Retinal-NeRF: Real-time Rendering of Neural Point
Fields Across Platform

1** Mandun Zhang
Xinjiang College of Science & Technology
School of Artificial Intelligence
Hebei University of Technology
Tianjin International Joint Center for
Virtual Reality and Visual Computing
zhangmandun @scse.hebut.edu.cn

4™ Yonghui Pang
School of Artificial Intelligence
Hebei University of Technology
Tianjin, China
2602119659 @qq.com

Abstract—Neural Radiance Fields (NeRFs) has emerged as a
promising method for 3D reconstruction and novel view synthesis.
However, NeRF-based methods rely on implicit encoding and
heavy spatial sampling, which differ significantly from the widely
used polygon mesh rasterization method. This discrepancy leads
to a lack of support from common 3D software and hardware,
resulting in inefficient rendering. In this work, we introduce a
novel method called Retinal-NeRF, which combines point clouds
and signed distance fields, for real-time rendering of 3D scenes.
Our goal is achieved by converting NeRF into a representation
that can be efficiently processed by standard graphics pipelines.
To enhance the geometric accuracy of the scene, we propose two
SDF regularization terms to improve the quality of the generated
mesh. To ensure real-time rendering, we employ appearance
decomposition technique to minimize the size of the MLP within
the rendering pipeline. Notably, our findings indicate that the
rendering speed of Retinal-NeRF is more than five times faster
than existing real-time rendering techniques, without a significant
loss in the quality of novel view synthesis.

Index Terms—NeRF, Point Clouds, Signed Distance Fields

*corresponding autho: Zhidong Xiao zxiao@bournemouth.
ac.uk

I. INTRODUCTION

Precise reconstruction and real-time rendering of 3D scenes
are vital in fields such as medical imaging, lane navigation, and
augmented/virtual reality (AR/VR), where these applications
depend on accurate 3D geometry for physics-based simulation
and require efficient rendering to meet the demands for real-
time performance. Recently, Neural Radiance Fields (NeRF)
[1]-[5] and 3D Gaussian Splat-ting (GS) [6] have emerged as
significant breakthroughs in 3D reconstruction technologies,
capable of rendering new viewpoint images with high fidelity,

This work was supported by the National Key Research and Development
Program of China under Grant 2022YFB3303800

School of Artificial Intelligence
Hebei University of Technology

lyhgz@outlook.com

5™ Jiale Shi
School of Artificial Intelligence
Hebei University of Technology
Tianjin, China
1804622570@qq.com

2" Yuhan Liu 3 Shujia Cheng
School of Artificial Intelligence
Hebei University of Technology
Tianjin, China
amazingmaozi@ 163.com

Tianjin, China

6™ Zhidong Xiao*

National Centre for Computer Animation
Bournemouth University
Bournemouth, United Kingdom
zxiao @bournemouth.ac.uk

Ground Truth Retinal-NeRF MobileNeRF
(PSNR:29.47 FPS:98) (PSNR:29.06 FPS:74)
Fig. 1. Testing on the Synthetic 360° dataset [3], our method not only

improved the rendering quality but also increased rendering speed by 20%
compared to MobileNeRF.

realism, and detail. Traditional implementations of NeRF
utilize volume rendering algorithms, which require hundreds
of sample points along each ray in the scene to traverse a
sizeable multilayer perceptron (MLP), necessitating hundreds
of millions of neural network evaluations to render a single
pixel and resulting in a rendering time of approximately 30
seconds per image on mainstream high-end GPUs. Although
Gaussian Splatting utilizes the explicit radiance field for 3D
reconstruction in real time and provides editability to the
application, the high computational cost on GPU memory
poses significant challenges for rendering on mobile devices
due to computational constraints. In stark contrast, polygon
meshes, the most common representation in 3D vision, benefit
from robust support across most graphics hardware, partic-
ularly in terms of high-speed rendering. This enables real-
time rendering of high-fidelity 3D models in web browsers.
Nonetheless, methods are still lacking for extracting meshes
from NeRF and rendering them in parallel with GPUs under
various lighting angles within browsers.

To address these challenges, we introduce the Retinal-NeRF,

zxiao@bournemouth.ac.uk
zxiao@bournemouth.ac.uk

a novel framework specifically designed for real-time render-
ing of NeRF across various platforms, as depicted in Figure 1.
This framework’s primary innovation is the decomposition of
illumination into a compact MLP, which is then embedded
into RGB textures. This approach utilizes the parallelism
offered by fragment shaders to facilitate real-time scene ren-
dering. For real-time, view-dependent rendering, we separate
the appearance into a view-independent diffuse component
and a view-dependent specular component. Consequently, the
diffuse color is exported as a standard RGB image texture,
while the specular color is output as a feature texture. When
combined with the current viewing direction and processed
through the compact MLP embedded in the fragment shader,
this configuration enables the dynamic generation of view-
dependent colors.

To summarize, our contributions are listed below.

o The presented Retinal-NeRF framework, which is five
times faster than SNeRG on all test datasets, and sur-
passes MobileNeRF on synthetic datasets.

e Our approach utilizes a single HTML page with Threejs
for rendering 3D models, boasting excellent cross-
platform capabilities and compatibility with all tested
devices.

e By incorporating an SDF (Signed Distance Function)
and an appearance decomposition module, we represent
learned scenes as meshes and feature textures. This
approach significantly reduces memory usage and em-
powered our method to operate at real-time frame rates
even on low-power mobile devices.

II. RELATED WORK
A. Neural Radiance Fields

Traditional methods for 3D scene reconstruction typically
rely on implicit functions, but recent advances have shifted
focus on using multilayer perceptrons (MLPs), which provide
greater expressive capabilities and require less memory. A
prominent example is NeRF, which merges neural implicit
functions with volume rendering. This approach utilizes a
continuous five-dimensional function to accurately represent
a static scene, resulting in notably high-quality renderings.
Subsequent variations, such as Ref-NeRF [1] and Point-NeRF
[4], have further extended this framework. However, NeRF-
based rendering faces significant challenges due to its high
computational demands. The demands of specialized rendering
algorithms along with intense process of spatial sampling for
estimating and integrating density and radiance substantially
impede the performance of real-time rendering.

B. Efficient Rendering of Neural Radiance Fields

To address the slow rendering speeds associated with neural
radiance fields, various research efforts have been presented.
FastNeRF [8] stores a deep radiance map for each spatial
position, then using the directional rays for querying this
map to estimate the pixel values in the rendered images.
PlenOctrees [9] employs an octree representation to compute
ray intersections with voxels, outputting sequences of ray

segments that are partitioned according to voxel boundaries,
and subsequently applying NeRF’s rendering formula. Instant
NGP [10] maps input coordinates to multi-scale hash table
indices of trainable feature vectors, enabling both accelerated
training and rendering with a smaller neural network while
maintaining quality. SNeRG bakes the NeRF model onto a
sparse discrete grid, transitioning the high granularity of train-
ing representations into real-time, efficient rendering-ready
representations. Similar to our approach, MobileNeRF [11]
decomposes the MLP component of NeRF into an Encoder and
Decoder, stores the feature vectors produced by the Encoder
beforehand, and during the real-time rendering phase, directly
retrieves these vectors using solely the Decoder for inference.
MobileNeRF generates multiple rough mesh approximations,
unlike our method, which employs the SDF zero-level set
to create a high-precision traditional mesh, thus achieving
broader compatibility. Additionally, our method incorporates
an appearance decomposition step during training to abstract
diffuse and specular colors, a feature absent in MobileNeRF.

In considering of real-time performance, only SNeRG and
MobileNeRF have demonstrated the capacity to function on
low-power devices without the need for CUDA support. Given
that our method is designed for rendering on diverse platforms,
we primarily compare it with these two approaches in our
experiments.

III. METHODOLOGY

In this section, we introduce a framework designed for
cross-platform real-time rendering of radiance fields (see Fig.
2), compatible with most devices that support OpenGL. Our
model comprises two branches that produce volume density
and color, respectively. The volume density branch aligns
with the design principles presented by Point-NeRF. Differing
from it, our MLP G predicts SDF values, denoted as d.These
values are crucial for initializing mesh geometry as outlined in
subsection A. Meanwhile, the color branch utilizes two shal-
low MLPs to separate the appearance into view-independent
diffuse color ¢4 and view-dependent specular color ¢, while
storing weights of these MLPs and the baked diffuse texture
images (see subsection B). After training, the mesh, texture
maps and shader weights are saved as OBJ file, PNG file
and compact JSON files respectively. Subsequently, real-time
rendering is executed on an HTML page using JavaScript, with
the specified viewing direction (see subsection D).

A. SDF-based Neural Point Fields

Unlike previous method [12] that use MVS (Multi-View
Stereo) to provide geometric information priors for NeRF,
we utilize Point-NeRF, which employs the initial point cloud
provided by TransMVS [13], to initialize the neural point
cloud. The method initially utilizes a TransMVS network to
predict depth. Then a 2D CNN is used to extract 2D feature
maps from the input image to obtain per-point features. After
aggregating the depth maps, we obtain a neural point cloud:

P={(pi, fi)} (D

k) =

fi

2 A

9
) N\

Interpolation

| t Density
Conversion g

C
fx 4

A4
N
“»

\ c
Query Point v Positional
Encoding

Fig. 2. A visualization of Retinal-NeRF’s architecture. For simplicity, we have omitted the construction process of the neural point cloud.

where p; and f; denote point locations and point features
respectively. During the point querying process, we established
an explicit link between the shallow MLP F and MLP G
to calculate the volumetric density of the eight surrounding
neural points for the sampled point. To acquire a high-quality
smooth surface from the zero level set of the predicted SDF
values, we apply the method described in [14] to let the
geometric MLP G predict the SDF value t at the sampled point
z, instead of predicting the volumetric density o, as done by
Point-NeRF. Consequently, the model of our MLP G becomes:

Z . G o)

For a given point x in space, the Slgned Distance Function
(SDF) returns the distance ¢ to the nearest surface, a value
typically obtained via a large Multilayer Perceptron (MLP)
[15], [16]. Based on this indirect method, we can execute
Marching Cubes [17] over the predicted SDF values to obtain a
high-quality, smooth surface. It is worth noting that, in contrast
to approaches like BakedSDF [18], which employ region
growing to address voids in meshes during the extraction
phase, our method utilizes point growth operations throughout
the training phase to fill in gaps present in the original point
cloud. To render the color of a pixel, the SDF value t of
the sampled point x along the ray can be converted into a
density value for volumetric rendering. VolSDF [15] provides
a method for converting density with a camulative distribution
function (CDF) that follows a Laplace distribution:

exp(L) if t <0,
as(t) =37 Py 3)

Where o is the volumetric density, and 5 is a learnable
parameter. By combining the predicted color C(z;) of the

T8 LUy SEH

Final Color Diffuse Color Specular Color

Fig. 3. Renders separated diffuse and specular colors.

sampling points along the ray (for more details, see section
3.2), the color C(r) of the current ray r can be computed
according to the volumetric rendering equation of NeRF:

1

o(x;)05) (1 — exp(—o(zy)

1

O(r) = e(wi)(exp(~

i J

4;))) 4

B. Appearance Decomposition

NeRF typically does not presuppose specific lighting con-
ditions, instead, it implicitly fits them into a large MLP,
which takes spatial coordinates as input to produce color and
density. Although this approach significantly improves the
image quality of novel view rendering, it poses challenges
in separating illumination from model textures. To overcome
this challenge, we utilize two shallow MLPs to separate the
appearance into view-independent diffuse color ¢4 and view-
dependent specular color cg:

Cdahs :MLPD(fw) (5)
O, = MLPs(h,V) ©6)

We introduce the viewing direction V as an additional input
to the specular MLP, resulting in the final radiance c(zx) for
each sampled point on the ray becoming:

c(z) =

As shown in Fig. 3, we have successfully separated the dif-
fuse and specular reflection components. The diffuse reflection
color can be conveniently baked into an RGB image texture.
Simultaneously, the specular reflection features hg can also
be baked into a texture, and to ensure the performance of
the rendering pipeline, we insert the smallest possible MLP
S into the fragment shader following the method described in
MobileNeRF. Consequently, the specular reflection color can
also be exported and rendered later (for more details, please
refer to subsection D). It is important to acknowledge that,
although our method bake specular reflection components into
textures, previous research has indicated that this procedure
may compromise rendering quality in real-world datasets [19],
[20].

MLPp(f,) + MLPs(hs,V) (7)

C. SDF Regularizations

Previous research [21] applied large-scale continuous MLPs
to implicitly represent the SDF values of complete scenes, so
Eikonal regularization is satisfied from the loss function. Ac-
cording to [22], [23], our approach may cause discontinuities
in the projected SDF values due to the use of discrete neural
point clouds. To better represent continuous smooth surfaces,
we have introduced two regularization terms for the predicted
SDF values. The first regularization is aimed at stabilizing
the SDF prediction for points within the surface. Since SDF
represents the distance of a point in space to its nearest surface,
our model requires a stable prediction of negative SDF values
within the surface region. To achieve this goal, we applied
Cauchy loss to the density values obtained from the SDF
transform:

2
L, = %Eilog (1 T “(f”) (8)
Here, 3 is the parameter used in Eqn.3, and c is a hyper-
parameter. This regularization term is uniformly applied to all
N sampled points in each iteration. The second regularization
method is designed to improve continuity around the zero level
set of the Signed Distance Function. Frequent fluctuations
in the predicted SDF values near the zero level set can
significantly affect the smoothness of the surface; hence, to
ensure a stable decreasing curve of our estimated SDF when
approaching the surface, we introduce a slope suppression
regularization technique. This regularization penalizes the seg-
ments of the SDF curve that have positive slopes, as detailed
in the subsequent equation:

Ad;

62 + Ad? ®

Lg= Z max(Ad;, 0)

In this equation, Ad; = d(z;4+1) — d(x;) represents the

difference in the predicted SDF values between two sampling

points, and §; is the actual distance between the two sampling

points. Our loss function is essentially the same as the NeRF

method, but with the two additional regularization terms
described above:

L= £colo’r‘ +)\nﬁn +)\dﬁd (10)

Where L. is the L1 loss between the ground truth and
the rendered image, and \,, and \; are loss hyperparameters.
By combining the two additional regularization terms men-
tioned above, we can obtain more precise SDF values.

D. Rendering

The final output of our framework is a surface mesh
compatible with common 3D hardware and software, along
with two separate images, /4 and I,. The images I; and I
are baked respectively from the diffuse color ¢4 and specular
highlights hs. Our exported mesh can be rendered in real-time
using Three.js in an HTML webpage, and the diffuse texture
I; can be rendered on most modern browser-capable devices
by interpreting it as an RGB texture. To render specular colors,

TABLE I
TESTING DEVICES. OUR TEST EQUIPMENT IS REPRESENTATIVE OF A
GROUP OF LOW-POWER DEVICES. OUR DEVICES INCLUDE CELL PHONES,
TABLETS, LAPTOPS, AND VR HEADSETS.

Device Type OS Browser
IPhone Phone 10S 16 Safari
One plus Phone Android 12 Chrome
IPad Tablet IPadOS 16 Safari
Hololens 2 Headset =~ Windows Holographic ~ Edge
Lenovo Laptop Windows 11 Chrome

we store the weights of MLP S as a JSON file and incorporate
them into the fragment shader during rendering. This custom
shader can run in parallel on all pixels and ultimately adds
specular reflections to the diffuse component, thus achieving
real-time specular reflection effects.

IV. EXPERIMENTS

We assessed the performance of Retinal-NeRF across a
variety of datasets and devices by comparing it with well-
known real-time rendering techniques.

Datasets. Our experiments encompassed both synthetic and
real data using two benchmark datasets:

o Synthetic 360° dataset [3], comprising eight synthetic
scenes with 800 x 800 pixel resolution, 100 training
views, 100 validation views, and 200 test views apiece.

o Mip-NeRF 360 dataset [24], We used three publicly avail-
able unbounded real world outdoor scenes. Each scene
comes in four different resolutions, with 185 images at
each resolution.

Devices. Our study aims to evaluate the effectiveness of
our proposed approach on mobile devices, particularly low-
power gadgets like VR head-mounted displays, smartphones,
and tablets that lack CUDA support. To ensure the comprehen-
siveness of our research, we also expanded the testing scope
to include laptops running on the amd64 architecture. Detailed
specifications and software configurations for each device used
in the testing are listed in Table L.

A. Implementation Details

Fig. 2 illustrates the architecture of Retinal-NeRF. MLP F
and MLP G consist of 4 layers and 1 layer respectively, while
MLP D and MLP S both have 3 layers. We adopt the same
positional encoding presented in NeRF for the input neural
points’ relative positions p; — x and the viewing direction V.
In the training phase, we trained the model for 160k iterations
and empirically set the loss hyperparameters A\, = le — 3;
Ag = be — 3. As the initialization step of neural points is not
the main focus of this study, for all experiments, based on
TransMVS [13], the initial neural point field is obtained by
employing PointNeRF [4]. All experiments were conducted
on a single NVIDIA A40 GPU with 48GB of memory.

B. Main Results

In the following, we evaluate the performance of Retinal-
NeRF in terms of both speed and accuracy. We initially present

TABLE II
RENDERING SPEED (FPS) ON DEVICES. WITH MOBILENERF (M-NERF)
AND SNERG ACROSS VARIOUS TYPES OF DEVICES. AN ASTERISK “*”
INDICATES THAT THE DEVICE’S FPS LIMIT HAS BEEN REACHED, WHILE A
DASH “-” INDICATES THAT THE METHOD FAILED TO RUN.

Device Synthetic 360° Mip-NeRF 360
SNeRG | M-NeRF | Ours | SNeRG | M-NeRF | Ours
TPhone - 55.87 60%* - 21.22 35.27
One plus - 46.58 77.13 - 19.57 27.00
IPad - 18.58 46.62 - - 15.67
Hololens 2 - 12.90 14.68 - 4.30 5.50
Lenovo 28.56 120.13 149.16 - 36.85 33.33

AP

%gs% e i

RkkR2Qk

Ground Truth

Retinal-NeRF MobileNeRF

Fig. 4. Qualitative Results on Synthetic 360°dataset.

the results from two synthetic scenes (Fig. 4), where compared
to MobileNeRF, our method significantly preserves clearer
object boundaries in the drumming scene. Furthermore, in the
materials scene, Retinal-NeRF effectively captures more light
effects such as brightness and reflections. It is noteworthy that
MobileNeRF, lacking an appearance decomposition process,
tends to produce holes and high-frequency noise on smooth
surfaces. The study compared the frames per second (FPS)

TABLE V
AVERAGE NUMBER OF VERTICES AND FACES (UNIT IS 10%).

Method Synthetic 360°
\" F
Ground Truth 631 873
SNeRG N/A N/A
MobileNeRF 494 224
Ours 227 322

of two real-time rendering methods across five devices, as
delineated in Table I, with the findings detailed in Table II.
The data revealed that Retinal-NeRF’s rendering speed sub-
stantially exceeds that of SNeRG and maintains a performance
edge over the more recent MobileNeRF on the Synthetic 360°
dataset. In synthetic environments, this performance disparity
is particularly notable, with Retinal-NeRF achieving speeds
up to five times faster than SNeRG. Moreover, in unbounded
environments, our method improved rendering speeds by
20%. Critically, Retinal-NeRF demonstrated the capability to
perform real-time rendering on various low-power devices,
even achieving the maximum possible FPS supported by the
hardware.

Disk Storage and GPU Memory Usage. In Table III
and IV we evaluate our method’s Storage performance by
comparing against SNeRG and MobileNeRF (the real-time
model that produces the highest quality renderings after our
own). Our method provides an unparalleled advantage in GPU
Memory Usage, which is essential for achieving real-time
performance across a wide range of low-power devices.

Polygon count. Table V shows the average number of
vertices and faces produced by our method in comparison with
SNeRG and MobileNeRF on the NeRF-synthetic dataset .

Rendering quality. We apply three metrics, peak signal-to-
noise ratio (PSNR), structural similarity index (SSIM) [25],
and perceptual LPIPS [26], for assessing the quality of the
rendering. As presented in BakedSDF, baking specular features

TABLE VI
PSNR?T ON SYNTHETIC 360° SCENES.

Method PSNRT
TABLE III Chair | Drums | Lego | Mic | Materials | ship | Hotdog | Ficus
GPU MEMORY USAGE] ON SYNTHETIC 360°SCENES (UNIT IS MB). NeRF 33.00] 25.01 [32.54[3291] 29.62 [28.65] 36.18 |30.13
SNeRG 33.24| 24.57 [33.82|32.60| 27.21 |27.97| 34.33 |29.32
Method GPU Memory Usage MobileNeRF |34.09 | 25.02 |34.18|32.48| 26.72 [29.06| 35.46 |30.20
Chair | Drums | Lego | Mic | Materials | ship | Hotdog | Ficus Ours(re-time) | 34.24 | 25.30 |34.50 |33.73| 27.75 [29.47| 35.76 |30.41
SNeRG 1254 | 4729 [1253 1251 1253 [24227] 1253 [8243 Ours(offline) | 33.47 | 25.70 | 34.37 |34.52| 27.25 |29.82| 36.80 |32.47
MobileNeRF | 451 | 590 | 723 | 322 721 594 | 456 | 450
Ours 154 | 170 | 181 | 180 178 190 | 177 | 165
TABLE VII
SSIMT ON SYNTHETIC 360° SCENES.
TABLE IV
DISK STORAGE] ON SYNTHETIC 360°SCENES (UNIT IS MB). SSIMT
Method Chair | Drums | Lego | Mic | Materials | ship | Hotdog | Ficus
Method] D.iSk Storage .] NeRF 0.967] 0.925 [0.961 |0.980| 0.949 [0.856| 0.974 |0.964
Chair | Drums | Lego | Mic | Materials | ship | Hotdog | Ficus SNeRG 0.9751] 0.929 [0.973]0.982| 0.938 |0.865| 0.971 |0.967
SNeRG 141 44 114 | 22 134 129 | 67 43 MobileNeRF |0.978 | 0.927 [0.975]0.979| 0913 [0.867| 0.973 |0.965
MobileNeRF | 107 | 120 | 199 | 50 191 171 88 80 Ours(re-time) | 0.976 | 0.927 [0.9760.982| 0.931 |0.874| 0.976 |0.969
Ours 54 80 79 | 55 64 79 46 71 Ours(offline) | 0.987 | 0.957 |0.988|0.992| 0.951 |0.939| 0.991 |0.986

TABLE VIII
LPIPS] ON SYNTHETIC 360° SCENES.

LPIPS|
Method Chair | Drums | Lego | Mic | Materials | ship | Hotdog | Ficus
NeRF 0.046 | 0.091 {0.050[0.028 | 0.063 [0.206| 0.121 [0.044
SNeRG 0.025| 0.061 | 0.022|0.016| 0.052 |0.156| 0.043 |0.028
MobileNeRF | 0.025 | 0.077 [0.025]0.032| 0.092 [0.145| 0.050 |0.048
Ours(re-time) | 0.029 | 0.080 |0.025|0.026| 0.080 [0.138| 0.058 |0.056
Ours(offline) | 0.015| 0.049 | 0.012|0.008 | 0.045 |0.087| 0.015 |0.017

into textures results in a loss of precision. Therefore, we utilize
two models, an offline model (Chapter III A and B) and a real-
time model (Chapter III D), for the comparison across eight
objects in a synthetic dataset. Our real-time model successfully
achieved a higher frame rate while maintaining comparable
quality to MobileNeRF. It is worth noting that while measuring
rendering quality is a supplementary experiment, our primary
goal is to achieve a higher frame rate during rendering.

V. CONCLUSION

The Retinal-NeRF method presented in this paper is a cross-
platform solution capable of real-time rendering of neural
radiance fields. It can render lifelike images on low-power plat-
forms without CUDA support at a frame rate five times higher
than SNeRG. We propose an SDF regularization technique
that enhances the capability to retrieve high-precision model
meshes. Additionally, the appearance is baked into texture
images to facilitate real-time rendering.

In conclusion, we have proposed an efficient framework
capable of real-time rendering of neural radiance fields re-
constructed from multi-view RGB images. In comparison
with traditional NeRF-based methods, our method allows for
real-time rendering on various low-power devices, and the
quality of the generated meshes is sufficiently high for use
in downstream applications.

REFERENCES

D. Verbin, P. Hedman, B. Mildenhall, T. Zickler, J. T. Barron, and P.
P. Srinivasan, “Ref-NeRF: Structured View-Dependent Appearance for
Neural Radiance Fields,” in 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, Jun.
2022. doi:10.1109/cvpr52688.2022.00541.

W. Hu et al., “Tri-MipRF: Tri-Mip Representation for Efficient Anti-
Aliasing Neural Radiance Fields,” Jul. 2023.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: Representing Scenes as Neural Radiance Fields for
View Synthesis,” in Computer Vision — ECCV 2020,Lecture Notes in
Computer Science, 2020, pp. 405-421. doi: 10.1007/978-3-030-58452-
8_24.

Q. Xu et al.,, “Point-NeRF: Point-based Neural Radiance Fields,”
in 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), New Orleans, LA, USA, Jun. 2022. doi:
10.1109/cvpr52688.2022.00536.

F. Zhu, S. Guo, L. Song, K. Xu, and J. Hu, “Deep Review and Analysis
of Recent NeRFs”.

B. Kerbl, G. Kopanas, T. Leimkiihler, and G. Drettakis, “3D Gaussian
Splatting for Real-Time Radiance Field Rendering,” Aug. 2023.

P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron, and P. Debevec,
“Baking Neural Radiance Fields for Real-Time View Synthesis,” in
2021 IEEE/CVF International Conference on Computer Vision (ICCV),
Montreal, QC, Canada, Oct. 2021. doi: 10.1109/iccv48922.2021.00582.

[1]

[2]
[3]

[4]

[5]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin, “Fast-
NeRF: High-Fidelity Neural Rendering at 200FPS,” in 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), Montreal, QC,
Canada, Oct. 2021. doi: 10.1109/iccv48922.2021.01408.

A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa, “PlenOctrees
for Real-time Rendering of Neural Radiance Fields,” in 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), Montreal, QC,
Canada, Oct. 2021. doi: 10.1109/iccv48922.2021.00570.

T. Miiller, A. Evans, C. Schied, and A. Keller, “Instant Neural Graphics
Primitives with a Multiresolution Hash Encoding,” ACM Transactions
on Graphics, pp. 1-15, Jul. 2022, doi: 10.1145/3528223.3530127.

Z. Chen, T. Funkhouser, P. Hedman, and A. Tagliasacchi, “MobileNeRF:
Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field
Rendering on Mobile Architectures”.

A. Chen et al., “MVSNeRF: Fast Generalizable Radiance Field Re-
construction from Multi-View Stereo,” in 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), Montreal, QC, Canada, Oct.
2021. doi: 10.1109/iccv48922.2021.01386.

Y. Ding et al., “TransMVSNet: Global Context-aware Multi-view Stereo
Network with Transformers,” in 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), New Orleans, LA, USA,
Jun. 2022. doi: 10.1109/cvpr52688.2022.00839.

R. Liang, J. Zhang, H. Li, C. Yang, and N. Vijaykumar, “SPIDR: SDF-
based Neural Point Fields for Illumination and Deformation,” Oct. 2022.
L. Yariv, J. Gu, Y. Kasten, and Y. Lipman, “Volume Rendering of Neural
Implicit Surfaces,” Jun. 2021.

P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang, “NeusS:
Learning Neural Implicit Surfaces by Volume Rendering for Multi-view
Reconstruction,” arXiv: Computer Vision and Pattern Recognition,arXiv:
Computer Vision and Pattern Recognition, Jun. 2021.

W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D
surface construction algorithm,” in Proceedings of the 14th annual con-
ference on Computer graphics and interactive techniques - SIGGRAPH
’87, Not Known, Jan. 1987. doi: 10.1145/37401.37422.

L. Yariv et al., “BakedSDF: Meshing Neural SDFs for Real-Time View
Synthesis,” Feb. 2023.

J. Munkberg et al., “Extracting Triangular 3D Models, Materials, and
Lighting From Images,” in 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, Jun.
2022. doi: 10.1109/cvpr52688.2022.00810.

X. Zhang, PratulP. Srinivasan, B. Deng, P. Debevec, WilliamT. Freeman,
and JonathanT. Barron, “NeRFactor: Neural Factorization of Shape
and Reflectance Under an Unknown Illumination,” arXiv: Computer
Vision and Pattern Recognition,arXiv: Computer Vision and Pattern
Recognition, Jun. 2021.

M. Oechsle, S. Peng, and A. Geiger, “UNISURF: Unifying Neural Im-
plicit Surfaces and Radiance Fields for Multi-View Reconstruction,” in
2021 IEEE/CVF International Conference on Computer Vision (ICCV),
Montreal, QC, Canada, Oct. 2021. doi: 10.1109/iccv48922.2021.00554.
C. Reiser, S. Peng, Y. Liao, and A. Geiger, “KiloNeRF: Speeding
up Neural Radiance Fields with Thousands of Tiny MLPs,” in 2021
IEEE/CVF International Conference on Computer Vision (ICCV), Mon-
treal, QC, Canada, Oct. 2021. doi: 10.1109/iccv48922.2021.01407.

S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and A.
Kanazawa, ‘Plenoxels: Radiance Fields without Neural Networks,”
in 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), New Orleans, LA, USA, Jun. 2022. doi:
10.1109/cvpr52688.2022.00542.

J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P.
Hedman, “Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance
Fields,” in 2022 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), New Orleans, LA, USA, Jun. 2022. doi:
10.1109/cvpr52688.2022.00539.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
Quality Assessment: From Error Visibility to Structural Similarity,”
IEEE Transactions on Image Processing, pp. 600-612, Apr. 2004, doi:
10.1109/tip.2003.819861.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
Unreasonable Effectiveness of Deep Features as a Perceptual Metric,”
in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, Salt Lake City, UT, Jun. 2018. doi: 10.1109/cvpr.2018.00068.

	Introduction
	Related Work
	Neural Radiance Fields
	Efficient Rendering of Neural Radiance Fields

	Methodology
	SDF-based Neural Point Fields
	Appearance Decomposition
	SDF Regularizations
	Rendering

	Experiments
	Implementation Details
	Main Results

	Conclusion
	References

