. Since there was no available sensor for comparison the 

qualitative feel of a balanced knee was used as a marker to investigate if the sensor 

agreed with the surgeon. In the future, the PCB should be miniaturised, and the 

electronics should be packaged better to reduce the bulk of the system. Moreover, the 

surgeon was able to identify that the font size of the GUI should be increased since 

surgeons stand farther away from the screen than technicians. Also, initially thought to 
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be problematic, the wires did not interfere with the surgery. To make the sensor easier 

to resterilise, the slits and space underneath could be covered and/or filled. A plastic 

coating for the top surface and a flexible filling for the cavity underneath could 

prevent damage and allow for reuse via sterilisation and long-term use. This 

contributes to sustainability efforts. 

In the future, the Ring sensor should be improved based on this research and 

then tested in cadavers to identify any more possible design oversights. One 

consideration which could be predicted based on the cadaveric testing done in this 

research, would be to amend how the rings attach to allow for the surgeon to easily 

change the rings where currently it could be difficult considering the gloves worn 

during surgery both globally and in the UK, where the author found no other mentions 

in literature of such device being reuseable. 

9.6 Contribution to Knowledge  

This research was able to contribute to the pool of knowledge surrounding real 

time joint force measuring and tracking. This developed sensor along with the AI has 

provided surgeons with a sensor which covers the criteria established by Roth et al. 

(2017) to create an accurate and robust knee joint sensor.  

The contributions made by this research included:  

1. Developed a novel smart-sensor which could track the magnitude and 

location of the load across the whole surface of the sensor, withstand high 

forces, and maintain a reasonably low error.  

2. Created a GUI to train the AI and to display the real time sensor data for 

easy visualisation by the surgeon. 

3. Developed a training procedure and AI optimisation which can be used for 

similar sensors in other joints.  

4. Provided rationale for the long-term development of joint assessment 

technology  

This research provides a strong justification for the strength of AI in orthopaedic 

surgeries in order to instil confidence in such technology. Currently, the TKR process is 

reliant on the skill of the surgeon and the skill of engineers in creating an implant 

system and a joint that will provide patients with an improved quality of life. As the use 

of AI is becoming more prevalent in all areas of society, more trust is being given to the 
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integrity of these systems, including autonomous driving vehicles. Since the surgeon 

uses this validated device as a tool to make an informed decision during the surgery, the 

combined surgeon and sensor skill reduces the risk associated with either one alone.  

9.7 Future Works  

In the future a final prototype should be made with the consideration from this 

research. This includes a Titanium design with a coating, miniaturised electronics, 

which would be trained with robotics over a wider range of loads (0-450 N). This new 

sensor could then be tested in the clinical setting following a more robust lab accuracy 

testing which would mimic the cadaveric testing procedure and then in cadavers.  

For approval of this device for clinical use, Food and Drug Administration 

(FDA) or Medicines and Healthcare products Regulatory Agency (MHRA) approval 

should be obtained.  

The potential of this device is not limited to intercompartmental balancing, 

where the optimal load intensity for improved postoperative outcomes can be revealed. 

Following clinical trials, a database can be created, and patient outcomes can be 

measured to determine ideal quantification of a balanced knee. The continued use of this 

validated and accurate device will correlate the load intensity in the knee to the optimal 

function and patient reported outcomes, reducing the frequency of early revision 

surgeries.     

This technology should not be limited to the knee where the same theory can be 

applied to other joints in the body including, hip, shoulder, ankle, elbow, vertebrae and 

many more. This would help set the ideal tension for other joint surgeries.  
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11. Appendix  

A.I: Material Properties for Sensors 

1. Aluminium Alloy  
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2.  PU Rigid 1000 Resin 
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3. Polypropylene Glass Beaded (PP GB) 
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A.II: Engineering Drawings of Physical Sensor 

 

1. Ring Design 

 

 
 

2. Zimmer Specific 
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A.III: Electronics Datasheets 

1. Strain gauges  

 

 

 

 

 

 

 

 

 

 

 

 

2. Load Cell Amplifier (HX711)  
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A.IV: Arduino Code 

#include "HX711.h" 
// HX711 circuit wiring 
const int LOADCELL_DOUT_PIN1 = 0; 
const int LOADCELL_SCK_PIN1 = 1; 
HX711 scale1; 
 
const int LOADCELL_DOUT_PIN2 = 7; 
const int LOADCELL_SCK_PIN2 = 8; 
HX711 scale2; 
 
const int LOADCELL_DOUT_PIN3 = 28; 
const int LOADCELL_SCK_PIN3 = 29; 
HX711 scale3; 
 
const int LOADCELL_DOUT_PIN4 = 21; 
const int LOADCELL_SCK_PIN4 = 20; 
HX711 scale4; 
 
const int LOADCELL_DOUT_PIN5 = 16; 
const int LOADCELL_SCK_PIN5 = 17; 
HX711 scale5; 
 
const int LOADCELL_DOUT_PIN6 = 34; 
const int LOADCELL_SCK_PIN6 = 35; 
HX711 scale6; 
 
void setup() { 
  Serial.begin(38400); 
  scale1.begin(LOADCELL_DOUT_PIN1, LOADCELL_SCK_PIN1); 
  scale2.begin(LOADCELL_DOUT_PIN2, LOADCELL_SCK_PIN2); 
  scale3.begin(LOADCELL_DOUT_PIN3, LOADCELL_SCK_PIN3); 
  scale4.begin(LOADCELL_DOUT_PIN4, LOADCELL_SCK_PIN4); 
  scale5.begin(LOADCELL_DOUT_PIN5, LOADCELL_SCK_PIN5); 
  scale6.begin(LOADCELL_DOUT_PIN6, LOADCELL_SCK_PIN6); } 
 
void loop() { 
  long reading1 = scale1.read(); 
  long reading2 = scale2.read(); 
  long reading3 = scale3.read(); 
  long reading4 = scale4.read(); 
  long reading5 = scale5.read(); 
  long reading6 = scale6.read(); 
  Serial.print(reading1); 
  Serial.print("\t"); 
  Serial.print(reading2); 
  Serial.print("\t"); 
  Serial.print(reading3); 
  Serial.print("\t"); 
  Serial.print(reading4); 
  Serial.print("\t"); 
  Serial.print(reading5); 
  Serial.print("\t"); 
  Serial.println(reading6); 
  delay(100); 
} 
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A.V: Training App MATLAB Code 

classdef app1 < matlab.apps.AppBase 
    % Properties that correspond to app components 
    properties (Access = public) 
        UIFigure           matlab.ui.Figure 
        ConnectButton      matlab.ui.control.Button 
        PlotMedialButton   matlab.ui.control.Button 
        UITable            matlab.ui.control.Table 
        StoreButton        matlab.ui.control.Button 
        EditField          matlab.ui.control.EditField 
        AddButton          matlab.ui.control.Button 
        UITable2           matlab.ui.control.Table 
        EditField_2        matlab.ui.control.EditField 
        EditField_3        matlab.ui.control.EditField 
        RowEditFieldLabel  matlab.ui.control.Label 
        RowEditField       matlab.ui.control.EditField 
        DeleteButton       matlab.ui.control.Button 
        Lamp               matlab.ui.control.Lamp 
        CloseButton        matlab.ui.control.Button 
        Lamp_2             matlab.ui.control.Lamp 
        EXCELButton        matlab.ui.control.Button 
        Lamp_3             matlab.ui.control.Lamp 
    end 
    properties (Access = private) 
        T % Table to share between callbacks 
        T1 
data1 
data2 
data3 
    end 
    % Callbacks that handle component events 
    methods (Access = private) 
        % Button pushed function: ConnectButton 
        function ConnectButtonPushed(app, event) 
      app.Lamp_2.Color=[1,1,1]; 
            app.Lamp.Color=[1,0,0];         
global arduin 
arduin= serialport("COM4",9600);  
    app.Lamp.Color=[0,1,0]; 
        end 
        % Button pushed function: PlotMedialButton 
        function PlotMedialButtonPushed(app, event) 
            global arduin 
             app.Lamp.Color=[1,1,1]; 
time(1)=0; 
data_length=400000; 
tit=zeros(data_length,1); 
data1tit=zeros(data_length,1); 
data2tit=zeros(data_length,1); 
data3tit=zeros(data_length,1); 
t_axis=zeros(data_length,1); 
data_input = {}; % To save data 
tic 
while (toc<=5)    
toc 
readz3=str2num(readline(arduin)); 
data10=mean(readz3(1)); 
data20=mean(readz3(2)); 
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data30=mean(readz3(3)); 
end 
figure(1) 
h1 = plot(nan,nan,'linewidth',1,'color','red'); 
hold on 
h2 = plot(nan,nan,'linewidth',1,'color','green'); 
hold on 
h3 = plot(nan,nan,'linewidth',1,'color','blue'); 
lg = legend('X','Y','Z'); 
lg.FontSize = 16; 
grid on 
i = 1; 
tic 
while (toc<=40000)     
toc; 
ti = toc; 
readz3=str2num(readline(arduin)); 
  szz = size(readz3); 
  if szz(1,2) > 0     
    app.data1 = readz3(1) - data10; 
    app.data2 = readz3(2) - data20; 
    app.data3 = readz3(3) - data30; 
  else 
    app.data1 = 0; 
    app.data2 = 0; 
    app.data3 = 0;  
  end       
data_input{i,1} = app.data1; 
data_input{i,2} = app.data2; 
data_input{i,3} = app.data3; 
t_axis = [t_axis(2:end) ; i]; 
data1tit = [data1tit(2:end) ; app.data1]; 
data2tit = [data2tit(2:end) ; app.data2]; 
data3tit = [data3tit(2:end) ; app.data3]; 
h1.XData = t_axis; 
h1.YData = data1tit; 
h2.XData = t_axis; 
h2.YData = data2tit; 
h3.XData = t_axis; 
h3.YData = data3tit; 
i = i +1; 
end 
    full_table = cell2mat(data_input); 
    f_name = append('Number of data points',num2str(i),'.txt'); 
    writematrix(full_table,f_name,'Delimiter',',','QuoteStrings',true) 
        end 
        % Button pushed function: StoreButton 
        function StoreButtonPushed(app, event) 
            % Color= {'Red';'Green';'Blue'};  
            strain1 = app.data1; 
            strain2= app.data2; 
            strain3= app.data3; %data1tit data2tit data3tit 
          nr1={strain1 strain2 strain3}; 
             app.UITable.Data=[app.T;nr1]; 
             app.T=app.UITable.Data; 
        end 
        % Button pushed function: AddButton 
        function AddButtonPushed(app, event) 
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          Load=app.EditField.Value; 
          LocationX=app.EditField_2.Value; 
           LocationY=app.EditField_3.Value; 
            nr={Load LocationX LocationY}; 
            app.UITable2.Data=[app.T1;nr]; 
            app.T1=app.UITable2.Data;     
        end 
        % Callback function: DeleteButton, RowEditField 
        function DeleteButtonPushed(app, event) 
            num=round(app.RowEditField.Value); 
           app.UITable2.Data(num,:)=[]; 
app.T1 = app.UITable2.Data;        
        end 
        % Callback function 
        function ButtonPushed(app, event) 
        end 
        % Button pushed function: CloseButton 
        function CloseButtonPushed(app, event) 
if ~isempty(instrfindall) 
    fclose(instrfindall); 
    delete(instrfindall); 
end 
clearvars -global arduin; 
close all 
    app.Lamp_2.Color=[0,1,0]; 
        end 
        % Button pushed function: EXCELButton 
        function EXCELButtonPushed(app, event) 
          ResultsLL=[app.T1 app.T]; 
 ResultsLL=cell2table(ResultsLL); 
            writetable(ResultsLL,'Book2.xlsx', 'WriteVariableNames',true); 
  app.Lamp_3.Color=[0,1,0]; 
        end 
        % Callback function 
        function PlotButtonPushed(app, event)      
          LocationX=app.LocationEditField.Value; 
           LocationY=app.LocationEditField_2.Value; 
            app.UITable2.Data=[app.T1;nr]; 
            app.T1=app.UITable2.Data; 
        end 
        % Callback function: UITable, UITable, UITable, UITable2,  
        % UITable2, UITable2 
        function UITable2CellEdit(app, event) 
        end 
        % Callback function 
        function UITableKeyPress(app, event) 
        end 
        % Callback function 
        function UITableCellEdit(app, event) 
            indices = event.Indices; 
            newData = event.NewData;      
        end 
    end 
    % Component initialization 
    methods (Access = private) 
        % Create UIFigure and components 
        function createComponents(app) 
            % Create UIFigure and hide until all components are created 
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            app.UIFigure = uifigure('Visible', 'off'); 
            app.UIFigure.Position = [100 100 1695 952]; 
            app.UIFigure.Name = 'MATLAB App'; 
            % Create ConnectButton 
            app.ConnectButton = uibutton(app.UIFigure, 'push'); 
            app.ConnectButton.ButtonPushedFcn = createCallbackFcn(app, 
@ConnectButtonPushed, true); 
            app.ConnectButton.Position = [29 907 100 23]; 
            app.ConnectButton.Text = 'Connect'; 
            % Create PlotMedialButton 
            app.PlotMedialButton = uibutton(app.UIFigure, 'push'); 
            app.PlotMedialButton.ButtonPushedFcn = createCallbackFcn(app, 
@PlotMedialButtonPushed, true); 
            app.PlotMedialButton.Position = [30 866 100 23]; 
            app.PlotMedialButton.Text = 'Plot Medial'; 
            % Create UITable 
            app.UITable = uitable(app.UIFigure); 
            app.UITable.ColumnName = {'Red'; 'Green'; 'Blue'}; 
            app.UITable.RowName = {}; 
            app.UITable.ColumnEditable = [true true true]; 
            app.UITable.CellEditCallback = createCallbackFcn(app, 
@UITable2CellEdit, true); 
            app.UITable.CellSelectionCallback = createCallbackFcn(app, 
@UITable2CellEdit, true); 
            app.UITable.DisplayDataChangedFcn = createCallbackFcn(app, 
@UITable2CellEdit, true); 
            app.UITable.Position = [528 425 427 392]; 
            % Create StoreButton 
            app.StoreButton = uibutton(app.UIFigure, 'push'); 
            app.StoreButton.ButtonPushedFcn = createCallbackFcn(app, 
@StoreButtonPushed, true); 
            app.StoreButton.Position = [713 844 100 23]; 
            app.StoreButton.Text = 'Store'; 
            % Create EditField 
            app.EditField = uieditfield(app.UIFigure, 'text'); 
            app.EditField.Position = [368 856 100 22]; 
            % Create AddButton 
            app.AddButton = uibutton(app.UIFigure, 'push'); 
            app.AddButton.ButtonPushedFcn = createCallbackFcn(app, 
@AddButtonPushed, true); 
            app.AddButton.Position = [369 822 100 23]; 
            app.AddButton.Text = 'Add '; 
            % Create UITable2 
            app.UITable2 = uitable(app.UIFigure); 
            app.UITable2.ColumnName = {'Load'; 'Location X'; 'Location Y'}; 
            app.UITable2.RowName = {}; 
            app.UITable2.ColumnEditable = [true true true]; 
            app.UITable2.CellEditCallback = createCallbackFcn(app, 
@UITable2CellEdit, true); 
            app.UITable2.CellSelectionCallback = createCallbackFcn(app, 
@UITable2CellEdit, true); 
            app.UITable2.DisplayDataChangedFcn = createCallbackFcn(app, 
@UITable2CellEdit, true); 
            app.UITable2.Position = [220 425 308 392]; 
            % Create EditField_2 
            app.EditField_2 = uieditfield(app.UIFigure, 'text'); 
            app.EditField_2.Position = [367 892 44 22]; 
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            % Create EditField_3 
            app.EditField_3 = uieditfield(app.UIFigure, 'text'); 
            app.EditField_3.Position = [422 892 45 22]; 
            % Create RowEditFieldLabel 
            app.RowEditFieldLabel = uilabel(app.UIFigure); 
            app.RowEditFieldLabel.HorizontalAlignment = 'right'; 
            app.RowEditFieldLabel.Position = [56 695 30 22]; 
            app.RowEditFieldLabel.Text = 'Row'; 
            % Create RowEditField 
            app.RowEditField = uieditfield(app.UIFigure, 'text'); 
            app.RowEditField.ValueChangedFcn = createCallbackFcn(app, 
@DeleteButtonPushed, true); 
            app.RowEditField.Position = [101 695 100 22]; 
            % Create DeleteButton 
            app.DeleteButton = uibutton(app.UIFigure, 'push'); 
            app.DeleteButton.ButtonPushedFcn = createCallbackFcn(app, 
@DeleteButtonPushed, true); 
            app.DeleteButton.Position = [94 659 100 23]; 
            app.DeleteButton.Text = 'Delete'; 
            % Create Lamp 
            app.Lamp = uilamp(app.UIFigure); 
            app.Lamp.Position = [151 908 20 20]; 
            app.Lamp.Color = [1 1 1]; 
            % Create CloseButton 
            app.CloseButton = uibutton(app.UIFigure, 'push'); 
            app.CloseButton.ButtonPushedFcn = createCallbackFcn(app, 
@CloseButtonPushed, true); 
            app.CloseButton.Position = [874 349 100 23]; 
            app.CloseButton.Text = 'Close'; 
            % Create Lamp_2 
            app.Lamp_2 = uilamp(app.UIFigure); 
            app.Lamp_2.Position = [986 350 20 20]; 
            app.Lamp_2.Color = [1 1 1]; 
            % Create EXCELButton 
            app.EXCELButton = uibutton(app.UIFigure, 'push'); 
            app.EXCELButton.ButtonPushedFcn = createCallbackFcn(app, 
@EXCELButtonPushed, true); 
            app.EXCELButton.Position = [1048 659 100 23]; 
            app.EXCELButton.Text = 'EXCEL'; 
            % Create Lamp_3 
            app.Lamp_3 = uilamp(app.UIFigure); 
            app.Lamp_3.Position = [1158 660 20 20]; 
            app.Lamp_3.Color = [1 1 1]; 
            % Show the figure after all components are created 
            app.UIFigure.Visible = 'on'; 
        end 
    end 
    % App creation and deletion 
    methods (Access = public) 
        % Construct app 
        function app = app1 
            % Create UIFigure and components 
            createComponents(app) 
            % Register the app with App Designer 
            registerApp(app, app.UIFigure) 
            if nargout == 0 
                clear app 
            end 
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        end 
        % Code that executes before app deletion 
        function delete(app) 
            % Delete UIFigure when app is deleted 
            delete(app.UIFigure) 
        end 
    end 
end 
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A.VI  Pre-processing and Training Code  
%% ALL PREPROCESSING  
clear all; 
load('FEA2.mat'); 
%Normalization (-1,1) 
a = load'; 
[load_normalized,PS] = mapminmax(a,-1,1); 
w = Strain(:,1)'; 
x =Strain(:,2)'; 
y =Strain(:,3)'; 
[Strain1_normalized,PS1] = mapminmax(w,-1,1); 
[Strain2_normalized,PS2] = mapminmax(x,-1,1); 
[Strain3_normalized,PS3] = mapminmax(y,-1,1); 
Strain_normalized(1,:)= Strain1_normalized; 
Strain_normalized(2,:)= Strain2_normalized; 
Strain_normalized(3,:)= Strain3_normalized; 
 
b = location(:,1)'; 
c = location(:,2)'; 
[xlocation_normalized,PS4] = mapminmax(b,-1,1); 
[ylocation_normalized,PS5] = mapminmax(c,-1,1); 
location_normalized(1,:)= xlocation_normalized; 
location_normalized(2,:)=ylocation_normalized; 
 
%%%%%%%  Multiplicative Noise 10% %%%%%%%%%%%%%%%%%%%%%%%%%%% 
dataset=Strain_normalized; 
ogStrain_normalized=Strain_normalized; 
datasetload_normalized=load_normalized;  
ogload_normalized=load_normalized; 
datasetlocation_normalized=location_normalized; 
oglocation_normalized=location_normalized;  
 
[rows, columns] = size(dataset); 
randomvalues = -0.1 + (0.2*rand(rows, columns)); 
noise=dataset.*randomvalues; 
noisyStrain_normalized1 = dataset + noise; 
noisyStrain_normalized2= [noisyStrain_normalized1 ogStrain_normalized]; 
 
[rows, columns] = size(datasetlocation_normalized); 
randomvalues2 =  -0.1+(0.2*rand(rows, columns)); %10 
noise1=datasetlocation_normalized.*randomvalues2; 
noisylocation_normalized1 = datasetlocation_normalized + noise1; 
noisylocation_normalized2= [noisylocation_normalized1 oglocation_normalized]; 
 
[rows, columns] = size(datasetload_normalized); 
randomvalues3 = -0.1+ (0.2*rand(rows, columns)); %10 
noise2=datasetload_normalized.*randomvalues3;  
noisyload_normalized1 = datasetload_normalized + noise2; 
noisyload_normalized2= [noisyload_normalized1 ogload_normalized]; 
 
Strain_normalized= [noisyStrain_normalized2]; 
location_normalized=[noisylocation_normalized2]; 
load_normalized=[noisyload_normalized2]; 
 
%%%%%%%%%%%%%%%%%%%%% TRAINING LOCATION  %%%%%%%%%%%%%%%%%%%%%% 
 
x = Strain_normalized; 
 t =location_normalized; 
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trainFcn = 'trainbr';   
 
hiddenLayerSize = 10; 
netLocation = fitnet(hiddenLayerSize,trainFcn); 
 
% Choose Input and Output Pre/Post-Processing Functions 
% For a list of all processing functions type: help nnprocess 
 
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivision 
netLocation.trainParam.lr = 0.1; 
netLocation.divideFcn = 'dividerand';  % Divide data randomly 
netLocation.divideMode = 'sample';  % Divide up every sample 
netLocation.divideParam.trainRatio = 85/100; 
netLocation.divideParam.valRatio = 0/100; 
netLocation.divideParam.testRatio = 15/100; 
 
netLocation.trainParam.epochs=1000; 
% nettainParam.goal=0.01; 
% Choose a Performance Function 
% For a list of all performance functions type: help nnperformance 
netLocation.performFcn = 'mse';  % Mean Squared Error 
% Choose Plot Functions 
% For a list of all plot functions type: help nnplot 
netLocation.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
    'plotregression','plotconfusion'}; 
% Train the Network 
[netLocation,tr] = train(netLocation,x,t); 
% Test the Network 
y = netLocation(x); 
e = gsubtract(t,y); 
performance = perform(netLocation,t,y) 
% Recalculate Training, Validation and Test Performance 
trainTargets = t .* tr.trainMask{1}; 
valTargets = t .* tr.valMask{1}; 
testTargets = t .* tr.testMask{1}; 
trainPerformance = perform(netLocation,trainTargets,y) 
valPerformance = perform(netLocation,valTargets,y) 
testPerformance = perform(netLocation,testTargets,y) 
 
%%%%%%%%%%%%%%%%%%%%%%%% Train Load %%%%%%%%%%%%%%% 
 
x = Strain_normalized; 
 t =load_normalized; 
trainFcn = 'trainbr';   
 
hiddenLayerSize = 5; 
netLoad = fitnet(hiddenLayerSize,trainFcn); 
 
% Choose Input and Output Pre/Post-Processing Functions 
% For a list of all processing functions type: help nnprocess 
 
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivision 
netLoad.trainParam.lr = 0.1; 
netLoad.divideFcn = 'dividerand';  % Divide data randomly 
netLoad.divideMode = 'sample';  % Divide up every sample 
netLoad.divideParam.trainRatio = 85/100; 
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netLoad.divideParam.valRatio = 0/100; 
netLoad.divideParam.testRatio = 15/100; 
 
netLoad.trainParam.epochs=1000; 
netLoad.performFcn = 'mse';  % Mean Squared Error 
% Choose Plot Functions 
% For a list of all plot functions type: help nnplot 
netLoad.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
    'plotregression','plotconfusion'}; 
% Train the Network 
[netLoad,tr] = train(netLoad,x,t); 
% Test the Network 
y = netLoad(x); 
e = gsubtract(t,y); 
performance = perform(netLoad,t,y) 
% Recalculate Training, Validation and Test Performance 
trainTargets = t .* tr.trainMask{1}; 
valTargets = t .* tr.valMask{1}; 
testTargets = t .* tr.testMask{1}; 
trainPerformance = perform(netLoad,trainTargets,y) 
valPerformance = perform(netLoad,valTargets,y) 
testPerformance = perform(netLoad,testTargets,y) 
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A.VI: Real time GUI 

%%ZIMMER 
global arduin 
  global data10 
  global data20 
  global data30 
   global data40 
  global data50 
  global data60 
%  ZIMMER 
 load('ZimmerALL_NEW') 
zeroing=@myGUI; 
time(1)=0; 
data_length=500; 
%lateral 
tit=zeros(data_length,1); 
data1tit=zeros(data_length,1); 
data2tit=zeros(data_length,1); 
data3tit=zeros(data_length,1); 
%medial 
data4tit=zeros(data_length,1); 
data5tit=zeros(data_length,1); 
data6tit=zeros(data_length,1); 
t_axis=zeros(data_length,1); 
data_input = {}; % To save data 
tic 
while (toc<=5)   
toc 
readz3=str2num(readline(arduin)); 
%lateral 
data10=mean(readz3(1)); 
data20=mean(readz3(2)); 
data30=mean(readz3(3)); 
%medial 
data40=mean(readz3(4)); 
data50=mean(readz3(5)); 
data60=mean(readz3(6)); 
end 
zeroing(); 
figure(1) %medial 
subplot(1,2,1) 
hold on; 
xlim([-1, 5]); 
ylim([-1, 7]); 
im = imread('medial.png'); 
flipim=flipud(im); 
im_handle = imagesc('XData', [min(xlim), max(xlim)], 'YData', [min(ylim), 
max(ylim)], 'CData', flipim); 
set(gca, 'YDir', 'normal');  % Make sure the y-axis is oriented correctly 
h1 = plot(nan,nan, 'co', 'MarkerSize', 24, 'MarkerFaceColor', 'cyan', 
'MarkerEdgeColor', 'cyan'); 
plot(0,0,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(1,0,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,0,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(3,0,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(0,1,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(1,1,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,1,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
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plot(3,1,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(0,2,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(1,2,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,2,'g.','MarkerSize', 20, 'MarkerFaceColor','g');  
plot(3,2,'b.','MarkerSize', 20, 'MarkerFaceColor','b');  
plot(0,3,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(1,3,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,3,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(3,3,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(0,4,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(1,4,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,4,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(3,4,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(1,5,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(2,5,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(3,5,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(2,6,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(3,6,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
text_load = text(-1.5, -0.75, 'Load Value: 0'); 
text_location=text(4.5,-0.75,'Location: (X,Y)'); 
% figure(2) lateral 
subplot(1,2,2) 
hold on; 
xlim([-2, 4]); 
ylim([-1, 7]); 
im2 = imread('lateral.png');  
flipim2=flipud(im2); 
im_handle2 = imagesc('XData', [min(xlim), max(xlim)], 'YData', [min(ylim), 
max(ylim)], 'CData', flipim2); 
set(gca, 'YDir', 'normal');  % Make sure the y-axis is oriented correctly 
 h12 = plot(nan,nan, 'o', 'MarkerSize', 24, 'MarkerFaceColor', 'cyan', 
'MarkerEdgeColor', 'cyan'); 
plot(0,0,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(1,0,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(2,0,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(0,1,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(1,1,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,1,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(3,1,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(0,2,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(1,2,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,2,'g.','MarkerSize', 20, 'MarkerFaceColor','g');  
plot(3,2,'b.','MarkerSize', 20, 'MarkerFaceColor','b');  
plot(0,3,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(1,3,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,3,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(3,3,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(0,4,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(1,4,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,4,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(3,4,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(0,5,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(1,5,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,5,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(3,5,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(0,6,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(1,6,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(2,6,'b.','MarkerSize', 20, 'MarkerFaceColor','b') 
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text_load2 = text(-1.5, -0.75, 'Load Value: 0'); 
text_location2=text(4.5,-0.75,'Location: (X,Y)'); 
i = 1; 
tic 
while (toc<=500000)    
toc; 
ti = toc; 
readz3=str2num(readline(arduin)); 
  szz = size(readz3); 
  if szz(1,2) > 0     
%lateral 
    data1 = readz3(1) - data10; 
    data2 = readz3(2) - data20; 
    data3 = readz3(3) - data30; 
%medial 
    data4 = readz3(4) - data40; 
    data5 = readz3(5) - data50; 
    data6 = readz3(6) - data60; 
  else 
    data1 = 0; 
    data2 = 0; 
    data3 = 0;  
    data4 = 0; 
    data5 = 0; 
    data6 = 0;  
  end 
%medial 
  Strain1_normalized = mapminmax('apply',data4,PS1); 
Strain2_normalized =  mapminmax('apply',data5,PS2); 
Strain3_normalized = mapminmax('apply',data6,PS3); 
data_input1 = [Strain1_normalized Strain2_normalized Strain3_normalized]; 
y1=sim(netLocationZM,data_input1'); 
y2=sim(netLoadZM,data_input1'); 
 y1=y1'; 
 y2=y2'; 
data_input1= [0 0 0]; 
 %lateral 
  ZL_Strain1_normalized = mapminmax('apply',data1,PS7); 
  ZL_Strain2_normalized = mapminmax('apply',data2,PS8); 
   ZL_Strain3_normalized = mapminmax('apply',data3,PS9); 
data_input2 = [ZL_Strain1_normalized ZL_Strain2_normalized 
ZL_Strain3_normalized]; 
y3=sim(netLocationZL,data_input2'); 
y4=sim(netLoadZL,data_input2'); 
 y3=y3'; 
 y4=y4'; 
data_input2= [0 0 0]; 
 % MEDIAL 
% Receiving new load value 
load = y2(1); % Exam replace with actual value 
 load_scaled{i,1} = mapminmax('reverse',y2,PS); 
load_scaled1=cell2mat(load_scaled); 
location_scaled{i,1}= mapminmax('reverse',y1(1),PS4); 
location_scaled{i,2}= mapminmax('reverse',y1(2),PS5); 
location_scaled1(i,1)=cell2mat(location_scaled(i,1)); 
location_scaled1(i,2)=cell2mat(location_scaled(i,2)); 
h1.XData = location_scaled1(i,1); 
h1.YData = location_scaled1(i,2); 
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  set(text_load, 'String', ['Load:  ' 
num2str(abs(round(load_scaled1(i,1),1))) ' kg']); 
  set(text_location, 'String', ['Location: (' 
num2str(round(location_scaled1(i,1),1)) ',' 
num2str(round(location_scaled1(i,2),1)) ')']); 
 %LATERAL 
  % Receiving new load value 
 load_scaled2{i,1} = mapminmax('reverse',y4,PS6); 
load_scaled2b=cell2mat(load_scaled2); 
location_scaled2{i,1}= mapminmax('reverse',y3(1),PS10); 
location_scaled2{i,2}= mapminmax('reverse',y3(2),PS11); 
location_scaled2b(i,1)=cell2mat(location_scaled2(i,1)); 
location_scaled2b(i,2)=cell2mat(location_scaled2(i,2)); 
h12.XData = location_scaled2b(i,1); 
h12.YData = location_scaled2b(i,2); 
    set(text_load2, 'String', ['Load:  ' 
num2str(abs(round(load_scaled2b(i,1),2))) ' kg']); 
  set(text_location2, 'String', ['Location: (' 
num2str(round(location_scaled2b(i,1),2)) ',' 
num2str(round(location_scaled2b(i,2),2)) ')']); 
  i = i +1; 
end 
disp('Done!!!') 
function myGUI() 
    % create the GUI figure 
    fig = figure(1); 
  global arduin  
  global data10 
  global data20 
  global data30 
    global data40 
  global data50 
  global data60 
    % create the button 
    btn = uicontrol('Style', 'pushbutton', 'String', 'ZERO', ... 
        'Position', [20 20 100 30], 'Callback', @executeCode); 
    % define the function to execute when the button is pressed 
    function executeCode(~, ~)    
     tic 
while (toc<=5)   
toc 
readz3=str2num(readline(arduin)); 
dataA=mean(readz3(1)); 
dataB=mean(readz3(2)); 
dataC=mean(readz3(3)); 
dataD=mean(readz3(4)); 
dataE=mean(readz3(5)); 
dataF=mean(readz3(6)); 
end 
disp('Code executed!'); 
data10=dataA; 
data20=dataB; 
data30=dataC; 
data40=dataD; 
data50=dataE; 
data60=dataF; 
    end 
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end 
global arduin 
  global data10 
  global data20 
  global data30 
   global data40 
  global data50 
  global data60 
%  Ring 
  load('RINGALL_NEW.mat'); 
%medial 
zeroing=@myGUI; 
time(1)=0; 
data_length=500; 
%lateral 
tit=zeros(data_length,1); 
data1tit=zeros(data_length,1); 
data2tit=zeros(data_length,1); 
data3tit=zeros(data_length,1); 
%medial 
data4tit=zeros(data_length,1); 
data5tit=zeros(data_length,1); 
data6tit=zeros(data_length,1); 
t_axis=zeros(data_length,1); 
data_input = {}; % To save data 
tic 
while (toc<=5)   
toc 
readz3=str2num(readline(arduin)); 
%lateral 
data10=mean(readz3(1)); 
data20=mean(readz3(2)); 
data30=mean(readz3(3)); 
%medial 
data40=mean(readz3(4)); 
data50=mean(readz3(5)); 
data60=mean(readz3(6)); 
end 
zeroing(); 
figure(1) %medial 
subplot(1,2,1) 
hold on; 
xlim([-2, 5]); 
ylim([-2, 5]); 
im = imread('medial.png'); 
flipim=flipud(im); 
im_handle = imagesc('XData', [min(xlim), max(xlim)], 'YData', [min(ylim), 
max(ylim)], 'CData', flipim); 
set(gca, 'YDir', 'normal');  % Make sure the y-axis is oriented correctly 
text_load = text(-1.5, -0.75, 'Load: 0'); 
text_location=text(4.5,-0.75,'Location: (0,0)'); 
h1 = plot(nan,nan, 'o', 'MarkerSize', 24, 'MarkerFaceColor', 'cyan', 
'MarkerEdgeColor', 'cyan'); 
%Training Points  
plot(0,0,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(1,0,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,0,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(3,0,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
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plot(0,1,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(1,1,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,1,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(3,1,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(0,2,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(1,2,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,2,'g.','MarkerSize', 20, 'MarkerFaceColor','g');  
plot(3,2,'g.','MarkerSize', 20, 'MarkerFaceColor','g');  
plot(0,3,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(1,3,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,3,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(3,3,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(1,4,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(2,4,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(3,4,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
% lateral 
subplot(1,2,2) 
 %lateral 
hold on; 
xlim([-2, 5]); 
ylim([-2, 5]); 
im2 = imread('lateral.png');  
flipim2=flipud(im2); 
im_handle2 = imagesc('XData', [min(xlim), max(xlim)], 'YData', [min(ylim), 
max(ylim)], 'CData', flipim2); 
set(gca, 'YDir', 'normal');  % Make sure the y-axis is oriented correctly 
text_load2 = text(-2, -0.75, 'Load: nan'); 
text_location2=text(2,-0.75,'Location: (nan,nan)'); 
h12 = plot(nan,nan, 'o', 'MarkerSize', 24, 'MarkerFaceColor', 'cyan', 
'MarkerEdgeColor', 'cyan'); 
%Ring LATERAL NEW 
plot(0,0,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(1,0,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,0,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(3,0,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(0,1,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(1,1,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,1,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(3,1,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(0,2,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(1,2,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,2,'g.','MarkerSize', 20, 'MarkerFaceColor','g');  
plot(3,2,'g.','MarkerSize', 20, 'MarkerFaceColor','g');  
plot(0,3,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(1,3,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(2,3,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
plot(3,3,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(0,4,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(1,4,'b.','MarkerSize', 20, 'MarkerFaceColor','b'); 
plot(2,4,'g.','MarkerSize', 20, 'MarkerFaceColor','g'); 
i = 1; 
tic 
while (toc<=500000)     
toc; 
ti = toc; 
readz3=str2num(readline(arduin)); 
  szz = size(readz3); 
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  if szz(1,2) > 0     
%lateral 
    data1 = readz3(1) - data10; 
    data2 = readz3(2) - data20; 
    data3 = readz3(3) - data30; 
%medial 
    data4 = readz3(4) - data40; 
    data5 = readz3(5) - data50; 
    data6 = readz3(6) - data60; 
  else 
    data1 = 0; 
    data2 = 0; 
    data3 = 0;  
    data4 = 0; 
    data5 = 0; 
    data6 = 0;  
  end 
%medial 
   Strain1_normalized = mapminmax('apply',data4,PS1); 
Strain2_normalized =  mapminmax('apply',data5,PS2); 
Strain3_normalized = mapminmax('apply',data6,PS3); 
data_input1 = [Strain1_normalized Strain2_normalized Strain3_normalized]; 
y1=sim(netLocation,data_input1'); 
y2=sim(netLoad,data_input1'); 
 y1=y1'; 
 y2=y2'; 
data_input1= [0 0 0]; 
 %lateral 
  RL_Strain1_normalized = mapminmax('apply',data1,PS7); 
RL_Strain2_normalized = mapminmax('apply',data2,PS8); 
RL_Strain3_normalized = mapminmax('apply',data3,PS9); 
data_input2 = [RL_Strain1_normalized RL_Strain2_normalized 
RL_Strain3_normalized]; 
y3=sim(netLocation_RL,data_input2'); 
y4=sim(netLoad_RL,data_input2'); 
 y3=y3'; 
 y4=y4'; 
data_input2= [0 0 0]; 
 % MEDIAL 
% Receiving new load value 
load = y2(1); % Exam replace with actual value 
 load_scaled{i,1} = mapminmax('reverse',y2,PS); 
load_scaled1=cell2mat(load_scaled); 
location_scaled{i,1}= mapminmax('reverse',y1(1),PS4); 
location_scaled{i,2}= mapminmax('reverse',y1(2),PS5); 
location_scaled1(i,1)=cell2mat(location_scaled(i,1)); 
location_scaled1(i,2)=cell2mat(location_scaled(i,2)); 
h1.XData = location_scaled1(i,1); 
h1.YData = location_scaled1(i,2); 
  set(text_load, 'String', ['Load:  ' 
num2str(abs(round(load_scaled1(i,1),1))) ' kg']); 
  set(text_location, 'String', ['Location: (' 
num2str(round(location_scaled1(i,1),1)) ',' 
num2str(round(location_scaled1(i,2),1)) ')']); 
 %LATERAL 
  % Receiving new load value 
 load_scaled2{i,1} = mapminmax('reverse',y4,PS6); 
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load_scaled2b=cell2mat(load_scaled2); 
location_scaled2{i,1}= mapminmax('reverse',y3(1),PS10); 
location_scaled2{i,2}= mapminmax('reverse',y3(2),PS11); 
location_scaled2b(i,1)=cell2mat(location_scaled2(i,1)); 
location_scaled2b(i,2)=cell2mat(location_scaled2(i,2)); 
h12.XData = location_scaled2b(i,1); 
h12.YData = location_scaled2b(i,2); 
    set(text_load2, 'String', ['Load:  ' 
num2str(abs(round(load_scaled2b(i,1),2))) ' kg']); 
  set(text_location2, 'String', ['Location: (' 
num2str(round(location_scaled2b(i,1),2)) ',' 
num2str(round(location_scaled2b(i,2),2)) ')']); 
  i = i +1; 
end 
disp('Done!!!') 
function myGUI() 
    % create the GUI figure 
    fig = figure(1); 
  global arduin  
  global data10 
  global data20 
  global data30 
    global data40 
  global data50 
  global data60 
    % create the button 
    btn = uicontrol('Style', 'pushbutton', 'String', 'ZERO', ... 
        'Position', [20 20 100 30], 'Callback', @executeCode); 
    % define the function to execute when the button is pressed 
    function executeCode(~, ~)      
     tic 
while (toc<=5)   
toc 
readz3=str2num(readline(arduin)); 
dataA=mean(readz3(1)); 
dataB=mean(readz3(2)); 
dataC=mean(readz3(3)); 
dataD=mean(readz3(4)); 
dataE=mean(readz3(5)); 
dataF=mean(readz3(6)); 
end 
disp('Code executed!'); 
data10=dataA; 
data20=dataB; 
data30=dataC; 
data40=dataD; 
data50=dataE; 
data60=dataF; 
    end 
end 
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A.VII Average Results of Accuracy Testing  
Ring Lateral Average 

Actual Predicted 

Load (kgf) X Coordinate Y Coordinate 

Load 

(kgf) X Coordinate Y Coordinate 

6 1 0 1.80 1.65 0.37 

12 1 0 10.40 0.57 -0.64 

24 1 0 31.26 0.70 -0.04 

6 0 2 6.06 0.00 1.81 

12 0 2 12.05 0.00 1.95 

24 0 2 24.13 0.01 2.00 

6 2.5 1.5 6.99 1.35 0.92 

12 2.5 1.5 11.46 1.90 0.92 

24 2.5 1.5 22.96 2.07 1.39 

6 1.5 2.5 5.96 1.99 2.54 

12 1.5 2.5 10.76 1.99 2.06 

24 1.5 2.5 24.29 1.99 1.94 

 

Ring Medial Average 

Actual Predicted 

Load 

(kgf) X Coordinate Y Coordinate 

Load 

(kgf) X Coordinate Y Coordinate 

6 1 0 5.57 1.01 1.34 

12 1 0 12.15 0.77 0.44 

24 1 0 26.30 0.84 0.08 

6 3 1 7.39 2.77 0.99 

12 3 1 14.86 2.97 1.61 

24 3 1 30.93 3.00 1.45 

6 1 2 5.62 1.35 2.02 

12 1 2 13.69 1.23 1.74 

24 1 2 24.61 1.00 1.60 

6 2.5 3.5 4.24 2.13 1.19 

12 2.5 3.5 10.45 2.23 0.48 

24 2.5 3.5 25.28 2.19 -1.26 

 

Zimmer Lateral Average 

Actual Predicted 

Load 

(kgf) X Coordinate Y Coordinate 

Load 

(kgf) X Coordinate Y Coordinate 

6 2 1 5.05 0.77 0.43 

12 2 1 9.90 1.26 0.58 

24 2 1 32.58 -0.44 2.70 

6 1 3 8.22 0.68 2.78 

12 1 3 14.29 0.45 3.14 

24 1 3 25.30 1.30 2.64 

6 0 5 3.88 0.50 3.89 

12 0 5 12.43 0.94 3.75 

24 0 5 23.30 1.82 3.51 

 

Zimmer Medial Average 

Actual Predicted 

Load (kgf) X Coordinate Y Coordinate 

Load 

(kgf) X Coordinate Y Coordinate 

6 2 0 5.53 0.63 0.50 

12 2 0 11.54 0.75 0.03 

24 2 0 24.88 0.59 -0.12 
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6 0.5 0.5 9.28 0.67 0.19 

12 0.5 0.5 14.11 0.68 0.03 

24 0.5 0.5 29.32 0.39 0.20 

6 1.5 2 8.14 0.73 2.09 

12 1.5 2 12.92 0.73 2.37 

24 1.5 2 23.48 0.59 2.53 

6 2 4 6.30 1.27 3.17 

12 2 4 9.83 1.23 3.54 

24 2 4 23.76 1.27 3.88 
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A.VIII: Ethics for Cadaveric Testing  

 

Permission as given by Zimmer Biomet to join their surgical training session in order to 

test the system in this research. Zimmer Biomet with the Clinical Anatomy Skills 

Centre, Glasgow University and the Royal College of Physicians and Surgeons of 

Glasgow (RCPS Glasgow) arranged for the procurement and disposal of cadavers and 

adhered to local and international regulations regarding the Human Tissues Act (2004). 

Zimmer Biomet was the sponsor of the research conducted at RCPS Glasgow and 

Zimmer Biomet confirmed that all regulatory requirements for the use of donor material 

in the research described were in place prior to the work being conducted. Under the 

sponsorship agreement between Zimmer Biomet and RCPS Glasgow, the latter 

confirmed to BU that permission was in place to use the data and publish the results in 

this thesis 
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A.IX: Average Cadaveric Data  

Cadaver 1  

10 mm Medial  Lateral 

Orientation Load (kgf) Location (X,Y) Load (kgf) Location (X,Y) 

0°/10° 14.95  (1.20,2.50) 5.95  (-0.20,4.50) 

45° 5.05  (1.95,2.50) 4.05  (0.30,3.95) 

90° 1.40  (2.20,1.50) 4.40  (2.25,4.40) 

 

Cadaver 1  

11 mm Medial  Lateral 

Orientation Load (kgf) Location (X,Y) Load (kgf) Location (X,Y) 

0°/10° 28.00  (1.00,2.90) 5.00  (-0.30,4.60) 

45° 0.40  (2.10,1.80) 5.00  (0.10,4.50) 

90° 1.00  (1.60,1.90) 4.40  (0.20,3.90) 

 

Cadaver 1   

12 mm Medial  Lateral 

Orientation Load (kgf) Location (X,Y) Load (kgf) Location (X,Y) 

0°/10° 25.50  (1.60,2.80) 5.40  (-0.2,4.5) 

45° 0.20  (1.60,1.90) 4.70  (0.60,3.80) 

90° 0.20  (1.60,1.90) 4.70  (0.60,3.80) 

 

Cadaver 1   

13 mm Medial  Lateral 

Orientation Load (kgf) Location (X,Y) Load (kgf) Location (X,Y) 

0°/10° 30.00  (0.30,3.40) 3.10  (-0.2,4.5) 

45° 0.40  (1.80,1.50) 4.20  (0.30,3.40) 

90° 6.00  (2.80,0.60) 4.90  (0.60,3.70) 

 

Cadaver 2 

10 mm Medial  Lateral 

Orientation Load (kgf) Location (X,Y) Load (kgf) Location (X,Y) 

0°/10° 6.50  (1.80,3.05) 9.85  (1.00,3.55) 

45° 3.40 (1.65,2.05) 4.35 (0.15,3.65) 

90° 9.40  (1.30,2.35) 6.25  (0.35,3.40) 

 

Cadaver 2 

11 mm Medial  Lateral 

Orientation Load (kgf) Location (X,Y) Load (kgf) Location (X,Y) 

0°/10° 23.35  (-0.40,4.15) 16.10  (1.05,4.95) 

45° 3.65  (0.95,2.80) 6.40  (0.15,4.45) 

90° 2.80  (1.00,3.25) 5.65  (0.20,4.45) 

 

Cadaver 2 

12 mm Medial  Lateral 

Orientation Load (kgf) Location (X,Y) Load (kgf) Location (X,Y) 

0°/10° 27.20  (-0.05,2.55) 14.95  (0.2,3.55) 

45° 7.30  (1.30,2.50) 4.35  (0.45,3.45) 

90° 4.30  (0.50,2.50) 6.20  (0.20,3.85) 

 

Cadaver 2  

13 mm Medial  Lateral 

Orientation Load (kgf) Location (X,Y) Load (kgf) Location (X,Y) 

0°/10° 31.70  (-0.65,3.50) 24.45  (0.2,4.8) 

45° 13.40  (0.30,0.35) 3.80  (0.45,3.30) 

90° 19.60  (0.40,4.85) 10.25  (0.35,6.95) 
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