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A B S T R A C T

Nonlinear model identification from vibration data is challenging due to limited measured data collected during
the testing campaign and since the identified model should be capable of accounting for the uncertainties
arising from the reassembly of the structure, environmental effects, and slight changes in parameters as a
result of wear during vibration testing. In this paper, a new technique based on ensembling is proposed for
uncertainty quantification during the identification of nonlinear assemblies using multiple data sets. First,
an ensemble of parsimonious models is identified using a physics-informed nonlinear model identification
method from subsets of measured data. Aggregate model statistics are then employed to calculate inclusion
probabilities for the candidate model, which enable uncertainty quantification and a probabilistic estimate of
the dynamic response. This results in a robust nonlinear model identification with physical interoperability.
An application on a single-degree-of-freedom system idealised for an experimental structure with geometric
and friction nonlinearities is presented. The results obtained demonstrate the substantial performance of the
proposed technique in selecting accurate nonlinear models that capture the response over a large range of
variability and repeatability for real-world data sets.
1. Introduction

There has been rapid growth in developing nonlinear system iden-
tification methods for identifying nonlinear mechanical systems in the
last decade [1]. Since then, development has continued on different
fronts, such as testing techniques [2,3], building mathematical mod-
els [4–6], and nonlinear model reduction [7] for identification. One
challenge in the identification process for the dynamics of nonlinear
structures is that measurements of nonlinear assemblies might ex-
hibit a high degree of uncertainty. This uncertainty, which includes
both variability and repeatability [8,9], poses challenges in making
accurate predictions of dynamic responses. Variability denotes the
inherent differences observed in measurements among nominally iden-
tical assemblies, whereas repeatability is defined by the differences
in measurements across multiple trials conducted on the same assem-
bly with identical environmental conditions. For example, whenever
an aeroturbine undergoes reassembly after maintenance, its dynamic
behaviour might undergo significant changes owing to the limited re-
peatability across assemblies. This would hinder the accurate prediction
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of the aeroturbine’s remaining life, complicating structural health mon-
itoring and rendering optimal maintenance scheduling unfeasible. The
diminished repeatability could render much of the previously collected
response data ineffective.

Nonlinear system identification methods are typically categorised
into parametric and non-parametric methods. Parametric methods need
the definition of a model in advance or to select the best model that fits
the data. On the other hand, non-parametric methods do not require a
model and describe the dynamics in terms of their characteristics, such
as instantaneous frequency and damping [10], and frequency response
curves [3]. Within parametric methods, several automated model se-
lection algorithms have been developed previously, including the For-
ward Regression Orthogonal Least Square (FROLS) algorithm [11],
Polynomial Nonlinear State–Space (PNLSS) [12], and Sparse Identifi-
cation of Nonlinear Dynamics (SINDy) [13]. These algorithms have
advantages over Neural Network (NN)-based methods [5] due to their
interpretability and are commonly used for problems with linear-in-
parameter nonlinear models. Moreover, the authors have developed a
new physics-informed nonlinear system identification method [14] that
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handles nonlinear-in-parameter models [15]. This method uses a well-
esigned optimisation problem for nonlinear identification that allows

the use of measured data and modal information about the physical
system to constrain the problem so that the identified model is physics-
informed and interpretable. This new method has been successfully
applied to geometrically nonlinear structures [14], structures with
olted joints where the response of nonlinear elements is not directly
easurable [16], and structures with asymmetric nonlinearities [17].

To account for uncertainties, model class selection has been prac-
tised using the Bayesian inference approach [18–20]. However, the
Bayesian approach requires high computational execution time [21]. As
n alternative, ensembling techniques have been introduced within the
INDy method [22]. It works out the most probable model by solving
 regression problem multiple times for different data sets generated
sing the bootstrapping technique. The ensembling technique is com-
ared with the Bayesian approach by Mars Gao et al. [21] and it has

been shown to be effective and efficient.
This paper extends the data-driven identification method, developed

y the authors [14], by combining it with the ensembling technique so
that it can quantify the uncertainties due to variability and repeata-
bility. Therefore, the main contribution of this paper is to embody
uncertainties in the identification process using multiple experimentally
measured datasets. Further, it attempts to identify and automatically
build mathematical models for damping and stiffness nonlinearities that
account for large changes in the structure due to reassembly and slight
changes in parameters due to wear during the vibration test. It should
be noted that the paper demonstrates the application of the proposed
uncertainty quantification technique to SDOF systems and studying

DOF systems is out of the scope of this work. Interested readers may
efer to [16] for the extension of the identification method to MDOF.

The paper is organised as follows: Section 2 outlines the background
theory related to nonlinear structural identification and model selec-
tion, including the generation of optimisation problems, with a focus
on the algebraic- and simulation-based cost functions. The integration
of the ensembling technique with the identification method is described
in Section 3. Section 4 presents the results obtained using the proposed

ethod when applied to experimental free decay data sets acquired
rom a nonlinear structure featuring friction and geometric nonlinear-
ties that are ideally modelled as an SDOF system. This is followed by
onclusions in Section 5.

2. Background: nonlinear model identification

Here, a data-driven model discovery method [14] to identify par-
imonious nonlinear models from vibration measurement data of en-
ineering structures is discussed. The method described here is based
n a formulation for SDOF structures; however, an extension for MDOF
tructures can be easily implemented based on the authors’ work in [14,

16,23]. For example, a two-degree-of-freedom system was numerically
investigated in [14] to simply show the application of the method
on the MDOF systems. In addition, the method has been successfully
applied to identify systems with multiple nonlinear elements in [16]

here the direct measurement of nonlinear element response is not pos-
ible. These two examples show how modal coupling can be considered
uring the model identification process.

The dynamical system with nonlinear damping and stiffness is
represented by the following differential equation:

𝑀 ̈𝑞(𝑡) + 𝐶 �̇�(𝑡) +𝐾 𝑞(𝑡) + 𝑓𝑛𝑙(𝑞(𝑡), �̇�(𝑡)) = 𝐹 (𝑡) (1)

In this equation, 𝑞, �̇� and 𝑞 are respectively the acceleration, veloc-
ity, and displacement; 𝑀 , 𝐶, and 𝐾 are the mass, damping, and stiffness
of the structure, and 𝐹 is the force vector. The function 𝑓𝑛𝑙 contains
all conservative and non-conservative nonlinear forces. To keep the
equations short, the time instance 𝑡 is omitted in the later equations. For
the sake of completeness, modal transformation can be applied using
2 
𝐪 = 𝜙𝐮 and the linear part of Eq. (1) can be written in terms of linear
natural frequency (𝜔𝑛) and damping ratio (𝜁).

�̈� + 2𝜁𝑘𝜔𝑛𝑘�̇� + 𝜔2
𝑛𝑘𝐮 + 𝝓𝑇 𝑓𝑛𝑙(𝝓𝐮,𝝓�̇�) = 𝝓𝑇𝐅 (2)

It should be noted that 𝝓 is the mode shape that is used for
modal transformation in MDOF systems [14] and the underlying linear
damping is assumed to be proportional damping. For SDOF systems it
an be simply equal to 𝑀−1.

We consider here the nonlinear model identification method pro-
osed in [14]. Engineering structures are typically modelled linearly at
ow vibration amplitudes. This assumption, however, may not hold for
ertain special cases, such as systems exhibiting pure Coulomb friction
onlinearity. Despite these exceptions, we maintain that a linear model
an be derived to approximate the structural behaviour at low ampli-
udes. It is also assumed that nonlinear effects become increasingly
pparent as the vibration amplitude rises. Hence, in this work, the
ethodology starts with identifying and experimentally validating the

haracteristics of the underlying linear system, i.e., natural frequencies
𝜔𝑛𝑘), damping ratios (𝜁𝑘) using one of the standard available methods,
.g., Polymax [24].

Model discovery and parameter estimation for the nonlinear force
𝑓𝑛𝑙 are carried out based on the cascade of optimisation problems
described in the following subsections.

2.1. Algebraic-based cost function

The nonlinear dynamic system described in Eq. (2) can be identi-
fied by setting up an optimisation problem. The optimisation problem
estimates the parameters of the underlying linear system as well as the
nonlinear model using nonlinear algebraic regression. This nonlinear
algebraic regression was inspired by numerical solvers of dynamic
quations of motion, such as the Newmark method [25], which min-
mises the residuals of internal and external forces. The optimisation
roblem uses the mean square error (𝑀 𝑆 𝐸𝑎) given by Eq. (3) as

the algebraic-based cost function to measure the discrepancy between
observed and predicted data:

𝑀 𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∶ 𝑀 𝑆 𝐸𝑎 =
1
𝑛

𝑛
∑

𝑖=1
(𝑦∗𝑖 − 𝑦𝑖)2 (3)

where 𝑛 is the size of the time series data and 𝑦∗ and 𝑦 are the observed
and predicted data which are equal to the right-hand side and left-hand
ide of the Eq. (2) respectively. It should be noted that the parameters

of the underlying linear system as well as the nonlinear model 𝑓𝑛𝑙 in
Eq. (2) are collected in the parameter vector 𝜽.

The algebraic-based cost function defined in this section requires the
vailability of the following time-domain data: acceleration, velocity,

and displacement responses, as well as the applied excitation forces.
Consequently, there is no need to solve the differential equation. The
typical response and force acquisition equipment used in the vibration
esting of structures are accelerometers and load cells, respectively.
n this section, acceleration response and excitation force data are
ssumed to be measured directly, while displacement and velocity
esponses are obtained from experimentally measured acceleration data
y numerical integration [14,17,26]. This approach does not provide
n accurate estimation of displacement for complex nonlinear systems;

however, it is still beneficial and has been proven to be effective for
rapid model discovery [17].

The type of applied excitation is important. The proposed method
ould use harmonic, sine sweep and pull-release (free decay) excitation
echniques to vibrate the structure near its resonance where the nonlin-

ear feature needing to be identified is activated [14]. In this work, the
ull-release technique is used, and the free decay response is used for
ystem identification. It should be noted that Eq. (2) can be directly

used for MDOF systems when multiple modal equations exist [16].
However, studying MDOF systems is outside the scope of this work.
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Table 1
Library of nonlinear terms used in this paper.
Linear-in-parameters nonlinear terms

Index Term Index Term Index Term Index Term

1 |𝑞|𝑞 12 |𝑞|𝑞 ̇𝑞 23 |𝑞|�̇� 34 �̇�9

2 𝑞3 13 𝑞3 �̇� 24 |𝑞|1.5 �̇�
3 |𝑞|𝑞3 14 |𝑞|𝑞3 �̇� 25 |𝑞|2 �̇�
4 𝑞5 15 𝑞5 �̇� 26 sign(�̇�) or �̇�∕|�̇�|
5 |𝑞|𝑞5 16 |𝑞|𝑞5 �̇� 27 |�̇�|�̇�
6 𝑞7 17 𝑞7 �̇� 28 �̇�3

7 sign(𝑞)
√

|𝑞| 18 sign(𝑞)
√

|𝑞|�̇� 29 |�̇�|�̇�3

8 𝑞
√

|𝑞| 19 𝑞
√

|𝑞|�̇� 30 �̇�5

9 𝑞|𝑞|
√

|𝑞| 20 𝑞|𝑞|
√

|𝑞|�̇� 31 |�̇�|�̇�5

10 𝑞3
√

|𝑞| 21 𝑞3
√

|𝑞|�̇� 32 �̇�7

11 𝑞 ̇𝑞 22
√

|𝑞|�̇� 33 |�̇�|�̇�7

Nonlinear-in-parameters nonlinear terms

Index Term Description

35
{

𝑘𝑡𝑞 |𝑘𝑡𝑞| < 𝑓𝑠
𝑓𝑦sign(𝑞) otherwise

𝐉𝐞𝐧𝐤𝐢𝐧𝐬 𝐦𝐨𝐝𝐞𝐥
𝑘𝑡:tangential stiffness, 𝑓𝑦:slip force

36 𝑓𝑦((2∕(1 + 𝑒(−𝜎𝑔 𝑞))) − 1) + 𝑘𝑡𝑞
𝐆𝐞𝐧𝐞𝐫 𝐚𝐥𝐢𝐬𝐞𝐝 𝐉𝐞𝐧𝐤𝐢𝐧𝐬 𝐏𝐫 𝐚𝐠𝐞𝐫 𝐦𝐨𝐝𝐞𝐥
𝜎𝑔 :smooth transition parameter

37
⎧

⎪

⎨

⎪

⎩

sign(𝑞)(𝑘𝑑1 (𝑞 − 𝑑1∕2))𝑐1 𝑞 < −𝑑1∕2
0 − 𝑑1∕2 < 𝑞 < 𝑑2∕2
sign(𝑞)(𝑘𝑑2 (𝑞 − 𝑑2∕2))𝑐2 𝑞 > 𝑑2∕2

𝐂𝐥𝐞𝐚𝐫 𝐚𝐧𝐜𝐞 𝐦𝐨𝐝𝐞𝐥
𝑘𝑑1 , 𝑘𝑑2 : contact stiffness, 𝑑1 , 𝑑2:clearance,

𝑐1 , 𝑐2: polynomial coefficients

38

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑘𝑡𝑞 −
⎛

⎜

⎜

⎝

𝑘𝑡(𝛽 + 𝜒+1
𝜒+2

)

𝑓𝑦(1 + 𝛽)

⎞

⎟

⎟

⎠

1+𝜒

...

𝑘𝑡
(1 + 𝛽)(𝜒 + 2) 𝑞𝜒+2

|𝑞| ≤ 𝜙𝑚𝑎𝑥

𝑓𝑦sign(𝑞) |𝑞| ≥ 𝜙𝑚𝑎𝑥

𝟒 − 𝐩𝐚𝐫 𝐚𝐦𝐞𝐭 𝐞𝐫 𝐬 𝐈𝐰𝐚𝐧 𝐦𝐨𝐝𝐞𝐥
𝜙𝑚𝑎𝑥 = 𝑓𝑦 (1+𝛽)

𝑘𝑡 (𝛽+(
𝜒+1
𝜒+2

))

𝛽 and 𝜒 are the shape parameters.

39

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑘𝑡𝑞 −
⎛

⎜

⎜

⎝

𝑘𝑡(𝛽 + 𝜒+1
𝜒+2

)

𝑓𝑦(1 + 𝛽)

⎞

⎟

⎟

⎠

1+𝜒

...

𝑘𝑡
(1 + 𝛽)(𝜒 + 2) ...

(

𝛩
𝜒 + 2 − 1

𝜒 + 1
)

𝑞𝜒+2

|𝑞| ≤ 𝜙𝑚𝑎𝑥

𝛩 𝑓𝑦 |𝑞| ≥ 𝜙𝑚𝑎𝑥

𝟓 − 𝐩𝐚𝐫 𝐚𝐦𝐞𝐭 𝐞𝐫 𝐬 𝐈𝐰𝐚𝐧 𝐦𝐨𝐝𝐞𝐥
𝛩: the ratio of slip force to

force required to initiate slip.
c

n
T
d

2.2. Nonlinear model selection

This section describes the forward–backward (FB) model selection
ethod [14] for discovering nonlinear models using the optimisation

problem defined in Section 2.1. The method uses a predefined and
omprehensive library of nonlinear terms typically encountered in
ommon engineering structures (Table 1).

The forward selection involves adding each nonlinear term to the
structural model one at a time. The benefit of forward selection is that it
egins with the underlying linear model and uses estimated parameters
f the latest discovered nonlinear model as initial conditions before

adding a new term in the subsequent step. This reduces the chance of
becoming stuck in local minima in a high-dimensional search space.
Then, in order to eliminate terms with a negligible contribution and
roduce a parsimonious model, a backward elimination technique is
sed. The key components of the FB method are outlined in [16], and

a complete breakdown can be found in [14].
Two stopping criteria, 𝑀 𝑆 𝐸𝑎 and 𝛥𝑀 𝑆 𝐸(𝑠)

𝑎 ∕𝛥𝑠 values, are needed
in the process of model selection based on the FB method. Here 𝑠 is the
progression number of the model selection method. Primarily, 𝑀 𝑆 𝐸𝑎
is enforced as stopping criteria for model selection when its value drops
lower than a user-assigned threshold < 𝜀1. Besides, when the change of
two consecutive 𝑀 𝑆 𝐸𝑎 values is less than 𝜀2 as in Eq. (4), the algorithm
stops and delivers the nonlinear model. Notice that the latter criterion
is determinant in the cases when by adding/removing more nonlinear
terms, the model prediction does not improve significantly, and so, the
extra complexity is not worth it; in such cases, the extra term will be
ejected. Only the criterion in Eq. (4) is used for backward elimination
3 
with an expected 5% higher error based on the last step of forward
selection to provide more flexibility in removing redundant terms.
𝛥𝑀 𝑆 𝐸(𝑠)

𝑎
𝛥𝑠

< 𝜀2 (4)

Once the nonlinear model is selected and parameter estimation is
completed based on the algebraic-based cost function, the discovered
model can be transferred to the next stage, where parameter tuning is
arried out based on simulation responses.

2.3. Simulation-based cost function

This section introduces a parameter tuning (or model updating)
method based on matching the characteristics of time-domain data
obtained from experimental measurement and simulation. Since the
measured time-domain data is acceleration, therefore, the accelera-
tion data obtained from solving the differential equation defined in
(2) is used in this section. The characteristics include instantaneous
frequency (IF) and instantaneous amplitude (IA). Alternatively, IA can
be described as the envelope of the response amplitude. The zero-
crossing method [10] is applied to estimate IF and IA. This is applicable
when the measured data includes the forced or decay responses near a
atural frequency of the system with low nonlinear modal couplings.
his means that there is no internal resonance with the mix of multiple
istant frequencies in the recorded signal.

The zero-crossing method is based on the detection of the zero-
crossing points of the response signal and the use of a standard interpo-
lation algorithm to determine the crossing times [10]. To ensure accu-
rate identification, this resolution is adjusted to match characteristics
extracted from simulation and experimental data.



S. Safari et al.

I
m

b
s

t
a
a
d
a

t
s
s
s
a

A
t

t
o
v
a
s
o
f
s
f
s
u

t

s
m
p

o
b

d
s
i
t
t
(

i

c
r
I
u
a
r
s
e
w

i

International Journal of Non-Linear Mechanics 170 (2025) 105002 
An optimisation problem can now be defined based on the IF and
A values for tuning the parameters of the identified model using the
ethod presented in Sections 2.1 and 2.2. The optimisation problem

uses the mean square error (𝑀 𝑆 𝐸𝑠) given in Eq. (5) as the simulation-
ased cost function to measure the discrepancy between measured and
imulated data:

𝑀 𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∶ 𝑀 𝑆 𝐸𝑠 =
1
𝑁

𝑁
∑

𝑗=1
(𝐼 𝐹𝑚(𝑗) − 𝐼 𝐹 𝑠(𝑗))2

+ 1
𝑁

𝑁
∑

𝑗=1
(𝐼 𝐴𝑚(𝑗) − 𝐼 𝐴𝑠(𝑗))2

(5)

where 𝑁 is the size of the instantaneous characteristic values. The su-
perscripts 𝑚 and 𝑠 indicate the characteristics obtained from measured
and simulated time-domain data, respectively. Similar to Section 2.1,
the parameters of the underlying linear system as well as the nonlinear
model 𝑓𝑛𝑙 in Eq. (2) are collected in the parameter vector 𝜃.

2.4. Optimiser: algorithm, scaling, bounding and initialisation

In many engineering applications, the observed nonlinearities de-
mand using complicated functions for characterisation. These functions
are normally nonlinear-in-parameters which means that a nonlinear op-
imisation method is required to solve the optimisation problem defined
bove in Eq. (5). Several nonlinear optimisers have been assessed by the
uthors in [23] for this task; interested readers can refer to it for more
etails. In this study, the Trust-Region-Reflective (TRR) optimisation
lgorithm [27] with a multi-start strategy is used to minimise the cost

functions defined in Sections 2.1 and 2.3.
Three factors are essential for successfully running a nonlinear op-

imisation problem and a better chance of reaching a global minimum:
caling, bounding, and initialisation of the parameters in the search
pace. These facilitate the convergence of optimisation algorithms. The
caling, bounding, and initialisation strategies defined in this section
re used when solving both cost functions defined in Sections 2.1 and

2.3. The parameters can be scaled linearly [14] or logarithmically [28].
A combination of linear and logarithmic scaling is used in this study.
 new bi-symmetric logarithmic scaling according to Eq. (6) is used

o scale the search space of parameters, which handles negative values
while maintaining continuity across zero [28]:

𝜃𝑠 = sign(𝜃)log10(1 +
|𝜃|
𝑐
)

𝜃 = sign(𝜃𝑠)𝑐(−1 + 10|𝑝𝑠|)
(6)

where 𝜃 is the unscaled (reference) parameter value and 𝜃𝑠 is the
corresponding value in the scaled space. Here, 𝑐 is a vector of scaling
factors that controls how much the search space is compressed. For the
parameters of the underlying linear system, this scaling factor is set to
he values calculated in the linear modal testing. For the parameters
f the nonlinear terms, it is set to the maximum physically possible
alue, which is calculated based on the sum of the estimated maximum
bsolute linear force 𝑓𝑙 𝑚𝑎𝑥 (inertia max(|𝐌�̈�|), damping max(|𝐂�̇�|) and
tiffness forces max(|𝐂𝐪|)) divided by the estimated maximum quantity
f selected nonlinear term. For example, in the case that the nonlinear
orce is described by 𝑓𝑛𝑙(𝑞) = 𝜃(4)|𝑞|𝑞 + 𝜃(5)𝑞3, the scaling factors are
et to (𝑓𝑙 𝑚𝑎𝑥∕𝑚𝑎𝑥(||𝑞|𝑞|)) and (𝑓𝑙 𝑚𝑎𝑥∕𝑚𝑎𝑥(|𝑞3|)). This is done due to the
act that the contribution of nonlinear force to the total force response
hould be significant to affect the dynamics of the system. Although it is
nlikely that this contribution exceeds the total force of the underlying

linear system 𝑓𝑙 𝑚𝑎𝑥, to consider higher variability in the parameters,
he bounds can be considered wider. In addition, the maximum relative

displacement/velocity in the location of nonlinear elements is used to
cale the parameters with displacement/velocity units in the nonlinear
odel. The employed scaling scheme is suitable for multi-dimensional
arameter spaces with different orders of magnitude.

The lower bound (superscript 𝑙𝑏) and upper bound (superscript 𝑢𝑏)
are defined for the parameters in the scaled space. The bounds for the
 p

4 
linear parameters are defined based on the variations of 5% of natural
frequencies and 20% of linear damping ratios obtained from linear
modal identification. A low variation for linear frequencies and a high
variation for damping ratios are considered, which can be changed by
the user.

After applying Eq. (6), the bounds for the scaled parameters of
nonlinear model 𝜃𝑠(.) are set to [−0.31,0.31]. However, in order to
consider higher variability in the parameters, the bounds can be consid-
ered wider, e.g., [−1,1]. It should be noted that for some parameters,
e.g., the dead-zone (clearance) parameter, a negative value is not
physically meaningful; therefore, only a positive search space is defined
for them.

Initialisation is carried out differently for model selection based
n algebraic-based cost function (Eq. (3)) and parameter tuning steps
ased on simulation-based cost function (Eq. (5)). In the model se-

lection step, the model parameters are initialised randomly using a
multi-start strategy with 50 different values for each parameter within
the specified bounds. Nonetheless, these values are more densely dis-
tributed near the optimum values calculated in the earlier step. That
is, the initialisation of linear parameters is done based on the existing
parameters of the underlying linear system from linear modal testing,
i.e., damping ratios and the natural frequencies of the system. In
addition, during the nonlinear model selection, estimated values for
the parameters of a specific nonlinear term are recorded to be used
in the following iteration of the model selection (see Section 2.2). It
should be emphasised that the initialisation is also done within the
bounds of scaled space. Interested readers can refer to [14,23] for more
etails on strategies for initialisation and defining a physics-informed
pace of search for the optimisation problem in the context of structural
dentification of nonlinear assemblies. In the parameter tuning step,
he parameters are only initialised from the estimated parameters in
he model selection step based on the algebraic-based cost function
Eq. (3)).

3. Uncertainty quantification via ensembling

In this section, we leverage a statistical approach to robustify the
dentification algorithm presented in Section 2. First, an ensemble of

models is identified from subsets of experimentally measured data
using the method described in Section 2.2. The ensemble of models
includes all terms that are selected for different subsets. The selected
model statistics are then used to produce inclusion probabilities for the
candidate functions. The inclusion probability for a selected term in
the ensemble of models is calculated based on the number of times a
term is repeated (or selected) for different subsets over the number of
subsets.

This statistical approach enables uncertainty estimates for the dis-
overed model coefficients and probabilistic estimation of dynamic
esponses, thus connecting to Bayesian model identification techniques.
n other words, the identified ensemble of model coefficients can be
sed to compute parameter probability density functions, which form
 posterior distribution 𝑃 (𝜃|𝐷). In terms of estimating the dynamic
esponse, either the mean of the identified parameter can be used or
amples can be drawn from multiple identified models to generate
nsemble estimates that represent posterior predictive distributions,
hich provide prediction confidence intervals.

The final model is defined based on the inclusion probability that
is assigned by the user and is recommended between 0.5 and 0.8 in
this study based on our observation. It should be noted that the higher
the inclusion probability the lower the number of nonlinear terms.
When the final model is identified for a specific data set based on the
nclusion probabilities, the optimisation problem defined in Section 2.3

is employed to refine or tune the distribution of the parameters. In
this case, the bounds and initial conditions are defined based on the
arameter distributions obtained from the model selection step via



S. Safari et al. International Journal of Non-Linear Mechanics 170 (2025) 105002 
Fig. 1. Flowchart of the proposed method for uncertainty quantification using ensembling technique and multiple data sets.
the algebraic-based cost function (Eq. (3)). Afterwards, the simulation-
based cost function (Eq. (3)) is solved for the data set, and a new
posterior distribution for the parameters is learned.

Fig. 1 shows the flowchart of the proposed identification using the
ensembling technique implemented in this paper.

4. Results

4.1. Experimental setup and data

The SDOF test structure considered in this work consists of a lumped
mass supported by four thin plates and fixed as shown in Fig. 2. The
thin plates are considered a source of geometric nonlinearity. The
mass is connected to the plates using bolted joints with a uniform
bolt torque with different magnitudes. Friction and the uneven contact
area in the joints can also be considered as an additional source of
nonlinearity. The structure is pulled and released in this study so that
the free decay data can be measured. Acceleration data is recorded with
a piezoelectric accelerometer (PCB M353B18). A displacement laser
reading is used to check the accuracy of displacements derived from
acceleration.

To study the uncertainties due to variability and repeatability dif-
ferent scenarios are considered. Table 2 shows the test scenarios and
their characteristics. It includes the ID number of assembly, bolt pre-
tension, and number of decaying response time series collected for
each assembly. It should be noted that the structure was completely
dismantled and reassembled for each assembly ID in Table 2. All bolts
were uniformly tightened up to 70% of the ultimate value reported in
Table 2 and then all of them tightened again up to the ultimate value.

A sample acceleration time series and its instantaneous character-
istics belonging to assembly 1 are shown in Fig. 3. IA against IF are
plotted in Fig. 3b to obtain the so-called frequency backbone curve. As
expected for a bolted assembly, a softening behaviour is noticeable at
low amplitudes, transitioning to a hardening behaviour as the vibration
amplitude increases due to the geometric nonlinearity of the thin plates.
5 
Fig. 2. Experimental setup of the vibrating mass used in this study.

Table 2
Re-assembly and test scenarios.

Assembly No. Bolt pretension (N m) Number of time series

1 4.5 8
2 4.5 8
3 4.5 15
4 2.5 15
5 6.5 15
6 10 8

Moreover, the effective damping ratio is calculated using the equation
below according to [10]:

𝜁 (𝑡𝑜𝑖 ) =
1

2𝜋 𝐼 𝐹 (𝑡𝑜𝑖 )(𝑡
𝑜
𝑖+1 − 𝑡𝑜𝑖−1)

(𝑙 𝑛(𝐼 𝐴(𝑡𝑜𝑖−1)) − 𝑙 𝑛(𝐼 𝐴(𝑡𝑜𝑖+1))) (7)
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Fig. 3. A sample of experimental data (a) acceleration data, (b) amplitude-dependent frequency, (c) amplitude-dependent damping, and (d) displacement from integration against
laser measurement.
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where 𝑡𝑜𝑖 is the time instances when IA and IF are recorded. The plot
f the effective damping ratio against the IA in Fig. 3c shows an
ncrease in damping with the increase in vibration amplitude which

can be related to the friction in the bolted joints. Fig. 3d shows the
displacement integrated from acceleration against the displacement

easured using the laser. There is a 5% relative discrepancy observed
etween the displacements. It should be noted that the integration
oes not capture the tails (both ends of the time series) accurately and
herefore, those parts are disregarded.

4.2. Uncertainity quantification

In practice, understanding the uncertainty associated with model
parameters is crucial. This helps to estimate the variation in the dy-
namic response during vibration testing and quantify those variations
using mathematical models. This work has developed and demon-
strated a robust variant of the nonlinear system identification method
or nonlinear assemblies based on the ensembling technique. Unlike the
revious works [22] which use bootstrapping to produce multiple data

sets from a single data set, this work uses authentic measured vibration
data from multiple tests performed. Therefore, real-world uncertainties
due to testing environment and assembly variations are considered.

Based on linear modal analysis results, the SDOF system considered
for this structure has a mass of 0.6874 and the natural frequency and
damping ratio 𝑓𝑛 = 34.95 Hz, 𝜁 = 0.0045 respectively. These values are
used as initial conditions to start the identification process.

When all data sets, including 69 time series are used for the identifi-
cation, a total of 20 different terms are selected from the library. This is

hen the stopping criteria for model selection based on Section 2.2 are
set to 10−3. Fig. 4 shows the inclusion probability of selected terms.
t can be observed that four terms have significant inclusion proba-

bilities higher than 50% including terms: {27,2,8,25} from Table 1.
 w

6 
Fig. 4. Inclusion probability of selected terms considering all data sets for ensembling.

The probability of inclusion for the fifth term is almost 20% which is
egligible.

In case the selected model includes 4 terms, the posterior distribu-
ion of the estimated parameters using all the time series is plotted in

Fig. 5. At the stage of model selection, the parameters of the underlying
inear system were fixed to the initial condition observed in the linear
odal testing. An interesting observation is that the mean value of the

coefficient for term 25 is almost zero. This suggests that the term could
be also eliminated.

The uncertainty observed in the identified parameters in Fig. 5
is propagated into the dynamic response and is demonstrated based
n the instantaneous characteristics of the response. Fig. 6a shows
mplitude-dependent frequency and damping which are calculated

based on the experimentally measured and estimated responses us-
ing the identified model. From the comparison, it can be seen that
he estimation of the dynamic response is in good agreement with
he experimental response. Nonetheless, there are some discrepancies
ith narrow confidence intervals in the low amplitude region, which
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Fig. 5. Estimated posterior distribution of the selected model with 4 terms using the algebraic-based cost function.
Fig. 6. Estimated uncertainty of the dynamic response using the selected model with 3 terms based on the algebraic-based cost function.
Fig. 7. Estimated posterior distribution of the underlying linear system and nonlinear parameters using the simulation-based cost function for all data sets.
are due to fixing values for the parameters of the underlying linear
system when doing the identification using the algebraic-based cost
function (Eq. (3)). This suggests that while the accuracy of estimating
dynamic response and its uncertainty is acceptable, there is still room
for improvement.

After model selection using the ensembling technique, parameter
tuning is performed based on the simulation-based cost function intro-
duced in Section 2.3. The prior or initial values for the parameters are
considered based on the distributions in Fig. 5. For the parameters of
the underlying linear system, i.e., damping ratio and natural frequency,
a reasonable bound is considered so that their variation can be esti-
mated at this stage. Fig. 7 shows the estimated uncertainties for the
underlying linear system parameters as well as the parameters of the
nonlinear model. A normal distribution model is fitted to the estimated
parameters so that they can be used for sampling and simulating the
probabilistic response of the system.

From the simulations using the parameter distributions in Fig. 7,
the 99% confidence interval of the amplitude-dependent frequency
and damping ratio responses is shown against the estimation from the
7 
experimentally measured data in Fig. 8. It can be observed that tuning
the parameters using the simulation-based cost function increases the
accuracy of response estimation and its uncertainty. Also, the experi-
mental observation is well within the bounds of the confidence interval.
The results show that the proposed approach in this paper is capable of
modelling variability due to assembly conditions such as re-assembly or
even different bolt pre-tensioning and repeatability during the vibration
testing.

To better observe and quantify the experimental effects such as re-
assembly and change of bolt pre-tension, the same practice is applied
to each individual data set according to Table 2. Remarkably, the
same nonlinear model with 3 terms is selected for all data subsets.
The mean and standard deviation for the parameters of the identified
nonlinear model are reported in Table 3 for each data subset. There is
no meaningful pattern in the parameter values observed as expected
for a single structure under test. However, the change in the dynamic
response calculated using the identified models might be interesting to
observe. For this purpose, the probabilistic dynamic responses of each
mode in Table 3 are compared in Figs. 9, and 10.
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Fig. 8. Estimated uncertainty of the dynamic response using the selected model with 3 terms based on the simulation-based cost function.
Table 3
Estimated parameters of the identified probabilistic model for different data sets.
Assembly No. Underlying linear system Nonlinear model

𝜇𝐶 (𝜎𝐶 ) 𝜇𝐾 (𝜎𝐾 ) 𝜇2(𝜎2) 𝜇8(𝜎8) 𝜇27(𝜎27)

1 1.31 3.335 × 104 8.94 × 108 −4.266 × 104 2.082
(0.0886) (302.38) (7.37 × 107) (3.53 × 103) (0.237)

2 1.44 3.336 × 104 9.54 × 108 −4.77 × 104 1.78
(0.0166) (174.26) (2.11 × 107) (715.26) (0.093)

3 1.42 3.34 × 104 8.08 × 108 −2.21 × 104 1.95
(0.0084) (157.9) (1.185 × 107) (1060) (0.06)

4 1.49 3.35 × 104 8.8 × 108 −3.56 × 104 1.88
(0.017) (222.42) (1.32 × 107) (1052) (0.07)

5 1.32 3.4 × 104 8.5 × 108 −2.6 × 104 2.5
(0.043) (83.9) (2.4 × 107) (850) (0.18)

6 1.27 3.3 × 104 8.12 × 108 −2.06 × 104 2.63
(0.04) (159.7) (4.7 × 107) (1290) (0.11)
Fig. 9. Comparing the uncertainty of the dynamic response for three re-assemblies with bolt pre-tension 4.5 N.
Fig. 9 shows the propagated uncertainty with a 99% confidence
interval for the data subsets with the assembly No. 1 to 3. Different
amplitude-dependent response is observed for each data subset which
means reassembly changes the dynamic characteristics of the structure
under study. It can be observed that the uncertainty of assembly No. 1
is higher than No. 2 and 3. This observation is interesting since the data
for subset assembly No. 1 is collected for a single assembly but in mul-
tiple days. Whereas, the data for the other two assemblies was collected
after the assembly of the structure under a controlled condition for one
hour. This highlights the importance of environmental effects such as
temperature etc. as well as the routine of performing the experiment.

Fig. 10 shows the amplitude-dependent dynamic characteristics for
three different bolt pre-tension during the assembly. A slight increase
in the frequency can be observed for the assembly with higher bolt
pre-tension. Also, it can observed that the assembly with low bolt
pre-tension introduces higher uncertainty in the frequency response.
However, there is no meaningful change observed in the amplitude-
dependent damping due to the change in the bolt pre-tension.
8 
5. Conclusion

This work has developed and demonstrated a robust variant of the
data-driven method for structural identification of nonlinear assemblies
based on ensembling technique. The proposed algorithm significantly
improves the robustness and accuracy of model discovery. It is also a
practical approach for quantifying the uncertainties during the model
identification process for engineering structures from vibration data.

The identification method constructs the equation of motion for
nonlinear dynamical systems from a single measured vibration data
considering physically meaningful constraints. In the presence of multi-
ple data sets, an ensemble of models is generated to aid in pinpointing
the most likely model and quantifying uncertainties in its parameters.
In other words, aggregate model statistics are used to generate inclu-
sion probabilities of candidate functions from the ensemble of mod-
els, which promotes interpretability in model selection and provides
probabilistic estimates.

Although this work is presented based on an SDOF system example,
it has been shown in other works that it can be extended to systems
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Fig. 10. Comparing the uncertainty of the dynamic response for three re-assemblies with different bolt pre-tension [2.5,6.5,10] N.
with multiple modal couplings and nonlinearities. However, it should
be noted that systems with strong nonlinearities induce internal reso-
nances that need special treatment in the data collection, processing,
and identification phases which is a promising topic for future works.
Besides, the identification of a nonlinear system employed in this paper
that runs a nonlinear optimisation algorithm to check the inclusion of
each candidate term in the library needs higher computational effort
compared to alternative methods that use linear least square optimiser.
Therefore, future research should be directed toward a joint algorithm
that benefits from the speed of linear least square optimiser and the
physics-informed nature of the identification method used in this paper
that also allows libraries with nonlinear-in-parameter terms. It is hoped
that speeding up the identification process along with the uncertainty
quantification scheme proposed in this paper lead to a robust, accurate
and online nonlinear model identification.
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