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Abstract

The authors propose Point’n Move, a method that achieves interactive scene object manip-
ulation with exposed region inpainting. Interactivity here further comes from intuitive
object selection and real-time editing. To achieve this, Gaussian Splatting Radiance Field is
adopted as the scene representation and its explicit nature and speed advantage are fully
leveraged. Its explicit representation formulation allows to devise a 2D prompt points to
3D masks dual-stage self-prompting segmentation algorithm, perform mask refinement
and merging, minimize changes, and provide good initialization for scene inpainting and
perform editing in real-time without per-editing training; all lead to superior quality and
performance. The method was tested by editing both forward-facing and 360 scenes. The
method is also compared against existing methods, showing superior quality despite being
more capable and having a speed advantage.

1 INTRODUCTION

Since the introduction of Neural Radiance Fields (NeRF)
[1], it has garnered significant interest in various fields, such
as computer vision, computer graphics, and AI, primarily as
an image-based scene reconstruction technique. While the
development of NeRF’s potential for scene editing appears
promising, current approaches tend to focus more on deforma-
tion and object-centric modifications rather than on the intuitive
selection and manipulation of objects within scenes.

Editable representations produced by methods like Control-
NeRF [2], NeuralEditor [3] and NeuMesh [4], despite their
advancements, overlook the critical aspect of naturally select-
ing and manipulating objects captured within a scene. While
techniques like OR-NeRF [5] and SPIn-NeRF [6] have targeted
object selection, they fall short in facilitating comprehensive,
unconstrained manipulation. Furthermore, these techniques
typically do not address the challenge of inpainting newly
exposed surfaces or filling holes created by the editing process,
which can result in renderings that are perceptibly unrealistic.

State-of-the-art segmentation techniques, exemplified by
SAGA, are adept at delivering high-quality segmentation masks.
However, there often are distinct artefacts left due to manipula-
tion (see our comparison in Figure 5).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.
© 2024 The Author(s). IET Image Processing published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

To address these challenges, we introduce the 3D Gaus-
sian Splatting Radiance Field (3DGS) [7] as the foundational
scene representation, coupled with Point’n Move, our novel
approach for real-time interactive manipulation of scene objects.
Our method facilitates intuitive object selection, provides 3D
semantic segmentation, and offers effective inpainting capabil-
ities. 3DGS possesses considerable advantages. Compared to
existing neural implicit representations such as NeRF [1], 3DGS
concretely utilizes a multitude of 3D ellipsoids to represent the
radiance field. This explicit representation leads to faster train-
ing and enables real-time rendering while achieving remarkable
visual quality. The point cloud-like nature inherent in 3DGS
allows us to approach segmentation and refinement from the
perspective of point clouds. Furthermore, the rapid render-
ing of 3DGS presents a significant speed benefit, particularly
evident in 3D scene inpainting tasks. Our goal is to facilitate
real-time scene editing by directly manipulating selected primi-
tives in the scene, as opposed to resorting to indirect and tedious
fine-tuning processes.

We showcase the competence of our method through prac-
tical applications: selecting and editing objects within both
360-degree and forward-facing scenes. Additionally, we conduct
comprehensive benchmarking of our approach against current
object removal techniques, as well as against leading 3DGS
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FIGURE 1 Capability highlight of our method. The user selects an object in the scene via 2D point prompts, which our method uses to infer a 3D
segmentation mask. After segmentation and exposed region inpainting, the user can freely manipulate the selected object in the scene in real-time, with all exposed
regions or holes inpainted. Please refer to the supplementary material for a video demo on real-time editing.

segmentation and inpainting methods. Our results not only rival
those in terms of quality but also exhibit enhanced capabilities
such as full object manipulation–not merely removal. Moreover,
our method holds a speed advantage when it comes to scene
inpainting, further highlighting the effectiveness and efficiency
of our approach. The code of our method will be published
upon paper acceptance.

In summary, our contributions are as follows:

∙ We propose Point’n Move, the first end-to-end method that
achieves interactive scene object manipulation with exposed
region inpainting on Gaussian Splatting Radiance Fields
(3DGS). More concretely, our method leverages the rapid
and explicit nature of 3DGS to enable intuitive selection,
high-quality inpainting and real-time editing.

∙ For intuitive selection, we propose a dual-stage self-
prompting mask propagation process that produces high-
quality 3D semantic segmentation masks from 2D image
prompt points.

∙ For high-quality exposed region inpainting, we propose
a rapid inpainting procedure that minimizes unnecessary
inpainting and a reprojection-based initialization scheme.
Both contribute to high-quality results (see Figure 1).

2 RELATED WORK

2.1 NeRF editing

There has been a lot of literature on scene editing based on radi-
ance field representations, including geometry editing [8–10]
and object-centric editing [11–13]. They adopt many sophis-

ticated techniques such as fine-tuning [11, 12], rendering rays
deformation [8–10], or editable representations [13].

However, most works prefer neural networks to represent
radiance fields, and the implicit nature of this representation
usually requires time-consuming fine-tuning for edit operations.
As a result, these methods cannot support practical interactive
editing use cases.

To tackle this challenge, another attempt is to represent
radiance fields using explicit structures, including Control-
NeRF [2] for volumetric grid, PAPR [14], NeuralEditor [3] and
RIP-NeRF [15] for point clouds, NeuMesh [4] and Differen-
tiable Blocks World [16] for meshes. The foundation of our
method, Gaussian Splatting Radiance Field [7], also falls into
this category.

The current body of work falls short in adequately support-
ing practical interactions, facing two challenges: intuitive 3D
segmentation for object selection and inpainting of exposed
regions or holes resulting from editing. Our method addresses
these issues by leveraging the explicit representation of the
Gaussian Splatting Radiance Field [7]. Building upon it, our
method enables real-time, unrestricted editing.

2.2 NeRF scene object removal

Scene object removal on NeRFs is another focus, aiming to
select and remove objects from a trained neural radiance field.
A pioneering work in object removal, SPIn-NeRF [6] achieves
3D segmentation by combining interactive segmentation meth-
ods, video segmentation methods, and NeRF-based semantic
mask generation method that creates object removal masks.
OR-NeRF [5] further simplifies this process by reprojecting the
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masks from the segmented 2D views onto new 2D views and
then applying the Segment Anything Model [17] to perform
segmentation on new views. Despite achieving good results,
SPIn-NeRF and OR-NeRF both need to retrain NeRF after
removal, which is not suitable for real-time unrestricted editing.

Inspired by SA3D [18], our approach incorporates a cross-
view segmentation training process. Leveraging the explicit
characteristics of the Gaussian Splatting Radiance Field [7], we
realize explicit 3D segmentation through weighted point clouds,
providing advantages for subsequent refinement and editing.

Both SPIn-NeRF and OR-NeRF introduced inpainting via
2D images for inpainting exposed areas. The scene NeRF
associated with these images is updated by fine-tuning. A
patch-wise perceptual loss in the masked regions is employed
for multiview consistent effect from multiple inconsistent 2D
inpaintings. Apart from these two approaches, [19] proposed
an incremental scene inpainting and view-dependent effect
estimation scheme for a multiview-consistent effect. [20] also
proposed a novel confidence-score-based scheme to filter out
view-inconsistent inpainted images, and a retraining process
to update the confidence scores. Despite achieving impres-
sive results, the complexity of these methods leads to a long
training time.

Our method follows the overall paradigm employed by SPIn-
NeRF and OR-NeRF, as we still perform 3D inpainting by
training from inpainted 2D images. However, unlike existing
works, we employ a simpler perceptual loss that compares the
entire area inside the bounding box that bounds the mask rather
than small patches inside, reducing the number of views to back-
propagate through. We also make use of the explicit nature of
Gaussian Splatting Radiance Fields, proposing a scene content-
revealing pruning scheme and reprojection-based initialization
process to ensure good quality.

3 METHOD

Given a trained Gaussian Splatting Radiance Field [7] R, along
with a set of cameras C in the scene and some 2D point anno-
tations P that select an object in an image rendered from R at
camera pose C0 ∈ C , our method aims to achieve manipula-
tion (translate/rotate/remove) of the object in real-time, with
the newly exposed regions or holes properly inpainted.

Our proposed approach achieves this in three steps: segmen-
tation, inpainting and recomposition (see Figure 2). Since our
method heavily leverages its explicit formulation, we start by
briefing Gaussian Splatting Radiance Fields.

3.1 Background: Gaussian splatting
radiance field

Gaussian Splatting Radiance Field [7], also referred to as 3D
Gaussian Splatting (3DGS), is an explicit radiance field-based
scene representation that represents a radiance field using a large
number of 3D anisotropic balls, each modelled using a 3D gaus-
sian distribution (Equation 1). More concretely, each anisotropic
ball has mean ∈ ℝ3, covarianceΣ, opacity 𝛼 ∈ ℝ and spher-

ical harmonics parameters  ∈ ℝk (k is the degrees of freedom)
for modelling view-dependent color. For regularizing optimiza-
tion, the covariance matrix is further decomposed into rotation
matrix R and scaling matrix S by Equation 2. These matrices
are further represented as quaternions r ∈ ℝ4 and scaling factor
s ∈ ℝ3.

G (X ) = e
− 1

2


T Σ−1

, (1)

Σ = RSST RT (2)

For this scene representation, view rendering is performed
via point splatting [21]. Specifically, all gaussian balls in the scene
are first projected onto the 2D image plane, and their color is
computed from spherical harmonic parameters. Then, for every
16x16 pixel patch of the final image, the projected Gaussians
that intersect with the patch are sorted by depth. For every
pixel in the patch, its color is computed by alpha compositing
the opacity and color of all the Gaussians covering this pixel,
ordered by depth, as in Equation 3.

C =
∑

i∈Ncov

ci𝛼i

i−1∏

j=1

(1 − 𝛼 j ), (3)

where Ncov represents the splats that cover this pixel, 𝛼i repre-
sents the opacity of this Gaussian splat multiplied by the density
of the projected 2D Gaussian distribution at the location of the
pixel, and ci represents the computed color.

Gaussian Splatting Radiance Field achieves a significant
advantage in training and inference speed due to its explicit
approach and fast splatting rendering process. In addition to
leveraging its superior speed, its point-cloud-like representa-
tion formulation enables us to perform processing from a
point-cloud perspective, improving speed and quality.

3.2 Object segmentation

While our method maintains the division of a scene into two
parts, namely the object Rob j and the background Rbg, we
devise a dual-stage segmentation process for implementation,
as shown in Figure A1 in Appendix A.

Coarse stage segmentation. To achieve high-quality 3D
segmentation, our method builds upon the cross-view self-
prompting process proposed by SA3D [18]. We augment the
scene representation for segmentation by adding and training
a segmentation score attribute to all the Gaussian balls. Such
scores could be used to render 2D segmentation maps by treat-
ing the score as color and rendering via the splatting process.
Following SA3D, each training step starts by rendering images
and segmentation masks from a chosen camera pose using the
augmented representation, passing them through a heuristic
algorithm to extract prompt points, and feed the prompts as
well as the rendered image to Segment Anything Model (SAM)
[17] to produce a more accurate pseudo ground truth mask. The
pseudo-ground truth is then compared to the rendered mask
for loss. The loss is presented in Equation 4, where Msam is
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3510 HUANG ET AL.

FIGURE 2 Overview of our method. Our method comprises three stages: segmentation, inpainting and editing. We start with a dual-stage self-prompting
cross-view mask propagation process to produce a 3D segmentation of the scene, splitting it into Rob j and Rbg . The segmentation is then used to derive inpainted 2D
scene images with a scene-content revealing pruning strategy. After using inpainted 2D images to fine-tune Rbg , Rob j can be edited and composited back into Rbg in
real-time. Please refer to Figures A1 and A2 in Appendix A for more details about the segmentation and inpainting stage.

the pseudo ground truth mask, and Mr is the rendered mask.
Herein, Lm is Equation 5 in [18].

Lcoarse = Lm (Msam,Mr ). (4)

Fine stage segmentation. To improve segmentation qual-
ity, we expand the process by adding a fine stage and a merging
process. After iterating over all the provided camera poses C ,
we enter the fine stage of segmentation. In the same way as
adding segmentation scores, we further augment the represen-
tation with dual segmentation scores, aiming to capture scene
contents that should not be selected. We then initialize the dual
scores by computing a 3D bounding box containing all Gaus-
sians with high scores in the first stage. Every Gaussian outside
the bounding box has its dual score set close to one, while Gaus-
sians inside the bounding box have their dual score set to zero.
We then continue the process for another full iteration, training
the segmentation score and the newly added dual score, with the
dual score attribute following the same self-prompting process
and a new loss. The loss terms for the fine stage are presented
in Equation 5. Lm f (Equation 6) is the loss for the dual mask,
where Msd is the pseudo ground truth dual mask, and Mrd is
the rendered dual mask. We also added an additional term, Ldual

(Equation 7), that encourages masks and dual masks to have no
intersections.

L fine = Lcoarse + Lm f + Ldual , (5)

Lm f = Lm (Msd ,Mrd ), (6)

Ldual = Lm (−Mr ,Mrd ) + 𝜆dd Lm (−Mrd ,Mr ). (7)

Merging and refinement. Finally, we merge the scores and
dual scores to create the final segmentation. We compute the 3D
bounding box in the same way as in the initialization process.
Then, in addition to the Gaussians with a high enough segmen-
tation score, we also include every Gaussian in the bounding
box whose dual score is below a threshold into the final seg-

mentation, effectively accepting those “rejected” by dual mask.
This rejection inclusion scheme aims to cover all Gaussians that
are difficult to train, such as those hiding under the surface of
the object. We also expand the selection by including Gaussians
whose mean is close enough to the already selected Gaussians.

Remark. Thanks to the explicit representation of the Gaus-
sian Splatting Radiance Field, we can efficiently implement the
fine-stage initialization scheme, merging process, and expansion
refinement. The resultant 3D segmentation mask, after merging
and expansion, serves as our final output, effectively delineating
the Gaussians and thereby segmenting the scene into Rob j and
Rbg.

3.3 Exposed surface inpainting

After splitting, Rbg will likely contain newly exposed surface
regions or holes. For better rendering results after reintegrat-
ing the manipulated Rob j , these defects should be inpainted. We
achieve this by inpainting rendered images and depth maps and
then fine-tuning the scene representation with them.

2D inpainting. To minimize the amount of inpainting
needed, we remove the masked Gaussians far away from the
not masked Gaussians in R. This removes all selected Gaussians
except those in close contact with the rest of the scene, which
are very likely where the exposed regions are. These regions
can be identified by rendering a segmentation mask using the
pruned representation. We also add the exposed holes to the
rendered mask, which is computed by including new pixels
with low total opacity or color values close to the background
color after performing the removal above. Finally, we refine the
acquired inpainting masks before inpainting. (For details, please
refer to Appendix B)

This scene content revealing pruning strategy allows us to
minimize the amount of inpainting and preserve the existing
scene contents as much as possible, as presented in the Pruned
Scene image of Figure A2, in Appendix A.
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HUANG ET AL. 3511

We render RGB images and depth maps using this pruned
representation and generate inpainting masks using the above-
mentioned method. The RGB images and depth maps are then
inpainted by a 2D inpainter.

3D rapid fine-tuning. With the inpainted images Ii and
depth maps Di , we then perform fine-tuning to inpaint Rbg.
We initialize by reprojecting the masked region of an inpainted
depth map and its associated image back into the representation
as new Gaussians. As presented in the original 3DGS paper [7],
good initialization is crucial for high-quality training results.

We then train using the losses below:
Outside mask color loss. We supervise the color of regions

outside the mask via a weighted sum of pixel L1 and SSIM [22]:

Locolor = (1 − 𝜆ssim )L1(Ii (1 − Mi ), Ir (1 − Mi ))

+ 𝜆ssimSSIM(Ii (1 − Mi ), Ir (1 − Mi )), (8)

where Ii and Mi are the inpainted image and mask, Ir is the ren-
dered image of the representation, L1 stands for mean pixel L1
loss, and 𝜆ssim is the weight for SSIM.

Depth Loss where for scene geometry, we employ depth
map L1:

Lidepth = 𝜆depthL1(Di ,Dr ), (9)

where Di is the inpainted depth map, Dr is the rendered
depth map, L1 stands for mean pixel L1 loss, and 𝜆depth is the
weighting factor.

Inside Mask Color Loss where for color inside the masked
region, we adopt a perceptual color loss:

Licolor = 𝜆lpipsLPIPS(Box(Ii ,Mi ),Box(Ir ,Mi )), (10)

where Ii and Mi are the inpainted image and mask, Ir is the ren-
dered color image, Box stands for a function that computes the
bounding box of the mask and only keeps parts of the image in
the bounding box. LPIPS is the LPIPS [23] perceptual metric.

Here, we employ a perceptual color loss instead of directly
comparing pixel values. This is because the 2D inpaintings are
not guaranteed to be multiview consistent and a strict loss could
harm quality. We also filter via the bounding box of the masked
region instead of strictly in mask, this is to encourage better
integration between the masked region and its surroundings.

3.4 Editing and recomposition

With Rbg inpainted, Rob j can then be freely manipulated and
composited back into Rbg in real-time for editing.

The selected object Rob j could be translated and rotated by
transforming the position (or mean)  and rotation r of the
underlying Gaussians. Recomposition is done by adding the
Gaussians in Rob j back into Rbg. Note that as these transfor-
mations could be done by multiplying transform matrices, no
further training is needed. All possible surfaces and holes that
could be exposed by editing have already been inpainted in the
previous step.

3.5 Implementation details

Both stages of the segmentation training are done using the
SGD optimizer, with a learning rate of 1.0. 𝜆dd is 0.1. For
image inpainting, we employ state-of-the-art 2D image inpaint-
ing model Lama [24] for inpainting the color image and depth
map. The scene inpainting training process also uses the SGD
optimizer with learning rates equal to what is specified in the
original 3D Gaussian Splatting paper [7]. 𝜆ssim is 0.2, 𝜆depth is
1.0, 𝜆lpips is 1.0. All experiments are conducted using a single
A5000.

4 EXPERIMENTS

We demonstrate the effectiveness of our method by testing it on
both 360 and forward-facing scene datasets. Our method is also
compared to existing scene object removal methods, report-
ing competitive performance in segmentation and inpainting
despite being able to do more than just removal and hav-
ing a speed advantage. We also compare our method against
state-of-the-art 3DGS segmentation and inpainting methods.
Finally, we conclude with ablation studies to highlight our
key contributions.

4.1 Experiment setups

Datasets. For diversity in evaluation, we test our method on the
MipNeRF360 [25] dataset for 360 scenes and the SPIn-NeRF
[6] dataset for forward-facing scenes. Both datasets consist of
captured images of a scene with their associated camera param-
eters, which can be used to train the model to edit. As a dataset
for evaluating object removal methods, the SPIn-NeRF dataset
also contains scene images without the objects to remove and
object segmentation masks for all captured images. For input
prompt points, we use the point annotations from OR-NeRF
[5].

Metrics. For segmentation, we report the mean accuracy and
IoU (Intersection over Union) score of the rendered 2D seg-
mentation masks across all images. For the image quality of
inpainted scenes, we report the mean PSNR and LPIPS [23]
score between the rendered image of the inpainted scene repre-
sentation and the ground truth scene image where the object is
removed. We also calculate the Frechet inception distance (FID)
[26] between all rendered images and ground truth images taken
without the target object for image quality.

Baselines. To evaluate the segmentation and inpainting abil-
ity of our method, we compare our approach against the
state-of-the-art methods in 3D segmentation and scene object
removal: SPIn-NeRF [6] and OR-NeRF [5]. More concretely, we
compare against the TensoRF variant of OR-NeRF, which is the
fastest and the best overall result quality variant presented in the
paper. We also compare against recent state-of-the-art 3DGS
segmentation and inpainting methods, namely SAGA [27] for
segmentation and InFusion [28] for inpainting.
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FIGURE 3 Input prompts, rendered segmentation mask and editing results of our method on 360 and forward-facing scenes. Note that our method gives
sensible results even on scenes with extreme prompts (see last row). Please refer to the supplementary material for a video demo on real-time editing.

TABLE 1 Quantitative results on segmentation. The best value of each
column is bolded for ease of reading. The table shows our method is superior
to SAGA, on par with SPIn-NeRF and slightly inferior compared to
OR-NeRF. However, our method produces 3D segmentation, which is more
useful than the 2D segmentation masks produced by OR-NeRF.

Segmentation metrics

Method Acc (↑) IoU (↑)

Ours 99.51 92.71

OR-NeRF 99.71 95.42

SPIn-NeRF 98.91 91.66

SAGA 90.46 57.32

4.2 Object manipulation on 360 and
forward-facing scenes

To demonstrate the effectiveness of our approach, we perform
manipulation with our method on scenes from the forward-
facing SPIn-NeRF dataset and the 360 MipNeRF360 dataset.
The qualitative results are presented in Figure 3. It can be
noted that our method can perform high-quality selection
and editing on various scenes, with exposed regions prop-
erly inpainted. Our method produces sensible results even for
cases with extreme input, such as the scene in the last row of
Figure 3.

4.3 Evaluating segmentation quality

We compare our method against existing object removal
methods: OR-NeRF [5], SPIn-NeRF [6] and the recent state-of-
the-art 3DGS segmentation method: Segment Any 3D Gaus-
sians (SAGA) [27]. Comparisons are done on the SPIn-NeRF
[6] dataset.

The qualitative results are presented in Figure 4, and the
quantitative results are presented in Table 1. The table shows
that our method only achieves competitive performance against

TABLE 2 Quantitative results on inpainting. The best value of each
column is bolded for ease of reading. As presented in the table, our method
achieves superior quality compared to all existing methods and has a significant
speed advantage compared to NeRF-based methods.

Inpainting metrics

Method PSNR (↑) FID (↓) LPIPS (↓) Inpainting time (↓)

Ours 19.83 40.33 0.2684 20.41 min

InFusion 19.08 80.61 0.3424 <1 min

OR-NeRF 13.94 49.91 0.6162 168.97 min

SPIn-NeRF 14.83 67.26 0.6506 58.25 min

OR-NeRF. We attribute this to the fact that OR-NeRF directly
operates on 2D images for segmentation and creates 2D masks
instead of 3D segmentation. On the other hand, our method
achieves true 3D segmentation and is rendered to 2D masks for
comparison. The performance of our method is on par with
SPIn-NeRF [6], a 3D segmentation method, and is superior to
SAGA [27], the 3DGS segmentation method.

Our method also has the advantage of leaving almost no
Gaussians behind. We compare our method against SAGA [27]
on the MipNeRF360 [25] garden scene and segment the vase.
Results are shown in Figure 5. Despite producing reasonable
masks when rendered, SAGA has failed to include large por-
tions of the vase, which is undesirable for object manipulation.
In comparison, this is not the case for our method.

4.4 Evaluating inpainting quality

We also evaluate the inpainting ability of our method on the
SPIn-NeRF dataset. In addition to comparing with object
removal methods such as SPIn-NeRF [6] and OR-NeRF [5],
we also compare against Infusion [28], a state-of-the-art 3DGS
inpainting method.

Qualitative results are presented in Figure 6, and the quan-
titative results are in Table 2. As can be seen, our method
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HUANG ET AL. 3513

FIGURE 4 Qualitative results on segmentation. Our method achieves superior quality compared to SAGA. This is especially obvious from the box scene in the
first row and the trash bin scene in the last row. Our method is also comparable to OR-NeRF (which is superior to SPIn-NeRF) despite producing 3D segmentation
masks instead of 2D segmentation masks for every view.

FIGURE 5 Comparing the not-selected parts of segmentation. Please
note that SAGA, despite producing reasonable 2D masks when rendered, left
out a large portion of Gaussians in its 3D segmentation, which is undesirable
for manipulation.

produces more plausible results than existing methods. This is
most significant in the second row, where our method correctly
and sharply reproduces the structure of the plastic net, while
InFusion fails, and OR-NeRF and SPIn-NeRF produce blurrier
results. We attribute this to our adopted representation’s supe-
rior representation capability and our proposed initialization
and fine-tuning scheme. Good initialization and representation
give clearer results. Extensive fine-tuning allows our method to
achieve quality superior to InFusion at the cost of speed, as
InFusion relies on reprojection using predicted depth.

Our method also has a significant speed advantage when
compared against NeRF-based methods. As shown in the last
column of Table 2, our method is about three times faster
than the fastest NeRF-based method despite achieving superior
result quality. Our method is slower than InFusion, but this is
compensated by better quality and only needs to be done once
before all editing operations.

4.5 Ablation studies

Dual stage segmentation. To validate the importance of
dual-stage segmentation, we disable the fine stage in our seg-
mentation process and compare by evaluating images rendered
from Rbg. As shown in Figure 7, disabling the fine stage could
leave floaters in the scene that would be fixed by the fine stage
and merging process.

Content-revealing scene pruning. We validate the impor-
tance of scene content-revealing pruning by running our
algorithm with and without this process and comparing
the final result against a pseudo-ground truth. The pseudo-
ground truth is created by just removing the segmented object
from the scene without any additional inpainting or fine-
tuning.

We test this by removing the table in the MipNeRF360 [25]
garden scene. The results are presented in Figure 8. As can
be seen from the region highlighted by red rectangles, not
performing pruning leads to blurry results, especially in places
that do not require inpainting. We also present the quantitative
results in Table 3, and shows that introducing pruning leads to
better quality.

Inpainting optimization initialization. We analyze the
effect of initialization by disabling it and directly training the
pruned scene. As shown in Figure 9, without proper initial-
ization, the fine-tuning process would leave a cloud of tiny
floating Gaussians, instead of completely optimizing them
away.
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3514 HUANG ET AL.

FIGURE 6 Qualitative results on inpainting. We present the ground truth and the output of all the methods, with the inpainted region marked with red
rectangles. As can be seen from the third row, our method produces results closest to ground truth, while SAGA and SPIn-NeRF fill it with a dark hole, and
OR-NeRF produces a blurry patch. In the second row, our method is the only one that correctly and sharply reproduced the structure of the plastic net.

FIGURE 7 Rbg part of segmentation, performed with (left) or without
(right) the fine stage. As could be seen, disabling the fine stage introduces
floaters (highlighted using red rectangles) that should be included in Rob j .

FIGURE 8 Results of our method, ran with (bottom left) or without
(bottom right) content-revealing pruning, along with the pseudo ground truth
(top). Note that pruning removes the blur caused by excessive inpainting in the
red rectangle region.

TABLE 3 Quantitative analysis on the effect of scene pruning. It can be
seen that pruning makes the result much more similar to the pseudo-ground
truth.

Image quality metrics

Method PSNR(↑) FID(↓) LPIPS(↓)

w/ pruning 27.90 75.58 0.0911

w/o pruning 25.70 97.00 0.1561

FIGURE 9 Close-up view of the output of scene fine-tuning, performed
with (left) or without (right) reprojection-based initialization. Please note the
small residual grains present on the right, highlighted using red rectangles.

FIGURE 10 Artifacts caused by residual shadows misled the inpainter.
The shadows of the object (shadows in the red box on the left) could mislead
the 2D inpainter, producing dark results.

5 CONCLUSION

This paper introduces Point’n Move, a methodology enabling
interactive manipulation of scene objects coupled with exposed
region inpainting. Leveraging the explicit, point cloud-like
formulation and speed advantages offered by the Gaussian
Splatting Radiance Field [7] as the fundamental framework of
our design, our approach achieves intuitive object selection,
high-fidelity exposed region inpainting, and real-time editing.
These facets collectively deliver a user-friendly interactive
editing experience characterized by high-quality results.

Limitations. Currently, our method does not handle light-
ing or texture and focuses solely on geometry editing. Also, for
some scenes, the inpaintings produced by our method are darker
than expected, as presented in Figure 10. We attribute this to the
precision of our segmentation as it does not include the shadow
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HUANG ET AL. 3515

of the object, which misleads the 2D inpainter to inpaint with
the shadow, making the output darker.
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APPENDIX A: DETAILED METHOD

DIAGRAMS

Here we present the detailed diagrams of our method. Please
refer to Figure A1 for the segmentation stage and Figure A2 for
the inpainting stage.

FIGURE A1 Detailed view of the segmentation stage. The cross-view transfer process involves selecting prompt points from rendered masks, which are used
to produce pseudo-ground truths to supervise the rendering mask. The process is started using the input prompt points. After the coarse stage, a dual mask for
content outside the selection and additional loss terms for training are added. Finally, the scores and dual scores are merged into the final segmentation.

FIGURE A2 Detailed view of the inpainting stage. We start by performing scene content revealing pruning to reveal already captured backgrounds, minimizing
the areas to inpaint. We then render segmentation masks, depth maps and images of the pruned scene and inpaint the images and depth maps using 2D inpainting
models and the rendered masks. With the inpainted results, we use one pair of the inpainted depth map and color images to initialize Rbg , and then fine-tune it using
the inpainted depth map and images, supervised using the proposed losses.

APPENDIX B: 2D MASK REFINEMENT

ALGORITHM

Our 2D mask refinement algorithm (see Algorithm B1) is
inspired by the refinement procedure present in the implemen-
tation of OR-NeRF [5].

In essence, our method dilates the mask, finds the contour
with the largest area and takes the region inside it as the refined
mask. This is to eliminate potential holes in the mask. All
functions invoked in Algorithm B1 can be implemented using
functions from OpenCV.
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ALGORITHM B1 2D Mask Refinement Algorithm.

Require: 2D Inpainting Mask m

Ensure: Refined Inpainting Mask ret

m ← dilate(m, kernel _size = 3, iteration = 3)

contours ← findContours(m)

contour ← contourWithMaxArea(contours)

ret ← filledContour(contour )

return ret

TABLE C1 Quantitative per-scene result on segmentation quality. Results for SPIn-NeRF and OR-NeRF are taken from their original papers, while results for
SAGA are reproduced from their published code. SPIn-NeRF did not provide per-scene metrics; hence, they are not shown. The best value of each column is
bolded for ease of reading. Our method is slightly inferior to OR-NeRF but has an advantage over SPIn-NeRF. However, we produce 3D segmentation, while
OR-NeRF performs segmentation on 2D images, which is not usable for unrestricted manipulations.

Metric Method 2 3 4 7 10 12 Book Trash Mean

Acc (↑) Ours 99.80 99.79 99.74 99.59 99.84 98.72 99.01 99.56 99.51

OR-NeRF 99.82 99.73 99.79 99.81 99.87 99.30 99.51 99.51 99.71

SPIn-NeRF − − − − − − − − 98.91

SAGA 97.47 99.43 50.28 86.50 99.68 95.63 97.51 97.19 90.46

IoU (↑) Ours 96.16 98.09 98.15 94.68 94.67 86.51 83.45 89.99 92.71

OR-NeRF 96.47 97.48 98.50 97.43 95.47 91.73 88.68 88.68 95.42

SPIn-NeRF − − − − − − − − 91.66

SAGA 65.79 94.78 20.85 29.11 89.44 66.03 58.27 34.25 57.32

TABLE C2 Quantitative per-scene result on scene inpainting quality. Results for SPIn-NeRF and OR-NeRF are taken from their original papers, while results
for InFusion are reproduced from their published code. The best value of each column is bolded for ease of reading. Please note our method’s overall best
performance across most scenes.

Metric Method 2 3 4 7 10 12 Book Trash Mean

PSNR (↑) Ours 18.48 18.04 20.88 21.40 19.75 16.62 22.28 21.18 19.83

OR-NeRF 15.94 11.42 13.02 14.37 12.89 11.40 15.88 16.63 13.94

SPIn-NeRF 16.69 12.08 14.90 15.34 12.73 12.39 17.84 16.70 14.83

InFusion 18.28 16.98 19.68 19.27 19.04 16.04 21.59 21.79 19.08

FID (↓) Ours 53.60 36.39 51.78 22.48 21.67 26.23 81.68 28.84 40.33

OR-NeRF 72.10 34.72 74.04 38.66 43.89 38.02 64.91 32.96 49.91

SPIn-NeRF 71.75 68.35 61.10 43.95 91.73 50.52 102.71 47.98 67.26

InFusion 223.79 62.00 67.84 60.77 28.32 32.20 114.02 55.92 80.61

LPIPS (↓) Ours 0.4544 0.2217 0.3229 0.2858 0.2264 0.3352 0.2147 0.2301 0.2864

OR-NeRF 0.7909 0.4937 0.6684 0.6445 0.6165 0.7179 0.5094 0.4882 0.6162

SPIn-NeRF 0.8489 0.5472 0.6815 0.6552 0.7003 0.7518 0.4226 0.5972 0.6506

InFusion 0.5377 0.2829 0.3851 0.3308 0.2765 0.3610 0.2729 0.2921 0.3424

APPENDIX C: ADDITIONAL PER-SCENE

METRICS

Quantitative results presented in Table 1 and Table 2 are the
means across all scenes in the SPIn-NeRF [6] dataset. We
present the quantitative result for each individual scene here.
Please see Table C1 for segmentation metrics and Table C2 for
inpainting metrics.
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