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Abstract

Existing methods for parametric surface reconstruction from 3D point data
typically segment the points into multiple subsets, each fitted with a para-
metric surface patch. These methods face two blue primary issues. First,
they fail to achieve positional continuity between adjacent patches, resulting
in gaps or overlaps. Second, parameterizing the data within each subset is
a challenging task. In this paper, we address these problems by proposing
a novel surface reconstruction method based on Partial differential equation
(PDE) deformation surfaces and bilinearly blended Coons patches. Our ap-
proach involves first extracting four boundaries for each subset. Next, we
generate a bilinearly blended Coons patch from these boundaries. Any er-
rors between the points in the subset and their corresponding points on the
Coons patch are minimized or eliminated using a PDE deformation surface,
which employs as many unknown constants as necessary to achieve this goal.
The proposed method offers several advantages. Firstly, it ensures good po-
sitional continuity between adjacent patches, as they share common bound-
aries. Secondly, reconstruction errors can be easily controlled by adjusting
the hyper-parameters in the PDE deformation equation, thereby changing
the number of unknown constants as needed. Thirdly, the challenge of point
parameterization within each subset is effectively addressed by using the bi-
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linearly blended Coons patch. We validate our method on various datasets of
differing complexities and shapes, with results demonstrating the effective-
ness and advantages of our approach.
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1. Introduction

Reconstructing surfaces from 3D point data is of great scientific and
practical significance in various fields such as cultural heritage, automotive,
robotics, and many others [I, 2, B]. This process can be categorized into
explicit and implicit methods based on whether explicit or implicit represen-
tations are used. Each method has its own advantages and disadvantages,
and the choice should be made based on the specific tasks and their re-
quirements. In this paper, we focus on parametric surface reconstruction
from point clouds, a popular approach for surface reconstruction using ex-
plicit representation. Compared to other explicit representations like poly-
gon surfaces, parametric surfaces offer certain benefits. They are defined
by mathematical equations, which reduces storage requirements. Moreover,
theoretically, different levels of continuity can be achieved between adjacent
parametric surface patches by specifying various continuity conditions, which
is crucial for many applications.

Current approaches for reconstructing parametric surfaces from point clouds
typically involve dividing the 3D point data into subsets and approximat-
ing each subset with a parametric surface patch. However, these methods
face two significant challenges. First, gaps or overlaps may occur between
adjacent patches, necessitating additional postprocessing to resolve these is-
sues. Second, the parameterization of point clouds or points within subsets
remains an important and unresolved problem. To address these challenges,
we propose a new reconstruction method that integrates partial differential
equation (PDE) based deformation surfaces with bilinearly blended Coons
patches. This method enables the reconstruction of surfaces with paramet-
ric representation from 3D point data or subsets thereof. We use bilinearly
blended Coons patches to create initial parametric surfaces that pass through
the boundaries of each subset. Subsequently, we propose a PDE involving



as many unknown constants as needed, derived from the governing equa-
tion for the elastic bending of thin plates. The particular solution to this
PDE is used to create a deformation surface, which is superimposed on the
Coons patch to fit the interior points without altering the boundaries of the
Coons patches. This ensures that adjacent parametric patches share the
same boundary and are connected seamlessly without gaps or overlaps. Ad-
ditionally, the bilinearly blended Coons patch serves as an ideal base surface
for easily and properly parameterizing point clouds. For each point in the
point clouds or subsets, the closest point on the corresponding Coons patch
and its v and v parametric values can be accurately determined.

The organization of this paper is as follows: Section [2| provides an overview of
related work. In Section [3, we outline the pipeline of our proposed method.
Section 4] explores bilinearly blended Coons patches and PDE deformation
surfaces in detail. The results of surface reconstruction from various datasets
are presented in Section 5] Finally, Section [6] concludes the paper and dis-
cusses future work.

2. Related work

For surface reconstruction from 3D point data, there are numerous sur-
face representations to choose from. Broadly, these representations can be
categorized into two primary types: explicit and implicit. Each type has its
own advantages and disadvantages. For a more comprehensive and detailed
introduction to various methods of surface reconstruction from point clouds,
please refer to these review papers [4, [5, [6l [7], §].

Methods in the first category include parametric surfaces and triangular sur-
faces, etc. Triangular surfaces are typically reconstructed using Delaunay
triangulations and Voronoi diagrams [0, [10]. These methods use numerous
flat triangles to approximate curved shapes, which can require very high stor-
age. A parametric surface, on the other hand, is defined by a mathematical
expression so it is a very compact representation. Parametric surfaces also
have the advantages of easily generating points on the surface and intuitively
altering the surface shape by adjusting the position of control points or other
parameters in the mathematical expression. However, determining whether
a point lies on which side of a parametric surface is not straightforward. Ex-
amples of parametric surfaces include Bézier surfaces [I1], B-spline surfaces
[12], NURBS surfaces [13], and PDE surfaces [21], etc.

For parametric surface reconstruction from 3D point data, it is often nec-



essary to use multiple patches, each defined by a mathematical expression,
to construct a complex shape. A significant challenge in this type of sur-
face reconstruction is achieving good continuity between patches, as existing
parametric surface representations struggle to address this issue. Another
challenge is parameterizing point clouds or the points within subsets of a
point cloud to obtain suitable parameters for each point. Zhu et al. [14]
provide a comprehensive survey on various methods of parameterizing 3D
point clouds for parametric surface reconstruction.

In this paper, we propose using bilinearly blended Coons patches and a par-
ticular solution to a fourth-order PDE involving a lateral force to address
these challenges. Our method offers two key advantages. First, it guar-
antees positional continuity between adjacent surface patches. Second, the
bilinearly blended Coons patch serves as an excellent base surface for param-
eterizing point clouds or points within subsets of a point cloud to obtain the
correct parameters for each point.

Implicit representation has become a very popular choice, especially as deep
learning techniques have been widely integrated into the pipeline for recon-
structing 3D surfaces. Implicit representation is powerful because it can
theoretically represent arbitrarily complex shapes and is highly compatible
with deep learning techniques for surface reconstruction. Compared to ex-
plicit representation, it is much easier to determine whether a point lies
inside or outside the surface. However, generating a point from an implicit
representation and altering the shape of surfaces is not straightforward. Ad-
ditionally, implicit surfaces need to be converted into explicit representations
like polygon surfaces or voxels for display in the digital world. Typical ex-
amples of implicit representation include level sets [15], distance functions
[16], algebraic surfaces [17], and Constructive Solid Geometry [18]. Among
distance function representations, Poisson surface reconstruction [19] is a
classic method, which solves for an approximate indicator function of the
inferred solid, whose gradient best matches the normal of the point set. The
reconstructed surface is obtained by extracting an appropriate isosurface of
the indicator function using adaptations of the Marching Cubes algorithm.
Implicit B-spline surfaces have also been investigated and used for recon-
struction [20].

In addition to the aforementioned methods for reconstructing 3D surfaces
from 3D data points, PDE surfaces have also been adopted using both ex-
plicit and implicit representations. For example, Zhu et al. [21] used 4-sided
patches defined by an analytical resolution to a fourth-order PDE for recon-
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structing parametric surfaces from 3D point data, notable for its efficiency
and accuracy. Ugail and Kirmani employed an elliptic PDE equation and
analytically solved it by utilizing a set of curves as the boundary condition,
resulting in a highly efficient approach [22]. Rodrigues et al. explicitly re-
solved a Laplace equation and used it for compressing and reconstructing 3D
data [23]. In the context of 3D surface reconstruction using implicit PDE
models, many approaches have also been proposed [24], 43| 25]. For a more
detailed introduction to these methods, please refer to [21].

While implicit PDE-based surface reconstruction methods are powerful in
reconstructing various complex shapes from point clouds, they involve heavy
numerical calculations and require high storage costs. Although existing ex-
plicit PDE-based surface reconstruction methods overcome these issues, they
cannot guarantee that reconstructed PDE patches are seamlessly connected,
and parameterizing point clouds remains challenging. This paper introduces
a new surface reconstruction method using explicit PDE-based deformations
and bilinearly blended Coons patches to address these challenges.

3. Pipeline

The pipeline of our proposed method is illustrated in Fig. [T} Specifically,
given a point cloud data shown in Fig. (a), we first segment it into multiple
subsets as shown in Fig. [I[b). For each subset, we then extract its boundaries
and corner points using an existing method, as depicted in Fig. (C) The
points on each extracted boundary are fitted with a B-spline curve that passes
through the two endpoints of the boundary, as shown in Fig. (d) Next,
we use these boundary curves to generate a bilinearly blended Coons patch,
illustrated in Fig. [Ife). This Coons patch serves as an excellent base surface
for the parameterization of the points within the subset, allowing us to obtain
their (u, v) parameters, as depicted in Fig. [I(f). Our proposed PDE patch is
then applied to deform the interior part of the Coons patch, ensuring that the
combined parametric surface fits the points in the subset well without altering
the boundaries of the Coons patch, as shown in Fig. [Ig). Since adjacent
parametric surface patches share the same boundary, they are seamlessly
connected with positional continuity. The final result, shown in Fig. (h),
demonstrates that the adjacent patches are seamlessly connected, eliminating
the need for postprocessing required by other methods.
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(a). Input point cloud (b). Segmentation (c). Boundary extraction (d). B-spline curve fitting
for the front part
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(e). Coons patch generation (f). Point clouds (). Apply PDE model (h). Combined results with
parameterization positional continuity

Figure 1: Pipeline of our proposed method.

4. Proposed approach

Our proposed approach is detailed in this section. Firstly, the method
for obtaining multiple subsets using point cloud segmentation techniques
and extracting the boundaries of each segmented subset will be discussed in
Section Secondly, we explain how to fit B-spline curves to the extracted
boundary points in Section [£.2] Thirdly, the definition of the Coons patch
from four parametric curves is provided, and a bilinearly blended Coons
patch from the four B-spline boundary curves is generated in Section [4.3]
Following this, Section |4.4] covers the parameterization of the points within
the subset using the generated Coons patch. Finally, we describe fitting our
proposed PDE model to the offset between the Coons patch and the interior
points of the subset. The combined PDE model and Coons patch fit the
points very well, ensuring positional continuity between adjacent parametric
patches that share the same boundary condition.

4.1. Segmentation and boundary extraction of 3D point data

Various approaches exist for segmenting 3D point data, including meth-
ods using attributes, 3D models, and edges, etc. For a comprehensive and
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Figure 2: Curvature calculation of points on the boundary.

detailed introduction to these methods, please refer to [26]. For simplicity,
this paper adopts a geometric primitive (3D models) method to segment
an input point cloud into an appropriate number of subsets. To detect the
boundary points of a given point set, many techniques have been proposed
[277, 28, 29]. Specifically, Chen et al. [27] proposed an improved Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) to detect
point cloud boundaries, but their method mainly focuses on planar points.
Mineo proposed a novel algorithm for point cloud boundary detection by cal-
culating the local resolution of the point cloud with the aid of the K-nearest
neighbour method [28]. Alpha-shape [29], a classical method for detecting
the convex or concave regions of a given point set, can also be used for point
cloud detection. Here, we adopt the technique in [29] as it meets our needs
in most cases. In cases where the extracted boundary is not satisfactory, we
will fine-tune the parameters of the boundary detection method to achieve
better results. Specifically, if the extracted boundary points contain outliers
or too few points, we will adjust the parameters of the alpha-shape method,
as this method is dependent on both the parameters and the specific input.
For the detected boundary points, we also need to identify the corner points,
which will divide the boundary points into four or three segments (curves).
To accomplish this, we first calculate the curvature of each point using the
following formulation [30]:

k=(4x%S)/(axbx*c)

where S is the area formed by the point of interest (point B in Fig. [2)) with
its two adjacent points (points A and C), and a, b, and ¢ are the lengths of
AB, BC, and AC, respectively, as shown in Fig. The top four or three
curvature points will be treated as the corner points.



4.2. B-spline curve fitting

For the points on each boundary, we need to use a parametric curve to fit
them, ensuring that the curve passes through the first and last points. While
we could use a Bézier curve, it requires a higher degree for more complex
shapes defined by the points in a subset. This is not desirable due to the
computational expense and lack of local control. On the other hand, the
B-spline curve is a better choice due to its flexibility and capability to fit the
data without increasing the curve’s degree. A B-spline curve is defined by
the following expression:

P(t) =) P;By te0,1]
=0

where P;(i = 0,1,2,...,n) are the control points, k is the order of the B-
spline curve, and B, () are the basis functions, which are defined recursively
as follows:

1 fort; <t <t
Bialt) = et
0 otherwise
and
Bi,k(t) = —Bz’,k—1<t> + LBHLk_ﬂt) if k>1
lith—1 — i Livk — tiy1
n+k

In the above equations, {¢;},"; is the knot vector, a non-decreasing array
of numbers from 0 to 1. To ensure the curve passes through its two control
points at the ends, weset to =t = ... =t 1 =0and t,,.p = tpip1=... =
t,+1 = 1. The remaining values of the knot vector are uniformly distributed,
as this approach is relatively simple and meets our needs. Having determined
the appropriate parametric curve for fitting, the next step is to parameterize
the points on each of the extracted boundaries. There are several methods
available, such as Chord length, Centripetal, Foley, and Universal, etc. We
adopt the Chord length method for parameterizing the points on each of the
extracted boundaries, as it is one of the most widely used methods. Given
the knot vector and the parameters obtained for the points on each of the
extracted boundaries, the B-spline curves for these boundaries can be readily
obtained through least squares fitting.



Figure 3: Bilinearly blended Coons patch from 4 boundary curves.

4.8. Bilinearly blended Coons patches

A bilinearly blended Coons patch is a parametric surface defined by four
boundary curves, and it passes through these boundaries. Specifically, given
four boundary curves P(u,0), P(u, 1), P(0,v) and P(1, v) which are all para-
metric curves with the parametric variables v and v normally defined in the
range [0, 1], the corresponding equation of the bilinearly blended Coons patch
is given by the following equation [31]:

_POO —P01 P(O,U) 1—wv
SC(U,U) = (1 —u u ].) —P10 —P11 P(l,’U) v (1)
P(u,0) P(u,1) (0,0,0) 1

where Pyy, Po1, P1p and Py are the four corner points where the bound-
ary curves intersect, with Poy being the intersection of P(u,0) and P(0,v).
Similarly, Py, P1p and Py, are the remaining three corner points where the
other pairs of adjacent boundary curves intersect. This is illustrated in Fig.

3l

4.4. Point cloud parameterization for 3D surface fitting

For unstructured 3D point data, the parameters associated with each
point are unknown and not easily obtained. The process of obtaining suitable
parameters for each point is called point cloud parameterization. Numerous
techniques have been proposed to achieve this. One of the most widely used
methods involves using a base surface, which can be a plane [32, [33], a sphere
[34, [35], or a surface patch that approximates the shape of the 3D point data
[36, [37]. In our approach, a bilinearly blended Coons patch serves as the base
surface. Given the base surface and a point in a 3D point data, we need to
find the closest point on the base surface and use this point to determine the
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parameter values u and v of the original point, which is a nonlinear prob-
lem. Many methods have been proposed to tackle this nonlinear problem,
which can be roughly divided into five categories: Newton-Raphson method
[38], subdividing method [39], solver methods [40], clipping method [41], and
geometric method [42]. Each method has its advantages and disadvantages.
After testing some methods from each category, we found that the geometric
method best fits our needs due to its effectiveness and efficiency. We adopt
the geometric method proposed in [42] to find the closest point and its as-
sociated parameters on a parametric surface to a given point. Specifically,
given a parametric surface and a test point whose parameters are to be ob-
tained, a normal curvature sphere of the surface is constructed. The radius
and center of this sphere, along with the initially guessed parameters, are
specified. Next, the intersection point between the line segment defined by
the test point and the center of the normal curvature sphere is found. Lastly,
to iteratively update the parameters of the test point, the iterative formula
is derived using Taylor’s expansion of the parametric surface. This method
is independent of the initial parameter values and converges quickly. Since
there may be tens of thousands of points in a subset, using the geometric
method point by point is inefficient. To tackle this issue, we use parallel
computing to improve the efficiency of point cloud parameterization, as pa-
rameterizing each point using the geometric method is independent of the
others.

4.5. PDE deformation surfaces

PDE deformation surfaces are crucial in removing or minimizing the er-
rors between the points in a segmented subset and the corresponding points
on the bilinearly blended Coons patch. These surfaces can be derived from
the particular solution to the PDE proposed below. The bending equation
of an elastic thin plate is:

O'w H*w  Otw
D +2 + = Qw 2
<8x4 0x20y? 8y4) 4 )
where x and y are the position variables,w is the lateral displacement,qy, is
the lateral force, and

Eh3
= o= (3)
201 - 12)
is called the flexural rigidity, which is determined by Young’s modulus F,
Poisson’s ratio p, and the thickness h of the elastic plate. If we replace the

D
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position variables x and y with the parametric parameters (v and v), and
replace the lateral displacement with the position displacements z, y, z, Eq.
(2) is changed into the following partial differential equations:

0*w 0*w 0*w
D 2 —
(Gt * 2500 T o) = (4)
(w=uz,y,2)

For simplicity, we will not use Young’s modulus E, Poisson’s ratio u, and the
thickness h to determine the flexural rigidity D. Instead, we set its value to
1, i.e., D=1.

Since the purpose of using Eq is to add deformations to the bilinearly
blended Coons patch to remove or minimize the errors between the point
clouds and the Coons patch, only the particular solution to Eq. is nec-
essary. Although the deformations may be complex, they can be mathe-
matically represented with a Fourier series. To ensure positional continuity
between reconstructed patches, the Fourier series can be expressed as the
sine series. Considering these factors, the mathematical expression of the
lateral force qy are taken to be the following forms:

M N
G = Z Z Gumnsin(mmu)sin(nTv) 5)
m=1 n=1

(w=2x,y,2)

where M and N are hyper-parameters that can be adjusted to control the
surface reconstruction errors. For example, when the shape of a point cloud
is complex and the reconstruction error exceeds the specified tolerance, we
can increase the values of M and N to reduce the disparity between the
reconstructed surface and the point data within the specified threshold, which
will be demonstrated in Section [A

According to Eq. , the displacement w can be taken to be

w = mZ:l ; WypSin(mmu)sin(nwov) (©)

(w=ux,y,z2)
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From Eq. @, we obtain the fourth partial derivatives of w with respect to
u, u and v, and v, respectively. They have the forms of:

P M N
Gt = mt Z Z M Wy sin(mmru) sin(nmv)
u m=1n=1
5w M N
Eerhe ! Z m*n2 W sin(mmu)sin(nwv) (7)
m=1n=1
M N
(9 = =7t Z Z N Wy sin(mmu)sin(nmv)
v

m=1 n=1
Substituting the above Eq. and Eq. into Eq. , we obtain

M N
Zm4wmnszn(mﬁu)31n (nmv)4-2m* Z Zm N2 Wy sin(mmu)sin(nrv)

1 n=1 m=1 n=1

N M N
Zn4wmnszn(m7ru)szn nmv)| = Z Z QumnSin(mmu)sin(nmv)

n=1 m=1 n=1
(8)

NE

D[=*

4

M=

+

3

The above equation can be simplified as:
N
Z (m* + 2m*n? + M)W — Gunm)sin(mau)sin(nmv) =0 (9)
m=1 n=1

From Eq. @D, we the following w,,,,:

QUJmn
Dr4(m* + 2m?2n? 4+ n*) (10)
(w=u=zy,z;m=1,23,...,M;n=1,2,3,.... N)

Wmn =

By Substituting Eq. into Eq. @, the particular solution shown below
can be obtained

M N
1 Gumn : .
= D Z Z (T + 2m2n? £ n1) sin(mmu)sin(nmv) ()

m=1 n=1

(w=ux,y,2)
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Suppose the number of points in a given point cloud subset is I, then at the
points (u;,v;) (i = 1,2,3,...,1), the errors between the points in the point
cloud and the corresponding points obtained from the bilinearly blended
Coons surface S.(u;,v;) are w;. To fit a parametric surface to the interior
points, we minimize the following error function:

I
_ men . . 2
= E: w; — D7r4 E E (i T 2mn? + 1) sin(mmu;)sin(nmv;)]* (12)

m=1 n=1

which can be solved using the least square method below:

M N
-9 Z D Z Z mA 1 2m2n? + na sin(mmu;)sin(nmv;)]|
i m=1 n=1

1 1
T Dt (K4 2k212 + 1Y)
(w=uwzy,z;k=1,2,3,...,M;1=1,2,3,...,N) (13)

8kal

sin(kmu;)sin(lrv;)] = 0

By solving the above M x N equations, we obtain qum, (Where w = x,y, z;
m = 1,2,3,...,M; n=1,2,3,...,N). Substituting these values into Eq.
(11), we derive the PDE patch SPDE(u, v), which is expressed as Sppg(u, v) =
[z(u,v),y(u,v), 2(u,v)]T. Finally, the reconstructed parametric surface S(u, v)
1s:

S(u,v) = S.(u,v) + Sppe(u,v) (14)
To assess the reconstruction accuracy of our proposed approach, we compute
both the average error and the maximum error between the reconstructed
parametric surface and the original I points (P, Ps,...,P;) in the point
cloud subset using the following expression:

I
1
Erryrean = = § |P; — S(u;,v;)]
I (15)

Erryee = max Py — S(uy, ;)]
i=1,2,...,1

Notice that when the product M x N of the hyper-parameters M and N is
equal to the number I of the points in the point cloud subset, the reconstruc-
tion error is removed, i.e., the reconstruction error is zero.
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5. Results

To validate the effectiveness of our proposed method, we tested it on
various datasets, including structured point clouds, unstructured point clouds
of varying complexities, and data with different levels of noise.

5.1. Surface reconstruction from structured point clouds

There are mainly two types of point clouds: structured and unstruc-

tured. In structured point clouds, the relationship between points is known,
whereas in unstructured point clouds, this relationship is unknown and more
complex. To obtain a structured point cloud, we uniformly sample points
on a parametric Bézier surface, knowing the position of each point and its
corresponding parameters (u;,v;). The point cloud is shown in Fig. [fa),
with fewer points sampled for clarity.
The parametric equations of the four boundaries can be easily derived by
fixing values for u as 0 and 1 and for v as 0 and 1 in the parametric equa-
tion of the given Bézier surface. From these four boundaries, we construct
a bilinearly blended Coons patch based on Eq. , as shown in Fig. (b)
The figure illustrates that while the bilinearly blended Coons patch passes
through the four boundaries, it does not fit the interior points well, with a
mean reconstruction error of 0.4343. To reduce this error, we apply the par-
ticular solution of Eq. to the PDE in Eq. , adding deformations to
the bilinearly blended Coons patch. With hyper-parameters M =5 and N =
5, the resulting reconstruction surface, which combines the PDE patch and
the bilinearly blended Coons patch, is shown in Fig. (C) As illustrated,
the combined parametric surface fits all the points very well, significantly
reducing the mean reconstruction error to 0.0038.

5.2. Surface reconstruction from unstructured point clouds

We first test our method with an unstructured point cloud of one patch
with four sides. The point cloud is shown in black in Fig. [5|(a), representing
the front part of a skirt model. To obtain the Coons patch, we first identify
the four boundaries of the point cloud, ensuring that one endpoint of adja-
cent boundaries is the same point, serving as the corner point of the Coons
patch. The detected boundary points are shown in blue in Fig. (a), and
the fitting B-spline curves are shown in Fig. (b) After obtaining the B-
spline equations for the four boundaries, the bilinearly blended Coons patch
is generated from these boundaries using Eq. (), as shown in Fig. [f]c).
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(a) (b) ()

Figure 4: Reconstruction of the surface from constructed point clouds: (a).Input point
clouds. (b).Generated Coons patch with an average error of 0.4343. (c).Final parametric
surface with an average error of 0.0038

The Coons patch does not fit the point cloud well initially. To improve the
fitting, we calculate the distances between the points in the point cloud and
the corresponding points on the Coons patch. The PDE deformation surface
from Eq. is then used to compensate for this discrepancy. The final
result is shown in Fig. [p|d), demonstrating that the reconstructed surface
fits the point cloud very well.

(a) (b) () (d)

Figure 5: Reconstruction of the surface from unconstructed point clouds of the front
part of a skirt model:(a).Input point clouds and extracted boundaries. (b).Reconstructed
B-spline curves. (c).Generated Coons patch. (d).Final parametric surface

To further demonstrate the effectiveness and controllability of our method,
we apply it to reconstruct the back part of the skirt model using the same
procedure. Fig. [6)(a), [6[b), and [6(c) show the original input point cloud,
the reconstructed bilinearly blended Coons patch, and the final parametric
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surface, respectively. As expected, the Coons patch does not fit the point
cloud well initially, but by adding our proposed PDE deformation surface,
the final reconstruction result is satisfactory. As discussed in Section [4.2] the
reconstruction error from our method is controllable. This can be achieved
by adjusting the values of M and N. The reconstruction surface shown in
Fig. @(c) uses M = 5 and N = 5, with corresponding mean and maximum
errors of 0.0074 and 0.0423, respectively. To reduce the reconstruction error,
we can increase the values of M and N. Fig. [6fd) shows the result with
M = 10 and N = 10, where the mean and maximum errors are reduced to
0.0041 and 0.0389, respectively.

(a) (b) (¢)

Figure 6: Reconstruction of the surface from unconstructed point clouds of the back part
of a skirt model:(a).Input point clouds. (b).Generated Coons patch. (c).Reconstructed
parametric surface with M = 5, N = 5. (d).Reconstructed parametric surface with M =
10, N = 10.

The point clouds shown in Fig. [f[a) and [6(a) are the front and back parts
of the point cloud shown in Fig. m(a), respectively. Their reconstructed
surfaces are shown in Fig. [fb). As depicted, the reconstruction surfaces
fit the point cloud very well. Moreover, the two reconstructed surfaces are
seamlessly connected, requiring no post-processing, unlike the PDE-based
reconstruction method presented in [21].

We further test our method with examples shown in Fig. [ and [0} In Fig. [8]
we use one patch to reconstruct the flag shape from the point cloud shown in
Fig. [§[(a), with the reconstructed surface shown in Fig. [§(b). In Fig. [9] we
segment the point cloud in Fig. [0[a) into 12 subsets, using a single paramet-
ric surface to approximate the 3D points in each subset. These reconstructed
surfaces are seamlessly connected to form the pot shape shown in Fig. |§|(b)
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(a) (b)

Figure 7: Reconstruction of the surface from unconstructed point clouds of a skirt
model:(a).Input point clouds. (b).Reconstructed parametric surface after combination.

These examples further illustrate the capability of our method to effectively
generate parametric surfaces that closely match various datasets.

(a) (b)

Figure 8: Reconstruction of the surface from unconstructed point data of a flag
model:(a).Input point clouds. (b).Reconstructed parametric surface.

The above examples demonstrate our method’s effectiveness in reconstruct-
ing four-sided patches from 3D point data. However, not all point clouds
have four boundaries or can be segmented into subsets with four boundaries.
Some point clouds may have three boundaries. In such cases, one boundary
of the reconstructed patch degenerates to a single point, and our proposed
method can still handle such datasets. Fig. [L0[a) shows such a point cloud,
segmented into eight subsets, each with three boundaries, as shown in Fig.
b). Our approach reconstructs the shape from the points within each
subset, with the final result shown in Fig. [10[c), demonstrating that the
reconstructed surfaces fit the point cloud very well.
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Figure 9: Reconstruction of the surface from unconstructed point data of a pot
model:(a).Input point clouds. (b).Reconstructed parametric surface.

(a) (b) ()

Figure 10: Surface reconstruction from unconstructed point clouds of an umbrella
model:(a).Input point clouds. (b).Reconstructed parametric surface for a subset with
three boundaries. (c).Final parametric surface after combination

5.3. The impact of hyper-parameters

To further investigate how different values of the hyper-parameters M
and N affect reconstruction errors, we set M = N =5 and M = N = 10
for surface reconstruction from the point clouds shown in Fig. 6], 8}
[0 and The mean errors and maximum errors are presented in Table
for M = N = 5 and in Table 2 for M = N = 10. Comparing the mean
errors and maximum errors given in the tables, we can conclude that both
the mean error and maximum error can be reduced by increasing the values
of M and N, which further demonstrates the effectiveness and controllability
of our suggested approach To provide a clearer comparison, we also plot the
mean and maximum errors for different degrees of freedom (M x N) across
all datasets. Fig. [11]illustrates the mean fitting errors relative to the degrees
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of freedom, showing a consistent decrease in mean errors as the degrees of
freedom increase in all cases. For the maximum errors, the trend is less clear
when plotted together due to varying scales, so we present them in three
separate subplots in Fig. [12 In all cases, the maximum errors decrease as
the degrees of freedom increase. These figures demonstrate the flexibility and
controllability of our method.

In Section .5 we take the value of D as 1 for simplicity and use it in Eq.
for linear least squares fitting. It is important to note that the value
of D does not affect the reconstructed results or the fitting errors. This is
because in Eq. , D can be incorporated into the expression within the
sum, allowing gumn/D to be treated as a new variable. Therefore, altering
D would change @, correspondingly, leaving their ratio unchanged. To
illustrate this, we varied the value of D in Eq. for the least squares
fitting multiple times, selecting random values between 1073 and 10%. Each
time, both the average error and the maximum error remained constant, and
the value of gymn/D were unchanged.

«107 Mean errors - number of freedom (M x N)

Mean errcr
-
T :

25 36 49 64 81 100
M= N

=8 Structured points
—8— Skirt back

Skirt front
—e— Flag
—6— Pat

Umbrella

Figure 11: Mean errors respect to M x N for all the datasets

5.4. Surface reconstruction from point clouds with various levels of noise

To investigate the robustness of our method to various levels of noise
(defined as 1), we begin with the constructed point sets sampled from a
Bézier surface that is used in Section [5.1, which is noise-free and can be
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Maximum errors - number of freedom (M x N) — errors - number of freedom (M x N)

Zgt

Figure 12: Mean errors respect to M x N for all the datasets

Figure Figure Figure Figure | Figure | Figure
@ Struc- | B Front |G Back | [} Flag |9 Pot | OO
tured part of | part of Umbrella
points skirt skirt
Mean 0.0038 0.0078 0.0074 0.0071 | 0.0023 | 0.0039
error
Max er- | 0.0131 0.0463 0.0423 0.0224 | 0.0182 | 0.0206
ror

Table 1: Reconstruction errors when M = N = 5.

used as the ground truth for calculating the fitting errors. Similar to other
methods to test the performance on point clouds with various levels of noise
[441, 45], which reconstruct B-Spline surfaces for sharp feature preservation
and curvature estimation respectively, we define the noise level as follows:
We first compute the smallest bounding box that encapsulates the noise-
free point cloud, and the diagonal length of the bounding box is calculated
and defined as d. Then each point is displaced in a random direction with a
random magnitude, and the magnitude is drawn from a Gaussian distribution
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Figure Figure Figure Figure | Figure | Figure
@ Struc- |BE Front |[BF Back : Flag | [0 Pot | [0k
tured part of | part of Umbrella
points skirt skirt
Mean 0.0010 0.0040 0.0041 0.0038 | 0.0013 | 0.0023
error
Max er- | 0.0042 0.0438 0.0389 0.0114 | 0.0177 | 0.0191

ror

Table 2: Reconstruction errors when M = N = 10.

with zero mean and a certain standard deviation, which is calculated by

(1% d)%.
Given the noise-free point set, as shown in Fig[l3] we set [ = 0.5. The

Figure 13: Noise free point cloud

obtained noisy data using the aforementioned steps with noise levels [ = 0.5,
[ = 1.0, and [ = 1.5, together with the detected boundaries, are shown in
the first row of Fig. [[4l The base surfaces from the detected boundaries are
shown in the second row. The last two rows show the reconstructed results
and those superimposed on the structured point cloud that is free of noise.
Notice we set M = N = 10 in this section. As we can see, our method gives
a relatively good result when [ is no more than 1.0. As [ gets larger, the
quality of the result decreases. However, it is important to note that the
first step of the general pipeline for parametric surface reconstruction from
noisy data involves preprocessing, which filters noise and outliers or adds
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points to make the data complete. Since this section aims to investigate
the robustness of our method to various levels of noise, preprocessing is not
carried out to denoise the data. As the level of noise increases, the detected
boundary degrades, and the generated base surface also deteriorates, as seen
in the third row when [ = 1.5. This affects the parameterization of points and
the subsequent fitting process, thus impacting the final result. To illustrate,
we use the boundary of the original structured point cloud to generate the
base surface shown in Fig. [15](a), which is used for the noisy data (I = 1.5)
parameterization, and the final result is shown in Fig. [I5(b). We can see a
better result can be obtained if a better base surface is generated, which can
be achieved when the data is processed to filter the noise.

Finally, we plot the fitting errors along the way in all cases, as shown in Fig.
[16l Our PDE model consistently reduces the error between the base surface
(Coons patch) and the structured points in all cases.

6. Conclusion

In this paper, we have developed a new physics-based method using PDE
deformation surfaces and bilinearly blended Coons patches for parametric
surface reconstruction from point clouds. Our approach involves modifying
the governing equation of elastic bending of thin plates to obtain a partial
differential equation (PDE) that incorporates numerous unknown constants
in the lateral force, allowing us to minimize or eliminate surface reconstruc-
tion errors. We derived the particular solution of this PDE and used it to
generate a PDE deformation surface. This surface is then superimposed on
the bilinearly blended Coons surface, which is derived by interpolating the
four boundaries of a point cloud or one of its subsets, to create the recon-
struction surface. Our experimental results demonstrate the effectiveness of
this surface reconstruction method, highlighting several advantages: Seam-
less connection between reconstructed surface patches; readily controllable
reconstruction errors; and easy and proper parameterization of point data.
In theory, any surface type can be reconstructed by adjusting the number of
surface patches. For complex input point data shapes, increasing the number
of subsets through more segmentation is beneficial. However, automatic and
optimal segmentation of point clouds remains a challenging task. In future
work, we will develop advanced methods to achieve this. Given its power,
deep learning has been utilized for segmenting point clouds into multiple in-
stances, semantic regions, or parts. We plan to explore incorporating deep
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Noise

data
Base
surface
mean error: 0.3744 mean error: 0.4421 mean error: 0.4780
max error: 1.3691 max error: 1.4149 max error: 1.4364
Final
results
mean error: 0.0069 mean error: 0.021 mean error: 0.039
max error: 0.3654 max error: 0.4646 max error: 0.6849
Result +
structed
points

Figure 14: Reconstruction of the surface from unconstructed point data with { = 0.5(first
column), 1.0(second column), 1.5(third column).

Row 1:Noisy point clouds; Row 2: Base surface; Row 3: Reconstructed parametric surface;
Row 4: Reconstructed parametric surface with structured point cloud.
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(a) (b)

Figure 15: Case [ = 1.5: (a).Generated base surface from the boundary of the structured
points; (b).Reconstructed parametric surface
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Figure 16: Errors between Coons patch with reconstructed surface and the constructed
point clouds (a).Mean errors; (b).Maximum errors
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learning into our pipeline to achieve automatic and optimal segmentation of
point clouds.

Additionally, our current investigation focuses on surface reconstruction us-
ing four-sided and three-sided PDE deformation surfaces and bilinearly blended
Coons patches. Future work will extend to parametric surface reconstruction
from point clouds with only two boundaries. In such cases, we will propose
a new PDE deformation surface, and the bilinearly blended Coons patch can
be replaced with a loft surface. We will also investigate higher-order continu-
ity for parametric surface reconstruction from point clouds, which is a more
challenging task.
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