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Abstract

Medical volume data are rapidly increasing, growing from gigabytes to petabytes, which

presents significant challenges in organisation, storage, transmission, manipulation, and

rendering. To address the challenges, we propose an end-to-end architecture for data com-

pression, leveraging advanced deep learning technologies. This architecture consists of

three key modules: downsampling, implicit neural representation (INR), and super-resolution

(SR). We employ a trade-off point method to optimise each module’s performance and

achieve the best balance between high compression rates and reconstruction quality. Exper-

imental results on multi-parametric MRI data demonstrate that our method achieves a high

compression rate of up to 97.5% while maintaining superior reconstruction accuracy, with a

Peak Signal-to-Noise Ratio (PSNR) of 40.05 dB and Structural Similarity Index (SSIM) of

0.96. This approach significantly reduces GPU memory requirements and processing time,

making it a practical solution for handling large medical datasets.

1 Introduction

Medical visualisation commonly involves volumetric medical data such as CT, MRI, PET

scans, and confocal spectral microscopy images. This technique is essential in clinical practices

across various biomedical disciplines, like radiology, nuclear medicine, surgery planning, and

nearly all neuroscience sub-fields. However, the generated volume data often reaches enor-

mous sizes. The generated data often becomes very large, sometimes reaching terabyte-scale.

For instance, biological volumetric datasets that capture microscale details of cells or tissues

are commonly produced [1–5]. The emerging challenges lie in organising, storing, transmit-

ting, manipulating, and rendering such terabyte-scale volume data.

Recent advances in deep neural networks have led to their rapid application in medical

imaging [6–8]. In particular, implicit neural representations have become an approach for

compressing volumetric medical images by storing the parameters of trained neural networks

instead of explicit voxel data such as SIREN [9]. However, the compression rate is often limited

and volumetric data still require considerable memory, especially GPU memory. This results

in high memory demands and longer training times for deep learning applications. In addi-

tion, there is currently a scarcity of research addressing these specific challenges.
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To address these challenges, this paper presents an End-to-End architecture that improves

compression rates and reduces GPU memory usage, based on our previous work [10]. The

proposed architecture consists of three key modules: a downsampling module, an Implicit

Neural Representation (INR) module, and a 3D Super-Resolution (SR) module (e.g., [11]).

The downsampling module reduces data size, enabling the INR module to represent the vol-

ume using a compact deep neural network. The SR module then reconstructs the original

high-resolution volume from the INR module output. This architecture reduces memory

needs and allows for more efficient neural network training. The main challenge lies in achiev-

ing a high compression rate and minimal reconstruction loss. To address this, we propose a

trade-off point method that optimises the configuration of each module to achieve peak per-

formance. This approach can be generalised to a wide range of deep network designs. Our key

contributions include:

• We propose an End-to-End architecture with three computational modules, designed to

optimise volumetric data compression by achieving a high compression rate while maintain-

ing superior reconstruction quality and minimising GPU memory consumption.

• We introduce a trade-off point method to determine the optimal configuration for the pro-

posed End-to-End architecture, balancing key performance metrics such as compression

rate and reconstruction quality.

The rest of the paper is structured as follows. Section 2 briefly reviews related work. Section

3 presents the proposed architecture and the trade-off point method. Section 4 presents experi-

mental results and analysis. Finally, Section 5 concludes our work.

2 Background and relevant literature

In our previous work [10], we developed an architecture that leveraged existing pre-trained

deep networks to decrease the volume data size. The basic idea is to transform volume data

into an implicit neural network representation, such as SIREN [9], to compress the data

while maintaining reconstruction accuracy. However, pre-trained deep networks often

struggle to generalise well, especially with medical volume data. Many pre-trained Super-

Resolution deep networks require fine-tuning for different medical datasets. A “one-size-

fits-all” approach does not work, since each dataset has its own characteristics. The existing

deep networks do not generalise well to diverse volume data. Therefore, this paper aims to

train an end-to-end deep network, rather than simply piecing together multiple pre-trained

networks.

2.1 Implicit neural representation

Representing 3D geometry for rendering and reconstruction involves trade-offs across fidelity,

efficiency, and compression capabilities. The DeepSDF model [12] uses a continuous Signed

Distance Function (SDF) to represent shapes. Another approach [13] employs an encoder-

decoder neural architecture for lossless compression. However, this method has a high infer-

ence time due to explicit optimisation requirements.

MedZip [14] proposes a lossless compression technique employing Long Short-Term

Memory (LSTM) for volumetric MRI and CT. NeRF [15] presents a notable method for

synthesising new views of a volumetric scene through implicit neural representation as a con-

tinuous function. However, it is outperformed by SIRENs [9] due to its time consumption.

[16] presents a 3D representation technique to reduce memory usage by predicting an occu-

pancy function for a continuous volume. COIN [17] applies a multi-layer perceptron (MLP)

to implicit neural network compression by encoding geometric inputs. However, it
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demonstrates inferior performance compared to state-of-the-art compression methods.

INR-GAN [18] applies a GAN model to multi-scale Implicit Neural Representations (INRs)

but struggles with artefacts when dealing with high-frequency features. NeRP [19] introduces a

novel approach to generate a computational image from sampled sensor data. However, deal-

ing with sparsely sampled images encounters additional hurdles due to limited data points.

Unlike previous deep learning methods for image reconstruction, NeRP leverages both the

internal structure of an image prior and the physics governing sparsely sampled measurements

to represent the entire subject.

2.2 Super-resolution techniques

Numerous techniques leveraging convolutional neural networks (CNNs) have demonstrated

exceptional performance in image super-resolution (SR). The pioneering work of SRCNN

[20] introduced CNNs to SR by learning a non-linear mapping from low-resolution to high-

resolution images with only three convolution layers. CNN-based methods illustrated their

impressive performance in SR. Still, they became impractical when taking into account con-

straints on time and memory resources [21–30]. SRNO [11] designed for continuous super-

resolution tasks. It treats each image as a function and learns a mapping between finite-

dimensional function spaces, enabling it to train and generalise across various discretisation

levels. Experiments demonstrate that SRNO surpasses other arbitrary-scale super-resolution

methods in terms of both performance and computational time, particularly excelling in cap-

turing global image structures, which is important in medical imaging.

Table 1 highlights the gaps between the proposed method and four state-of-the-art models

—SIREN [9], MedZip [14], NeRF [15], and COIN [17]—across several key metrics: high com-

pression rate, low GPU memory consumption, high reconstruction quality (PSNR > 40), good

visual similarity (SSIM > 0.9), scalability to large datasets, fast training time, adaptability to

medical imaging, and handling high-frequency features. The proposed method addresses sev-

eral limitations of existing models, particularly in achieving high compression rates and excel-

lent reconstruction quality, while maintaining efficiency in GPU memory usage and

adaptability to medical imaging tasks.

3 Methodology

In this section, we first present the end-to-end architecture and then introduce the trade-off

point approach to evaluate the proposed architecture in terms of compression efficiency and

reconstruction accuracy.

Table 1. Identifying gaps in state-of-the-art models compared to the proposed method.

Feature/Metric Proposed Method SIREN [9] MedZip [14] NeRF [15] COIN [17]

High Compression Rate ✓ ✓ ✓

Low GPU Memory Consumption ✓ ✓

High Reconstruction Quality (PSNR > 40) ✓ ✓ ✓

Good Visual Similarity (SSIM > 0.9) ✓ ✓ ✓

Scalable to Large Datasets ✓ ✓

Fast Training Time ✓ ✓

Adaptability to Medical Imaging ✓ ✓

Handles High-Frequency Features Well ✓ ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0314944.t001
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3.1 Proposed end-to-end architecture

Our end-to-end architecture, shown in Fig 1, is composed of three core modules: Downsam-

pling, Implicit Neural Representation (INR), and Super-Resolution (SR). The Downsampling

module does not require training. We need to train the INR and SR modules in an end-to-end

way. We employ a L1 loss function to evaluate reconstruction quality here. In the following

sections, we will explain each module individually.

3.1.1 3D downsampling module. Given a high-resolution volume of x, this module aims

to acquire its low-resolution counterpart y. The relationship between x and y can be modelled

as follows,

y ¼ F� 1

LRDFHRxþ n ð1Þ

where, FHR is the FFT operator for the high-resolution regime, F� 1

LR is the inverse FFT opera-

tor for the low-resolution regime, D is the low-pass operator on the frequency domain, and n
is the noise. Fourier Transform technique is widely employed in medical imaging [31]. We

hope to point out that the operator D in the frequency domain is both controllable and easy

to implement. In our case, it effectively generates low-resolution volumes at downsampling

scales of� 1

2
,� 1

4
, and� 1

8
. Additionally, it can be noted that this module does not need

training.

3.1.2 3D implicit neural representation (INR). The INR module harnesses the capabili-

ties of implicit neural networks to efficiently encode volumetric data. Specifically, using INR

for low-resolution volumes helps prevent memory overflow. Unlike conventional explicit rep-

resentations, INRs depict the volume as a continuous function that maps spatial coordinates to

voxel intensity values. This enables a concise representation that can be readily adjusted to dif-

ferent levels of detail. Drawing inspiration from recent breakthroughs in implicit neural repre-

sentations, we employed a multi-layer perceptron (MLP) architecture with periodic activation

functions (i.e., SIREN [9]) to effectively capture the intricate structures within the volumetric

data.

3.1.3 3D super resolution (SR) module. The SR module employs the super-resolution

model, SRNO [11]. SRNO model utilises deep learning to learn intricate transformations from

low-resolution to high-resolution data. Beyond enhancing resolution, SRNO models fre-

quently possess intrinsic denoising abilities, resulting in cleaner and clearer images. Compared

to other super-resolution techniques, SRNO models can produce images with fewer artefacts,

such as ringing and blurring [11]. Moreover, the number of channels in the attention structure

can significantly influence the SRNO model’s performance. Thus, we regard it as a hyper-

parameter of the SRNO models and evaluate the SRNO by it.

3.2 Trade-off point approach

To achieve an overall optimal performance for our proposed end-to-end architecture, we pro-

pose a metric system to measure overall performance and further determine the optimal set-

ting for each module accordingly. This design method is called the Trade-off Point Method.

Our metric system includes four measurements: Peak Signal-to-Noise Ratio (PSNR), Struc-

tural Similarity Index (SSIM), Bitrate, and Compression Rate (CR) as below. PSNR provides a

measure of pixel-level accuracy by calculating the ratio of signal power to noise power, yet it

often does not correspond to human visual perception. In contrast, SSIM assesses perceptual

quality by comparing luminance, contrast, and structure, but may overlook precise pixel-wise

errors. Recognising the limitations of using PSNR or SSIM alone for performance measure-

ment, we combine both metrics to evaluate image quality thoroughly.

PLOS ONE INR4Vol

PLOS ONE | https://doi.org/10.1371/journal.pone.0314944 January 3, 2025 4 / 20

https://doi.org/10.1371/journal.pone.0314944


Fig 1. Workflow of the proposed end-to-end architecture, including downsampling, implicit neural representation (INR), and super-resolution

(SR) modules.

https://doi.org/10.1371/journal.pone.0314944.g001
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3.2.1 Metric definition.

• Peak Signal to Noise Ratio(PSNR) is a metric used to measure the quality of a reconstructed

or compressed signal compared to the original signal. It is expressed in decibels (dB) and is

calculated using the following formula:

PSNR ¼ 10 � log
10

MAX2

MSE

� �

ð2Þ

where: MAX is the maximum possible pixel value of the image (e.g., 255 for an 8-bit image),

and MSE is the Mean-Squared Error between the original and reconstructed images.

A high PSNR value indicates a high-quality reconstruction, as it signifies that the recon-

structed signal is closer to the original signal in terms of fidelity.

• Structural Similarity Index Measurement(SSIM): The Structural Similarity Index Mea-

surement(SSIM) is a metric to assess the similarity between a reference image (original) and

a distorted or processed image. SSIM quantifies similarity by considering three key compo-

nents: luminance, contrast, and structure. SSIM is defined as,

SSIMðx; yÞ ¼
ð2mxmy þ C1Þð2sxy þ C2Þ

ðm2
x þ m

2
y þ C1Þðs

2
x þ s

2
y þ C2Þ

ð3Þ

where: μx and μy are the means of the original and distorted images, respectively, s2
x and s2

y

are the variances of the original and distorted images, respectively, σxy is the covariance of

the original and distorted images, C1 and C2 are small constants added for numerical stabil-

ity. The SSIM value ranges from -1 to 1, with 1 indicating perfect similarity. High SSIM val-

ues indicate high similarity between the images, while low values suggest more significant

differences or distortions.

• Bitrate: Bitrate is a metric used in digital imaging to quantify the amount of data assigned to

each pixel in a raster image. Bpp indicates the level of detail or precision in representing col-

our or intensity information for each pixel. High Bpp values typically result in high image

quality but large file size, while low Bpp values lead to low quality but small files. It is com-

puted as,

Bitrate ¼
Total bits

Total pixels
ð4Þ

In greyscale images, each pixel is represented by a single channel (e.g., luminance). Bpp is

degraded as,

Bitrate ¼
Bit depth

1
ð5Þ

When compression techniques are applied, the Bitrate measures the density of the pixel

value of the image to assess the trade-off between image quality and file size. High Bitrate val-

ues generally result in high-quality but large image files, while low Bitrate values lead to

more aggressive compression and small files but with potential quality loss.

• Downsampling Scale (DS): Let Dx, Dy, and Dz be the original dimensions of the 3D image

stacks in a (x, y, z) coordinate system, respectively; and the new dimensions be (dx, dy, dz)
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after downsampling. The DS (sx, sy, sz) is defined as,

dx ¼
Dx

sx
; dy ¼

Dy

sy
; dz ¼

Dz

sz

We may simply set (sx, sy, sz) identically.

• Number of the neurons in SIREN (SN): With SIREN’s layer count set at 3, each layer con-

tains an identical number of neurons. We adjust the neuron count per layer from 30 to 230,

using this to represent SIREN’s size.

• Number of Channels (NC): We incorporate the 3D version of SRNO into the SR module.

The cornerstone of a super-resolution network lies in its feature extractor. Existing super-

resolution models possess their own topologies for their feature extractors. The number of

Channels indicates the feature extractor’s size, thereby reflecting the complexity of the

super-resolution network. This complexity is particularly influenced by the downsampling

scale within our proposed architecture, leading to a significant increase in channel numbers

due to the abundance of volume data. To minimise the size of the SR module in our pro-

posed architecture, we initially assess the performance of the SR module with different sizes

of attention mechanisms and fully connected layer submodules, after which we fix the topol-

ogies and sizes of these two submodules. However, the channel number of the feature extrac-

tor remains adaptable to accommodate varying reconstruction accuracy requirements.

• Compression Rate (CR): The CR refers to the ratio of the compressed data’s size over the

uncompressed data’s size. A high compression rate indicates an efficient compression pro-

cess, as it signifies a remarkable reduction in data size. It is defined as,

CR ¼ 1 �
Size of the network

Size of Uncompressed Data

� �

� 100% ð6Þ

In this paper, we define the size of a deep network by its weight count and the size of a vol-

ume by its voxel number.

3.2.2 Trade-off settings. To find the trade-off settings for the individual modules, we first

apply the metrics of PSNR, SSIM, and CR defined in the above section separately to a specific

volume of data concerning three dimensions: DS, NC, and SN. The different combinations of

DS, NC, and SN result in different measurements, which are stored in a 3D array, as shown in

Fig 2. We need to balance the performance of (PSNR, SSIM, and CR) associated with the com-

bination of three dimensions (DS, NC, SN) to determine the trade-off point for our end-to-

end architecture. This may be described as,

min
ðx;y;zÞ23DA

1

PSNR
þ 1 � jSSIMj þ 1 � CRð Þ

� �

subject to

c1 : x � DSmax ¼ 0

c2 : y � NCmin ¼ 0

c3 : z � SNmin ¼ 0

8
>>>>><

>>>>>:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð7Þ

where, 3DA denotes the 3D array with 3 dimensions, DS, NC, SN, and DSmax denotes the

given maximum value for DS, and others have a similar definition. Applying the Augmented
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Lagrangian method here yields,

TradeOff ¼ argmin
ðx;y;zÞ23DA

1

PSNR
þ 1 � jSSIMj þ 1 � CRð Þ �

X3

i¼1

aici þ
1

2
b
X3

i¼1

c2

i

 !

ð8Þ

where α are Lagrange factors and β is the penalty parameter. The resulting (x,y,z) is called the

trade-off point. To visualise it, we compute the marginal distributions concerning three

dimensions separately on 3DA as below,

PSNRðx � 3DAðDSÞÞ ¼
P
ðy;zÞ�3DAðNC;SNÞPSNRðx; y; zÞ

SSIMðx � 3DAðDSÞÞ ¼
P
ðy;zÞ�3DAðNC;SNÞSSIMðx; y; zÞ

CRðx � 3DAðDSÞÞ ¼
P
ðy;zÞ�3DAðNC;SNÞCRðx; y; zÞ

8
>>><

>>>:

ð9Þ

There are a total of three sets of marginal distributions. Each set illustrates the PSNR

bounds, SSIM bounds, and CR bounds concerning the scale at each dimension specified by

the trade-off point, one after another. Theoretical equivalence is expected among these three

sets of PSNR, SSIM and CR bounds at the trade-off point. The trade-off point indicates the tol-

erance of the proposed architecture in three dimensions at an expected PSNR, SSIM and CR

bounds level. The area delimited by the trade-off point intuitively and quantitatively illustrates

the proposed architecture’s performance.

Fig 2. Illustration of the data structure in the context of the metrics, PSNR, SSIM and CR, according to the DS,

NC and SN dimensions.

https://doi.org/10.1371/journal.pone.0314944.g002
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4 Materials and experimental results

Our experiments can be categorised into two parts. The first part aims to justify the selection

of each module in our proposed end-to-end architecture. The second part involves applying

the trade-off point method to determine an optimal architecture that balances various

considerations.

4.1 Data and implementation setup

The dataset comprises 750 multi-parametric magnetic resonance images (mp-MRI) collected

from patients diagnosed with either glioblastoma or lower-grade glioma [32]. We select T2

Fluid-Attenuated Inversion Recovery (FLAIR) 3D scan from a random patient with the size of

155 x 240 x 240. The implementation of our architecture starts with a high-resolution 3D volu-

metric input, such as a medical scan, denoted as x. Initially, the input volume undergoes nor-

malisation, scaling the voxel values to a range between 0 and 1. To streamline computations,

the volume is segmented into smaller patches, each measuring 64 × 64 × 64. Patches with 70%

or more non-zero voxels containing more information are classified as High-Resolution (HR)

patches. From these, one HR patch is selected as the high-resolution input for further

processing.

Once the data are prepared, the 3D Downsampling module applies a Fourier Transform to

convert the high-resolution volume from the spatial domain to the frequency domain. A low-

pass filter is then used to eliminate high-frequency components, thereby reducing resolution.

This removal process is crucial in medical imaging, as it decreases the data size while preserv-

ing essential information, ultimately easing the model processing load. The Inverse Fourier

Transform reverts the data to the spatial domain, yielding a low-resolution version of the origi-

nal volume.

Next, the downsampled volume is processed through the 3D Implicit Neural Representa-

tion (INR) module. Here, a Multi-Layer Perceptron (MLP) utilising Sinusoidal Activation

Functions (SIREN) maps input coordinates to output voxel intensities, enabling the neural

network to represent complex structures as continuous functions. These functions are then

converted into voxel intensities.

Following this, the 3D Super-Resolution (SR) module employs a 3D Convolutional Neural

Network (CNN) for feature extraction, incorporating an Attention Mechanism to prioritise

significant features. This SR module improves the resolution of the volume, restoring it to a

level close to the original.

The reconstructed volume, denoted as y, is compared to the original x using an L1 loss func-

tion to assess and optimise reconstruction quality. The entire system is trained using the

Adam optimiser with a learning rate of 0.0015 for 5,000 epochs on an NVIDIA A4000 16GB

GPU with CUDA support in the PyTorch framework. All source codes and results are available

at https://github.com/asheibanifard/EndtoEndCompression.

4.2 Trade-off architecture

4.2.1 3D downsampling module. The Downsampling module does not require training.

This implies that the downsampling scale is per set without consideration of the final result

quality. We select three downsampling scales of 1/2, 1/4, and 1/8 in our experiments. It is nec-

essary to test the performance of the proposed architecture at three downsampling scales, par-

ticularly the INR module. Table 2 presents a comprehensive comparison of reconstruction

results for different downsampling scales, illustrating the effectiveness of our proposed archi-

tecture in maintaining a high reconstruction quality across various compression levels. It can

be noted that decreasing the downsampling scales does not significantly degenerate the quality
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of the reconstruction. Additionally, non-standard sampling scales like 1/3, 1/5, or 1/7 would

introduce unnecessary complexity and inconsistencies without offering meaningful improve-

ments, making them less suitable for the architecture’s goals. Thus, these three downsampling

scales are acceptable.

4.2.2 3D INR module. We opt for the SIREN model [9] as our INR module, focusing on

two primary aspects of the SIREN structure: the number of layers and the number of neurons

per layer. The goal is to use a compact SIREN model to enhance the compression rate (CR).

We experiment with various configurations of the SIREN model, altering the layer count and

neuron count per layer, as detailed in Table 3. We find that a SIREN network with 3 layers and

between 30 and 230 neurons per layer offers satisfactory performance, especially for small vol-

ume data inputs, while substantially cutting down on GPU memory usage. Furthermore, we

compare the performance of a single SIREN model against our proposed architecture, as

shown in Table 2. The notable benefit is a dramatic reduction in GPU memory consumption

while maintaining comparable reconstruction quality. Additionally, using more than 230 neu-

rons per layer increases the model’s capacity to represent detailed structures but leads to

diminishing returns in terms of reconstruction quality. Beyond 230 neurons, the gains in

PSNR and SSIM are marginal, while the computational cost and GPU memory usage increase

significantly. This increased complexity does not translate into substantial improvements in

performance, making the additional computational overhead unjustified. Thus, we prefer the

SIREN model with 3 layers in the INR module.

4.2.3 3D super-resolution module. We utilise the SRNO [11] for the SR module due to

its compact size, as evidenced by the average number of parameters of deep networks in

Table 2. We also compare our end-to-end architecture with cutting-edge methods [32–37].

Table 8 reveals that (1) the SR module performs effectively, as our architecture, using a 3-layer

SIREN, matches the reconstruction quality of a standalone 5-layer SIREN; and (2) our archi-

tecture surpasses other state-of-the-art image compression methods in terms of PSNR and

SSIM.

4.2.4 Find a trade-off architecture by trade-off point approach. To find the trade-off

point for our proposed architecture, firstly, our proposed architecture is tested in terms of all

combinations of NC, DS and SN, which is presented separately in Table 4 with 4 channels of

feature extraction in the SRNO model, Table 5 with 8 channels of feature extraction in the

SRNO model, and Table 6 with 16 channels of feature extraction in the SRNO model. The

trade-off point of the proposed architecture is then calculated using Eq 8, that is, the trade-off

point (NC = 4, DS = 1/2, SN = 30). At the trade-off point, the PSNR upper bound is around 38,

Table 2. Performance of the INR module and the whole end-to-end architecture. (The upper row shows the performance of a single SIREN and the lower row shows

that of the whole end-to-end architecture).

INR module

Scale Avg Bitrate # Avg CR (%)" Avg PSNR " Avg SSIM " Avg #Para #

1/2 5.21 83.71 36.96 0.95 42711

1/4 5.21 83.71 51.48 1.00 42711

1/8 5.21 83.71 67.34 1.00 42711

Whole end-to-end Architecture

Scale Avg Bitrate # Avg CR (%)" Avg PSNR " Avg SSIM " Avg #Para #

1/2 5.743 82.052 38.001 0.956 47048.0

1/4 6.655 79.200 38.381 0.953 54524.0

1/8 10.062 68.553 39.462 0.961 82436.0

https://doi.org/10.1371/journal.pone.0314944.t002
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Table 3. Average values for different INR layers and neurons.

Layers Neurons Bitrate(bpp) # CR (%)" PSNR " SSIM " #Para #

3 30 0.245 99.233 31.081 0.767 2011

3 50 0.653 97.959 32.205 0.804 5351

3 70 1.256 96.074 34.550 0.903 10291

3 90 2.055 93.579 35.637 0.923 16831

3 110 3.048 90.474 36.610 0.942 24971

3 130 4.237 86.759 37.862 0.960 34711

3 150 5.621 82.433 38.389 0.964 46051

3 170 7.201 77.497 38.626 0.965 58991

3 190 8.976 71.950 39.954 0.975 73531

3 210 10.946 65.793 39.553 0.974 89671

3 230 13.112 59.026 40.934 0.981 107411

4 30 0.359 98.878 29.008 0.627 2941

4 50 0.964 96.986 32.472 0.825 7901

4 70 1.863 94.178 34.814 0.902 15261

4 90 3.054 90.455 36.450 0.937 25021

4 110 4.539 85.817 37.251 0.951 37181

4 130 6.316 80.262 39.872 0.974 51741

4 150 8.386 73.793 41.887 0.984 68701

4 170 10.750 66.407 42.395 0.986 88061

4 190 13.406 58.107 42.738 0.988 109821

4 210 16.355 48.890 43.586 0.989 133981

4 230 19.597 38.758 44.335 0.991 160541

5 30 0.473 98.523 30.846 0.781 3871

5 50 1.276 96.013 32.469 0.799 10451

5 70 2.470 92.282 38.391 0.964 20231

5 90 4.054 87.331 38.456 0.963 33211

5 110 6.029 81.159 40.037 0.976 49391

5 130 8.395 73.766 41.990 0.985 68771

5 150 11.151 65.152 42.953 0.988 91351

5 170 14.298 55.318 42.284 0.986 117131

5 190 17.836 44.263 43.366 0.989 146111

5 210 21.764 31.987 44.676 0.991 178291

5 230 26.083 18.491 44.616 0.991 213671

6 30 0.586 98.169 30.077 0.774 4801

6 50 1.587 95.041 36.246 0.935 13001

6 70 3.076 90.387 39.529 0.974 25201

6 90 5.054 84.207 40.204 0.977 41401

6 110 7.520 76.501 41.779 0.984 61601

6 130 10.474 67.270 41.733 0.984 85801

6 150 13.916 56.512 43.195 0.988 114001

6 170 17.847 44.229 42.773 0.988 146201

6 190 22.266 30.420 44.301 0.991 182401

6 210 27.173 15.084 42.274 0.984 222601

6 230 32.568 -1.777 43.441 0.988 266801

https://doi.org/10.1371/journal.pone.0314944.t003
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the SSIM upper bound is around 0.94, and the CR upper bound is around 76.6%, as shown in

Table 7. This is a good setting for the proposed architecture, as it reaches a high compression

rate and good quality for reconstruction.

Moreover, it is further illustrated by Eq 9. We show the three sets of marginal distributions

concerning dimensions (NC, DS, SN), in Figs 3–5, respectively. If CR is decreased, the SIREN

size (SN) or channel number (NC) can be increased. However, the reconstruction quality (i.e.

PSNR or SSIM) shows a slight improvement. Thus, enlarging the model size or channel num-

ber will not significantly improve reconstruction quality. Additionally, compared to other

existing approaches in Table 8, our architecture excels in maintaining a low Bitrate(bpp),

ensuring that the compressed file size is significantly smaller. Our results (PSNR and SSIM)

are still comparable with those of the “3D-VOI-OMLSVD [34]”. Fig 6 further shows the recon-

structed slices of volume data.

Table 4. The results of our proposed architecture with 4 channels of shallow feature extractor in SR module.

Scale # Neurons Bitrate(bpp) # CR(%)" PSNR(db) " SSIM " #Para # GPU memory(GB) #

1/2 30 0.775 97.578 33.885 0.885 6348 1.366

1/2 50 1.183 96.304 35.211 0.915 9688 1.395

1/2 70 1.786 94.420 36.853 0.947 14628 1.426

1/2 90 2.584 91.925 37.682 0.961 21168 1.456

1/2 110 3.578 88.820 38.547 0.969 29308 1.484

1/2 130 4.767 85.104 38.968 0.972 39048 1.512

1/2 150 6.151 80.779 38.867 0.974 50388 1.540

1/2 170 7.730 75.842 39.419 0.973 63328 1.570

1/2 190 9.505 70.296 39.603 0.976 77868 1.599

1/2 210 11.476 64.139 39.319 0.970 94008 1.629

1/2 230 13.641 57.372 39.665 0.976 111748 1.661

1/4 30 1.520 95.250 33.221 0.858 12452 1.319

1/4 50 1.928 93.976 33.985 0.892 15792 1.322

1/4 70 2.531 92.091 34.503 0.916 20732 1.331

1/4 90 3.329 89.597 34.789 0.921 27272 1.335

1/4 110 4.323 86.491 34.753 0.915 35412 1.333

1/4 130 5.512 82.776 34.825 0.921 45152 1.349

1/4 150 6.896 78.450 35.080 0.923 56492 1.348

1/4 170 8.476 73.514 35.001 0.924 69432 1.347

1/4 190 10.250 67.967 34.977 0.919 83972 1.347

1/4 210 12.221 61.810 35.300 0.927 100112 1.354

1/4 230 14.386 55.043 35.393 0.922 117852 1.355

1/8 30 7.481 76.622 40.991 0.977 61284 1.313

1/8 50 7.889 75.348 36.212 0.909 64624 1.314

1/8 70 8.492 73.463 40.873 0.977 69564 1.312

1/8 90 9.290 70.969 38.934 0.965 76104 1.315

1/8 110 10.284 67.863 40.995 0.979 84244 1.319

1/8 130 11.473 64.148 40.799 0.978 93984 1.316

1/8 150 12.857 59.822 40.150 0.975 105324 1.318

1/8 170 14.437 54.886 39.587 0.974 118264 1.316

1/8 190 16.211 49.339 39.866 0.973 132804 1.318

1/8 210 18.182 43.182 38.954 0.966 148944 1.317

1/8 230 20.347 36.415 39.094 0.960 166684 1.319

https://doi.org/10.1371/journal.pone.0314944.t004
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Additionally, Fig 7 shows a steady optimisation process over 5000 epochs, with continuous

improvements in reconstruction accuracy and structural similarity. The PSNR curve exceeds

40 dB, indicating high reconstruction quality with minimal error. The SSIM curve approaches

0.96, demonstrating the model’s effectiveness in preserving perceptual and structural fidelity.

The steady decrease in the loss function, alongside the PSNR and SSIM improvements, con-

firms effective convergence. These results, consistent with the final performance metrics in

Table 8, highlight the architecture’s ability to balance compression efficiency and high-quality

reconstruction, making it ideal for medical imaging.

Remark: The proposed trade-off point approach serves as a pragmatic optimisation strat-

egy. In the context of the compression problem, it is essential to balance various requirements,

including downsampling scales, INR module size, SR module structure, etc., rather than over-

emphasising one or two factors. The trade-off point approach addresses this challenge by ele-

gantly optimising the parameters involved.

Table 5. The results of our proposed network with 8 channels of shallow feature extractor in SR module.

Scale # Neurons Bitrate(bpp) # CR(%)" PSNR(db) " SSIM " #Para # GPU memory(GB) #

1/2 30 1.688 94.727 32.829 0.825 13824 1.330

1/2 50 2.095 93.452 36.009 0.922 17164 1.360

1/2 70 2.698 91.568 37.112 0.945 22104 1.387

1/2 90 3.497 89.073 38.502 0.964 28644 1.422

1/2 110 4.490 85.968 39.373 0.975 36784 1.451

1/2 130 5.679 82.253 39.127 0.974 46524 1.479

1/2 150 7.063 77.927 39.365 0.971 57864 1.506

1/2 170 8.643 72.990 41.106 0.982 70804 1.537

1/2 190 10.418 67.444 40.133 0.979 85344 1.562

1/2 210 12.388 61.287 38.495 0.976 101484 1.595

1/2 230 14.554 54.520 40.149 0.976 119224 1.625

1/4 30 3.171 90.091 35.348 0.886 25976 1.277

1/4 50 3.579 88.817 36.051 0.917 29316 1.281

1/4 70 4.182 86.932 37.443 0.941 34256 1.289

1/4 90 4.980 84.438 36.178 0.935 40796 1.291

1/4 110 5.974 81.332 38.016 0.948 48936 1.295

1/4 130 7.163 77.617 37.564 0.946 58676 1.307

1/4 150 8.547 73.291 38.021 0.948 70016 1.307

1/4 170 10.126 68.355 36.991 0.944 82956 1.307

1/4 190 11.901 62.808 38.424 0.950 97496 1.310

1/4 210 13.872 56.651 36.755 0.942 113636 1.311

1/4 230 16.037 49.884 36.696 0.942 131376 1.319

1/8 30 15.038 53.006 45.056 0.990 123192 1.273

1/8 50 15.446 51.732 44.628 0.989 126532 1.272

1/8 70 16.049 49.847 45.004 0.990 131472 1.276

1/8 90 16.847 47.353 44.226 0.987 138012 1.272

1/8 110 17.841 44.247 45.528 0.992 146152 1.277

1/8 130 19.030 40.532 43.596 0.985 155892 1.276

1/8 150 20.414 36.206 44.410 0.990 167232 1.276

1/8 170 21.994 31.270 43.539 0.986 180172 1.276

1/8 190 23.769 25.723 43.650 0.988 194712 1.277

1/8 210 25.739 19.566 42.061 0.981 210852 1.277

1/8 230 27.904 12.799 41.435 0.978 228592 1.275

https://doi.org/10.1371/journal.pone.0314944.t005
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5 Conclusion and future work

In this paper, we proposed an innovative architecture that integrates available deep-learning

techniques with a focus on compressing volume data while maintaining high reconstruction

fidelity. One notable aspect of our approach is the utilisation of emerging deep learning tech-

nologies, which have witnessed rapid development in recent years. We emphasised the

Table 6. The results of our proposed network with 16 channels of shallow feature extractor in SR module.

Scale # Neurons Bitrate(bpp) # CR(%)" PSNR(db) " SSIM " #Para # GPU memory(GB) #

1/2 30 5.095 84.079 34.469 0.858 41736 1.366

1/2 50 5.502 82.805 37.843 0.947 45076 1.396

1/2 70 6.105 80.920 39.609 0.965 50016 1.424

1/2 90 6.904 78.426 39.634 0.967 56556 1.457

1/2 110 7.897 75.320 40.585 0.979 64696 1.486

1/2 130 9.086 71.605 38.699 0.975 74436 1.514

1/2 150 10.471 67.279 41.600 0.982 85776 1.546

1/2 170 12.050 62.343 39.853 0.969 98716 1.568

1/2 190 13.825 56.796 41.416 0.981 113256 1.601

1/2 210 15.795 50.639 41.327 0.977 129396 1.632

1/2 230 17.961 43.872 39.053 0.977 147136 1.660

1/4 30 8.055 74.829 35.132 0.891 65984 1.272

1/4 50 8.462 73.555 38.964 0.941 69324 1.279

1/4 70 9.065 71.671 40.981 0.965 74264 1.290

1/4 90 9.864 69.176 40.182 0.965 80804 1.289

1/4 110 10.857 66.071 40.705 0.969 88944 1.292

1/4 130 12.046 62.355 42.462 0.979 98684 1.298

1/4 150 13.431 58.029 42.580 0.981 110024 1.307

1/4 170 15.010 53.093 41.079 0.970 122964 1.308

1/4 190 16.785 47.546 42.322 0.979 137504 1.306

1/4 210 18.755 41.389 41.177 0.974 153644 1.311

1/4 230 20.921 34.622 41.987 0.979 171384 1.313

1/8 30 31.734 0.830 49.798 0.998 259968 1.270

1/8 50 32.142 -0.444 48.750 0.996 263308 1.271

1/8 70 32.745 -2.328 48.238 0.995 268248 1.271

1/8 90 33.543 -4.823 48.497 0.997 274788 1.271

1/8 110 34.537 -7.928 46.755 0.993 282928 1.280

1/8 130 35.726 -11.644 48.436 0.997 292668 1.275

1/8 150 37.110 -15.970 50.539 0.999 304008 1.277

1/8 170 38.690 -20.906 48.897 0.996 316948 1.273

1/8 190 40.465 -26.453 48.730 0.997 331488 1.275

1/8 210 42.435 -32.610 46.971 0.994 347628 1.277

1/8 230 44.601 -39.377 47.476 0.996 365368 1.277

https://doi.org/10.1371/journal.pone.0314944.t006

Table 7. Our proposed architecture’s trade-off point.

Marginal values NC = 4 DS = 1/2 SN = 30

1/PSNR 0.02598 0.02681 0.02694

1 − |SSIM| 0.04287 0.05491 0.09239

1 − CR 0.23398 0.25709 0.25887

https://doi.org/10.1371/journal.pone.0314944.t007
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Fig 3. Illustrates the trade-off point for the number of channels (NC) in the SR module concerning the

performance metrics, 1/PSNR, 1-SSIM, and 1-CR. The red dashed lines indicate the intersection where the optimal

trade-off is achieved, balancing compression efficiency and reconstruction quality.

https://doi.org/10.1371/journal.pone.0314944.g003

Fig 4. The trade-off point for the downsampling scale (DS) is based on the performance metrics, 1/PSNR, 1-SSIM,

and 1-CR. The red dashed lines highlight where the downsampling scale achieves an optimal balance between

compression rate and reconstruction accuracy.

https://doi.org/10.1371/journal.pone.0314944.g004
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importance of carefully considering various factors such as network architecture, computa-

tional efficiency, and reconstruction accuracy when designing and implementing the end-to-

end solution. To this end, we proposed the end-to-end network architecture for volume data

compression and developed the trade-off approach to determine optimal settings for individ-

ual modules, which is a practical method to balance performance considerations in the context

of medical visualisation tasks.

5.1 Limitations

5.1.1 Generalisation to diverse medical datasets. Applying the proposed end-to-end

architecture to various volume datasets requires significant retraining time for each dataset

individually, as there is no fine-tuning strategy in place to speed up this process.

Table 8. Comparison of our techniques with other state-of-the-art methods in terms of PSNR and SSIM in volume reconstruction.

Method avg PSNR " avg SSIM " CR(%)" Bitrate(bpp) # GPU(GB) #

Single SIREN [9] 40.008 0.947 67.062 10.348 3.390

Devadoss et al. [33] 34.1098 - 78.16 4.580 -

MVAR [32] 40.050 - 90.00 - -

3D-VOI-OMLSVD [34] 42.04 0.978 89.17 2.54 -

aiWave-heavy [36] 39.00 - - 2.5 -

Block CS [35] 30.86 0.7489 50.00 - -

EZW with Haar [37] 30.15 - 40.31 - -

Our Architecture 40.052 0.961 97.578 0.775 0.769

https://doi.org/10.1371/journal.pone.0314944.t008

Fig 5. The trade-off point for the number of neurons (SN) in the SIREN model, plotted against the performance

metrics, 1/PSNR, 1-SSIM, and 1-CR. The red dashed lines indicate the optimal configuration of neurons in the

SIREN model for achieving high reconstruction quality with minimal compression loss.

https://doi.org/10.1371/journal.pone.0314944.g005
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5.1.2 Time complexity of trade-off point approach. The trade-off point method necessi-

tates sampling the model’s performance across different architecture settings, which is highly

time-consuming.

5.2 Future work

Beyond the realm of compression, visualising over-large medical volume data through real-

time rendering is meaningful. Compression with rendering could enable real-time

Fig 6. The Left column shows the different original slices of the volume with sizes of (155, 240, 240); the middle column shows

the labelled patches of the slices with sizes of (64, 64, 64); the right column shows the reconstructed patches by our architecture.

https://doi.org/10.1371/journal.pone.0314944.g006
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visualisation of such over-large volume data. In future work, we intend to focus on volume-

rendering techniques that leverage implicit neural representations. This research direction

shows significant promise for advancements in the field of visualisation.
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