
Virtual Reality & Intelligent Hardware

Peer review under the responsibility of Beijing Zhongke Journal Publishing Co. Ltd. 
2096-5796/©Copyright 2024 Beijing Zhongke Journal Publishing Co. Ltd., Publishing services by Elsevier B.V. on behalf of KeAi Communication Co. Ltd. This is 
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by/4.0/).

Mesh representation matters： investigating the influence of 
different mesh features on perceptual and spatial fidelity of 

deep 3D morphable models
Robert KOSK1,2*, Richard SOUTHERN1, Lihua YOU1, Shaojun BIAN2,3, 

Willem KOKKE2, Greg MAGUIRE4

1. Centre for Digital Entertainment, National Centre for Computer Animation, Bournemouth University, Poole BH12 5BB, UK;

2. Humain Ltd., Belfast BT1 2LA, UK;

3. School of Creative and Digital Industries, Buckinghamshire New University, High Wycombe HP11 2JZ, UK;

4. Belfast School of Art, Ulster University, Belfast BT15 1ED, UK

Received 29 March 2024; Revised 20 May 2024; Accepted 30 August 2024

Abstract: Background Deep 3D morphable models (deep 3DMMs) play an essential role in computer vision. 

They are used in facial synthesis, compression, reconstruction and animation, avatar creation, virtual try-on, facial 

recognition systems and medical imaging. These applications require high spatial and perceptual quality of 

synthesised meshes. Despite their significance, these models have not been compared with different mesh 

representations and evaluated jointly with point-wise distance and perceptual metrics. Methods We compare the 

influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the 

reconstructed meshes. This paper proves the hypothesis that building deep 3DMMs from meshes represented with 

global representations leads to lower spatial reconstruction error measured with L1 and L2 norm metrics and 

underperforms on perceptual metrics. In contrast, using differential mesh representations which describe 

differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error. The 

influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and 

spatial fidelity perspectives. Results The results presented in this paper provide guidance in selecting mesh 

representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose 

combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of 

existing methods. 
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1 Introduction

Parametric face models are extensively used in computer vision tasks. Most previous publications on deep 

3D morphable models (deep 3DMMs) evaluate the proposed methods against only one mesh representation, 

most commonly standardised Euclidean coordinates. Consequently, the performance of these models with 

other mesh representations is unknown, which provides an opportunity to evaluate these models from mesh 

feature representation perspective. Furthermore, it allows to distinguish the combinations of models and 

feature representations which outperform the existing methods.

In literature on deep 3D morphable models, evaluation metrics which compare ground truth meshes with 

reconstructed meshes are usually limited to Euclidean distance (L2 norm) or Manhattan distance (L1 norm). 

However, L-norm metrics poorly correlate with perceptual quality of reconstructed meshes. Given that the 

perceptual quality of meshes is an essential factor in assessing the method's usability in visual applications, 

the lack of perceptual evaluation of deep 3D morphable models is a noticeable gap in the literature. This 

paper investigates the effects of using different mesh feature representations in deep 3DMMs, as well as the 

standardisation and normalisation of these features, with an objective of improving the perceptual quality 

and spatial fidelity of facial meshes output from these models.

An observation by Sorkine at al. is particularly relevant in this work[1]. Its authors focus on suppressing the 

visual effects of quantisation. The authors demonstrate that quantisation of meshes in differential 

representation introduces perceptually insignificant, low-frequency error, whilst quantisation of 3D meshes 

represented in 3D Euclidean coordinates space introduces noticeable, high-frequency discrepancies. 

Differential representation explicitly encodes the surface properties of the mesh, and the position of vertices 

is encoded implicitly in this representation. In contrast, 3D Euclidean coordinates describe the position of 

vertices in explicit form, and the surface properties can be only implicitly derived from this representation. 

It can be observed that after the representation is subjected to quantisation, the properties explicitly encoded 

in this representation are best preserved. Conversely, the properties which are only implicitly encoded in the 

representation can be more severely affected by quantisation. Since encoding 3D meshes in a compact 

parametric space is lossy, deep 3D morphable models have similar compression side-effects to quantisation. 

Based on these observations, it can be hypothesised that using different mesh feature representations can 

improve the perceptual or spatial fidelity of deep 3D morphable models. More specifically, it can be 

hypothesised that using differential mesh representations which explicitly encode surface properties 

improves the perceptual quality of the reconstructed meshes, whilst using global mesh representations which 

explicitly encode vertex positions in 3D space improves the spatial fidelity.

To test this hypothesis, combinations of global and differential representations with different deep 

3DMMs are evaluated using metrics which measure spatial fidelity and perceptual quality of meshes 

reconstructed by these models. Euclidean coordinates and standardised Euclidean coordinates are the most 

commonly used global mesh representations in deep 3DMMs and therefore are used in the comparisons. 

Analogically, normalised deformation representation (DR Norm.) is selected, as it is the most commonly 

used differential representation in deep 3DMMs. Additionally, not normalised version of this representation 

(DR) is included in comparisons to verify the effect of normalisation. FeaStNet[2], Neural 3DMM[3], 

SpiralNet++[4], Mesh Autoencoder[5] and LSA-3DMM[6] deep 3D morphable models are compared in this 

paper. L1 and L2 norms are used to evaluate spatial fidelity of the reconstructed meshes when compared 

against the ground truth meshes. Dihedral angle mesh error (DAME) [7] and fast mesh perceptual distance 

(FMPD)[8] metrics are employed to measure perceptual quality of output meshes.

This paper proved the hypothesis that, across different deep 3DMMs, using Euclidean coordinates or 

standardised Euclidean coordinates representations yields lower L1 and L2 reconstruction error and higher 
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DAME and FMPD perceptual error in comparison with using DR and DR Norm. representations, which 

result in higher L1 and L2 reconstruction error and lower DAME and FMPD perceptual error.

Our main contributions are:

· Demonstrating that differential mesh representations in deep 3DMMs yield higher perceptual quality of 

the reconstructed meshes, whilst global mesh representations result in higher spatial fidelity.

· Identification of strengths and weaknesses of standardising Euclidean coordinates features and

normalising DR features in deep 3D morphable models from spatial fidelity and perceptual quality 

perspectives.

· The improved quality of meshes generated with current deep 3DMM methods by matching them with 

best performing mesh representations when evaluated from spatial fidelity and perceptual quality 

perspectives.

2 Related work

2.1 3D shape representations

3D shapes can be represented in various ways, and the choice of a suitable representation depends on the 

application[9]. Representations can explicitly expose different geometric properties of 3D shapes. Global 

representations encode positional information of vertices in 3D space, whilst differential representations 

explicitly encode first-order surface properties, such as curvature or deformation gradient.

Global shape representations are widely used in geometric deep learning. Standardised Euclidean 

coordinates are the most common representation of 3D shapes in deep 3DMMs, utilised in [3, 4, 6, 10, 11]. 

The non-standardised version, Euclidean coordinates, is used in [5, 12, 13]. Therefore, standardised and not 

standardised Euclidean coordinates mesh representations are included in our comparisons.

Laplacian coordinates[14] were employed in mesh editing and shape approximation. In the realm of deep 

3DMMs, [15] extends previous differential representations and introduces a rotation-invariant mesh 

difference (RIMD). Unlike Laplacian coordinates, RIMD is invariant to rigid transformations. Nevertheless, 

it is incompatible with most deep 3DMMsas as its signal is defined on vertices and edges. [16] improves 

computational limitations of RIMD and introduces as-consistent-as-possible (ACAP) representation, which 

allows to encode large rotations over 2π. [17] proposes a simpler normalised deformation representation 

(DR Norm.) based on the deformation gradient. It is also used in deep 3DMMs of [18, 19].

2.2 Parametric models with graph neutral networks

Deep learning approaches have been extended to irregular graphs [9, 20] and allowed for learning 

parametric models of 3D meshes. [11] utilises an autoencoder with spectral graph convolutional operations 

to develop the first deep 3DMM of 3D faces. More recent approaches move away from isotropic 

convolutional operators in spectral domain in favour of the anisotropic ones defined in the spatial domain. 

[3, 4, 5, 6, 10] improve deep 3DMMs with custom convolutional and aggregation operators. While these 

models use global mesh representations such as Euclidean coordinates, [21] convolves pre-processed ACAP 

deformation features, while [18, 19] use normalised deformation representation (DR Norm.).

All these deep 3D morphable models use either global or differential mesh representations and the 

influence of different mesh representations on these models has not been evaluated before. Moreover, the 

reconstruction results from all these models have been evaluated solely from spatial fidelity perspective. 

This paper addresses these gaps in literature and investigates the influence of global and differential mesh 

representations in different deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.
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3 Comparative framework

3.1 Overview

In the proposed framework, a full factorial experiment is conducted. The study uses L1 and L2 norms to 

assess spatial fidelity and DAME with FMPD to evaluate perceptual quality of all combinations of global 

representations (Euclidean coordinates and standardised Euclidean coordinates) and differential 

representations (deformation representation and normalised deformation representation) with five deep 

3DMMs: FeaStNet[2], Neural 3DMM[3], SpiralNet++[4], Mesh Autoencoder[5] and LSA-3DMM[6]. This 

experimental setup results in forty combinations. Calculation of mesh representations is covered in Section 

3.2. Section 3.3 describes implementation and training of deep 3DMMs compared in this work. Finally, 

details about evaluation with L-norms and perceptual metrics are provided in Section 3.4.

3.2 Mesh features

In this study, the comparisons are conducted on datasets of triangle meshes which share the same 

connectivity. All meshes in each dataset are translated so that their centroid coincides with the origin. 

Subsequently, the meshes are rigidly registered to their mean P̄.

Global representation

3D shapes are most commonly represented with points in Euclidean space. Let P be Euclidean XYZ 

coordinates of these points, and FEucl. ºP be the feature in Euclidean coordinates representation input to a 

deep 3DMM. The standardised Euclidean coordinates is calculated as follows:

σ =
∑
i = 0

n

( )FEucl. - P̄
2

n

FEucl.Std. =
FEucl. - P̄

σ
(1)

The inverse to standardisation is calculated as follows:

FEucl. = σFEucl.Std. + P̄ (2)
Differential representation

Deformation representation (DR) encodes a per-vertex deformation gradient Ti between the position of a 

vertex pi on a mean P̄ and the position of a deformed vertex p′i on P. Following [22], the deformation 

gradient Ti is calculated by minimising energy E (Ti) in least-squares sense:

E (Ti) =∑jÎNi
cij‖( )p'i - p'j - Ti( pi - pj )‖2 (3)

where cij are cotangent weights calculated on a mean of the training meshes.

Following [16], matrices Ti are decomposed using polar decomposition into a rotational part Ri and a scale/

shear part Si. Then, the rotation matrix Ri is transformed to log Ri and an identity matrix I is subtracted 

from Si. The final DR feature fi at i-th vertex is constructed of 6 non-trivial elements of Si and 3 non-trivial 

elements of Ri, so that | fi | = 9. The deformation representation feature is denoted as FDR.

Normalised deformation representation scaled and shifted to range [ - 11] is calculated as:

FDR Norm. = 2 
FDR - Fmin

Fmax - Fmin

+ Fmin (4)
where Fmin and Fmax are DR features with minimum and maximum values across dataset, respectively. The 

denormalised feature is:
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FDR. = 
(FDR Norm. + 1) (Fmax - Fmin )

2 + Fmin

(5)

3.3 Implementation and training of deep 3DMMs

Deep 3D morphable models compared in this study are either autoencoders (FeaStNet[2], Neural 3DMM[3], 

SpiralNet++[4] and LSA-3DMM[6]) or a variational autoencoder (Mesh Autoencoder[5]). At each training 

iteration, meshes from a training set transformed into features FEucl., FEucl. Std., FDR or FNorm. are encoded to 

latent parameters Z and subsequently decoded to a reconstructed feature F ′Eucl., F ′Eucl. Std., F ′DR or F ′Norm.. In 

autoencoders, Z is directly output by the encoder. In variational autoencoders, Z is stochastically sampled 

from normal distribution output by the encoder. Learnable parameters of the network are updated at each 

iteration in terms of L1 norm loss calculated in feature space. Importantly, features F ′Eucl. Std. are 

destandardised and features F ′Norm. are denormalised before loss calculation. In the variational autoencoder, 

an additional weighted KL divergence term with weight of 10-6 is added to the loss function.

All models are trained with Adam optimiser[23] with parameters β1 = 0.9 and β2 = 0.999, latent space size of 

64, learning rate of 10-3, learning rate decay of 0.99 and batch size of 16. ELU activation functions are used. 

The models are trained for 450 epochs.

In experiments, the Mesh Autoencoder[5] has 5 upscaling convolutional blocks and 5 downscaling 

convolutional blocks. The residual rates are at 0.5. Due to the nature of subsampling method used in this 

approach, additional graph convolutional layer was added to bring the latent space size to 64 (8 latent 

vertices  ́8-dimensional features). Therefore, the channel dimensions are [| f |, 32, 64, 128, 128, 8], where 

| f | is the size of a per-vertex input feature. In Euclidean coordinates-based representations | f | = 3, whilst in 

differential coordinates-based representations | f | = 9. The convolutional operators have stride of 2, kernel 

radius of 2 and 35 weight bases.

In the case of FeaStNet[2], Neural 3DMM[3], SpiralNet++[4] and LSA-3DMM[6], their encoders are built of 

convolutional layers, each followed by a pooling layer with a pooling factor = 4. The last layer of the 

encoder is fully connected, with an output size equal to a latent space size of 64. The encoder channel 

dimensions = [| f |, 16, 32, 64, 128]. The decoder mirrors the encoder. Additionally, in Neural 3DMM[2], the 

encoder's first two layers and the decoder's last two layers are dilated convolutions with step size of 2 and 

dilation ratio of 2.

3.4 Evaluation strategy

Unlike loss functions, which are calculated in feature space, the reconstructed meshes P' are evaluated 

against their ground truth counterparts P in Euclidean space.

Spatial fidelity metrics

Two spatial fidelity metrics, point-wise L1 and L2 norms are used in the comparisons. The commonly used L1 

norm | | P -P′ | |
1
 and L2 norm | | P -P′ | |

2
 between reconstructed Euclidean coordinates P′ and the ground 

truth P are selected to evaluate spatial fidelity. Despite their popularity, L1 and L2 have low correlation with 

the human visual system[24].

Perceptual quality metrics

Previous work on deep 3DMMs does not address perceptual mesh quality in evaluation of reconstructed 

meshes. In this work, DAME[7] and FMPD[8]  are used to measure perceptual discrepancy between ground 

truth meshes and meshes reconstructed by deep 3DMMs.
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We select DAME because it has one of the highest correlation scores with human visual system on the 

compression task[24]. DAME is restricted to datasets with shared topology as it is based on the difference 

between oriented dihedral angles in meshes. The metric takes into account the masking effect and the 

visibility weighting. The last one depends on the camera view and resolution, thus we replace this term with 

triangle areas, as suggested in [7] method.

FMPD perceptual metric has achieved the highest overall correlation with human visual system in [24] 

and therefore has been selected as the second perceptual metric in the proposed comparative framework. 

FMPD measures discrepancy between local and global roughness of meshes. Similarly to DAME, it also 

accounts for the masking effect. However, unlike DAME, the metric is capable of measuring perceptual 

discrepancy between meshes with different connectivity.

4 Experimental results and discussion

The analysis of comparisons of mesh representations with different datasets provides valuable insights into 

the performance of Euclidean and differential coordinates-based representations used in deep 3D morphable 

models. Our comperative framework is applied to two datasets: FaceWarehouse[25] (150 meshes, 11510 

vertices each) and Facsimile™[26] (202 meshes, 14921 vertices each). The ratio between training, validation 

and test subsets is 85:5:10. Tables 1 and 2 show quantitative evaluation of the reconstruction results, while 

Figures 1 and 2 give a qualitative insight.

4.1 Influence of global and differential mesh representations

On the Facsimile training dataset, Euclidean coordinates-based representations demonstrate superior spatial 

fidelity, as evidenced by lower L1 and L2 norm errors compared to differential coordinates-based 

representations. However, the latter outperform in perceptual quality metrics such as DAME and FMPD. 

This trend persists in the Facsimile test dataset, where Euclidean coordinates-based representations 

consistently excel in spatial fidelity, whilst differential coordinates-based representations show superiority in 

perceptual quality metrics.

Similar trends are observed in the FaceWarehouse dataset, where Euclidean coordinates-based 

representations exhibit lower L1 and L2 norm errors and higher DAME and FMPD errors on both training 

and test subsets. Conversely, differential coordinates-based representations indicate better perceptual quality, 

as they consistently yield lower DAME and FMPD with higher L1 and L2 norm errors.

4.2 Influence of normalisation and standardisation

Overall, standardisation applied to Euclidean coordinates representation improves the spatial and perceptual 

fidelity of the output meshes. On training sets, standardisation decreased the L1 norm error by the factors of 

3.65+1.54
-2.55 and 5.02+2.07

-2.75 on Facsimile and FaceWarehouse datasets, respectively. Standardisation results in 

1.45+0.58
-0.42 times lower L2 norm error on the Facsimile dataset with all the models except SpiralNet++[4], with 

which standardisation practically does not affect the L2 norm error. Perceptual metrics, such as DAME and 

FMPD, were also consistently improved by standardisation, indicating its positive impact on overall quality. 

DAME decreased by 1.91+0.42
-0.62 and 4.99+2.54

-2.81 on Facsimile and FaceWarehouse, respectively. Moreover, 

standardisation improved FMPD by 3.30+2.65
-2.26, 4.87+2.43

-3.24, 3.89+3.53
-2.71, respectively. On test sets, standardisation of 

Euclidean coordinates representation generally improved mesh quality. Notably, it decreased L1 norm error 

by 1.14+0.29
-0.20 and 1.15+0.25

-0.39 on the Facsimile and FaceWarehouse datasets, respectively. Similarly, L2 norm error 

reductions were observed, alongside improvements in perceptual metrics, albeit with occasional exceptions.

In contrast, the impact of normalising features in the deformation representation varied across models and 
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Table 1　Quantitative comparison of the reconstruction results on the Facsimile ™[26] dataset. In each column, for each metric, best 

results are in bold

FacsimileTM Dataset-Training

Euclidean

Euclidean

Std

DR

DR Norm

FacsimileTM Dataset-Test

Euclidean

Euclidean

Std

DR

DR Norm

L1 norm

L2 norm

FMPD

DAME

L1 norm

L2 norm

FMPD

DAME

L1 norm

L2 norm

FMPD

DAME

L1 norm

L2 norm

FMPD

DAME

L1 norm

L2 norm

FMPD

DAME

L1 norm

L2 norm

FMPD

DAME

L1 norm

L2 norm

FMPD

DAME

L1 norm

L2 norm

FMPD

DAME

×10−3

×10−5

×10−2

×10−2

×10−3

×10−5

×10−2

×10−2

×10−3

×10−5

×10−2

×10−2

×10−3

×10−5

×10−2

×10−2

×10−3

×10−5

×10−2

×10−2

×10−3

×10−5

×10−2

×10−2

×10−3

×10−5

×10−2

×10−2

×10−3

×10−5

×10−2

×10−2

FeaStNet

9.27

71.102

100

31.542

2.022

38.36

35.369

5.296

6.889

26.124

20.671

2.27

16.538

135.619

49.14

7.735

FeaStNet

9.45

71.84

100

31.813

9.07

49.656

34.374

5.354

9.525

50.34

19.875

2.228

17.507

158.564

49.784

7.734

Neural

3DMM

6.595

28.908

93.873

15.306

1.714

23.012

25.553

3.839

3.127

57.278

18.254

2.092

13.291

83.129

48.031

7.109

Neural

3DMM

6.983

30.832

94.536

15.414

5.954

20.974

23.965

3.807

13.275

107.757

17.118

2.456

17.406

158.41

48.68

7.309

Spiral

Net++

4.777

13.498

100

22.990

1.353

13.614

44.532

5.349

5.218

14.933

10.659

2.296

11.767

68.504

45.708

6.66

Spiral

Net++

6.004

19.428

100

22.875

6.38

24.434

39.42

4.869

12.465

84.487

12.445

2.278

12.791

85.656

45.26

6.627

Mesh

Autoenc.

2.602

47.742

51.962

6.036

2.364

42.129

43.544

4.9

4.012

9.54

6.795

2.767

4.769

13.078

12.479

3.045

Mesh

Autoenc.

8.320

39.529

48.925

5.814

5.782

19.54

30.846

3.885

12.049

84.892

2.653

3.065

9.290

49.449

3.609

3

LSA-

3DMM

6.881

29.272

6.433

2.85

1.325

14.394

8.971

2.719

3.55

71.399

18.873

2.104

3.843

87.011

6.463

2.57

LSA-

3DMM

7.194

30.315

6.862

2.806

6.367

24.894

8.396

2.939

15.634

129.809

17.603

2.393

13.825

102.034

4.603

3.167
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Table 2　Quantitative comparison of the reconstruction results on the FaceWarehouse [25] dataset. In each column, for each metric, 

best results are in bold

FacsimileTM Dataset-Training

Euclidean

Euclidean

Std

DR

DR Norm

FacsimileTM Dataset-Test

Euclidean

Euclidean

Std

DR

DR Norm

L1 norm

L2 norm

FMPD

DAME

L1 norm

L2 norm

FMPD

DAME

L1 norm

L2 norm

FMPD

DAME

L1 norm

L2 norm

FMPD

DAME

L1 norm

L2 norm

FMPD

DAME

L1 norm

L2 norm

FMPD

DAME

L1 norm

L2 norm

FMPD

DAME

L1 norm

L2 norm

FMPD

DAME

×10−3

×10−5

×10−2

×10−2

×10−3

×10−5

×10−2

×10−2

×10−3

×10−5

×10−2

×10−2

×10−3

×10−5

×10−2

×10−2

×10−3

×10−5

×10−2

×10−2

×10−3

×10−5

×10−2

×10−2

×10−3

×10−5

×10−2

×10−2

×10−3

×10−5

×10−2

×10−2

FeaStNet

11.552

153.49

100

49.7

1.92

3.193

45.656

6.81

6.867

25.609

1.580

0.904

9.131

41.392

10.292

2.277

FeaStNet

12.177

161.514

100

49.314

8.169

37.138

43.419

6.299

7.806

32.325

1.577

0.867

10.171

52.726

10.272

2.24

Neural

3DMM

7.202

30.02

100

28.935

1.578

1.902

38.517

4.48

7.762

31.06

1.549

0.827

7.616

27.944

10.75

2.233

Neural

3DMM

8.043

36.895

100

29.068

4.017

9.072

37.621

4.458

10.569

58.098

1.629

0.81

8.474

36.706

10.536

2.209

Spiral

Net++

6.267

23.225

100

44.265

1.212

1.041

50.578

6.062

4.088

9.575

0.971

0.866

6.541

20.778

10.813

2.161

Spiral

Net++

6.996

27.695

100

44.252

4.694

12.218

47.91

5.633

11.090

64.124

1.123

0.857

7.890

31.728

10.173

2.084

Mesh

Autoenc.

2.541

4.403

47.637

5.266

1.116

1.091

32.636

3.23

2.57

3.326

3.833

1.171

2.208

2.467

3.668

1.137

Mesh

Autoenc.

5.332

15.503

48.566

5.499

5.337

15.337

24.573

2.528

10.023

50.386

3.096

1.19

7.424

28.66

3.208

1.216

LSA-

3DMM

7.275

29.636

28.462

2.943

1.026

0.896

16.847

1.767

4.472

10.881

2.073

0.810

3.489

6.562

1.101

1.097

LSA-

3DMM

8.295

37.719

26.868

2.687

4.472

11.919

17.532

1.89

6.764

23.561

2.189

0.8

6.787

24.309

11.962

1.132
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datasets. While normalisation demonstrated some benefits in Mesh Autoencoder[5] and LSA-3DMM[6], it also 

led to increased spatial and perceptual errors in the remaining cases. In FeaStNet[2], Neural 3DMM[3], 

Figure 1　 Qualitative evaluation on Facsimile ™[26] training and test meshes output from the FeaStNet[2] (top), Neural 3DMM[3] 

(middle) and MeshAutoencoder[5] (bottom) using 4 feature representations (in columns). Per-vertex L1 norm error and per-vertex 

DAME are rendered as colour.
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SpiralNet++[4] models, normalisation tends to increase L1 and L2 norm errors across datasets. Similarly, 

perceptual metrics like DAME and FMPD are adversely affected by normalisation, with few exceptions. 

These observations suggest that current practice of normalisation of DR features should be reconsidered, as 

its positive or negative influence depends on deep 3DMM architecture and the dataset.

4.3 Optimal combinations

The combination of a model and feature representation, which achieves the lowest L-norm error, tends to 

have higher perceptual error than many other combinations. Analogically, the combination that achieves the 

lowest perceptual error tends to have significantly higher L-norm error than other combinations. This 

phenomenon partly stems from the properties of feature representations, as well as each model's varying 

ability to learn different representations of data, either global or differential coordinates. As demonstrated in 

Figure 3, the choice of models and mesh feature representations depends on different user requirements of 

maximising either perceptual or spatial fidelity, or balancing these two objectives.

On Facsimile training set, SpiralNet++ with FEucl. Std. feature has the lowest L1 norm error of 1.353, despite 

its high DAME. Neural3DMM with DR feature achieve the lowest DAME of 2.092, albeit high spatial error. 

Figure 2　Qualitative evaluation on Facsimile™[26] training and test meshes output from the SpiralNet++[4] (top) and LSA-3DMM[6] 

(bottom) using 4 feature representations (in columns). Per-vertex L1 norm error and per-vertex DAME are rendered as colour.
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LSA-3DMM with FEucl. Std. feature (slightly in favour of spatial quality) and Neural3DMM with DR feature 

(slightly in favour of perceptual quality) minimise both of the objectives simultaneously.

On the Facsimile test set, Mesh Autoencoder with FEucl. Std. representation results in the lowest L1 norm 

error of 6.38. FeaStNet with the DR feature minimises DAME, while FMPD is minimised by the Mesh 

Autoencoder with DR feature. Both of these combinations perform poorly on spatial metrics. Considering 

both perceptual and geometric quality objectives, Mesh Autoencoder with FEucl. Std. and LSA-3DMM with 

FEucl. Std. balance both objectives.

Based on the FaceWarehouse training set results, LSA-3DMM with FEucl. Std. feature minimises the L1 and 

L2 norm error. However, this combination results in high DAME. On the other hand, LSA-3DMM with DR 

feature minimises DAME for the price of spatial fidelity. When both objectives are considered, Mesh 

Autoencoder with DR Norm, LSA-3DMM with FEucl. Std. and LSA-3DMM with DR feature provide the best 

overall balance.

Figure 3　Comparative results plot against the L1 and DAME metrics. This visualisation allows to simultaneously assess the models' 

performance in terms of spatial and perceptual fidelity.
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On the FaceWarehouse test set, Neural3DMM with FEucl. Std. has the lowest L1 and L2 norm error. 

Importantly, this combination also has one of the highest DAME and FMPD errors. LSA-3DMM with DR 

feature has the lowest DAME of all combinations. Although 5 other combinations outperform it on L1 norm, 

this combination has a good overall performance.

5 Conclusion

Forty models from comparative experiments were evaluated from a spatial fidelity perspective using L1 and 

L2 norm metrics and from a perceptual quality perspective using DAME and FMPD metrics. It was 

demonstrated that using global, Euclidean coordinates-based feature representations outperforms differential 

coordinates-based feature representations in spatial fidelity, whilst differential coordinates-based feature 

representations achieve better results on perceptual DAME and FMPD metrics.

Standardisation of a feature in Euclidean coordinates representation improves the spatial and perceptual 

fidelity of meshes output by deep 3D morphable models. There are a few exceptions to this observation. 

Furthermore, the findings of this work prove that the common practice of normalisation of the deformation 

representation is not suitable in FeaStNet[2], Neural 3DMM[3] and SpiralNet++[4]. At the same time, it can be 

beneficial on some datasets in Mesh Autoencoder[5] and LSA-3DMM[6].

The proposed use of standardised Euclidean coordinates representation improved spatial and perceptual 

fidelity of Mesh Autoencoder[5] method, which originally used the Euclidean coordinates feature. 

Additionally, the proposed use of the DR feature improved the perceptual quality of all the compared 

methods. Among the proposed combinations, LSA-3DMM[6] and Mesh Autoencoder[5] achieved the best 

perceptual quality and spatial fidelity when these two objectives were considered simultaneously.
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